Site Loader

Содержание

Виды и схемы стабилизаторов напряжения

Автор: Александр Старченко

Приборы для стабилизации напряжения сети применяются уже не одно десятилетие. Многие модели давно не используются, а другие пока не нашли широкого распространения, несмотря на высокие характеристики. Схема стабилизатора напряжения не является чем-то слишком сложным. Принцип работы и основные параметры различных стабилизаторов следует знать тем, кто ещё не определился с выбором.

Содержание:

  1. Виды стабилизаторов напряжения

Виды стабилизаторов напряжения

В настоящее время применяются следующие виды стабилизаторов:

  • Феррорезонансные;
  • Сервоприводные;
  • Релейные;
  • Электронные;
  • Двойного преобразования.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Феррорезонансные стабилизаторы конструктивно являются самыми простыми устройствами. Они состоят из двух дросселей и конденсатора и работают на принципе магнитного резонанса. Стабилизаторы такого типа отличаются высокой скоростью срабатывания, очень большим сроком эксплуатации и могут работать в широком диапазоне напряжения на входе. В настоящее время их можно встретить в медицинских учреждениях. В быту практически не применяются.

Принцип действия сервоприводного или электромеханического стабилизатора основан на изменении величины напряжения с помощью автотрансформатора. Устройство отличается исключительно высокой точностью установки напряжения. Вместе с тем скорость стабилизации самая низкая. Электромеханический стабилизатор может работать с очень большими нагрузками.

Релейный стабилизатор так же имеет в своей конструкции трансформатор с секционированной обмоткой. Выравнивание напряжения осуществляется с помощью группы реле, которые срабатывают по командам с платы контроля напряжения. Прибор имеет относительно высокую  скорость стабилизации, но точность установки заметно ниже за счёт дискретного переключения обмоток.

Электронный стабилизатор работает по такому же принципу, только секции обмотки регулирующего трансформатора переключаются не с помощью реле, а силовыми ключами на полупроводниковых приборах. Точность электронного и релейного стабилизатора приблизительно одинаковая, но скорость электронного устройства заметно выше.

Стабилизаторы двойного преобразования, в отличие  от других моделей, не имеют в своей конструкции силового трансформатора. Коррекция напряжения осуществляется на электронном уровне. Устройства этого типа отличаются высокой скоростью и точностью, но их стоимость намного выше, чем у других моделей. Стабилизатор напряжения 220 вольт своими руками, несмотря на кажущуюся сложность, может быть реализован именно на инверторном принципе.

Электромеханический стабилизатор

Сервоприводный стабилизатор состоит из следующих узлов:

  • Входной фильтр;
  • Плата измерения напряжения;
  • Автотрансформатор;
  • Серводвигатель;
  • Графитовый скользящий контакт;
  • Плата индикации.

 

В основе работы электромеханического стабилизатора лежит принцип регулировки напряжения путём изменения коэффициента трансформации. Это изменение осуществляется перемещением графитового контакта по свободной от изоляции обмотке трансформатора. Перемещение контакта осуществляется серводвигателем.

Напряжение сети поступает на фильтр, состоящий из конденсаторов и ферритовых дросселей. Его задача максимально очистить приходящее напряжение от высокочастотных и импульсных помех. В плате измерения напряжения заложен определённый допуск. Если напряжение сети в него укладывается, то оно сразу поступает на нагрузку.

При отклонении напряжения сверх допустимого, плата измерения напряжения подаёт команду на узел управления серводвигателем, который перемещает контакт в сторону увеличения или уменьшения напряжения. Как только величина напряжения придёт в норму, серводвигатель останавливается. Если напряжение сети нестабильно и часто изменяется, сервопривод может отрабатывать процесс регулирования практически постоянно.

Схема подключения стабилизатора напряжения малой мощности не представляет ничего сложного, поскольку на корпусе установлены розетки, а включение в сеть осуществляется шнуром с вилкой. На более мощных устройствах сеть и нагрузка подключаются с помощью винтовой колодки.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Релейный стабилизатор

В релейном стабилизаторе имеется почти такой же набор основных узлов:

  • Сетевой фильтр;
  • Плата контроля и управления;
  • Трансформатор;
  • Блок электромеханических реле;
  • Устройство индикации.

 

В этой конструкции коррекция напряжения осуществляется ступенчато, с помощью  реле. Обмотка трансформатора разделена на несколько отдельных секций, каждая из которых  имеет отвод. Релейный стабилизатор напряжения имеет несколько ступеней регулирования, число которых определяется количеством установленных реле.

Подключение секций обмотки, а, следовательно, и изменение напряжения может осуществляться либо аналоговым, либо цифровым способом. Плата управления, в зависимости от изменения напряжения на входе, подключает необходимое количество реле для обеспечения напряжения на выходе, соответствующего допуску. Стабилизаторы релейного типа имеют самую низкую цену среди этих приборов.

Пример схемы релейного стабилизатора

Еще одна схема стабилизатора релейного типа

Электронный стабилизатор

Принципиальная схема стабилизатора напряжения этого типа имеет лишь небольшие отличия от конструкции с электромагнитными реле:

  • Фильтр сети;
  • Плата измерения напряжения и управления;
  • Трансформатор;
  • Блок силовых электронных ключей;
  • Плата индикации.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

 

Принцип работы электронного стабилизатора не отличается от принципа работы релейного устройства. Единственное отличие заключается в применении электронных ключей вместо реле. Ключи представляют собой управляемые полупроводниковые вентили – тиристоры и симисторы. Каждый из них имеет управляющий электрод, подачей напряжения на который вентиль можно открыть. В этот момент и происходит коммутация обмоток и изменение напряжения на выходе стабилизатора. Стабилизатор отличается хорошими параметрами и высокой надёжностью. Широкому распространению мешает высокая стоимость прибора.

Стабилизатор двойного преобразования

Это устройство, называемое так же инверторный стабилизатор, по своей конструкции и техническим решениям, полностью отличается от всех других моделей. В нем отсутствует  трансформатор и элементы коммутации. В основу его работы положен принцип двойного преобразования напряжения. Из переменного напряжения в постоянное, и обратно в переменное.

Схема инверторного стабилизатора напряжения 220в состоит из следующих узлов:

  • Фильтр сетевых помех;
  • Корректор мощности – выпрямитель;
  • Блок конденсаторов;
  • Инвертор;
  • Узел микропроцессора.

Напряжение сети, пройдя через фильтр, поступает на корректор – выпрямитель, где осуществляется первое преобразование. В блоке конденсаторов запасается энергия, которая будет необходима при пониженном напряжении.

Обычно инвертор выполняется по схеме с использованием ШИМ контроллера. Дополнительное питание необходимо для питания микропроцессора, который управляет всей работой стабилизатора.

Большой выбор стабилизаторов напряжения отечественного производства от компании «Энергия», вы найдете на сайте официального представителя ВольтМаркет.ру.

Это устройство отличается уникальными параметрами, поскольку инверторный стабилизатор не изменяет величину напряжения сети, а заново его генерирует. Это позволяет получить напряжение высокого качества со стабильной частотой.

На базе инверторного принципа может быть реализована схема регулируемого стабилизатора напряжения. В этом случае можно на схемном уровне рассчитать величину напряжения на входе, которая может быть практически любой, а стабилизатор будет выдавать 220В.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

Схема электрическая стабилизатора

Разработчики электрических и электронных устройств, в процессе их создания, исходят из того, что будущее устройство будет работать в условиях стабильного питающего напряжения. Это необходимо для того, чтобы электрическая схема электронного устройства, во-первых, обеспечивала стабильные выходные параметры в соответствии со своим целевым назначением, а во-вторых, стабильность питающего напряжения защищает устройство от скачков, чреватых слишком большими потребляемыми токами и перегоранием электрических элементов устройства. Для решения задачи обеспечения неизменности питающего напряжения применяют какой-либо вариант стабилизатора напряжения. По характеру потребляемого устройством тока различают стабилизаторы переменного и постоянного напряжения.

Стабилизаторы переменного напряжения

Стабилизаторы переменного напряжения применяют, если отклонения напряжения в электрической сети от номинального значения превышают 10% . Такая норма выбрана исходя из того, что потребители переменного тока при таких отклонениях сохраняют свою работоспособность весь срок эксплуатации. В современной электронной технике, как правило, для решения задачи стабильного электропитания используют импульсный блок питания, при котором стабилизатор переменного напряжения не нужен. А вот в холодильниках, микроволновых печах, кондиционерах, насосах и т.п. требуется внешняя стабилизация питающего переменного напряжении. В таких случаях чаще всего используют стабилизатор одного из трёх типов: электромеханический, главным звеном которого является регулируемый автотрансформатор с управляемым электрическим приводом, релейно- трансформаторный, на базе мощного трансформатора, имеющего несколько отводов в первичной обмотке, и коммутатора из электромагнитных реле, симисторов, тиристоров или мощных ключевых транзисторов, а также чисто электронный. Широко распространенные в прошлом веке феррорезонансные стабилизаторы в настоящее время практически не используются из-за наличия многочисленных недостатков.

Для подключения потребителей к сети переменного тока 50 Гц применяют стабилизатор напряжения на 220 В. Электрическая схема стабилизатора напряжения такого типа изображена на следующем рисунке.

Трансформатор А1 повышает напряжение в сети до уровня, достаточного для стабилизации выходного напряжения при низком входном напряжении. Регулирующий элемент РЭ осуществляет изменение выходного напряжения. На выходе управляющий элемент УЭ измеряет значение напряжения на нагрузке и выдает управляющий сигнал для его корректировки, если это необходимо.

Электромеханические стабилизаторы

В основе такого стабилизатора — использование бытового регулируемого автотрансформатора или лабораторного ЛАТРа. Применение автотрансформатора обеспечивает более высокий КПД установки. Рукоятка регулирования автотрансформатора удаляется, а на корпусе вместо нее соосно устанавливают небольшой двигатель с редуктором, обеспечивающим усилие вращения достаточное для поворота бегунка в автотрансформаторе. Необходимая и достаточная скорость вращения – около 1 оборота за 10 — 20 сек. Этим требованиям удовлетворяет двигатель типа РД-09, который раньше применялся в самопишущих приборах. Управляет двигателем электронная схема. При изменении сетевого напряжения в пределах +- 10 вольт выдаётся команда на двигатель, который поворачивает бегунок до достижения на выходе напряжения 220 В.

Примеры схем электромеханических стабилизаторов приведены ниже: 

Электрическая схема стабилизатора напряжения с использованием логических микросхем и релейного управления электроприводом

Электромеханический стабилизатор на основе операционного усилителя.

Достоинством подобных стабилизаторов является простота реализации и высокая точность стабилизации напряжения на выходе. К недостаткам следует отнести невысокую надёжность из — за присутствия механических подвижных элементов, относительно малую допустимую мощность нагрузки ( в пределах 250 … 500 Вт), малую распространенность в наше время автотрансформаторов и необходимых электродвигателей.

Релейно — трансформаторные стабилизаторы

Релейно — трансформаторный стабилизатор является более популярным в силу простоты реализации конструкции, применения распространенных элементов и возможности получения значительной выходной мощности (до нескольких киловатт), значительно превышающей мощность примененного силового трансформатора. На выбор его мощности влияет минимальное напряжение в конкретной сети переменного тока. Если, к примеру, оно не меньше 180 В, то от трансформатора потребуется обеспечение вольтодобавки 40 В, что в 5,5 раз меньше номинального напряжения в сети. Выходная мощность у стабилизатора во столько же раз будет больше, чем мощность силового трансформатора (если не учитывать КПД трансформатора и максимально допустимый ток через коммутирующие элементы). Число ступеней изменения напряжения, как правило, устанавливают в пределах 3 … 6 ступеней, что в большинстве случаев обеспечивает приемлемую точность стабилизации напряжения на выходе. При вычислении количества витков обмоток в трансформаторе для каждой ступени напряжение в сети принимается равным уровню срабатывания коммутирующего элемента. Как правило, в качестве коммутирующих элементов используют электромагнитные реле — схема выходит достаточно элементарной и не вызывающей затруднений при повторении. Недостатком такого стабилизатора является образование дуги на контактах реле в процессе коммутации, что разрушает контакты реле. В более сложных вариантах схем переключение реле производят в моменты перехода полуволны напряжения через нулевое значение, что предотвращает возникновение искры, правда при условии использования быстродействующих реле или коммутации на спаде предшествующей полуволны. Использование в качестве коммутирующих элементов тиристоров, симисторов или других бесконтактных элементов надёжность схемы резко возрастает, но усложняется из-за необходимости обеспечения гальванической развязки между цепями управляющих электродов и модулем управления. Для этого применяют оптронные элементы или разделительные импульсные трансформаторы. Ниже приведена принципиальная схема релейно — трансформаторного стабилизатора:

Схема цифрового релейно — трансформаторного стабилизатора на электромагнитных реле

Электронные стабилизаторы

Электронные стабилизаторы имеют, как правило, небольшую мощность (до 100 Вт) и необходимую для работы многих электронных устройств высокую стабильность выходного напряжения. Они обычно строятся в виде упрощённого усилителя низкой частоты, имеющего достаточно большой запас изменения уровня питающего напряжения и мощности. На его вход от электронного регулятора напряжения подаётся сигнал синусоидальной формы с частотой 50 Гц от вспомогательного генератора. Можно использовать понижающую обмотку силового трансформатора. Выход усилителя подключен к повышающему до 220 В трансформатору. Схема имеет инерционную отрицательную обратную связь по значению выходного напряжения, что гарантирует стабильность выходного напряжения с неискажённой формой. Для достижения мощности на уровне нескольких сотен ватт используют другие методы. Обычно применяют мощный преобразователь постоянного тока в переменный на основе использования нового вида полупроводников — так называемых IGBT транзисторо.

Эти коммутирующие элементы в ключевом режиме могут пропустить ток в несколько сотен ампер при максимально допустимом напряжении более 1000 В. Для управления такими транзисторами используются специальные виды микроконтроллеров с векторным управлением. На затвор транзистора с частотой в несколько килогерц подают импульсы с переменной шириной, которая меняется по программе, введенной в микроконтроллер. По выходу такой преобразователь нагружен на соответствующий трансформатор. Ток в цепи трансформатора меняется по синусоиде. В то же время напряжение сохраняет форму исходных прямоугольных импульсов с разной шириной. Такая схема используется в мощных источниках гарантированного питания, используемых для бесперебойной работы компьютеров. Электрическая схема стабилизатора напряжения такого типа очень сложна и практически недоступна для самостоятельного воспроизведения.

Упрощенные электронные стабилизаторы напряжения

Такие устройства применяют, когда напряжение бытовой сети (особенно в условиях сельских населенных пунктов) нередко оказывается пониженным, практически никогда не обеспечивая номинальных 220 В.

В такой ситуации и холодильник работает с перебоями и риском выхода из строя, и освещение оказывается тусклым, и вода в электрочайнике долго не может закипеть. Мощности старенького, еще советских времен, стабилизатора напряжения, рассчитанного на питание телевизора, как правило, недостаточна для всех остальных бытовых электропотребителей, да и значение напряжения в сети часто падает ниже уровня, допустимого для подобного стабилизатора.

Существует простой метод для повышения напряжение в сети, путем использования трансформатора мощностью значительно меньшей мощности применяемой нагрузки. Первичная обмотка трансформатора включается непосредственно в сеть, а нагрузка подключается последовательно к вторичной (понижающей) обмотке трансформатора. При правильной фазировке напряжение на нагрузке окажется равным сумме снимаемого с трансформатора и сетевого напряжения.

Электрическая схема стабилизатора напряжения, действующего по этому несложному принципу, приведена рисунке ниже. Когда стоящий в диагонали диодного моста VD2 транзистор VT2 (полевой) закрыт, обмотка I (являющаяся первичной) трансформатора Т1 к сети не подключена. Напряжение на включенной нагрузке почти равно сетевому за минусом небольшого напряжения на обмотке II (вторичная) трансформатора Т1. При открытии полевого транзистора первичная обмотка трансформатора окажется замкнутой, а к нагрузке будет приложена сумма сетевого и напряжения вторичной обмотки.

Схема электронного стабилизатора напряжения

Напряжение с нагрузки, через трансформатор Т2 и диодный мост VD1 подается на транзистор VT1. Регулятор подстроечного потенциометра R1 должен быть выставлен в положение, обеспечивающее открытие транзистора VT1 и закрытие VT2, когда напряжение на нагрузке превышает номинальное (220 В). Если напряжение меньше 220 вольт транзистор VT1 закроется , a VT2 — откроется. Полученная таким способом отрицательная обратная связь сохраняет напряжение на нагрузке примерно равным номинальному значению.

Выпрямленное напряжение с моста VD1 используется и для запитки коллекторной цепи VT1 (через цепь интегрального стабилизатора DA1). Цепочка C5R6 гасит нежелательные скачки напряжения сток-исток на транзисторе VT2. Конденсатор С1 обеспечивает снижение помех, проникающих в сеть в процессе работы стабилизатора. Номиналы резисторов R3 и R5 подбирают, получая наилучшую и устойчивую стабилизацию напряжения. Выключатель SA1 обеспечивает включение и выключение стабилизатора и нагрузки. Замыкание выключателя SA2 отключает автоматику, стабилизирующую напряжение на нагрузке. Оно в таком варианте оказывается максимально возможным при текущем напряжении в сети.

После включения собранного стабилизатора в сеть, подстроечным резистором R1 устанавливают на нагрузке напряжение, равное 220 В. Нужно учесть, что вышеописанный стабилизатор не может устранить изменения сетевого напряжения, превышающие 220 В, или оказавшиеся ниже минимального, использованного при расчете обмоток трансформатора.

Замечание: В некоторых режимах работы стабилизатора мощность, рассеиваемая транзистором VT2, оказывается весьма значительной. Именно она, а не мощность трансформатора, может ограничить допустимую мощность нагрузки. Поэтому следует позаботиться о хорошем отводе тепла от этого транзистора.

Стабилизатор, устанавливаемый в сыром помещении, нужно обязательно поместить в заземленный металлический корпус.

Стабилизаторы напряжения: классификация, схемы, параметры, достоинства

Параметры стабилизаторов напряжения

Важнейшими параметрами стабилизатора напряжения являются коэффициент стабилизации Kст, выходное сопротивление Rвых и коэффициент полезного действия η.

Коэффициент стабилизации определяют из выражения Kст= [ ∆uвх/ uвх] / [ ∆uвых/ uвых]

где uвх, uвых — постоянные напряжения соответственно на входе и выходе стабилизатора; ∆uвх — изменение напряжения uвх; ∆uвых — изменение напряжения uвых, соответствующее изменению напряжения ∆uвх.

Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного. У простейших стабилизаторов величина Kст составляет единицы, а у более сложных — сотни и тысячи.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Таким образом, коэффициент стабилизации — это отношение относительного изменения напряжения на входе к соответствующему относительному изменению напряжения на выходе стабилизатора.

Выходное сопротивление стабилизатора определяется выражением Rвых= | ∆uвых/ ∆iвых|

где ∆uвых— изменение постоянного напряжения на выходе стабилизатора; ∆iвых— изменение постоянного выходного тока стабилизатора, которое вызвало изменение выходного напряжения.

Выходное сопротивление стабилизатора является величиной, аналогичной выходному сопротивлению выпрямителя с фильтром. Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки. У простейших стабилизаторов величина Rвых составляет единицы Ом, а у более совершенных — сотые и тысячные доли Ома. Необходимо отметить, что стабилизатор напряжения обычно резко уменьшает пульсации напряжения.

Коэффициент полезного действия стабилизатора ηст — это отношение мощности, отдаваемой в нагрузку Рн, к мощности, потребляемой от входного источника напряжения Рвх: ηст = Рн / Рвх

Традиционно стабилизаторы разделяют на параметрические и компенсационные.

Интересное видео о стабилизаторах напряжения:

Параметрические стабилизаторы

Являются простейшими устройствами, в которых малые изменения выходного напряжения достигаются за счет применения электронных приборов с двумя выводами, характеризующихся ярко выраженной нелинейностью вольт-амперной характеристики. Рассмотрим схему параметрического стабилизатора на основе стабилитрона (рис. 2.82).
Проанализируем данную схему (рис. 2.82, а), для чего вначале ее преобразуем, используя теорему об эквивалентном генераторе (рис. 2.82, б). Проанализируем графически работу схемы, построив на вольт-амперной характеристике стабилитрона линии нагрузки для различных значений эквивалентного напряжения, соответствующих различным значениям входного напряжения (рис. 2.82, в).
Из графических построений очевидно, что при значительном изменении эквивалентного напряжения uэ (на ∆uэ), а значит, и входного напряжения uвх, выходное напряжение изменяется на незначительную величину ∆uвых.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

Причем, чем меньше дифференциальное сопротивление стабилитрона (т. е. чем более горизонтально идет характеристика стабилитрона), тем меньше ∆uвых.

Определим основные параметры такого стабилизатора, для чего в исходной схеме стабилитрон заменим его эквивалентной схемой и введем во входную цепь (рис. 2.82, г) источник напряжения, соответствующий изменению входного напряжения ∆uвх (на схеме пунктир):

Rвых= rд|| R0≈ rд, т.к. R0>> rд ηст = ( uвых· Iн) / ( uвх· Iвх) = ( uвых· Iн) / [ uвх( Iн + Iвх) ].

Kст= ( ∆uвх/ uвх) : ( ∆uвых/ uвых) Так как обычно Rн>> rд Следовательно, Kст≈ uвых / uвх· [ ( rд+ R0) / rд]

Обычно параметрические стабилизаторы используют для нагрузок от нескольких единиц до десятков миллиампер. Наиболее часто они используются как источники опорного напряжения в компенсационных стабилизаторах напряжения.

Компенсационные стабилизаторы

Представляют собой замкнутые системы автоматического регулирования. Характерными элементами компенсационного стабилизатора являются источник опорного (эталонного) напряжения (ИОН), сравнивающий и усиливающий элемент (СУЭ) и регулирующий элемент (РЭ).

Напряжение на выходе стабилизатора или некоторая часть этого напряжения постоянно сравнивается с эталонным напряжением.

В зависимости от их соотношения сравнивающим и усиливающим элементом вырабатывается управляющий сигнал для регулирующего элемента, изменяющий его режим работы таким образом, чтобы напряжение на выходе стабилизатора оставалось практически постоянным.

В качестве ИОН обычно используют ту или иную электронную цепь на основе стабилитрона, в качестве СУЭ часто используют операционный усилитель, а в качестве РЭ — биполярный или полевой транзистор.

Чаще всего регулирующий элемент включают последовательно с нагрузкой. В этом случае стабилизатор называют последовательным (рис. 2.83, а).


Иногда регулирующий элемент включают параллельно нагрузке, и тогда стабилизатор называют параллельным (рис. 2.83, б. Здесь СУЭ и ИОН с целью упрощения не показаны). В параллельном стабилизаторе используется балластное сопротивление Rб, включаемое последовательно с нагрузкой.

В зависимости от режима работы регулирующего элемента стабилизаторы разделяют на непрерывные и импульсные (ключевые, релейные).

В непрерывных стабилизаторах регулирующий элемент (транзистор) работает в активном режиме, а в импульсных — в импульсном.

Рассмотрим типичную принципиальную схему непрерывного стабилизатора (рис. 2.84, а).
Эта схема соответствует приведенной выше структурной схеме последовательного стабилизатора. Для того чтобы выполнить наиболее просто анализ этой схемы на основе тех допущений, которые были рассмотрены при изучении операционного усилителя,изобразим эту схему по-другому. При этом цепи питания операционного усилителя для упрощения рисунка изображать не будем.
Из схемы (рис. 2.84, б) очевидно, что на элементах R2, R3, DA и VT построен неинвертирующий усилитель на основе ОУ с выходным каскадом в виде эмиттерного повторителя на транзисторе VT, а входным напряжением для него является выходное напряжение параметрического стабилизатора напряжения на элементах R1 и VD. В соответствии с указанными выше допущениями получаем:

uR3= uст, т.е. iR3· R3= uст

uR2 = uR3 – uвых

iR2 = − iR3 = − uст/ R3

Подставляя выражение для iR2 в предыдущее уравнение, получим − uст/ R3· R2= uст – uвых. Следовательно, uвых = uст· ( 1 + R2/ R3)

Последнее выражение в точности повторяет соответствующие выражения для неинвертирующего усилителя (входным напряжением является напряжение uст).

Полезно отметить, что ООС охватывает два каскада — на операционном усилителе и на транзисторе. Рассматриваемая схема является убедительным примером, демонстрирующим преимущество общей отрицательной обратной связи по сравнению с местной.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Основным недостатком стабилизаторов с непрерывным регулированием является невысокий КПД, поскольку значительный расход мощности имеет место в регулирующем элементе, так как через него проходит весь ток нагрузки, а падение напряжения на нем равно разности между входным и выходным напряжениями стабилизатора.

В конце 60-х годов стали выпускать интегральные микросхемы компенсационных стабилизаторов напряжения с непрерывным регулированием (серия К142ЕН). В эту серию входят стабилизаторы с фиксированным выходным напряжением, с регулируемым выходным напряжением и двухполярным и входным и выходным напряжениями. В тех случаях, когда через нагрузку необходимо пропускать ток, превышающий предельно допустимые значения интегральных стабилизаторов, микросхему дополняют внешними регулирующими транзисторами.

Некоторые параметры интегральных стабилизаторов приведены в табл. 2.1, а вариант подключения к стабилизатору К142ЕН1 внешних элементов — на рис. 2.85.
Резистор R предназначен для срабатывания защиты по току, а R1 — для регулирования выходного напряжения. Микросхемы К142УН5, ЕН6, ЕН8 являются функционально законченными стабилизаторами с фиксированным выходным напряжением, но не требуют подключения внешних элементов.

Импульсные стабилизаторы напряжения в настоящее время получили распространение не меньшее, чем непрерывные стабилизаторы.

Благодаря применению ключевого режима работы силовых элементов таких стабилизаторов, даже при значительной разнице в уровнях входных и выходных напряжений можно получить КПД, равный 70 − 80 %, в то время как у непрерывных стабилизаторов он составляет 30 − 50%.

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

В силовом элементе, работающем в ключевом режиме, средняя за период коммутации мощность, рассеиваемая в нем, значительно меньше, чем в непрерывном стабилизаторе, так как хотя в замкнутом состоянии ток, протекающий через силовой элемент, максимален, однако падение напряжения на нем близко к нулю, а в разомкнутом состоянии ток, протекающий через него, равен нулю, хотя напряжение максимально. Таким образом, в обоих случаях рассеиваемая мощность незначительна и близка к нулю.

Малые потери в силовых элементах приводят к уменьшению или даже исключению охлаждающих радиаторов, что значительно уменьшает массогабаритные показатели. Кроме того, использование импульсного стабилизатора позволяет в ряде случаев исключить из схемы силовой трансформатор, работающий на частоте 50 Гц, что также улучшает показатели стабилизаторов.

К недостаткам импульсных источников питания относят наличие пульсаций выходного напряжения.

Рассмотрим импульсный последовательный стабилизатор напряжения (рис. 2.86).
Ключ S периодически включается и выключается схемой управления (СУ) в зависимости от значения напряжения на нагрузке. Напряжение на выходе регулируют, изменяя отношение tвкл / tвыкл, где tвкл, tвыкл — длительности отрезков времени, на которых ключ находится соответственно во включенном и выключенном состояниях. Чем больше это отношение, тем больше напряжение на выходе.

В качестве ключа S часто используют биполярный или полевой транзистор.

Диод обеспечивает протекание тока катушки индуктивности тогда, когда ключ выключен и, следовательно, исключает появление опасных выбросов напряжения на ключе в момент коммутации. LC-фильтр снижает пульсации напряжения на выходе.

Ещё одно интересное видео о стабилизаторах:

микросхема, импульсный, интегральный и простой

На чтение 8 мин Просмотров 302 Опубликовано Обновлено

Стабилизаторы напряжения предотвращают поломки оборудования и бытовой техники от колебания нагрузки. Устройство совместимо с однофазной и трехфазной сетью, подходит для квартиры и частного дома. Схема стабилизатора напряжения может понадобиться при самостоятельном подключении прибора или обустройстве электросети.

Принцип работы стабилизаторов

Различные типы стабилизаторов напряжения

Принцип функционирования зависит от типа оборудования. Для выделения общих моментов целесообразно рассмотреть конструкцию. Прибор состоит из таких элементов:

  • Система управления. Позволяет отслеживать вольтаж на выходе, доводя его до стабильного показателя 220 В. Оборудование работает с погрешностью 10-15 %.
  • Автоматический трансформатор. Имеется у релейных, симисторных, сервомоторных модификаций. Повышает или понижает номинал напряжения.
  • Инвертор. Механизмом из генератора, трансформатора и транзисторов оснащаются инверторные модели. Элементы через первичную обмотку могут пропускать либо выключать ток, формируя напряжение на выходе.
  • Защитный блок, источник вторичного питания. Имеются у моделей, рассчитанных на 220 Вольт.

Функция байпаса или транзита позволяет стабилизаторам подавать напряжение на выход до момента пресечения установленного предела.

Принцип действия релейных моделей

Релейный аппарат регулирует вольтаж посредством замыкания контактов реле. Контроль параметров осуществляется с помощью микросхемы, элементы которой сравнивают сетевое напряжение с опорным. Если показатели не совпадают, от микросхем стабилизаторов напряжения поступают сигналы на понижение или повышение обмотки.

При дешевизне и компактности релейное оборудование медленно реагирует на скачки напряжения, может кратковременно выключаться, не выдерживает перегрузки.

Погрешность устройств – 5-10 %.

Как работают сервоприводные приборы

Основные узлы сервоприводного аппарата – серводвигатель и автоматический трансформатор. Если напряжение отклонилось от нормы, поступает сигнал на переключение трансформаторных от контроллера к мотору. Сравнение показателей опорного и входного вольтажа осуществляет плата управления.

Сервоприводные стабилизаторы могут регулировать нагрузку трехфазной и однофазной сети. Они отличаются стойкостью, надежностью, исправным функционированием при перегрузке.

Точность приборов – 1 %.

Принцип работы инверторных устройств

Инверторный стабилизатор регулирует напряжение по системе двойного преобразования:

  1. Переменный ток на входе выравнивается, пропускается через конденсаторный фильтр пульсации.
  2. Выпрямленный ток подается к инвертору, трансформируется в переменный и поступает на нагрузку.

Выходное напряжение остается стабильным.

Приборы с инверторами отличаются быстротой реакции, КПД от 90%, бесперебойной и бесшумной работой в диапазоне 115-300 Вольт.

Диапазон регулирования аппарата снижается, если нагрузка увеличивается.

Особенности расчета характеристик

Чтобы установить параметрический аппарат, понадобится вычислить мощность, вольтаж на входе, ток базы транзисторов. К примеру, максимальное напряжение на выходе равняется 14 В, минимальное на выходе – 1,5 В, а максимальный ток – 1 А. Зная параметры, производится расчет:

  1. Входное напряжение. Используется формула Uвх=Uвых+3. Цифра – коэффициент падения напряжения на участке перехода от коллектора к эмиттеру.
  2. Максимальная мощность, которую рассеивает транзистор. Для подбора в пользу большей величины понадобится справочник. Применяются такие формулы: Pmax = 1.3 (Uвх-Uвых) Imax = 1.3 (17-14) = 3,9 Вт; Pmax = 1.3 (Uвх-Uвых1) Imax = 1.3 (17-1.5) = 20,15 Вт.
  3. Ток транзисторной базы. Расчеты производятся по формуле: Iб max = Imax/h31Э min. Последний показатель равен 25, поэтому 1/25 = 0,04 А.
  4. Параметры балластного тиристора. Применяется формула Rб = (Uвх-Uст)/(Iб max+Iст min )= (17-14)/(0,00133+0,005) = 474 Ом. Iст min – ток стабилизации; Uст – напряжение стабилизации, которое выдает стабилитрон.

Цифры и расчеты предоставлены для резисторов с сопротивлением 1 Ом.

Схема для компенсационного стабилизатора

Компенсационные схемы объясняют подключение с обратной связью. Сами устройства имеют точное напряжение на выходе без привязки к току нагрузки.

Последовательная схема

Компенсационный стабилизатор напряжения последовательного типа

По обозначениям из справочника можно идентифицировать:

  • регулирующий узел – Р;
  • источник эталонного номинала напряжения – И;
  • сравниваемые показатели – ЭС;
  • усилитель постоянных токов – У.

Для вычисления напряжения на выходе понадобится знать особенности работы устройства. Один транзистор будет регулировать, а второй – стабилизировать. Стабилитрон является источником опорного. Разность мощностей – напряжение на участке между эмиттером и базой.

При подаче коллекторного тока на резистор напряжение падает, имеет обратную полярность для эмиттерного узла. В результате происходит падение коллекторного и эмиттерного токов. Чтобы регулировка была плавной, для линии стабилизатора используется делитель. Ступенчатое регулирование достигается при помощи напряжения опоры стабилитрона.

Параллельная схема

Компенсационный стабилизатор напряжения параллельного типа

Если напряжение отклонилось от номинала, возникает импульс рассогласования. Это разница между показателями выхода и опоры. Поскольку узел регулировки расположен параллельно нагрузке, он усиливает сигнал. Происходит изменение тока на элементе-регуляторе, падение напряжения резистора и сохранение постоянного номинала на выходе.

Схема параметрического стабилизатора

Схема, объясняющая процесс стабилизации опорного напряжения, будет основной для параметрических моделей. Делитель напряжения прибора представляет собой балластный резистор и стабилитрон с параллельным сопротивлением нагрузки. При колебании номинала напряжения питания и токовой нагрузки стабилизируется напряжение.

Если данный показатель возрастает на входе, увеличивается ток, проходящий через стабилитрон и резистор. Благодаря вольт-амперным показателям номинал стабилитрона почти не меняется, как и напряжение сопротивления нагрузки. Все колебания касаются только резистора.

Специфика импульсного устройства

Простой импульсный стабилизатор напряжения

Импульсный аппарат отличается высоким КПД даже в условиях большого диапазона напряжения. Схема устройства включает ключ, энергетический накопитель и цепь управления. Элемент регулировки подключается в режиме импульса. Принцип действия прибора:

  1. От второго коллектора через второй конденсатор к базе подается положительное напряжение обратной связи.
  2. Коллектор №2 открывается после насыщения током от резистора №2.
  3. На переходе от коллектора к эмиттеру насыщение меньше, и он остается открытым.
  4. Усилитель подключается на коллектор №3 через стабилитрон №2.
  5. Подсоединение базы осуществляется к делителю.
  6. Первый стабилитрон управляет открытием/закрытием второго коллектора по сигналу от третьего.

Когда второй стабилитрон открыт, энергия накапливается в дросселе, поступая поле закрытия на нагрузку.

Стабилизаторы на микросхемах

Линейный делитель отличается подачей нестабильного напряжения на вход и снятием стабильного с плеча делителя. Выравнивание осуществляет делительное плечо, поддерживающее постоянное сопротивление. Устройства отличаются простотой конструкции, отсутствием помех в работе. Микросхемы соединяются последовательно или параллельно.

Последовательные стабилизаторы

Последовательный стабилизатор на биополярном транзисторе

Последовательные устройства характеризуются включением элемента регулировки параллельно с нагрузкой. Существует две модификации:

  • С биполярным транзистором. Не имеет авторегулируемого контура, стабильность напряжения зависит от величины тока и температурных показателей. В качестве токового усилителя используется эмиттерный повторитель или транзистор составного типа.
  • С контуром авторегулировки. Компенсационный прибор работает по принципу выравнивания выходного и опорного номинала. Часть напряжения на выходе снимается с резистивного делителя, а потом сравнивается при помощи стабилитрона. Контуром регулирования является петля обратной связи со сдвигом по фазе 180 градусов. Стабилизация тока производится резистором или источником питания.

Самые популярные последовательные стабилизаторы – интегральные.

Специфика параллельного стабилизатора

Простой мощный параллельный стабилизатор на транзисторах

Параллельный прибор отличается включением элемента регулировки параллельно подаваемой нагрузке. Стабилитрон используется полупроводникового или газоразрядного типа. Схема востребована для регулирования сложных устройств.

Снижение нестабильного показателя напряжения на входе осуществляется при помощи резистора. Допускается использовать двухполярный автомат с высокими показателями дифференциального сопротивления на отдельном участке.

Особенности приборов с тремя выводами

Стабилизаторы для переменного напряжения отличаются небольшими габаритами, выпускаются в пластиковом или металлическом корпусе. Они оснащаются каналами для входа, заземления и вывода. Конденсаторы прибора для уменьшения пульсаций запаиваются с двух сторон.

Напряжение на выходе составляет около 5 В, на входе – около 10 В, мощность рассеивания – 15 Вт.

Трехвыводные модификации позволяют получить вольтаж нестандартного номинала, необходимое для запитки макетов, маломощных АКБ, при починке или модернизации аппаратуры.

Алгоритм самостоятельной сборки аппарата

Для самостоятельного изготовления целесообразно использовать схему симистора – эффективного прибора. Он выравнивает номинал подаваемого тока при напряжении от 130 до 270 В. Сделать прибор можно на основе печатной платы из фольгированного текстолита. Сборка устройства осуществляется так:

  1. Подготовка магнитопровода и нескольких кабелей.
  2. Создание обмотки из провода диаметром 0,064 мм – понадобится 8669 витков.
  3. Остальные проводники диаметром 0,185 мм нужны для оставшихся обмоток. Количество витков каждой – 522.
  4. Последовательное соединение трансформаторов на 12 В.
  5. Организация 7-ми отводов. Первые 3 изготавливаются из провода диаметром 3 мм, другие – из шин с сечением 18 мм2. Так самодельный аппарат не будет нагреваться.
  6. Установка контроллерной микросхемы на платиновый теплоотвод.
  7. Монтаж симисторов и светодиодов.

Для устройства понадобится прочный корпус, прикрепленный к жесткому каркасу. Самый простой вариант – полимерные или алюминиевые пластины.

Схема подключения стабилизатора

Схема подключения стабилизатора напряжения

Ввод стабилизатора в частный дом выполняется при помощи трехжильного ВВГнг-кабеля, трехпозиционного выключателя и провода ПУГВ. Установка производится до счетчика, в отдельном или распределительном щитке:

  1. Открыть контакты, подняв лицевую крышку.
  2. Пропустить на выход и вход кабель. Фазу входа затянуть на клемме Lin, нулевой (синий) проводник – на клемме Nin, землю – на винтовой зажим с соответствующим обозначением.
  3. При отсутствии земли закрутить эту жилу под винт на корпусе прибора.
  4. Вернуть стабилизированное напряжение в общий щиток. Фаза подводится на выход Lout, ноль – к Nout, земля – к заземлению на входе.
  5. Протестировать схему в режиме без нагрузки.

Для теста отключаются все автоматы, кроме вводного и направленного на стабилизатор.

Стабилизатор, подключенный между сетью и нагрузкой, подходит для частного или дачного дома, квартиры, производства. Прибор защищает оборудование от выхода из строя, устраняет влияние на электролинию перегрузки и коротких замыканий.

напряжение, которое должен выдавать стабилизатор! Схема, устройство и принцип работы.



Содержание (кликабельно):

  1. Строение стабилизаторов.
  2. Схема электромеханического стабилизатора.
  3. Характеристики электромеханического стабилизатора.
  4. Проблемные места и ремонт электромеханического стабилизатора.
  5. Какой является схема релейного преобразователя?
  6. Характерные особенности релейных стабилизаторов.
  7. Какие слабые места релейных стабилизационных приборов.
  8. Схема симисторного стабилизационного устройства.
  9. Двухкаскадные симисторные устройства.

В современной жизни ни один человек не может обойтись без использования различных электроприборов. Они сумели стать нашими лучшими помощниками, ведь дают возможность развлекаться, готовить различные вкусные блюда, продолжат пригодность различных продуктов, облегчают уборку и различные ремонтные работы.

Большинство из таких приборов разрабатывается с учетом того, что напряжение в домашней электрической сети должно равняться 220-ти вольтам, или же оно не будет характеризоваться различными колебаниями.

Для самых электроприборов стабильность напряжения является нужной для того, чтобы каждый его элемент выполнял свои функции на том уровне, который определил сам производитель. Также стабильность в электросети является необходимой и для устранения возможности перегорания отдельных элементов электроприборов.

И для того чтобы каждый электроприбор и его комплектующие могли выполнять свои целевые функции, владельцам домов или квартир необходимо использовать стабилизационные устройства. Они могут обеспечить не только оптимальную работу любимого прибора, но и уберечь его от сгорания.

Стабилизатор Энергия

Стоит отметить, что в быту можно использовать стабилизационные приборы постоянного и переменного напряжения. В тех случаях, когда количество вольт в сети колеблется на величину, большую на 10 процентов от номинальной величины (220 В), на свое вооружение нужно брать или делать самому стабилизатор переменного напряжения.

Как правило, в современных электронных приборах для подачи электричества со стабильным уровнем применяют импульсные блоки питания.

Однако, если нужно стабилизировать электричество для холодильников, микроволновых печей, насосов и кондиционеров, то импульсные приборы стабилизации тока уже не подойдут.

Причина этого кроется в том, что существует потребность во внешней стабилизации переменного напряжения. Здесь на помощь придут бытовые стабилизаторы напряжения, которые на выходе способны обеспечить постоянные 220 вольт.

Учитывая тот факт, что такие устройства имеют много разновидностей, в дальнейшем будет рассмотрен каждая разновидность в отдельности. При этом вы сможете заглянуть и под корпус каждого вида стабилизационного устройства.

Общее строение стабилизационных устройств

Бытовые стабилизаторы могут быть электромеханическими, релейно-трансформаторными и электронными. Также на рынке еще можно встретить феррорезонансные стабилизационные приборы. Они пользовались большой популярностью в прошлом, однако их сегодня практически не используют.

Люди отказываются от них через большое количество недостатков.

Стоит отметить, что независимо от вида стабилизаторы работают по похожей схеме. Эта схема предусматривает наличие:

  1. — трансформатора;
  2. — регулирующего элемента;
  3. — управляющего элемента.

Данную схему можно увидеть на рисунке, который приводится ниже.

рис.1 схема стабилизатора

На этой схеме трансформатор обозначен, как Т1. Регулирующий элемент обозначается РЭ, управляющий элемент — УЭ. Задачей трансформатора является либо повышение, либо понижение напряжения, если оно не является равным 220-ти вольтам.

Для того, чтобы он мог выполнять эту цель, производители монтируют регулирующий элемент. Именно он управляет работой трансформатора. Чтобы этот регулирующий компонент «знал», как управлять трансформатором, в стабилизатор монтируют управляющий элемент.

Он осуществляет измерение напряжения на входе, сравнивает его с оптимальным напряжением и дает необходимую команду регулирующему элементу.
Каждый стабилизационный прибор работает по такой схеме.
Разница между ними заключается в строении регулирующих элементов и особенностях трансформатора.

Схема электромеханического стабилизатора



Наиболее простым по своему строению является электромеханическое стабилизационное устройство. Оно предусматривает наличие:

  1. Регулируемого автотрансформатора или ЛАТРа.
  2. Сервопривода с редуктором и щеткой.
  3. Электронной схемы.

Основным его элементом является лабораторный ЛАТР или бытовой регулирующий автоматический трансформатор. Благодаря применению последнего компонента этот прибор может похвастаться КПД высокого уровня. Сверху над этим трансформатором монтируется двигатель, который имеет малые размеры.

Схема стабилизатора

Этот двигатель имеет в себе редуктор. Двигатель имеет достаточную мощность, чтобы поворачивать бегунок в трансформаторе. Оптимальным условием работы этого двигателя является обеспечение одного полного оборота бегунка в течение десяти-двадцати секунд.

В конце бегунка находится щетка, которая в среднем превышает в 2,2 раза диаметр провода обмотки трансформатора. Собственно до этих проводов и прикасается сама щетка.
Конечно, работа двигателя зависит от команд электронной схемы. В тех случаях, когда происходят изменения в токе на входе, электронная схема обнаруживает их и дает указание двигателю сместить бегунок на определенную величину, в результате чего на выходе получаются желаемые 220 вольт.

Характеристики электромеханического преобразователя

Такая простая конструкция этого типа стабилизатора напряжения, который на выходе выдает 220 вольт и который часто выпускается под маркой «Ресанта», является его преимуществом. В список преимуществ входит и возможность обеспечения высокой точности уровня выходного напряжения.

Эта точность равняется ±3 процентам. Что касается диапазона входных вольт, то он довольно большой. Так для некоторых моделей он колеблется в пределах 130-260-ти вольт.

Простая конструкция является причиной и некоторых недостатков. Так при перемещении щетки (бегунка) слышно гул. При этом места контакта могут искриться.

Полезный совет: такая щетка довольно быстро изнашивается. Потому за ее состоянием нужно следить каждый год. Как показывает практика, каждые три года нужно осуществлять замену щетки.

Главная слабость и ремонт

Главной слабостью этого стабилизатора является сервопривод (он же двигатель). Во время работы устройства этот двигатель постоянно работает. Его ротор не перестает крутиться ни на минуту. Конечно, следствием этого является быстрый износ и преждевременный выход из строя.Выходом из этой ситуации будет замена изношенного двигателя.

Полезный совет: двигатель можно не заменять, а попробовать отреставрировать. Для этого его нужно провести его отключение от схемы устройства и подсоединить к мощному источнику питания. На выводы сервопривода подают 5 ватт, проводя смену полярности.

В конечном итоге весь «мусор», который накопился на щетке, отжигается. После этого двигатель может работать еще некоторое время.

Один из самых главных недостатков кроется в медленной реакции. Поэтому, сфера применения таких стабилизаторов с выходным напряжением 220 вольт является несколько ограниченной.
В частности, их не следует применять для электроприборов, которые могут быстро сгореть от высокого напряжения. В основном этими электроприборами являются различные электронные устройства и высокотехнологичные установки.

Схема релейных стабилизационных устройств

Что касается релейно-трансформаторных и электронных стабилизаторов напряжения, то они имеют одинаковую схему построения. Главная разница заключается в том, что в первых в качестве регулирующего элемента используется реле, в других — симисторы или тиристоры.

Эти типы стабилизационных устройств называются еще ступенчатыми. Это означает то, что выравнивание тока происходит ступенями.

Регулирующий элемент также называют еще ключом. Количество таких ключей зависит от модели. В наиболее дешевых моделях находится пять таких ключей. Каждый ключ может подключаться к определенной обмотке автоматического трансформатора.

В результате замыкания им определенной части обмотки происходит изменение выходного количества вольт.

Общая схема таких стабилизационных устройств подается на рис. 2:

Релейные стабилизаторы могут изменять количество выходных вольт в 3-6 ступеней. Главным коммутирующим элементом этих устройств являются электромагнитные реле, которые подключают определенные обмотки трансформатора.

Количество обмоток, которое является необходимым для выравнивания тока, определяется микропроцессором. Он передает команды преходящим ключам, которые и управляют электрическим реле.
Подытоживая, можно отметить, что схема релейного стабилизатора переменного напряжения, который на выходе выдает 220 вольт, также является простой.

Характерные особенности релейных приборов

Эти стабилизационные приборы характеризуются точностью напряжения на выходе, которая составляет ±8 процента. Конечно, этот показатель хуже, чем показатель выше описанного типа стабилизатора. Однако он находится в пределах требований, установленных государством.

Особенностью работы этих стабилизационных устройств является то, что когда в них входит 195 вольт, то на выходе будет 233 вольта. Когда количество входных вольт увеличится на 3 вольта. То на выходе уже будет 236.

Релейный стабилизатор разобранный


Однако, когда входное напряжение будет равно 200 вольтам, состоится переключение реле и на выходе уже будет 218 вольт. Таким образом устройство работает и при понижении количества вольт на входе.

Проблему с точностью отлично компенсирует скорость реакции на изменения в токе. По словам производителей на изменение тока нужно от 20 миллисекунд. Практика показывает, что это происходит в течение 100-150 миллисекунд.
Релейные стабилизационные приборы могут выравнивать входной ток, минимальное напряжение которого может равняться 140 вольтам, максимальное — 270 вольтам. Допустимой является и перегрузка на 10 процентов от нагрузки, которую рекомендует сам производитель.

Проблемные места и их ремонт

Во время процесса коммутации на контактах реле постоянно образуется дуга. Ее образование приводит к разрушению контактов. Именно контакты являются слабым местом этих стабилизационных устройств.

Контакты могут или обгорать, или залипать. Соответственно, главное внимание во время любого обслуживания должно направляться на состояние контактов.
В том случае, когда реле выходят из строя, ломаются и транзисторные ключи. В случае поломки реле проводят их полную замену.

Полезный совет: реле можно отреставрировать. Данный процесс заключается в снятии их крышки, освобождении их от пружины и очистке. Для очистки берут наждачную бумагу «нулевка». Очистить нужно как нижний, так и верхний, так и подвижный контакты. После этого проводят очистку бензином и собирают реле.

Во время ремонтных работ также следует провести проверку кварцевого резонатора и каждого электролитического конденсатора, который находится на плате контроллера.

Полезный совет: во время проверочных или диагностических работ входной ток нужно подавать сразу на ЛАТР. Благодаря этому входной ток можно будет изменять в больших величинах. Роль нагрузки должна выполнять 220-вольтная лампа накаливания.

Чтобы сохранить технический ресурс релейного стабилизатора и любого другого стабилизационного устройства, нужно раз в шесть месяцев проводить его техобслуживание.

Симисторные приборы

Кроме вышеупомянутых стабилизаторов, очень применяемым в быту является симисторный электронный стабилизатор. Схема такого стабилизатора напряжения, который способен быстро обеспечить на выходе 220 вольт, является почти такой, как и релейного.

Однако вместо реле уже используются симисторы. Симисторы являются достаточно сложными в управлении. Они должны всегда включаться, когда синусоида напряжения находится в нулевой точке. Это дает возможность избежать искажения самой синусоиды.

Симисторный стабилизатор. Внешний вид

Конечно, определением момента для их включения занимается сам процессор. Включение симистора осуществляется благодаря подаче на него сильного импульса. Кроме замера напряжения и определения момента включения симистора, процессор также проверяет состояние симистора, то есть является ли он включенным или выключенным.

После выполнения этих операций процессор дает команду на включение симистора. Выполнение этой совокупности действий длится не более одной микросекунды. Также очень быстро включается и симистор. В общем, время реакции не превышает десяти миллисекунд.

Благодаря таким особенностям изменение напряжения происходит очень быстро. Также электронные стабилизационные приборы вместо симистора могут иметь тиристоры. При этом тиристоры часто применяются в тех стабилизаторах напряжения, которые превращают 220 вольт в 110 вольт.

Большие скорости работы процессора и симисторов позволяют также создавать и двухкаскадные электронные стабилизационные устройства. Это означает, что выравнивание напряжения происходит в два этапа.
Во время первого этапа первый каскад делает грубое выравнивание тока. Во время второго этапа проводится идеальное выравнивание.

Двухкаскадные симисторные устройства

Преимуществом использования двух каскадов является то, что появляется возможность в использовании небольшого количества симисторов. Так, на каждом каскаде можно использовать по четыре симистора. В результате это дает возможность выбирать между 16-ю способами комбинации обмоток трансформатора.

Схема двухкаскадного стабилизатора

Если на обоих каскадах используется по шесть симисторов, то количество комбинаций подключения обмоток уже будет равняться 36-ти.
Использование каскадов несколько снижает скорость реакции трансформатора.

В общем, время реакции занимает 20 миллисекунд. Такая скорость выравнивания тока для бытовой техники является более чем приемлемой.

Такие стабилизаторы можно применять не только в быту, но и многих промышленных сферах. Они способны обеспечить выходные 220 вольт при условии, если на входе будет не менее 140 и не более 270 вольт.



Электронный стабилизатор напряжения — выбор в пользу надежности. Видео. Однофазный стабилизатор напряжения — сфера применения, особенности Стабилизатор напряжения – как выбирать для котла отопления. Стабилизатор Эра STA 3000 — устройство для дома

Схема стабилизатора напряжения сети 220В » Паятель.Ру


Стабилизатор представляет собой сетевой автотрансформатор, отводы обмотки которого переключаются автоматически в зависимости от величины напряжения в электросети. Стабилизатор позволяет поддерживать выходное напряжение на уровне 220V при изменении входного от 180 до 270 V. Точность стабилизации 10V. Принципиальную схему можно разделить на слаботоковую схему (или схему управления) и сильнотоковую (или схему автотрансформатора).


Схема управления показана на рисунке 1. Роль измерителя напряжения возложена на поликомпараторную микросхему с линейной индикацией напряжения, — А1 (LM3914).

Сетевое напряжение поступает на первичную обмотку маломощного трансформатора Т1. У этого трансформатора есть две вторичные обмотки, по 12V на каждой, имеющие один общий вывод (или одна обмотка на 24V с отводом от середины).

Выпрямитель на диоде VD1 служит для получения питающего напряжения. Напряжение с конденсатора С1 поступает на цепь питания микросхемы А1 и светодиодов оптопар Н1.1-Н9.1. А так же, он служит для получения образцовых стабильных напряжений минимальной и максимальной отметки шкалы.

Для их получения используется параметрический стабилизатор на VD3 и R1. Предельные значения измерения устанавливаются подстроечными резисторами R2 и R3 (резистором R2 — верхнее значение, резистором R3 — нижнее).

Измеряемое напряжение берется с другой вторичной обмотки трансформатора Т1. Оно выпрямляется диодом VD2 и поступает на резистор R5. Именно по уровню постоянного напряжения на резисторе R5 производится оценка степени отклонения сетевого напряжения от номинального значения В процессе налаживания резистор R5 предварительно устанавливают в среднее положение, а резистор R3 в нижнее по схеме.

Затем, на первичную обмотку Т1 от автотрансформатора типа ЛАТР подают повышенное напряжение (около 270V) и резистором R2 выводят шкалу микросхемы на значение, при котором горит светодиод, подключенный к выводу 11 (временно вместо светодиодов оптопар можно подключить обычные светодиоды).

Затем входное переменное напряжение уменьшают до 190V и резистором R3 выводят шкалу на значение когда горит светодиод, подключенный к выводу 18 А1.

Если вышеуказанные настройки сделать не удается, нужно подстроить немного R5 и повторить их снова. Так, путем последовательных приближений добиваются результата, когда изменению входного напряжения на 10V соответствует переключение выходов микросхемы А1.

Рис.2
Всего получается девять пороговых значений, — 270V, 260V, 250V, 240V, 230V, 220V, 210V, 200V, 190V. Принципиальная схема автотрансформатора показана на рисунке 2. В его основе лежит переделанный трансформатор типа ЛАТР.

Корпус трансформатора разбирают и удаляют ползунковый контакт, который служит для переключения отводов. Затем по результатам предварительных измерений напряжений от отводов делают выводы (от 180 до 260V с шагом в 10V), которые, в дальнейшем переключают при помощи симисторных ключей VS1-VS9, управляемых системой управления посредством оптопар Н1-Н9.

Оптопары подключены так, что при снижении показания микросхемы А1 на одно деление (на 10V) происходит переключение на повышающий (на очередные 10V) отвод автотрансформатора. И наоборот, — увеличение показаний микросхемы А1 приводит к переключению на понижающий отвод автотрансформатора.

Подбором сопротивления резистора R4 (рис. 1) устанавливают ток через светодиоды оптопар, при котором симисторные ключи переключаются уверенно. Схема на транзисторах VT1 и VT2 (рис. 1) служит для задержки включения нагрузки автотрансформатора на время, необходимое на завершение переходных процессов в схеме после включения. Эта схема задерживает подключение светодиодов оптопар к питанию.

Вместо микросхемы LM3914 нельзя использовать аналогичные микросхемы LM3915 или LM3916, из-за того, что они работают по логарифмическому закону, а здесь нужен линейный, как у LM3914. Трансформатор Т1 — малогабаритный китайский трансформатор типа TLG, на первичное напряжение 220V и два вторичных по 12V (12-0-12V) и ток 300mA. Можно использовать и другой аналогичный трансформатор.

Трансформатор Т2 можно сделать из ЛАТРа, как описано выше, или намотать его самостоятельно. Симисторы можно использовать другие, — все зависит от мощности нагрузки. Можно даже использовать в качестве элементов коммутации электромагнитные реле.

Сделав другие настройки резисторами R2, R3, R5 (рис. 1) и, соответственно, другие отводы Т2 (рис. 2) можно изменить шаг переключения напряжения.

СХЕМА СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

СХЕМА СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

     С появлением микросхемных стабилизаторов, стало довольно легко получить стабильное напряжение блока питания, стандартного выходного значения. Но при конструировании радиосхем и просто в быту, часто нужно получить какое-либо нестандартное напряжение и тем более если ток выхода более двух ампер — тут уже КРЕНка не подходит, что можете видеть в таблице их параметров:

_________________________________________________________________________________
Наименование Аналог PDF Imax, A Uвых, В Прим.
Параллельные стабилизаторы (регулируемый прецизионный стабилитрон):
КР142ЕН19 TL431 2% 0,1 2,5…30
К1156ЕР5 TL431 1% 0,1 2,5…36
Стабилизаторы с фиксированным напряжением:
К1278ЕН1.5 2% 0,8…5 1,5 В Low Drop
К1278ЕН1.8 2% 0,8…5 1,8 В Low Drop

К1278ЕН2.5 2% 0,8…5 2,5В Low Drop
К142ЕН26 LT1086 3 2,5 В Low Drop
К142ЕН25 LT1086 3 2,9 В Low Drop

К1277ЕН3 4% 0,1 3 В Low Drop
КР1170ЕН3 LM2931 5% 0,1 3 В Low Drop
КР1158ЕН3 (А-Г) 2% 0,15…1,2 3 В Low Drop
К1277ЕН3.3 4% 0,1 3,3 В Low Drop
КР1158ЕН3.3 (А-Г) 2% 0,15…1,2 3,3 В Low Drop
К142ЕН24 LT1086 3 3,3 В Low Drop
К1278ЕН3.3 2% 0,8…5 3,3 В Low Drop

КР1170ЕН4 LM2931 5% 0,1 4 В Low Drop
КР142ЕН17 (А) 5% 0,04 4,5В Low Drop

КР142ЕН17 (Б) 5% 0,04 5В Low Drop
К1277ЕН5 MC78L05 4% 0,1 5В Low Drop
КР1170ЕН5 LM2931 5% 0,1 5В Low Drop
КР1157ЕН5 (А-Г) MC78L05 4% 0,25 5В
КР1158ЕН5 (А-Г) L4805 2% 0,15…1,2 5В Low Drop
К1156ЕН1 LM2925 4% 0,5 5В Low Drop
+RESET
КР142ЕН5 (А,В) MC7805 2%,4% 3 5В
К1278ЕН5 2% 0,8…5 5В Low Drop

КР1157ЕН6 MC78L06 4% 0,1 6В
КР1170ЕН6 LM2931 5% 0,1 6В Low Drop
КР1158ЕН6 (А-Г) 2% 0,15…1,2 6В Low Drop
КР142ЕН5 (Б,Г) MC7806 2%,4% 3 6В

КР1157ЕН8 MC78L08 4% 0,1 8В
КР1170ЕН8 LM2931 5% 0,1 8В Low Drop

КР1157ЕН9 MC78L09 2%,4% 0,1 9В
КР1170ЕН9 LM2931 5% 0,1 9В Low Drop
КР1158ЕН9 (А-Г) L4892 2% 0,15…1,2 9В Low Drop
КР142ЕН8 (А,Г) MC7809 3%,4% 1,5 9В

КР1170ЕН12 LM2931 5% 0,1 12В Low Drop
КР1157ЕН12 MC78L12 2%,4% 0,25 12В
КР1158ЕН12 (А-Г) L4812 2% 0,15…1,2 12В Low Drop
КР142ЕН8 (Б,Д) MC7812 3%,4% 1,5 12В

КР1157ЕН15 MC78L15 2%,4% 0,25 15В
КР1158ЕН15 (А-Г) 2% 0,15…1,2 15В Low Drop
КР142ЕН8 (В,Е) MC7815 3%,4% 1,5 15В
КР142ЕН15 (А-Е) 4% 0,1 +15/-15 двуполярн
К142ЕН6 (А-Е) 2%,6% 0,2 +15/-15 двуполярн

КР1157ЕН18 MC78L18 2%,4% 0,25 18В
КР142ЕН9 (А,Г) MC7818 2%,3% 1,5 20В
КР1157ЕН24 MC78L24 2%,4% 0,25 24В
КР142ЕН9 (Б,Д) MC7824 2%,3% 1,5 24В
КР1157ЕН27 2%,4% 0,1 27В
КР142ЕН8 (В,Е) 2%,3% 1,5 27В
Регулируемые стабилизаторы напряжения:
КР142ЕН15 (А-Е) 0,1 +/- 8…23 двуполярн
К142ЕН6 (А-Е) 0,2 +/- 5…25 двуполярн
КР1157ЕН1 0,1 1,2…37
КР142ЕН1 (А-Г) 0,15 3…12
КР142ЕН2 (А-Г) 0,15 12…30
КР142ЕН14 0,15 2…37
К1156ЕН5 (Д) LM2931 0,5 1,25…20 Low Drop
К142ЕН3 (А-Г) 1 3…30
К142ЕН4 (А-Г) 1 3…30
КР142ЕН10 LM337 1 -(3…30) отрицат
КР142ЕН12 (А,Б) LM317T 1,5 1,2…37
КР142ЕН18 (А,Б) LM337 1,5 -(1,2…26) отрицат
142ЕН11 LM337 1,5 -(1,3…30) отрицат
К1278ЕР1 0,8…5 1,25…12 Low Drop
КР142ЕН22 (А,Б) LT1084 5,5 1,2…34 Low Drop
КР1151ЕН1 LM196 10 1,2…17,5
Импульсные:
К142ЕП1 0,25

_______________________________________________________________

      Как видите, для питания усилителя или аппарата электролиза, или мощного зарядного устройства (типа импульсного восстановителя аккумуляторов из этой статьи) найти нужную микросхему непросто.

    Предлагаемая схема стабилизатора напряжения, может быть названа «универсальная КРЕНка», так как с ней при подборе номиналов резисторов и транзисторов я получаю диапазон напряжений от 5 до 50 В и ток до 20 А.

 

    Схема стабилизатора напряжения имеет защиту от КЗ выхода и главное, мощный регулирующий транзистор крепится непосредственно к корпусу (минусу) без всяких изоляторов и прокладок, согласитесь это очень удобно!

    Вот фото моего источника питания 36 В 10 А:

     Вопросы по схеме стабилизатора напряжения пишем на ФОРУМ

Цепи регулятора напряжения

— линейный регулятор напряжения, стабилитрон и импульсный регулятор напряжения

Регулятор напряжения

, как следует из названия, представляет собой схему, которая используется для регулирования напряжения. Регулируемое напряжение — это плавная подача напряжения без каких-либо шумов или помех. Выход регулятора напряжения не зависит от тока нагрузки, температуры и изменения линии переменного тока. Стабилизаторы напряжения присутствуют почти в каждой электронике или бытовой технике, такой как телевизор, холодильник, компьютер и т. Д., Для стабилизации напряжения питания.

В основном, регулятор напряжения минимизирует колебания напряжения для защиты устройства. В системе распределения электроэнергии регуляторы напряжения находятся либо в фидерных линиях, либо на подстанции. В этой линейке используются два типа регуляторов, один — ступенчатый, в котором переключатели регулируют подачу тока. Другой — индукционный регулятор, представляющий собой переменную электрическую машину, подобную асинхронному двигателю, которая подает энергию в качестве вторичного источника. Он сводит к минимуму колебания напряжения и обеспечивает стабильный выход.

Существуют различные типы регуляторов напряжения, которые описаны ниже.

Типы схем регулятора напряжения

Цепь линейного регулятора напряжения

    Регулятор напряжения серии
  • Шунтирующий регулятор напряжения

Цепь стабилизатора напряжения Зенера

Цепь импульсного регулятора напряжения

  • Бак типа
  • Тип наддува
  • Buck / Boost тип

Цепь линейного регулятора напряжения

Это наиболее распространенные регуляторы, используемые в электронике для поддержания постоянного выходного напряжения.Линейные регуляторы напряжения действуют как цепь делителя напряжения, в этом регуляторе сопротивление изменяется в зависимости от изменения нагрузки и дает постоянное выходное напряжение. Некоторые преимущества и недостатки линейного регулятора напряжения приведены ниже:

Преимущества

  • Низкое напряжение пульсации на выходе
  • Ответ быстрый
  • Меньше шума

Недостатки

  • Низкий КПД
  • Требуется большое пространство
  • Выходное напряжение всегда будет меньше входного напряжения

1.Регулятор напряжения серии Регулятор напряжения серии

является частью линейного регулятора напряжения и также называется последовательным регулятором напряжения. Последовательно включенный регулируемый элемент, используемый для поддержания постоянного выходного напряжения. При изменении сопротивления падения напряжения на последовательном элементе его можно изменять, чтобы напряжение на выходе оставалось постоянным.

Как вы можете видеть на принципиальной схеме последовательного регулятора напряжения, NPN-транзистор T1 является последовательным элементом, а стабилитрон используется для обеспечения опорного напряжения.

Когда выходное напряжение увеличивается, напряжение база-эмиттер уменьшается, из-за этого транзистор T1 проводит меньше. Поскольку T1 проводит меньше, он снижает выходное напряжение, следовательно, поддерживает постоянное выходное напряжение.

Когда выходное напряжение уменьшается, напряжение база-эмиттер увеличивается, благодаря чему транзистор T1 проводит больше. По мере того, как T1 проводит больше, выходное напряжение увеличивается, следовательно, выходное напряжение остается постоянным.

Выходное напряжение определяется как:

  V  O  = V  Z  - V  BE  
Где,
V  O  - выходное напряжение
V  Z  - напряжение пробоя стабилитрона
В  BE  напряжение база-эмиттер 

2.Шунтирующий регулятор напряжения

Нерегулируемое напряжение прямо пропорционально падению напряжения на последовательно соединенных сопротивлениях, и это падение напряжения зависит от тока, потребляемого нагрузкой. Если ток, потребляемый нагрузкой, увеличивается, базовый ток также будет уменьшаться, и из-за этого меньший ток коллектора будет течь через вывод коллектора-эмиттера, и, следовательно, ток через нагрузку будет увеличиваться, и наоборот.

Регулируемое выходное напряжение шунтирующего регулятора напряжения определяется как:

  В  ВЫХ  = V  Z  + V  BE   

Стабилитрон

Стабилитроны

дешевле и подходят только для цепей малой мощности.Его можно использовать в приложениях, где количество энергии, потраченное впустую во время регулирования, не имеет большого значения.

Сопротивление

А, последовательно подключено к стабилитрону для ограничения величины тока, протекающего через диод, и входного напряжения Vin (которое должно быть больше, чем напряжение стабилитрона). подключается параллельно, как показано на изображении, и на выходе напряжение Vout снимается на стабилитроне с Vout = Vz (напряжение стабилитрона). Как мы знаем, стабилитрон начинает проводить в обратном направлении, когда приложенное напряжение выше, чем напряжение пробоя стабилитрона.Поэтому, когда он начинает проводить, он поддерживает то же напряжение на нем и возвращает дополнительный ток, таким образом обеспечивая стабильное выходное напряжение.

Узнайте больше о работе стабилитрона здесь.

Импульсный регулятор напряжения

Существует три типа импульсных регуляторов напряжения:

  • Понижающий или понижающий импульсный стабилизатор напряжения
  • Повышающий или повышающий импульсный регулятор напряжения
  • Понижающий / повышающий импульсный стабилизатор напряжения

Понижающий или понижающий импульсный регулятор напряжения

Понижающий регулятор используется для понижения напряжения на выходе, мы даже можем использовать схему делителя напряжения для уменьшения выходного напряжения, но эффективность схемы делителя напряжения низкая, потому что резисторы рассеивают энергию в виде тепла.Мы используем в схеме конденсатор, диод, индуктор и переключатель. Принципиальная схема понижающего импульсного регулятора напряжения приведена ниже:

.

Когда переключатель находится в положении ON, диод остается смещенным в обратном направлении, и к индуктору подключается питание. Когда переключатель разомкнут, полярность катушки индуктивности меняется на обратную, диод становится смещенным вперед и подключает катушку индуктивности к земле. Затем ток через катушку индуктивности уменьшается с крутизной:

  d I  L  / dt = (0-V  OUT ) / L  

Конденсатор используется для предотвращения падения напряжения до нуля на нагрузке.Если мы продолжаем открывать и закрывать переключатель, среднее напряжение на нагрузке будет меньше подаваемого входного напряжения. Вы можете контролировать выходное напряжение, изменяя рабочий цикл переключающего устройства.

  Выходное напряжение = (Входное напряжение) * (процент времени, в течение которого переключатель находится в положении ВКЛ)  

Если вы хотите узнать больше о Buck Converter, перейдите по ссылке.

Повышающий или повышающий импульсный регулятор напряжения

Повышающий регулятор используется для повышения напряжения на нагрузке.Принципиальная схема регулятора наддува приведена ниже:

Когда переключатель замкнут, диод ведет себя как смещенный в обратном направлении, и ток через катушку индуктивности продолжает увеличиваться. Теперь, когда переключатель разомкнут, катушка индуктивности создает силу, заставляющую ток продолжать течь, и конденсатор начинает заряжаться. Постоянно поворачивая переключатель в положение ВКЛ и ВЫКЛ, мы получим напряжение на нагрузке выше, чем входное напряжение. Мы можем контролировать выходное напряжение, контролируя время включения (Ton) переключателя.

  Выходное напряжение = Входное напряжение / процент времени, в течение которого переключатель разомкнут  

Если вы хотите узнать больше о Boost Converter, перейдите по ссылке.

Понижающий импульсный стабилизатор напряжения

Понижающий-повышающий импульсный регулятор представляет собой комбинацию понижающего и повышающего регуляторов, он дает инвертированный выходной сигнал, который может быть больше или меньше подаваемого входного напряжения.

Когда переключатель находится в положении ON, диод ведет себя как смещенный в обратном направлении, и катушка индуктивности накапливает энергию, а когда переключатель находится в положении OFF, индуктор начинает выделять энергию с обратной полярностью, которая заряжает конденсатор.Когда энергия, запасенная в катушке индуктивности, становится равной нулю, конденсатор начинает разряжаться в нагрузку с обратной полярностью. Из-за этого понижающе-повышающий регулятор также называется инвертирующим регулятором .

Выходное напряжение определяется как

  Vout = Vin (D / 1-D) 
  Где, D - рабочий цикл  

Следовательно, если рабочий цикл низкий, регулятор ведет себя как понижающий регулятор, а когда рабочий цикл высокий, регулятор ведет себя как повышающий регулятор.

Практический пример схем регулятора

Цепь регулятора положительного линейного напряжения

Мы разработали схему положительного линейного стабилизатора напряжения с использованием 7805 IC . Эта ИС имеет все схемы для обеспечения 5-вольтного стабилизированного питания. Входное напряжение должно быть как минимум более чем на 2 В от номинального значения, как для LM7805, мы должны обеспечить как минимум 7 В.

На микросхему подается нерегулируемое входное напряжение, и мы получаем стабилизированное напряжение на выходе.Название ИС определяет ее функцию, 78 представляет собой положительный знак, а 05 представляет значение регулируемого выходного напряжения. Как вы видите на принципиальной схеме, мы подаем 9В на 7805IC и получаем стабилизированное + 5В на выходе. Конденсаторы C1 и C2 используются для фильтрации.

Цепь стабилитрона

Здесь мы разработали стабилизатор напряжения на стабилитроне с напряжением 5,1 В. Стабилитрон работает как чувствительный элемент.Когда напряжение питания превышает напряжение пробоя, он начинает проводить в обратном направлении и поддерживает то же напряжение на нем, а дополнительный ток течет обратно, обеспечивая тем самым стабильное выходное напряжение. В этой схеме мы даем 9 В входного напряжения и получаем почти 5,1 напряжения регулируемого выхода.

Замечания по проектированию источника питания

: монолитные линейные регуляторы напряжения

Монолитные или интегрированные линейные регуляторы напряжения позволяют создать стабилизированный источник питания, используя всего несколько компонентов, со значительной экономией времени и места .Кроме того, многие устройства, доступные сегодня на рынке, объединяют расширенные функции, такие как защита от короткого замыкания, перенапряжения и сверхтока. С момента своего появления линейные регуляторы долгое время доминировали в секторе источников питания, по крайней мере, до появления технологии переключения. Благодаря своей простоте они до сих пор используются в нескольких приложениях, особенно в маломощных. Главный предел линейных регуляторов — это КПД: чем он ниже, тем больше разница между выходным напряжением и входным напряжением.


Рекомендуемое
Примечания по проектированию источника питания Вот предыдущая статья. Наслаждаться!


На рисунке 1 показан тренд КПД в зависимости от отношения V OUT / V IN : Наилучшие результаты достигаются, когда это отношение стремится к 1. Если разница между выходным и входным напряжениями не пренебрежимо мала, Также необходимо обеспечить надлежащие решения по управлению температурным режимом, поскольку избыточная энергия рассеивается в виде тепла.

Рисунок 1: КПД в зависимости от соотношения V OUT / V IN

Очень важным параметром каждого линейного регулятора является падение напряжения, которое представляет собой разницу между входным и выходным напряжениями. Например, в случае регулятора с выходным напряжением V OUT = 5 В и напряжением падения V DROPOUT = 1,5 В входное напряжение никогда не должно опускаться ниже 6,5 В. Основные характеристики и схемы применения, относящиеся к некоторым из Ниже представлены наиболее популярные линейные регуляторы, доступные на рынке.

серии 78xx и 79xx

Монолитные линейные регуляторы серии 78xx (для положительного напряжения) и 79xx (для отрицательного напряжения) являются одними из самых долгоживущих на рынке. Благодаря широкому диапазону выходных напряжений V OUT и входных напряжений V IN до 40 В, эти регуляторы могут обеспечивать выходной ток до 1 А в пластиковом или металлическом корпусе в зависимости от модели. Регуляторы включают внутренние цепи для защиты от перегрева и короткого замыкания.

Падение напряжения, в зависимости от модели, варьируется от 1,7 В до 2,5 В. На рисунке 2 показана типовая схема применения стабилизатора серии 78xx — в данном случае 7812. Следует отметить, что конденсаторы C 1 и C 2 не требуют особо высокого значения емкости, так как пульсации на выходе регулятора очень малы (несколько милливольт). Два конденсатора, хотя и не являются обязательными, обеспечивают стабильность схемы и улучшают переходную характеристику.

Рисунок 2: Схема применения для регулятора 78xx

На рисунке 3 показана аналогичная схема, на этот раз основанная на стабилизаторе отрицательного напряжения 79xx (обратите внимание на инверсию диодного моста).

Рисунок 3: Схема приложения для регулятора 79xx

Используя трансформатор с центральным отводом, можно легко объединить две цепи, создав двойной источник питания (например, 12 В и –12 В).

LM1117

Мы решили включить в наш выбор этот регулятор, а не LM317 (очень популярный в прошлые годы), потому что по сравнению с последним LM1117 имеет меньшее падение напряжения (1.2 В при максимальном передаваемом токе 800 мА), и он больше подходит для создания выходного напряжения 3,3 В (широко используется в современных микроконтроллерах). LM1117 доступен как в версии с фиксированным выходным напряжением (1,8 В, 2,5 В, 3,3 В и 5 В), так и в версии с переменным выходным напряжением, регулируемым с помощью пары внешних резисторов . Рисунок 4 показывает прикладную схему для регулятора с фиксированным выходным напряжением, в то время как на Рисунок 5 видна соответствующая схема для регулятора с переменным выходным напряжением.

Рисунок 4: Схема приложения для версии LM1117 с фиксированным выходом Рисунок 5: Схема приложения для версии с регулируемым выходом LM1117

LM1117 имеет встроенные функции для ограничения тока и теплового отключения, а также внутренний стабилитрон, который обеспечивает точность выходного напряжения ± 1%. Хотя это и не обязательно, рекомендуется установить на выходе танталовый конденсатор емкостью не менее 10 мкФ для улучшения стабильности и переходной характеристики.Схема На рисунке 6 показан стабилизатор, используемый для создания отрицательного выходного напряжения (–5 В).

Рисунок 6: LM1117, используемый для создания отрицательного напряжения

LT3080

LT3080 — это линейный стабилизатор с малым падением напряжения (до 350 мВ) с регулируемым выходным напряжением от 1,2 В до 36 В, максимальным током 1,1 А и точностью до 1%. На рисунке 7 показана схема применения регулятора: Внешний резистор R SET позволяет выбрать значение выходного напряжения.

Рисунок 7: Монолитные линейные регуляторы напряжения

Важной особенностью LT3080 является то, что его можно распараллелить таким образом, чтобы получить больший выходной ток и улучшить управление температурным режимом. Пример показан на Рисунок 8 .

Рисунок 8: Параллельно подключенные несколько LT3080

Силовая электроника играет все более важную роль на различных рынках, таких как автомобильный, промышленный и потребительский. Это также технология, позволяющая реализовать широкий спектр новых и улучшенных функций, которые повышают производительность, безопасность и функциональность автомобилей и интеллектуальных сетей.Сложные электрические и тепловые требования сильно влияют на конструкцию силовых электронных систем. Новости силовой электроники будут посвящены основным темам, таким как преобразователь мощности, управление движением, полупроводники и управление температурой. Электронная книга Power Electronics News — это интерактивный подход к информированию о последних технологиях, тенденциях и инновационных продуктах на определенных рынках.

Создание универсального стабилизатора напряжения с регулируемым напряжением на базе LP2951

Стабилизатор напряжения LP2951 обычно используется в приложениях, требующих заданного выходного напряжения, которое можно легко настроить с помощью двух резисторов.Устройство обеспечивает регулировку с низким падением напряжения в широком диапазоне выходных напряжений от 1,235 В до примерно 30 В. Недорогой и доступный от нескольких производителей (включая MaxLinear, Microchip, ON Semiconductor и Texas Instruments), он является популярным выбором для схем, требующих микромощного регулятора, способного обеспечивать ток нагрузки до 100 мА.

Рисунок 1 Превратите обычную схему в гораздо более универсальный и гибкий регулятор напряжения.

Базовая схема схемы показана на рис. 1 , где резисторы R1 и R2 устанавливают выходное напряжение в соответствии со следующей простой формулой:

V OUT = V REF (1 + R1 / R2) + I FB .R1 (вольт)

Здесь V REF — это внутреннее опорное напряжение (обычно 1,235 В), появляющееся на выводе обратной связи (FB), а I FB — это ток смещения, протекающий на выводе обратной связи. Обычно I FB имеет порядок 20 нА, поэтому, при условии, что R1 не слишком велик, ошибку, вносимую I FB , можно игнорировать, и выражение для выходного напряжения сокращается до:

В ВЫХ = В REF (1 + R1 / R2) (вольт)

Выходное напряжение можно отрегулировать, заменив постоянный резистор R1 переменным сопротивлением, например потенциометром подстроечного резистора.При соответствующем выборе R2 это позволяет изменять напряжение V OUT в широком диапазоне напряжений вплоть до максимум около 30 В. Несмотря на свою гибкость, этот подход имеет ограничения: в частности, его можно использовать только для установки выходного напряжения для одного регулятора, а необходимость ручной регулировки потенциометра не обеспечивает возможности прямого линейного электронного управления. Более того, рассмотрение приведенного выше уравнения показывает, что даже при установке R1 на ноль, V OUT не может быть меньше, чем V REF (1.235В).

Удивите инженерный мир своим уникальным дизайном: Руководство по отправке идей дизайна

Однако добавление всего лишь одного дополнительного резистора R3 позволяет напрямую управлять выходным напряжением с помощью постоянного напряжения V C (рисунок 1). Связь между V OUT и V C является обратной и линейной, то есть увеличение V C приводит к пропорциональному уменьшению V OUT . При соблюдении определенных условий можно установить практически любые отношения.Кроме того, есть дополнительный бонус в том, что V OUT теперь может отклоняться на ниже , чем V REF . Фактически, этот метод позволяет V OUT приближаться к земле (0 В).

Эта простая схема позволяет относительно «слабому» напряжению (например, полученному от ЦАП или операционного усилителя) управлять гораздо более высокими уровнями напряжения и мощности. Это также позволяет одному напряжению управлять несколькими регуляторами, каждый из которых может иметь свою уникальную характеристику управления.

Значения для R1, R2 и R3, необходимые для создания требуемого соотношения V OUT и V C , рассчитываются с использованием уравнений , рис. 2 , где V OUT (мин.) — наименьшее требуемое значение выходное напряжение, возникающее, когда V C является максимальным, (V C (max) ) и V OUT (max) является самым высоким требуемым значением выходного напряжения, возникающим, когда V C равно нулю.При вычислении k , V REF можно принять как его типичное значение (1,235 В).

Рис. 2 Используйте эти расчетные уравнения для расчета значений R1, R2 и R3, которые требуются для создания требуемого соотношения V OUT и V C .

Определив k с помощью уравнения 1, выберите предпочтительное значение для R3, затем используйте уравнения 2 и 3 для вычисления значений для R1 и R2 соответственно. Может потребоваться попробовать несколько различных значений R3, чтобы получить подходящие предпочтительные значения для R1 и R2.Когда вы выбрали значения для R1, R2 и R3, значение V OUT при любом значении V C можно рассчитать с помощью уравнения 4.

Важно выполнить условия, показанные на рис. 2. Первое условие требует, чтобы максимальное значение V OUT было больше, чем V REF . Это необходимо для того, чтобы числитель уравнения 2 не мог быть отрицательным. Требования условия 2 должны быть выполнены, чтобы знаменатель уравнения 1 не мог быть нулевым или отрицательным.

Несколько примеров помогут проиллюстрировать процесс проектирования.

Пример 1

В этом примере мы хотим сгенерировать выходное напряжение в диапазоне от 1,0 В до 10,0 В, используя управляющее напряжение в диапазоне от нуля до 5,0 В, то есть V OUT (мин.) = 1,0 В, возникающее при V C (макс. ) = 5,0 В и V OUT (макс.) = 10,0 В (происходит, когда V C = ноль).

Условия 1 и 2 выполнены, поэтому мы можем использовать уравнение 1 для вычисления k , которое оказывается равным 0.34. Подставляя это значение в уравнения 2 и 3 и пробуя различные значения R3, мы обнаруживаем, что подходящие предпочтительные значения: R1 = 27 кОм; R2 = 5,1 кОм; R3 = 15 кОм. Результаты для этого примера взяты из испытательной схемы, подключенной к нагрузке 330 Ом с входным напряжением V IN = 12,0 В (, рис. 3, ).

Рисунок 3 На этом графике показаны результаты теста для примера 1, где R1 = 27 кОм; R2 = 5,1 кОм; R3 = 15кОм; и V IN = 12,0 В.

Пример 2

Здесь V OUT (мин) = 0.25 В при V C (макс.) = 2,0 В и V OUT (макс.) = 25,0 В (при V C = ноль). При выполнении условий 1 и 2 уравнение 1 дает значение 1,80 для k . Подставляя это значение в уравнения 2 и 3, получаем подходящие предпочтительные значения: R1 = 240 кОм + 7,5 кОм; R2 = 36кОм; R3 = 20 кОм. Результаты взяты из испытательной схемы с R НАГРУЗКА = 1 кОм и V IN = 26,0 В (, рис. 4, ).

Рисунок 4 На этом графике показаны результаты испытаний для примеров 2 и 3.

Пример 3

Здесь нам требуется V OUT (мин.) = 0,5 В при V C (макс.) = 2,0 В и V OUT (макс.) = 12,0 В (при V C = ноль). Условия 1 и 2 выполнены, и уравнение 1 дает значение 1,94 для k . Подставляя это значение в уравнения 2 и 3, получаем: R1 = 270 кОм и R2 = 91 кОм, когда R3 = 47 кОм. Результаты были измерены на испытательной схеме с R НАГРУЗКА = 1 кОм и V IN = 13.0В (рис. 4).

Все приведенные выше примеры иллюстрируют обратную зависимость между управляющим напряжением и выходным напряжением. Когда V C повышается, стремясь подтянуть напряжение на выводе FB выше, обратная связь с обратной связью вынуждает регулятор уменьшать V OUT , чтобы поддерживать потенциал на FB, равный внутреннему опорному напряжению, V REF . Кроме того, в каждом примере V OUT (мин) меньше, чем V REF (значительно меньше в примере 2).Выход может опускаться ниже, чем V REF , потому что регулятор должен подтянуть свой выход к нулю, чтобы удерживать напряжение на выводе FB равным V REF , когда V C возрастает до максимального значения.

Имейте в виду, что если регулятор очень слабо нагружен и / или если R1 и R2 имеют относительно большие значения, измеренное выходное напряжение может отличаться от ожидаемого значения, особенно при низких уровнях V OUT . По всей видимости, это связано с минимальными требованиями к нагрузке LP2951.Эту проблему можно устранить, увеличив нагрузку и / или уменьшив значения R1 и R2.

Примеры 2 и 3 показывают, как одно управляющее напряжение может использоваться для управления двумя (или более) регуляторами, имеющими очень разные выходные характеристики. С добавлением всего одного компонента схема превращает обычную схему в гораздо более универсальный и гибкий регулятор напряжения, который сохраняет все преимущества LP2951 (низкое падение напряжения, ограничение тока и температуры и т. Д.).

Статьи по теме :

Что такое линейный регулятор напряжения?

Электронные системы обычно получают напряжение источника питания, превышающее напряжение, требуемое схемой системы. Например, батарея 9 В может использоваться для питания усилителя, которому требуется диапазон входного сигнала от 0 до 5 В, или две батареи 1,5 В, соединенные последовательно, могут обеспечивать питание для цепи, которая включает 1.Цифровая логика 8 В. В таких случаях нам необходимо регулировать входную мощность с помощью компонента, который принимает более высокое напряжение и производит более низкое напряжение.

Одним из наиболее распространенных способов достижения этого типа регулирования является использование линейного регулятора напряжения.

Схема линейного регулятора с фиксированным выходным напряжением

Как работает линейный регулятор напряжения?

Линейные регуляторы напряжения — также называемые LDO или линейными стабилизаторами с малым падением напряжения — используют транзистор, управляемый цепью отрицательной обратной связи, для создания заданного выходного напряжения, которое остается стабильным, несмотря на колебания тока нагрузки и входного напряжения.

Базовый линейный стабилизатор с фиксированным выходным напряжением представляет собой трехконтактное устройство, как показано на схеме выше. Некоторые линейные регуляторы позволяют регулировать выходное напряжение с помощью внешнего резистора.

Недостатки линейных регуляторов напряжения

Серьезным недостатком линейных регуляторов является их низкий КПД во многих приложениях. Транзистор внутри регулятора, который подключен между входными и выходными клеммами, работает как переменное последовательное сопротивление; таким образом, высокая разница между входным и выходным напряжением в сочетании с высоким током нагрузки приводит к значительному рассеиванию мощности.Ток, необходимый для функционирования внутренней схемы регулятора, обозначенный на схеме IGND, также способствует общему рассеиванию мощности.

Возможно, наиболее вероятный вид отказа в цепи линейного регулятора связан с тепловыми, а не строго электрическими факторами. Мощность, рассеиваемая интегральной схемой регулятора, приведет к повышению температуры компонентов, и без адекватных путей, которые позволяют теплу отводиться от регулятора, температура в конечном итоге может быть достаточно высокой, чтобы серьезно ухудшить производительность или вызвать тепловое отключение.Эта важная тема освещена в статье AAC о тепловом расчете линейных регуляторов.

Применение линейного регулятора напряжения

Хотя линейные регуляторы обычно уступают импульсным регуляторам в отношении эффективности, они по-прежнему широко используются по нескольким причинам. Основными преимуществами являются простота использования, низкий выходной шум и низкая стоимость. Единственными внешними компонентами, которые требуются большинству линейных регуляторов, являются входные и выходные конденсаторы, а требования к емкости достаточно гибкие, чтобы упростить задачу проектирования.


Эта статья предназначена для быстрого ознакомления с информацией. Что нужно знать о линейных регуляторах напряжения? Дайте нам знать в комментариях ниже.

Стабилизатор напряжения

: принцип работы и принципиальная схема | Регулятор напряжения в источнике питания

Выходное напряжение источника питания обычно уменьшается при приложении нагрузки. Это снижение нехорошо, и его необходимо свести к минимуму. Величина этого уменьшения измеряется по сравнению с напряжением холостого хода.

Снижение напряжения под нагрузкой по сравнению с напряжением источника питания без нагрузки называется процентным соотношением регулирования напряжения .

Это один из факторов, используемых для определения качества источника питания. Выражается математически:

\ [Percentage \ text {} Voltage \ text {} Regulation = \ frac {{{E} _ {nl}} — {{E} _ {fl}}} {{{E} _ {fl }}} \ times 100 \]

Где E nl равно напряжению без нагрузки, а E fl равно напряжению при полной нагрузке.

Пример регулирования напряжения 1

Источник питания имеет напряжение холостого хода 30 вольт. Это напряжение падает до 25 вольт при приложении нагрузки. Каков его процент регулирования?

\ [Процент \ text {} Напряжение \ text {} Регулировка = \ frac {{{E} _ {nl}} — {{E} _ {fl}}} {{{E} _ {fl}}} \ times 100 \]

\ [Процент \ text {} Напряжение \ text {} Регулировка = \ frac {30V-25V} {25V} \ times 100 = 20% \]

Нагрузочный резистор

Для завершения базовая схема источника питания, резистор нагрузки подключен к источнику питания, Рисунок 1 .Этот резистор служит трем важным целям .

Рисунок 1. Полная цепь питания с нагрузочным резистором.

Первый , нагрузочный резистор выполняет функцию отвода воздуха . Выпускной клапан позволяет заряженным конденсаторам стекать. Во время работы источника питания пиковые напряжения сохраняются в конденсаторах секций фильтра. Эти конденсаторы остаются заряженными после выключения оборудования. Эти конденсаторы могут быть опасными при случайном прикосновении техника.

Нагрузочный резистор позволяет этим конденсаторам разряжаться, когда они не используются. Мудрый техник всегда принимает дополнительные меры предосторожности и замыкает конденсаторы на землю с помощью изолированной отвертки.

Во-вторых, нагрузочный резистор улучшает регулирование. Нагрузочный резистор действует как предварительная нагрузка на источник питания. Это вызывает падение напряжения. Когда оборудование подключено к источнику питания, добавляемое падение довольно мало, и регулирование улучшается.

Пример регулирования напряжения 2

Предположим, что напряжение на клеммах источника питания составляет 30 вольт без нагрузочного резистора.К нему не подключено никакое оборудование. При подключении и включении оборудования напряжение падает до 25 вольт. Регулирование составляет 20 процентов. (См. Предыдущий пример в разделе «Регулировка напряжения».)

Если резистор, подключенный к источнику питания, дает начальное падение до 26 вольт, то выходное напряжение считается 26 вольт. Если оборудование, которое теперь подключено к источнику питания, вызывает падение напряжения до 25 вольт, то регулирование источника питания будет следующим:

\ [Percentage \ text {} Voltage \ text {} Regulation = \ frac {{{E} _ {nl }} — {{E} _ {fl}}} {{{E} _ {fl}}} \ times 100 \]

\ [Percentage \ text {} Voltage \ text {} Regulation = \ frac {26V- 25V} {25V} \ times 100 = 4% \]

Полезное напряжение источника изменилось всего на четыре процента.

Еще одним преимуществом предварительной нагрузки питания является усиление фильтрующего действия дросселя. Резистор позволяет току постоянно течь в источнике питания. Дроссель имеет лучшее фильтрующее действие в этом текущем состоянии, чем когда ток изменяется от низкого значения до нуля.

В-третьих, нагрузочный резистор действует как делитель напряжения. Нагрузочный резистор позволяет получить несколько напряжений от источника питания.

Замена резистора с одной нагрузкой на отдельные последовательно включенные резисторы дает несколько фиксированных напряжений постоянного тока, Рисунок 2 .Резистор скользящего ответвления также можно использовать для регулировки напряжения.

Рисунок 2. Делитель напряжения на выходе источника питания.

Эта схема называется делителем напряжения. Он использует закон Ома (падение напряжения на резисторе равно току, умноженному на сопротивление, или E = I × R). На рисунке 2, и, следовательно, изменяют напряжение на этом отводе.

Пример делителя напряжения

В части A рисунка 3 делитель напряжения состоит из трех резисторов сопротивлением 5 кОм.Подача 30 вольт делится на 10, 20 и 30 вольт на клеммах C, B и A соответственно. В части B к клемме C подключена нагрузка в пять кОм, как показано. Параллельно с R 3 , сопротивление становится:

\ [{{R} _ {T}} = \ frac {{{R} _ {3}} \ times {{R} _ {L}}} {{{R} _ {3}} + {{R} _ {L}}} = \ frac {5000 \ Omega \ times 5000 \ Omega} {5000 \ Omega +5000 \ Omega} = 2500 \]

Рисунок 3. На диаграммах показано изменение сопротивления в делителе напряжения при подключении нагрузки.

Общее сопротивление источника питания с подключенным RL составляет 5000 Ом + 5000 Ом + 2500 Ом = 12 500 Ом. Теперь можно рассчитать ток через делитель.

\ [I = \ frac {{{E} _ {source}}} {R} = \ frac {30V} {12,500 \ Omega} = 0.0024A = 2.4mA \]

Используя общий ток, мы можем рассчитать отдельные падения напряжения. Напряжение в точке C:

$ {{E} _ {C}} = I \ times R = 0,0024A \ times 2500 \ Omega = 6V $

Напряжение в точке B составляет 18 вольт. Если бы к точке B была подключена другая нагрузка, это привело бы к дальнейшему изменению деления напряжения.

Схема цепи регулятора напряжения

Необходим некоторый метод для обеспечения постоянного выходного напряжения на источнике питания при переменных условиях нагрузки. Этот метод учитывает тот факт, что падение напряжения на резисторе равно произведению тока на сопротивление. Этот метод представляет собой схему, называемую регулятором напряжения . Это показано на рисунках 4 и 5. Полный вход фильтра источника питания подается на клеммы A и B.Регулируемый выход проходит через точки C и B.

Регулятор напряжения, используемый на рисунке 4, часто называют трехконтактным стабилизатором напряжения . Обычные выходные регулируемые напряжения могут составлять 5, 6, 8, 12, 15, 18, 24 В и т. Д. (Производители также могут иметь различные номинальные значения тока).

Рис.

Рисунок 5. Схема и схемы подключения регуляторов напряжения.(National Semiconductor Corp.)

Регуляторы напряжения

выпускаются в различных типах корпусов транзисторов (TO-3, TO-39, TO-202, TO-220 и т. Д.). Эти твердотельные регуляторы в основном защищены от взрыва. Они требуют использования радиатора для отвода избыточного тепла от устройства.

Внутренние схемы, используемые в этих регуляторах напряжения, довольно сложны. Они имеют ряд транзисторов, диодов , стабилитронов и резисторов, встроенных в один небольшой корпус. На рис. 5 показаны схемы двух регуляторов напряжения и конструкции их корпусов.

Пример использования регулятора напряжения можно увидеть в автомобиле. Регулятор напряжения автомобиля контролирует уровень напряжения от генератора.

Регуляторы напряжения, цепь регулятора напряжения, линейный регулятор напряжения

Успешно стабилизируйте цепь с помощью высококачественного регулятора напряжения. Они являются неотъемлемой частью большинства повседневных продуктов и систем, в которых используется электрическая цепь. Фактически, в большинстве случаев необходимо несколько таких регуляторов напряжения.

Если вы ищете конкретный регулятор напряжения 5 В или 12 В или вам нужен автоматический регулятор напряжения для работы, над которой вы работаете, просмотрите ассортимент здесь, в Allied Electronics. Мы храним продукцию ведущих мировых производителей, и каждый регулятор изготовлен в соответствии с высочайшими стандартами.

Прочтите, чтобы узнать больше о регуляторах напряжения и их использовании.

Что такое регулятор напряжения?

Регулятор напряжения — это интегральная схема (ИС), которая используется для создания и поддержания постоянного выходного напряжения.Они делают это, преобразуя входное напряжение в фиксированное выходное. Это выходное напряжение остается фиксированным независимо от любых изменений, которые вносятся в условия входа или нагрузки. Это означает, что регулятор будет поддерживать выходной сигнал, на котором он установлен.

Регуляторы напряжения используются по двум причинам. Первый — регулировать — или, в некоторых случаях, изменять — выходное напряжение в цепи. Второй — поддерживать постоянное выходное напряжение при требуемом токе.

Как работают регуляторы напряжения?

Для поддержания выходного напряжения регуляторы сравнивают этот выходной сигнал с точным опорным напряжением.Это сравнение используется для настройки пропускного устройства, которое управляет и поддерживает выходную величину. Этот процесс контролирует и поддерживает напряжение, проходящее через цепь в точках, где размещены регуляторы напряжения.

Знание того, какие входные и выходные напряжения вам нужны, поможет вам решить, какой тип регулятора вам нужен. Это либо понижающие регуляторы, которые предлагают выходной сигнал ниже входного напряжения, либо повышающие, когда выходное напряжение выше входного.

Самый распространенный тип регулятора напряжения — понижающий, поэтому выходной сигнал должен быть меньше входного напряжения. Например, если ваш регулятор напряжения вводит 12 В и выдает 5 В, ваш регулятор напряжения является типичной конфигурацией.

Какие бывают типы регуляторов напряжения?

Следует знать два типа регуляторов напряжения:

  • Линейные регуляторы напряжения

Они идеально подходят для тех, кто хочет понизить напряжение.Это экономичный вариант, который к тому же бесшумный, что делает их популярным выбором.

Они используются как для повышения, так и для понижения напряжения и обеспечивают высокую энергоэффективность, поэтому они распространены среди тех, кто работает с усовершенствованными схемами.

Где используются регуляторы напряжения?

Если питание не может работать от напряжения батареи или внешнего адаптера переменного / постоянного тока, необходимы регуляторы напряжения. Они являются ключевым компонентом электрических цепей, которым требуется определенное входное и выходное напряжение.Входное и выходное напряжение, а также выходной ток являются ключевыми факторами при выборе регулятора напряжения.

Они используются во многих повседневных приложениях, а также в промышленных условиях. Они используются в компьютерах, зарядных устройствах и автомобилях, обычно в генераторе переменного тока автомобиля. В более промышленных масштабах регуляторы напряжения используются в электростанциях в ситуациях, когда схема управляет выходной мощностью установки.

Почему стоит выбрать Allied Electronics для регуляторов напряжения?

В Allied Electronics есть ряд регуляторов напряжения, предназначенных для стабилизации цепи.Вы обнаружите, что мы являемся ведущим авторизованным дистрибьютором в Северной Америке и имеем на складе продукцию известных производителей, включая Microchip Technology Inc., ON Semiconductor и NTE Electronics.

Если у вас возникнут вопросы, наша команда всегда готова помочь. Свяжитесь с нами, и мы поможем вам познакомиться с продуктами. Вы также можете найти совет в нашем центре содержания для экспертов.

Назад к основам: ИС регуляторов напряжения, часть 1

Среди регуляторов самая простая схема — это стабилизатор напряжения с малым падением напряжения (LDO), топология которого показана на рис.1 . Как линейный регулятор напряжения, его основными компонентами являются проходной транзистор, усилитель ошибки, опорное напряжение и выходной МОП-транзистор. Один вход усилителя ошибки, установленный резисторами R1 и R2, контролирует процентное значение выходного напряжения. Другой вход — это стабильное опорное напряжение (VREF). Если выходное напряжение увеличивается относительно VREF, усилитель ошибки изменяет выход проходного транзистора для поддержания постоянного выходного напряжения (VOUT).

Рис.1. Низкое падение напряжения и низкий ток покоя LDO делает его подходящим для портативных и беспроводных приложений.

Низкое падение напряжения относится к разнице между входным и выходным напряжениями, которая позволяет ИС регулировать выходное напряжение. То есть LDO регулирует выходное напряжение до тех пор, пока его вход и выход не сблизятся друг с другом при падении напряжения. В идеале падение напряжения должно быть как можно меньшим, чтобы минимизировать рассеивание мощности и максимизировать эффективность.

Основным преимуществом LDO IC является ее относительно «тихая» работа, поскольку она не требует переключения. Напротив, импульсный регулятор обычно работает в диапазоне от 50 кГц до 1 МГц, что может создавать электромагнитные помехи, влияющие на аналоговые или радиочастотные цепи. LDO с внутренним силовым MOSFET или биполярным транзистором могут обеспечивать выходы в диапазоне от 50 до 500 мА. Низкое падение напряжения и низкий ток покоя LDO делает его подходящим для портативных и беспроводных приложений.

Падение напряжения стабилизатора LDO определяет наименьшее используемое входное напряжение питания.То есть, хотя спецификации могут указывать на широкий диапазон входного напряжения, входное напряжение должно быть больше, чем напряжение падения плюс выходное напряжение. Для LDO с выпадением 200 мВ входное напряжение должно быть выше 3,5 В, чтобы на выходе было 3,3 В.

При использовании LDO разница между входным и выходным напряжением может быть небольшой, а выходное напряжение должно строго регулироваться. Кроме того, переходная характеристика должна быть достаточно быстрой, чтобы выдерживать нагрузки, которые могут достигать значений от нуля до десятков ампер за наносекунды.Кроме того, выходное напряжение может изменяться из-за изменений входного напряжения, выходного тока нагрузки и температуры. В первую очередь, эти колебания выходного сигнала вызваны влиянием температуры на опорное напряжение LDO, усилитель ошибки и его резисторы выборки (R1 и R2).

ПЕРЕКЛЮЧАТЕЛЬНЫЕ РЕГУЛЯТОРЫ

Во многих приложениях линейные источники питания были заменены импульсными источниками. Показанный в Рис. 2 — это типичный изолированный импульсный источник питания.

Рис.2. Импульсный источник питания включает и выключает входной постоянный ток, а затем выпрямляет его для получения выходного постоянного тока.

Один из широко используемых подходов использует время включения и выключения широтно-импульсной модуляции (ШИМ) для управления выходным напряжением переключателя мощности. Отношение времени включения к времени периода переключения — это рабочий цикл. Чем выше рабочий цикл, тем выше выходная мощность переключателя силового MOSFET. Фильтр нижних частот, подключенный к выходному трансформатору, обеспечивает напряжение, пропорциональное времени включения и выключения контроллера ШИМ.Во время работы часть выходного постоянного напряжения возвращается в усилитель ошибки, что заставляет компаратор управлять временем включения и выключения ШИМ. Если выходное напряжение изменяется, обратная связь регулирует рабочий цикл, чтобы поддерживать выходное напряжение на желаемом уровне.

Для генерации сигнала ШИМ усилитель ошибки принимает входной сигнал обратной связи и стабильное опорное напряжение для создания выходного сигнала, соответствующего разности двух входов. Компаратор сравнивает выходное напряжение усилителя ошибки с пилообразной характеристикой генератора, создавая модулированную ширину импульса.Выход компаратора подается на драйвер, выход которого идет на силовой полевой МОП-транзистор.

Выходной фильтр нижних частот индуктора-конденсатора преобразует коммутируемое напряжение переключающего трансформатора в постоянное напряжение. Фильтр не идеален, поэтому всегда есть некоторый остаточный выходной шум, называемый пульсацией. Величина пульсации зависит от эффективности фильтра нижних частот на частоте переключения. Частоты переключения источника питания могут находиться в диапазоне от 100 кГц до более 1 МГц. Более высокие частоты переключения позволяют использовать катушки индуктивности и конденсаторы меньшего номинала в выходном фильтре нижних частот.Однако более высокие частоты также могут увеличивать потери в силовых полупроводниках, что снижает эффективность источника питания.

Что касается рассеиваемой мощности, выключатель питания является ключевым компонентом импульсного источника питания. Переключатель обычно представляет собой силовой полевой МОП-транзистор, который работает только в двух состояниях — включенном и выключенном. В выключенном состоянии переключатель питания потребляет очень мало тока и рассеивает очень мало энергии. Во включенном состоянии переключатель питания потребляет максимальное количество тока, но его сопротивление во включенном состоянии невелико, поэтому в большинстве случаев его рассеиваемая мощность минимальна.При переходе из включенного состояния в выключенное и выключенного во включенное состояние переключатель питания проходит через свою линейную область, где он потребляет некоторую мощность. Таким образом, общие потери для переключателя мощности складываются из потерь во включенном и выключенном состоянии плюс потери при переходе через его линейную область.

ИС ПРЕОБРАЗОВАТЕЛЯ

ИС для импульсных источников питания бывают двух основных конфигураций: ИС преобразователя и ИС контроллера.

ИС преобразователя представляют собой полный преобразователь постоянного тока в постоянный в одном корпусе.Единственными необходимыми внешними компонентами обычно являются пассивные устройства. Переключатели питания могут быть либо биполярными, либо полевыми МОП-транзисторами, способными обрабатывать требуемый ток и мощность. Обычно силовой полупроводниковый переключатель включается и выключается с частотой от 100 кГц до 1 МГц, в зависимости от типа ИС. Большинство переключателей мощности используют широтно-импульсную модуляцию для управления выходным напряжением, поэтому рабочий цикл изменяется в соответствии с желаемым выходным напряжением.

Для ИС контроллера требуется внешний переключатель питания, либо биполярный транзистор, либо силовой полевой МОП-транзистор.Схема контроллера, в которой используется внешний переключатель питания, обычно имеет более высокий КПД, чем преобразователь со встроенным силовым полевым МОП-транзистором, поскольку интегрированные полевые МОП-транзисторы имеют более высокое сопротивление в открытом состоянии (более высокие потери). Сопротивление во включенном состоянии внешнего силового MOSFET ниже, и MOST обычно имеет более высокую выходную мощность, чем IC со встроенным MOSFET.

И для преобразователя, и для ИС контроллера частота коммутации определяет физический размер и стоимость катушек индуктивности, конденсаторов и трансформаторов фильтра.Чем выше частота переключения, тем меньше физический размер и меньшие значения компонентов. Чтобы оптимизировать эффективность, материал магнитопровода для индуктора и трансформатора должен соответствовать частоте переключения. То есть материал сердечника трансформатора / катушки индуктивности следует выбирать таким образом, чтобы он эффективно работал на частоте переключения.

Преобразователи постоянного тока в постоянный принимают входной и вырабатывают постоянный ток. Они могут быть изолированными или неизолированными, в зависимости от того, есть ли прямой путь постоянного тока от входа к выходу.Изолированный преобразователь ( Рис. 2 ) использует трансформатор для обеспечения изоляции между входным и выходным напряжением. В неизолированном преобразователе используется индукторно-конденсаторный фильтр, а оптопара обычно обеспечивает изоляцию между выходной обратной связью и входом. Для многих приложений подходят неизолированные преобразователи. Преимущество трансформаторного преобразователя заключается в том, что он может легко создавать несколько выходных напряжений с использованием нескольких вторичных обмоток.

Первоначально в преобразователях с интегрированным переключателем мощности использовались биполярные переключатели питания, но практически во всех новых устройствах используются переключатели питания на полевых МОП-транзисторах, которые повышают эффективность.Еще одно повышение эффективности — использование интегрированных синхронных выпрямителей, состоящих из переключателей силовых полевых МОП-транзисторов, которые выпрямляют выход источника питания и обеспечивают выход постоянного тока.

Среди функций, имеющихся в ИС преобразователя и контроллера:

• Постоянное или регулируемое выходное напряжение

• Несимметричные или синхронные выходы

• Плавный пуск, обеспечивающий постепенное увеличение мощности

• Блокировка минимального напряжения

• Тепловое отключение

• Максимальная токовая защита

• Защита от перенапряжения

НАСОС НАСОС ICS

Зарядные насосы на самом деле представляют собой другую форму переключения питания.Они переключают конденсаторы, чтобы обеспечить преобразование постоянного напряжения, используя сеть переключателей для зарядки и разрядки одного или нескольких конденсаторов. Сеть переключателей переключает между состояниями заряда и разряда конденсаторов. Как показано на рис. 3 , «летающий конденсатор» (C1) перемещает заряд, а «накопительный конденсатор» (C2) удерживает заряд и фильтрует выходное напряжение.

Рис. 3. Преимуществом зарядового насоса является устранение магнитных полей и электромагнитных помех, которые возникают с помощью индуктора или трансформатора.

В базовом насосе заряда отсутствует регулирование, которое обычно добавляется с использованием либо линейного регулирования, либо модуляции насоса заряда. Линейное регулирование обеспечивает наименьший выходной шум и, следовательно, лучшую производительность. Модуляция подкачки заряда обеспечивает больший выходной ток для данного размера (или стоимости) кристалла, потому что ИС регулятора не обязательно должна включать в себя транзистор с последовательным проходом.

Основным преимуществом зарядового насоса является устранение магнитных полей и электромагнитных помех, которые возникают с индуктором или трансформатором.Существует один возможный источник электромагнитных помех — высокий зарядный ток, который течет к «летающему конденсатору», когда он подключается к входному источнику или другому конденсатору с другим напряжением.

MOSFET, потому что интегрированные MOSFET имеют более высокое сопротивление в открытом состоянии (более высокие потери). Сопротивление во включенном состоянии внешнего силового MOSFET ниже, и MOST обычно имеет более высокую выходную мощность, чем IC со встроенным MOSFET.

И для преобразователя, и для ИС контроллера частота коммутации определяет физический размер и стоимость катушек индуктивности, конденсаторов и трансформаторов фильтра.Чем выше частота переключения, тем меньше физический размер и меньшие значения компонентов. Чтобы оптимизировать эффективность, материал магнитопровода для индуктора и трансформатора должен соответствовать частоте переключения. То есть материал сердечника трансформатора / катушки индуктивности следует выбирать таким образом, чтобы он эффективно работал на частоте переключения.

Преобразователи постоянного тока в постоянный принимают входной и вырабатывают постоянный ток. Они могут быть изолированными или неизолированными, в зависимости от того, есть ли прямой путь постоянного тока от входа к выходу.В изолированном преобразователе (рис. 2) используется трансформатор, обеспечивающий изоляцию между входным и выходным напряжением. В неизолированном преобразователе используется индукторно-конденсаторный фильтр, а оптопара обычно обеспечивает изоляцию между выходной обратной связью и входом. Для многих приложений подходят неизолированные преобразователи. Преимущество трансформаторного преобразователя заключается в том, что он может легко создавать несколько выходных напряжений с использованием нескольких вторичных обмоток.

МНОГОКРАТНЫЙ ПРЕОБРАЗОВАТЕЛЬ / РЕГУЛЯТОР ICS

ИС контроллеров с несколькими выходами состоят из двух или более регуляторов в одном корпусе.Это могут быть два импульсных преобразователя или два регулятора LDO.

Примером двойного импульсного регулятора является понижающий DC-DC преобразователь с двойным током в режиме ШИМ с внутренними переключателями питания 2 А, эта ИС работает от входного напряжения от 3,6 В до 25 В, что позволяет регулировать широкий диапазон мощности. такие источники, как четырехэлементные батареи, логические шины 5 В, нерегулируемые настенные трансформаторы, свинцово-кислотные батареи и распределенные источники питания. Два регулятора имеют общую схему, включая источник входного сигнала, источник опорного напряжения и генератор, но в остальном они независимы.Их контур обратной связи контролирует пиковый ток в переключателе во время каждого цикла. Это управление в режиме тока улучшает динамику контура и обеспечивает ограничение тока от цикла к циклу.

Пример микросхемы стабилизатора напряжения с двумя выходами и малым падением напряжения имеет встроенные функции сброса, сброса при включении (POR) и стабилизации питания (PG). Дифференцированные функции, такие как точность, быстрая переходная характеристика, схема контроля (сброс при включении питания), вход ручного сброса и независимые функции включения, обеспечивают полное системное решение.Эти регуляторы напряжения имеют чрезвычайно низкий уровень шума на выходе без использования каких-либо дополнительных байпасных конденсаторов фильтра и разработаны для обеспечения быстрой переходной характеристики и обычно стабильны с конденсаторами с низким ESR.

Это семейство LDO также может иметь спящий режим; подача высокого сигнала на разрешающий вход отключает Регулятор 1 или Регулятор 2 соответственно. Перевод регуляторов в спящий режим снижает входной ток до TJ = 25 ° C. Каждый регулятор имеет внутренний разрядный транзистор для разрядки выходного конденсатора, когда регулятор выключен (отключен).

Микросхемы контроллеров с несколькими выходами также могут состоять из двух или более преобразователей накачки заряда в одном корпусе. Это могут быть контроллеры с внешними переключателями питания или регуляторы с внутренним переключателем питания. Одна из возможностей — это выход 5 В и выход 3,3 В для процессоров и логических приложений.

Например, типичные микросхемы контроллера накачки заряда с несколькими выходами могут понижать преобразователи постоянного тока в постоянный, которые производят два регулируемых регулируемых выхода из одного 2.Вход от 7 В до 5,5 В. В ИС используется дробное преобразование переключаемых конденсаторов для достижения типичного повышения эффективности на 50% по сравнению с линейным регулятором. Никаких индукторов не требуется.

ИС имеет два переключаемых насоса заряда конденсаторов для понижения VIN до двух регулируемых выходных напряжений. Два нагнетательных насоса работают со сдвигом по фазе на 180 °, чтобы уменьшить входную пульсацию. Регулирование достигается путем измерения каждого выходного напряжения через внешний резистивный делитель и модуляции выходного тока накачки заряда на основе сигнала ошибки.Двухфазный, неперекрывающийся тактовый сигнал активирует два зарядных насоса, запускающих их в противофазе друг от друга.

СИНХРОННАЯ РЕКТИФИКАЦИЯ

Эффективность — важный критерий при проектировании преобразователей постоянного тока в постоянный, требующих малой мощности. Эти потери вызваны переключателем мощности, магнитными элементами и выходным выпрямителем. Для уменьшения потерь в переключателе мощности и магнитных потерь требуются компоненты, которые могут эффективно работать на высоких частотах переключения. Выходные выпрямители могут быть диодами Шоттки, но синхронное выпрямление ( рис.4 ), состоящие из силовых полевых МОП-транзисторов, обеспечивают более высокий КПД.

Рис. 4. Синхронный выпрямитель более эффективен, чем диодный выпрямитель Шоттки.

МОП-транзисторы демонстрируют более низкие потери прямой проводимости, чем диоды Шоттки. В отличие от обычных самокоммутирующихся диодов, полевые МОП-транзисторы включаются и выключаются с помощью управляющего сигнала затвора, синхронизированного с работой преобразователя. Основным недостатком синхронного выпрямления является дополнительная сложность и стоимость, связанные с устройствами MOSFET и соответствующей управляющей электроникой.Однако при низких выходных напряжениях результирующее повышение эффективности более чем компенсирует недостаток стоимости в большинстве приложений.

ПРЕДСТОЯЩИЕ ТЕМЫ

Существуют и другие ключевые топологии регуляторов. В следующем месяце мы обсудим две основные топологии ИС, используемые в источниках питания постоянного тока: понижающий или понижающий преобразователь и повышающий или повышающий преобразователь. Топология Buck — это неизолированная конфигурация управления питанием, преимуществами которой являются простота и низкая стоимость. В повышающем преобразователе используется метод переключения, который вызывает нарастание тока в катушке индуктивности, а затем сохраняет полученное напряжение в выходном конденсаторе.Несколько циклов переключения создают напряжение выходного конденсатора, так что выходное напряжение выше входного.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *