Site Loader

LM7805: Обзор ИС регулятора напряжения

лектронным схемам иногда требуется стабильный источник питания для гармоничного функционирования других компонентов. Однако источник питания не всегда постоянен и требует регулирования для удовлетворения потребностей схемы. Стабилизаторы напряжения стабилизируют питание от нестабильного источника, чтобы на выходе получалась мощность с постоянным напряжением и током. В данном учебном пособии рассматривается принцип работы этих регуляторов с особым интересом к регулятору напряжения LM7805. Поэтому, если вы хотите узнать больше о микросхеме регулятора напряжения 7805, этот материал для вас.

1. Что такое ИС 7805?

Как следует из названия, LM7805 — это линейный регулятор напряжения промышленного стандарта. Он относится к устройствам 78xx с постоянным выходным напряжением. xx представляет собой значение выходного напряжения устройств семейства 78.

LM7805 — это трехтерминальная ИС линейного стабилизатора напряжения, работающая с переменным током. Это распространенный компонент в схемах, где требуются положительные регуляторы напряжения.

Регулятор 7805 выпускается в различных версиях. Версия TO-92 изготовлена из пластика и поэтому лучше работает в схемах с низким энергопотреблением. Версия T-O3 поставляется в цельнометаллическом корпусе для более легкого отвода тепла. 

Схема микросхемы 7805 

2. Конфигурация выводов микросхемы 7805

В регуляторе 7805 три вывода:

7805 IC pinout

Контакт 1

Это входной контакт для подачи нерегулируемого напряжения в схему.

Контакт 2 

Контакт Ground соединяется с землей и является нейтральным, в отличие от входного и выходного контактов.

Вывод 3

Это выходной вывод, на который подается постоянное напряжение +5 В. 

3. Основные характеристики регулятора 7805

Во-первых, регулятор может обеспечивать выходной ток до 1,5 А. Типичное постоянное выходное напряжение составляет 5 В, но может варьироваться от 4,8 В до 5,2 В. 

Во-вторых, регулятор также имеет функции ограничения тока и внутреннего охлаждения для предотвращения перегрузки схемы. Уникальная схема тепловой перегрузки внутри ИС 7805 автоматически отключает подачу напряжения, пока микросхема не остынет.

В-третьих, регулятор имеет отверстие в верхней части для подключения к радиатору для дальнейшего регулирования температуры.

Кроме того, минимальное входное напряжение должно составлять 7 В, а максимальное — 25 В для оптимального функционирования ИС. 

Регулировка нагрузки ИС находится в диапазоне от 10 мВ до 50 мВ, превышение этих диапазонов приведет к сбоям в работе.

И наконец, температура спая не должна превышать 125 °C даже при достаточном теплоотводе.

Вот видео с более подробной информацией об ИС 7805.

4. LM7805 в схеме

ИС 7805 имеет множество применений, включая работу в качестве регулятора напряжения +5 В и обеспечение регулируемого выходного напряжения в схеме.

В этом разделе мы рассмотрим работу микросхемы в качестве регулятора напряжения 5 В и регулируемого выходного регулятора.

7805 как регулятор напряжения +5 В

Регулятор напряжения 7805 может регулировать входящее напряжение и выдавать его на +5В. Он работает с двумя конденсаторами на концах цепи 7805-регулятора.

ИС 7805 в качестве регулятора напряжения 5 В

Входной конденсатор 0,22 мкФ необходим, если расстояние между фильтром источника питания и регулятором велико. Конденсатор на выходе отвечает за переходные характеристики, и вместе они помогают стабилизировать регулятор.

Для эффективной работы они должны находиться близко к регулятору и быть керамического типа.

Схема LM7805 — 7805 как регулируемый выходной регулятор

Регулятор также может регулировать выходное напряжение до любого значения, которое вы пожелаете. На схеме ниже показана схема, необходимая для достижения таких результатов.

7805 как регулируемый регулятор выходного напряжения

Соответствующее входное напряжение должно находиться в диапазоне 9-25 В. Величина сопротивления двух резисторов определяет выходное напряжение схемы.

Поэтому регулировка сопротивления R1 и R2 регулирует выходное напряжение. Чтобы рассчитать значение сопротивления, используйте приведенную ниже формулу.

Схема LM7805 — Как работает микросхема 7805 в схеме?

Схема состоит из:

ИС 7805 в цепи

230 В переменного тока поступает в трансформатор и преобразуется в колебательный постоянный ток в мостовом выпрямителе. Предохранитель ограничивает ток от трансформатора до 1А.

Конденсаторы фильтруют пульсации входящего тока на обоих концах цепи. Ветер с C1 — это 12 В постоянного тока без регулирования, и он поступает на регулятор напряжения, чтобы выйти в виде 5 В. Диод D1 защищает курс от всплеска тока и повреждения, поскольку он имеет обратное смещение.

Входное напряжение всегда должно быть больше, по крайней мере, на 2,5 В, чем выходное напряжение. Часть энергии также теряется в виде тепла, поэтому для ИС 78058 необходим теплоотвод.

Источник питания переменного тока более удобен, чем источник питания постоянного тока. Батареи постоянного тока нестабильны, так как часто разряжаются, что снижает выходное напряжение.

5. Схема LM7805 — Применение линейного регулятора напряжения 7805

Помимо работы в качестве регулятора напряжения +5 В и регулируемого регулятора напряжения, LM7805 используется в схемах, где требуется:

Защита от обратного смещения 

Регулируемый двойной источник питания

Постоянный выход +5В, например, микроконтроллеры, датчики и другие проекты.

Практические применения включают:

Зарядка батарей постоянного тока 

Зарядные устройства для телефонов 

Портативный CD-плеер 

Источники бесперебойного питания (ИБП) 

Батарея ИБП

 Заключение

 ИС 7805 является неотъемлемым компонентом в схемах, чувствительных к изменению напряжения. Используя несколько внешних устройств, вы также можете экспериментировать с регулятором в выбранном вами проекте.  

Найдите нас здесь для приобретения необходимых компонентов или любых других вопросов.

Схема включения kia 7809

Стабилизатор – это прибор, который имеет постоянное выходное напряжение (в нашем случае 9 В) вне зависимости от того, что у него на входе. Корпус с выводами (вход, общий и выход) стабилизатора фиксированного положительного напряжения изображён на рисунке.

Как видим, стабилизатор 9 В (он же КР142EH8A) представляет собой наипростейшее устройство. И типовое включение его также не отличается сложностью:

Стабилизаторы семейства LM

В нашей статье мы рассмотрим стабилизаторы напряжения семейства LM78ХХ. Серия 78ХХ выпускается в металлических корпусах ТО-3 (слева) и в пластмассовых корпусах ТО-220 (справа). Такие стабилизаторы имеют три вывода: вход, земля (общий) и вывод.

Вместо «ХХ» изготовители указывают напряжение стабилизации, которое нам будет выдавать этот стабилизатор. Например, стабилизатор 7805 на выходе будет выдавать 5 Вольт, 7812 соответственно 12 Вольт, а 7815 — 15 Вольт. Все очень просто.

Дополнительные возможности применения

Мы рассмотрели основные моменты сборки низковольтного блока питания, важным звеном которого является стабилизирующее устройство. Используемый в нём стабилизатор напряжения 9 вольт, схема устройства для сборки могут пригодиться:

  • музыканту для питания своих «примочек» к электрической гитаре;
  • радиолюбителю — для приемников или всяких поделок на светодиодах-транзисторах;
  • простым людям — для антенных усилителей к телевизору и т. д.

Несмотря на то, что главное предназначение рассмотренных стабилизаторов 9 В – источники фиксированного напряжения, устройства могут применяться также как источники с регулированием напряжения и тока путём добавления в их схемы внешних элементов.

Схема подключения

А вот и схема подключения таких стабилизаторов. Эта схема подходит ко всем стабилизаторам семейства 78ХХ.

На схеме мы видим два конденсатора, которые запаиваются с каждой стороны. Это минимальные значения конденсаторов, можно, и даже желательно поставить большего номинала. Это требуется для уменьшения пульсаций как по входу, так и по выходу. Кто забыл, что такое пульсации, можно заглянуть в статью как получить из переменного напряжения постоянное.

Автомобиль PDF Руководство, электрические схемы и коды неисправностей DTC

Коды неисправностей автомобиля KIA DTC — Rio, Ceed, Sportage, Picanto, Sorento, Cerato, Spectra, Optima, Opirus, Carnival, Magentis, Бонго

KIA Car Manuals PDF & электрические схемы над страницей — Stonic, Cadenza, Rio, Sorento, Amanti, Borrego, Optima, Forte, Rondo, Sportage, Sedona, Niro, Spectra, Carnival, Ceed, Pro Ceed, Stinger, Venga ; KIA Легковые автомобили EWD с.

На момент основания корейская компания называлась KyungSung Precision Industry . Основным видом деятельности предприятия были индивидуальные автомобили.

Позже, а именно 15 мая 1944 года, родилась корейская компания под названием KIA . Сочетание этих трех загадочных букв несет в себе следующее значение — первый слог KI в слове KIA означает — выйти в свет.Второй слог А означает Азия. Следовательно, значение слова KIA интерпретируется как выход из Азии в весь мир.

История KIA Motors начинается в 1944 году. Компоненты для велосипедной техники компания производила на небольшом предприятии, расположенном на территории современного города Сеул.

Прогнозируя огромное будущее автомобильной промышленности, корейцы с 1960 года уделяют особое внимание производству автомобилей.Первые шаги были сделаны из опыта японских производителей.

В 1961 году компании удалось организовать серийное производство мотоциклов, а в следующем году был разработан первый трехколесный грузовик, но его серийное производство надолго отложили. 12 лет.

В 1976 году корпорация создает несколько дочерних компаний — Kia Service Corp. и Kia Machine Tool Ltd . Последующий рост обусловлен приобретением Asia Motors .

KIA впервые представляет свой дизельный двигатель, а также запускает с конвейера седаны Peugeot 604 и Fiat 132 .

В 1987 году Kia запустила новый Pride , который был основан на платформе Mazda 121 .

В 1997 году Asia была охвачена серьезным экономическим кризисом, и KIA не смогла справиться с ним самостоятельно, что привело к ее банкротству.Год спустя банкрот KIA было куплено Hyundai Motors .

.

Характеристики стабилизаторов

Какое же напряжение подавать, чтобы стабилизатор работал как надо? Для этого ищем даташит на стабилизаторы и внимательно изучаем. Нас интересуют вот эти характеристики:

Output voltage — выходное напряжение

Input voltage — входное напряжение

Ищем наш 7805. Он выдает нам выходное напряжение 5 Вольт. Желательным входным напряжением производители отметили напряжение в 10 Вольт. Но, бывает так, что выходное стабилизированное напряжение иногда бывает или чуть занижено, или чуть завышено.

Для электронных безделушек доли вольт не ощущаются, но для прецизионной (точной) аппаратуры лучше все таки собирать свои схемы. Здесь мы видим, что стабилизатор 7805 может нам выдать одно из напряжений диапазона 4,75 — 5,25 Вольт, но при этом должны соблюдаться условия (conditions), что ток на выходе в нагрузке не будет превышать 1 Ампера. Нестабилизированное постоянное напряжение может «колыхаться» в диапазоне от 7,5 и до 20 Вольт, при это на выходе будет всегда 5 Вольт.

Рассеиваемая мощность на стабилизаторе может достигать до 15 Ватт — это приличное значение для такой маленькой радиодетали. Поэтому, если нагрузка на выходе такого стабилизатора будет кушать приличный ток, думаю, стоит подумать об охлаждении стабилизатора. Для этого ее надо посадить через пасту КПТ на радиатор. Чем больше ток на выходе стабилизатора, тем больше по габаритам должен быть радиатор. Было бы вообще идеально, если бы радиатор еще обдувался вентилятором.

Работа стабилизатора на практике

Давайте рассмотрим нашего подопечного, а именно, стабилизатор LM7805. Как вы уже поняли, на выходе мы должны получить 5 Вольт стабилизированного напряжения.

Соберем его по схеме

Берем нашу Макетную плату и быстренько собираем выше предложенную схемку подключения. Два желтеньких — это конденсаторы, хотя их ставить необязательно.

Итак, провода 1,2 — сюда мы загоняем нестабилизированное входное постоянное напряжение, снимаем 5 Вольт с проводов 3 и 2.

На Блоке питания мы ставим напряжение в диапазоне 7,5 Вольт и до 20 Вольт. В данном случае я поставил напряжение 8,52 Вольта.

И что же у нас получилось на выходе данного стабилизатора? 5,04 Вольта! Вот такое значение мы получим на выходе этого стабилизатора, если будем подавать напряжение в диапазоне от 7,5 и до 20 Вольт. Работает великолепно!

Давайте проверим еще один наш стабилизатор. Думаю, Вы уже догадались, на сколько он вольт.

Собираем его по схеме выше и замеряем входное напряжение. По даташиту можно подавать на него входное напряжение от 14,5 и до 27 Вольт. Задаем 15 Вольт с копейками.

А вот и напряжение на выходе. Блин, каких то 0,3 Вольта не хватает для 12 Вольт. Для радиоаппаратуры, работающей от 12 Вольт это не критично.

СТАБИЛИЗАТОРЫ ДЛЯ ПИТАНИЯ МИКРОСХЕМ

В этой статье мы рассмотрим возможности и способы питания цифровых устройств собранных своими руками, в частности на микроконтроллерах. Ни для кого не секрет, что залогом успешной работы любого устройства, является его правильное запитывание. Разумеется, блок питания должен быть способен выдавать требуемую для питания устройства мощность, иметь на выходе электролитический конденсатор большой емкости, для сглаживания пульсаций и желательно быть стабилизированным.

Стабилизированное зарядное устройство

Последнее подчеркну особенно, разные нестабилизированные блоки питания типа зарядных устройств от сотовых телефонов, роутеров и подобной техники не подходят для питания микроконтроллеров и других цифровых устройств напрямую. Так как напряжение на выходе таких блоков питания меняется, в зависимости от мощности подключенной нагрузки. Исключение составляют стабилизированные зарядные устройства, с выходом USB, выдающие на выходе 5 вольт, вроде зарядок от смартфонов.

Измерение мультиметром напряжения на блоке питания

Многих начинающих изучать электронику, да и просто интересующихся, думаю шокировал тот факт: на адаптере питания например от приставки Денди, да и любом другом подобном нестабилизированном может быть написано 9 вольт DC (или постоянный ток), а при измерении мультиметром щупами подключенными к контактам штекера БП на экране мультиметра все 14, а то и 16. Такой блок питания может использоваться при желании для питания цифровых устройств, но должен быть собран стабилизатор на микросхеме 7805, либо КРЕН5. Ниже на фото микросхема L7805CV в корпусе ТО-220.

L7805CV фото

Такой стабилизатор имеет легкую схему подключения, из обвеса микросхемы, то есть из тех деталей которые необходимы для её работы нам требуются всего 2 керамических конденсатора на 0. 33 мкф и 0.1 мкф. Схема подключения многим известна и взята из Даташита на микросхему:

Схема подключения 7805

Соответственно на вход такого стабилизатора мы подаем напряжение, или соединяем его с плюсом блока питания. А минус соединяем с минусом микросхемы, и подаем напрямую на выход.

Схема снижения с 12 вольт до 5

И получаем на выходе, требуемые нам стабильные 5 Вольт, к которым при желании, если сделать соответствующий разъем, можно подключать кабель USB и заряжать телефон, mp3 плейер или любое другое устройство с возможностью заряда от USB порта.

Стабилизатор снижение с 12 до 5 вольт – схема

Автомобильное зарядное устройство с выходом USB всем давно известно. Внутри оно устроено по такому же принципу, то есть стабилизатор, 2 конденсатора и 2 разъема.

Автомобильное зарядное устройство в прикуриватель

Как пример для желающих собрать подобное зарядное своими руками или починить существующее приведу его схему, дополненную индикацией включения на светодиоде:

Схема автомобильной зарядки на 7805

Цоколевка микросхемы 7805 в корпусе ТО-220 изображена на следующих рисунках. При сборке, следует помнить о том, что цоколевка у микросхем в разных корпусах отличается:

При покупке микросхемы в радиомагазине, следует спрашивать стабилизатор, как L7805CV в корпусе ТО-220. Эта микросхема может работать без радиатора при токе до 1 ампера. Если требуется работа при больших токах, микросхему нужно установить на радиатор.

Радиатор для стабилизаторов

Разумеется, эта микросхема существует и в других корпусах, например ТО-92, знакомый всем по маломощным транзисторам. Этот стабилизатор работает при токах до 100 миллиампер. Минимальное напряжение на входе, при котором стабилизатор начинает работать, составляет 6.7 вольт, стандартное от 7 вольт. Фото микросхемы в корпусе ТО-92 приведено ниже:

Цоколевка микросхемы, в корпусе ТО-92, как уже было написано выше, отличается от цоколевки микросхемы в корпусе ТО-220. Её мы можем видеть на следующем рисунке, как из него становится ясно, что ножки расположены зеркально, по отношению к ТО-220:

Маломощный стабилизатор 78l05 цоколевка

Разумеется, стабилизаторы выпускают на разное напряжение, например 12 вольт, 3. 3 вольта и другие. Главное не забывать, что входное напряжение, должно быть минимум на 1.7 – 3 вольта больше выходного.

Микросхема 7833 – схема

На следующем рисунке приведена цоколевка стабилизатора 7833 в корпусе ТО-92. Такие стабилизаторы применяются для запитывания в устройствах на микроконтроллерах дисплеев, карт памяти и другой периферии, требующей более низковольтного питания, чем 5 вольт, основное питание микроконтроллера.

Стабилизатор для питания МК

Я пользуюсь для запитывания собираемых и отлаживаемых на макетной плате устройств на микроконтроллерах, стабилизатором в корпусе, как на фото выше. Питание подается от нестабилизированного адаптера через гнездо на плате устройства. Его принципиальная схема приведена на рисунке далее:

Схема стабилизатор на 7805 для 5В

При подключении микросхемы нужно строго соответствовать цоколевке. Если ножки спутать, даже одного включения достаточно, чтобы вывести стабилизатор из строя, так что при включении нужно быть внимательным. Автор материала – AKV.

  • ПОДБОР ИМПУЛЬСНОГО БП ПРИ ПОКУПКЕ
  • БЕСТРАНСФОРМАТОРНЫЕ БП НА 5, 9, 12, 24 В
  • БЛОК ПИТАНИЯ 0-50 В 20 А НА LM2576
  • РЕМОНТ ИБП (СВИСТ И СРАБАТЫВАЕТ ЗАЩИТА)

Как сделать блок питания на 5, 9,12 Вольт

Как же сделать простой и высокостабильный источник питания на 5, на 9 или даже на 12 Вольт? Да очень просто. Для этого Вам нужно прочитать вот эту статейку и поставить на выход стабилизатор на радиаторе! И все! Схема будет приблизительно вот такая для блока питания 5 Вольт:

Два электролитических конденсатора для для устранения пульсаций и высокостабильный блок питания на 5 вольт к вашим услугам! Чтобы получить блок питания на большее напряжение, нам нужно также на выходе трансформатора тоже получить большее напряжение. Стремитесь, чтобы на конденсаторе С1 напряжение было не меньше, чем в даташите на описываемый стабилизатор.

Для того, чтобы стабилизатор напряжения не перегревался, подавайте на вход минимальное напряжение, указанное в даташите. Например, для стабилизатора 7805 это напряжение равно 7,5 Вольт, а для стабилизатора 7812 желательным входным напряжением можно считать напряжение в 14,5 Вольт. Это связано с тем, разницу напряжения, а следовательно и мощность, стабилизатор будет рассеивать на себе.

Как вы помните, формула мощности P=IU, где U — напряжение, а I — сила тока. Следовательно, чем больше входное напряжение стабилизатора, тем больше мощность, потребляемая им. А излишняя мощность — это и есть нагрев. В результате нагрева такой стабилизатор может перегреться и войти в состояние защиты, при котором дальнейшая работа стабилизатора прекращается или вовсе сгореть.

Источник стабилизированного питания 9 В своими руками

Приобретать готовый блок электропитания для своих нужд не всегда хочется по разным причинам, возможно, из-за экономии средств или просто потому, что дома лежит без дела б/у понижающий трансформатор. Последний можно приспособить для получения чистых 9 В. За основу возьмём одну из возможных электрических схем.

В качестве понижающего трансформатора подойдёт агрегатик из старого магнитофона (или радиоприемника), особенно, если в прошлом используемое устройство работало под напряжением 9 В. Для того, чтобы трансформатор не перегорел и не перегрузился, в первичную обмотку добавляется плавкая вставка 0,2 — 0,5 А.

Внешний вид трансформатора уже сам говорит за себя, на его шильдике обязательно есть памятка с техническими параметрами. Всегда можно узнать насколько ампер он рассчитан. Важно не допустить перегрузку агрегата, симптомами которой является:

  • падение напряжения;
  • нагревание магнитопровода и обмоток;
  • появление гудения, и даже дыма.

Помните! Электронике дым противопоказан, она просто перестаёт тогда работать.

На представленной схеме мы видим расположенный за трансформатором выпрямитель, перед которым стоит задача преобразования переменного тока в постоянный. Все радиоэлементы, применяемые в стабилизаторе запитаны на постоянном токе. Для этого используется готовый диодный мост на 2 А – 10PCS 2W10 2A Bridge Diode Rectifier NEW.

Для стабилизации напряжения применяется стабилизатор напряжения 9 вольт. В создаваемом нами блоке питания эта роль отведена используемой трехвыводной микросхеме 7809, где 78 говорит о стабилизации положительной полярности напряжения, а 09 — о числе стабилизированных вольт. Это и есть импортный аналог отечественной микросхемке КР142EH8A, о которой говорилось выше.

Регулятор напряжения

— Может ли когда-нибудь колебаться 7805?

спросил

Изменено 7 лет, 3 месяца назад

Просмотрено 3к раз

\$\начало группы\$

Я вижу много ссылок на ограничения ввода и вывода, помогающие обеспечить «стабильность», и несколько прямых ссылок на предотвращение колебаний в обоих ответах на этом сайте и даже в некоторых таблицах данных. Я также видел упоминания о том, что 7805 «по своей сути стабилен» в обоих ответах на этом сайте и даже в некоторых таблицах данных и примечаниях к приложениям. Запутаны ли таблицы данных/люди, использующие термин «стабильность», или существуют версии 7805, которые на самом деле могут стать нестабильными? Если это так, я хотел бы увидеть пример схемы, в которой это произойдет.

  • регулятор напряжения
  • устойчивость
  • колебания
  • 7805
\$\конечная группа\$

4

\$\начало группы\$

На практике довольно сложно заставить их работать так, чтобы они колебались, особенно при небольших нагрузках. Попробуйте большую нагрузку, отсутствие входной емкости и некоторую индуктивность источника, но я не даю никаких гарантий. Вы можете сказать, что по мере приближения колебаний вы увидите уменьшенный запас по фазе, что означает выброс/недостаток при изменении нагрузки или линии.

Судя по моделированию, примерно 500 мкГн при нагрузке 0,5 А обычно близки к колебаниям.

Это довольно патологическая схема. На графике ниже показана нагрузка 400 мкГн и 0,55 А, которая уменьшается* до 0,5 А при t=100 мкс.

В этом комментарии , а не распространяется на другие типы регуляторов (особенно LDO), которые легко заставить колебаться. И, конечно же, в реальных схемах мы предпочитаем жить на стороне «гарантированно стабильных», а не «гарантированных колебаний», по крайней мере, для регуляторов напряжения. Противоположное было бы верно для вещей, которые предназначены для генерации колебаний — как говорится в старой поговорке, «усилители колеблются, а генераторы — нет».

Редактировать: я провел пару быстрых тестов — с относительно большим входным конденсатором на регуляторе (1 мкФ) он показывает колебания низкого уровня (2,5 мВ размах) на частоте около 8 кГц. Значительно ниже этого он снижает частоту колебаний, но амплитуда остается высокой. Добавление только конденсатора к выходу при наличии входной катушки индуктивности снижает стабильность — 5-10 нФ достаточно, чтобы заставить его колебаться с индуктивностью 400 мкГн на входе и нагрузкой 0,5 А.

\$\конечная группа\$

3

\$\начало группы\$

У меня был 7805 в приложении колеблется. Однако это было не совсем так, как вы здесь думаете. У меня был 7805, который был нагружен так, что деталь сильно нагревалась. У него был довольно мизерный радиатор, но этого было недостаточно, чтобы удерживать температуру деталей ниже критического уровня термовыключателя регулятора. Таким образом, часть будет очень горячей и отключится, что приведет к падению выходного напряжения до нуля вольт. Как только нагрузка снималась, деталь начинала остывать и, в конце концов, снова включалась. Он будет колебаться так с частотой в пару секунд. Я также обнаружил, что могу изменить частоту колебаний, поместив инструмент на маленький радиатор!

\$\конечная группа\$

\$\начало группы\$

Несмотря на то, что Vreg может быть «по своей сути стабильным», все же полезно добавлять внешние «стабилизирующие» компоненты, чтобы предотвратить возможность того, что нестабильность нагрузки перевешивает внутреннюю стабильность и «вынуждает» регулятор работать нестабильно.

Чтобы использовать более очевидную аналогию, представьте, что вы кормите кого-то веревкой, когда он спускается со скалы.

  • Пока альпинист поддерживает довольно предсказуемый/устойчивый темп, вы (будучи полезными по своей сути) можете поддерживать равномерное и стабильное натяжение веревки.
  • Теперь представьте, что тот же альпинист останавливается на несколько минут, пытаясь найти новый маршрут; затем они внезапно соскальзывают с лица и падают; потом снова ловят себя на лице; подняться на фут или два; потом снова падать.

В данном случае; в то время как у вас может быть устойчивая опора, вы можете очень хорошо поддерживать стабильное натяжение веревки и т. д. Разве не было бы невероятно полезно иметь стабилизирующую веревку систему шкивов / тормозов, чтобы предотвратить нестабильные движения веревки?

\$\конечная группа\$

3

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

.

7805 — Почему на входе и выходе регулятора напряжения всегда есть конденсатор?

\$\начало группы\$

Глядя на техническое описание, я вижу, что стабилизаторы напряжения — это не просто зеннеровский диод внутри, это сложные устройства. Я заметил, что всегда есть конденсатор на входе и еще один на выходе. Примером могут служить стабилизаторы постоянного напряжения серии uA7800.

Я читал, что один из них предназначен для «стабилизации работы схемы», а другой — для «уменьшения пульсаций на выходе». Глядя на техническое описание, почему они имеют это фиксированное значение? И если они имеют фиксированное значение, то почему бы просто не встроить их в сам регулятор напряжения? например, для серии uA7800 это 0,33 мкФ на входе и 0,1 мкФ на выходе. Не поясняется, почему они имеют такие значения.

  • регулятор напряжения
  • 7805
\$\конечная группа\$

2

\$\начало группы\$

Большинству стабилизаторов напряжения (особенно типа LDO) требуется конденсатор на выходе для стабильности, и он обычно улучшает переходную характеристику даже для стабилизаторов, таких как 7800, которые могут не требовать этого строго.

Входной конденсатор обычно требуется для уменьшения импеданса источника.

Конденсаторы емкостью более десятков пФ (или около того) на недорогой микросхеме делать нецелесообразно — они занимают слишком много места в дорогом кремнии, а внешние керамические или электролитические конденсаторы очень дешевы в количестве. Этого нет в картах. И конденсаторы на самом деле обеспечивают накопление энергии, так что это не то, что может заменить умная схема.

Значения представляют собой компромиссы, которые имеют смысл, исходя из поведения микросхемы со стабильностью при различных токах нагрузки, а также из-за того, какие конденсаторы были распространены при составлении таблицы данных (это может быть 35 или 40 лет назад для серии 7800). Почти всегда допустимо использовать большую емкость на входе и обычно приемлемо на выходе, однако могут быть минимальные/максимальные значения ESR конденсатора — эквивалентное последовательное сопротивление. В некоторых случаях слишком идеальный конденсатор может вызвать колебания регулятора.

Большинство современных регуляторов указывают допустимые номиналы и типы конденсаторов, поэтому все, что вам нужно сделать, это прочитать и понять спецификацию .

\$\конечная группа\$

7

\$\начало группы\$

Я думал, что буду собирать свою последнюю схему по одному компоненту за раз, чтобы иметь возможность «отлаживать» и узнавать, что на самом деле происходит на каждом этапе. Поэтому я подключил источник питания 12 В к моему входу и земле и с нетерпением ждал регулируемого выхода 5 В. Что я получил, так это 10 секунд поиска выхода 5V, а затем дым! Вот что бывает, если в цепи нет конденсаторов. Автоколебания, огромный жар и дым. Пожалуйста, поверьте мне на слово и не пытайтесь повторить это дома. Научит вас правильно читать техническое описание от корки до корки.

\$\конечная группа\$

\$\начало группы\$

Ответ на этот вопрос лежит в практическом опыте.

Опустить входной конденсатор и рано или поздно стабилизатор уходит в автоколебания, перегревается и (буквально) взрывается.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *