В схеме с общий эмиттер постоянные токи эмиттера
Схема с общим эмиттером (каскад с общим эмиттером)
Схема с ОЭ обладает наибольшим коэффициентом усиления по мощности, поэтому остается наиболее распространенным решением для высокочастотных усилителей, систем GPS, GSM, WiFi. В настоящее время она обычно применяется в виде готовых интегральных микросхем (MAXIM, VISHAY, RF Micro Devices), но, не зная основы ее работы, практически невозможно получить параметры, приведенные в описании микросхемы.Именно поэтому при приеме на работу и поиске сотрудников основным требованием является знание принципов работы усилителей с ОЭ.
Усилитель, каким бы он не был, (усилитель аудио, ламповый усилитель или усилитель радиочастоты) представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.
Рисунок 1 Структурная схема включения усилителя
Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общим эмиттером — это усилитель, где эмиттер транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с общим эмиттером приведена на рисунке 2.
Рисунок 2 Функциональная схема включения транзистора с общим эмиттером
На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. В настоящее время схема с общим эмиттером практически не применяется в звуковых усилителях, однако в схемах усилителей телевизионного сигнала, усилителях GSM или других высокочастотных усилителях она находит широкое применение. Для питания транзистора в схеме с общим эмиттером можно использовать два источника питания, однако для этого потребуется два стабилизатора напряжения. В аппаратуре с батарейным питанием это может быть проблематично, поэтому обычно применяется один источник питания. Для питания усилителя с общим эмиттером может подойти любая из рассмотренных нами схем:
- схема с фиксированным током базы,
- схема с фиксированным напряжением на базе,
- схема с коллекторной стабилизацией,
- схема с эмиттерной стабилизацией.
Рассморим пример схемы усилителя с общим эмиттером и эмиттерной стабилизацией режима работы транзистора. На рисунке 3 приведена принципиальная схема каскада на биполярном npn-транзисторе, предназначенная для усиления звуковых частот.
Рисунок 3 Принципиальная схема усилительного каскада с общим эмиттером
Расчет элементов данной схемы по постоянному току можно посмотреть в статье «схема эмиттерной стабилизации». Сейчас нас будут интересовать параметры усилительного каскада, собранного по схеме с общим эмиттером. Его наиболее важными характеристиками является входное и выходное сопротивление и коэффициент усиления по мощности. В основном эти характеристики определяются параметрами транзистора.
Входное сопротивление схемы с общим эмиттером
В схеме с общим эмиттером входное сопротивление транзистора RвхОЭ можно определить по его входной характеристике. Эта характеристика совпадает с вольтамперной характеристикой p-n перехода. Пример входной характеристики кремниевого транзистора (зависимость напряжения Uб от тока базы Iб) приведен на рисунке 4.
Рисунок 4 Входная характеристика кремниевого транзистора
Как видно из этого рисунка, входное сопротивление транзистора RвхОЭ зависит от тока базы Iб0 и определяется по следующей формуле:
Как определить ΔUб0 и ΔIб0 в окрестностях рабочей точки транзистора в схеме с общим эмиттером показано на рисунке 5.
Рисунок 5 Определение входного сопротивления схемы с общим эмиттером по входной характеристике кремниевого транзистора
Определение сопротивления по формуле (1) является наиболее точным способом определения входного сопротивления. Однако при расчете усилителя мы не всегда имеем под рукой транзисторы, которые будем использовать, поэтому было бы неплохо иметь возможность рассчитать входное сопротивление аналитическим способом. Вольтамперная характеристика p-n перехода хорошо аппроксимируется экспоненциальной функцией.
где Iб — ток базы в рабочей точке;
Uбэ — напряжение базы в рабочей точке;
Is — обратный ток перехода эмиттер-база;
— температурный потенциал;
k — постоянная Больцмана;
q — заряд электрона;
T — температура, выраженная в градусах Кельвина.
В этом выражении коэффициентом, нормирующим экспоненту, является ток Is, поэтому чем точнее он будет определен, тем лучше будет совпадение реальной и аппроксимированной входных характеристик транзистора. Если в выражении (2) пренебречь единицей, то напряжение на базе транзистора можно вычислить по следующей формуле:
Из выражения (1) видно, что входное сопротивление является производной напряжения на базе транзистора по току. Продифференцируем выражение (3), тогда входное сопротивление схемы с общим эмиттером можно определить по следующей формуле:
Однако график реальной входной характеристики транзистора, включенного по схеме с общим эмиттером, отличается от экспоненциальной функции. Это связано с тем, что омическое сопротивление полупроводника в базе транзистора не равно нулю, поэтому при больших базовых токах транзистора в схеме с общим эмиттером ее входное сопротивление будет стремиться к омическому сопротивлению базы rбб’.
Входной ток схемы с общим эмиттером протекает не только через входное сопротивление транзистора, но и по всем резисторам цепей формирования напряжения на базе транзистора. Поэтому входное сопротивление схемы с общим эмиттером определяется как параллельное соединение всех этих сопротивлений. Пути протекания входного тока по схеме с общим эмиттером показаны на рисунке 6.
Рисунок 6 Протекание тока по входным цепям схемы с общим эмиттером
Значительно проще вести анализ данной схемы по эквивалентной схеме входной цепи, где приведены только те цепи, по которым протекает входной ток от источника сигнала. Эквивалентная схема входной цепи схемы с общим эмиттером приведена на рисунке 7.
Рисунок 7 Эквивалентная схема входной цепи схемы с общим эмиттером
Данная схема построена для средних частот с применением эквивалентной схемы транзистора. На средних частотах входная емкость транзистора не оказывает влияния, поэтому мы ее не отображаем на эквивалентной схеме. Сопротивление конденсатора C3 на средних частотах близко к нулю, поэтому на схеме нет элементов R4C3. Элементы Rвых и h21×iвх не влияют на входную цепь и изображены на схеме для отображения усилительных свойств транзистора.
И, наконец, мы можем записать формулу входного сопротивления схемы с общим эмиттером:
После изготовления усилителя, рассчитанного по приведенным выше методикам необходимо измерить входное сопротивление схемы с общим эмиттером. Для измерения входного сопротивления используют схему измерения входного сопротивления усилителя, изображенную на рисунке 8. В данной схеме для измерения входного сопротивления используются измерительный генератор переменного напряжения и два высокочастотных вольтметра переменного тока (можно воспользоваться одним и сделать два измерения).
Рисунок 8 Схема измерения входного сопротивления усилительного каскада
В случае, если сопротивление Rи будет равно входному сопротивлению усилителя, напряжение, которое покажет вольтметр переменного тока V2, будет в два раза меньше напряжения V1. В случае, если нет возможности изменять сопротивление Rи при измерении входного сопротивления, входное сопротивление усилителя можно вычислить по следующей формуле:
Выходное сопротивление схемы с общим эмиттером
Выходное сопротивление транзистора зависит от конструктивных особенностей транзистора, толщины его базы, объемного сопротивления коллектора. Выходное сопротивление транзистора, включенного по схеме с общим эмиттером, можно определить по выходным характеристикам транзистора. Пример выходных характеристик транзистора приведен на рисунке 9.
Рисунок 9 Выходные характеристики кремниевого транзистора
К сожалению, в характеристиках современных транзисторов выходные характеристики обычно не приводятся. Связано это с тем, что их выходное сопротивление достаточно велико и выходное сопротивление транзисторного каскада с общим эмиттером определяется сопротивлением нагрузки. В схеме, приведенной на рисунке 6, это сопротивление резистора R3.
Дата последнего обновления файла 31.05.2018
- Шило В. Л. «Линейные интегральные схемы в радиоэлектронной аппаратуре» под ред. Е.И. Гальперина — М.: «Сов. радио» 1974
- npn транзистор общего назначения КТ3130
- NPN general purpose transistors BC846; BC847; BC848 (один из лучших транзисторов, известных мне)
- BFQ67 NPN 8 GHz wideband transistor
- Усилительный каскад на биполярном транзисторе Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича
- Электротехника и электроника Дальневосточный государственный университет путей сообщения
Вместе со статьей «Схема с общим эмиттером (каскад с общим эмиттером)» читают:
Источник
ИЗУЧЕНИЕ СХЕМЫ УСИЛИТЕЛЯ С ОБЩИМ ЭМИТТЕРОМ
МИНОБРНАУКИ РОССИИ
Санкт-Петербургский государственный
электротехнический университет
«ЛЭТИ» им. В.И. Ульянова (Ленина)
Кафедра БТС
по лабораторной работе №1
по дисциплине «Электроника и микропроцессорная техника»
Тема: Изучение схемы усилителя с общим эмиттером
Студент гр. 7501
Студентка гр. 7501
Винограденко Ю.В.
Преподаватель
Анисимов А.А.
Санкт-Петербург
Цель работы: ознакомиться с основными типами усилительных каскадов на биполярных транзисторах. Освоить основные этапы проектирования транзисторного усилительного каскада и методику измерения коэффициента усиления транзистора по току. Научиться снимать основные параметры усилительного каскада – входное и выходное сопротивления, АЧХ.
Используемое оборудование: NI ELVIS Bode Analyzer, макетная плата NI ELVIS, резисторы, конденсаторы, транзистор 2N2222.
Основные теоретические положения.
Каскад с общим эмиттером имеет достаточно высокий коэффициент усиления (пропорциональный β), средние (приемлемые на практике) значения входного и выходного сопротивлений и поэтому широко используется в практической схемотехнике. Главная проблема, возникающая при его использовании – задание рабочей точки транзистора (синоним – смещение транзистора). Дело в том, что в эскизных схемах подразумевается, что ток IК может как увеличиваться, так и уменьшаться, то есть в отсутствие входного сигнала он должен иметь некоторое определённое значение, которое должно определять падение напряжения на резисторе RК и, следовательно, выходное напряжение каскада в отсутствие входного сигнала. Поскольку это выходное напряжение имеет минимальное значение, равное нулю (транзистор полностью открыт), а максимальное – EК (транзистор полностью закрыт), логично задать значение тока IК в отсутствие входного сигнала таким, чтобы выходное напряжение равнялось EК/2. В этом случае сопротивление резистора RК следует выбрать равным EК/(2IК0), где IК0 – значение коллекторного тока в отсутствие входного сигнала. Этот ток должен обеспечить ток базы IБ0= IК0/β. Классический способ создания такого тока в каскаде с общим эмиттером показан на рис. 1.
Рисунок 1. Схема усилительного каскада с ОЭ с заданием рабочей точки с помощью стабильного тока базы (а) и график, иллюстрирующий её работу (б)
Ток базы задаётся резистором RБ, падение напряжения на котором равно URБ ≈ EК – 0,7В. При условии
сопротивление резистора RБ можно оценить какПри таком задании рабочей точки в отсутствие входного сигнала выходное напряжение равно EК/2, при положительном входном сигнале ток базы увеличивается и выходное напряжение уменьшается, при отрицательном – увеличивается (рис. 1). Таким образом, выходной сигнал содержит постоянную составляющую и обычно от неё избавляются, применяя разделительный конденсатор. Кроме того, вход каскада не должен быть соединён по постоянному току с источником входного сигнала, поэтому необходимо подключать входной сигнал ко входу каскада также через разделительный конденсатор.
Альтернативный способ задания рабочей точки транзистора изображён на рис. 2. В этом способе используется задание постоянного напряжения на базе транзистора UБЭ, которое создаётся делителем напряжения на резисторах Rб1 – Rб2:
Два описанных способа задания рабочей точки традиционно используются в любых устройствах на базе биполярного транзистора.
Рисунок 2. Схема усилительного каскада с ОЭ с заданием рабочей точки с помощью стабильного напряжения UБЭ
Как коэффициент усиления каскада, так и его входное и выходное сопротивления зависят от индивидуальных параметров транзистора (β, rБ и rК). Более того, замена транзистора в рабочем усилительном каскаде влечёт за собой необходимость заново устанавливать рабочую точку. Этого можно избежать с помощью введения в каскад последовательной отрицательной обратной связи (ООС) по току (рис. 3). В этой схеме на вход транзистора (напряжение база- эмиттер) подаётся разность входного сигнала и падения напряжения на резисторе Rэ, которое пропорционально току IК. Коэффициент усиления каскада определяется уже не индивидуальными параметрами транзистора, а величинами сопротивлений резисторов, входящих в схему:
KУ=RК/RЭ. Установку рабочей точки в схеме можно также обеспечить заданием тока базы при помощи резистора Rб, или с помощью напряжения на базе, которое задаётся делителем напряжения.
Рисунок 3. Схема усилительного каскада с ОЭ с последовательной ООС по току
Согласно общим положениям теории систем с обратной связью, введение последовательной отрицательной обратной связи по току приводит к тому, что входное сопротивление усилительного каскада значительно увеличивается.
Схема каскада с общим коллектором и эмиттерной стабилизацией обладает лучшими характеристиками по стабильности параметров. В ней глубина обратной связи по постоянному току приближается к 100%. Принципиальная схема включения транзистора с общим коллектором и эмиттерной стабилизацией приведена на рисунке 4.
Рисунок 4. Схема с общим коллектором
Отличительной особенностью схемы с общим коллектором является высокое входное сопротивление.
Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.
В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода. Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).
Схема каскада усиления с коллекторной стабилизацией и схемой включения транзистора с общей базой приведена на рисунке 5.
Рисунок 5. Схема с общей базой
Отличительной особенностью схемы с общей базой является малое входное сопротивление. Входным сопротивлением этого усилительного каскада является эмиттерное сопротивление транзистора.
По току схема усилительного каскада с общей базой усилением не обладает. Более того, коэффициент передачи этой схемы меньше единицы.
Коэффициент усиления по напряжению усилительного каскада, собранного по схеме с общей базой, совпадает с коэффициентом усиления по напряжению схемы с общим эмиттером. Схема включения транзистора с общей базой используется обычно в высокочастотных усилителях.
Источник
Основные параметры и характеристики биполярного транзистора.
Продолжаем разбирать все, что связано с транзисторами и сегодня у нас на очереди одна из наиболее часто используемых схем включения. А именно схема включения биполярного транзистора с общим эмиттером (ОЭ)! Кроме того, на базе этой схемы мы рассмотрим основные параметры и характеристики биполярного транзистора. Тема важная и интересная, так что без лишних слов переходим к делу!
Название этой схемы во многом объясняет ее основную идею. Поскольку схема с общим эмиттером, то, собственно, эмиттер является общим электродом для входной и выходной цепей. Вот как выглядит схема с ОЭ для n-p-n транзистора:
А вот так – для p-n-p:
Давайте снова разбирать все процессы для случая с использованием n-p-n транзистора. Для p-n-p суть остается той же, меняется только полярность.
Входными величинами являются напряжение база-эмиттер ( U_ ) и ток базы ( I_ ), а выходными – напряжение коллектор-эмиттер ( U_ ) и ток коллектора ( I_ ). Обратите внимание, что в этих схемах у нас отсутствует нагрузка в цепи коллектора, поэтому все характеристики, которые мы далее рассмотрим носят название статических. Другими словами статические характеристики транзистора – это зависимости между напряжениями и токами на входе и выходе при отсутствии нагрузки.
Характеристики биполярного транзистора.
Выделяют несколько основных характеристик транзистора, которые позволяют понять, как он работает, и как его использовать для решения задач.
И первая на очереди – входная характеристика, которая представляет из себя зависимость тока базы от напряжения база-эмиттер при определенном значении напряжения коллектор-эмиттер:
В документации на конкретный транзистор обычно указывают семейство входных характеристик (для разных значений U_ ):
Входная характеристика, в целом, очень похожа на прямую ветвь ВАХ диода. При U_ = 0 характеристика соответствует зависимости тока от напряжения для двух p-n переходов включенных параллельно (и смещенных в прямом направлении). При увеличении U_ ветвь будет смещаться вправо.
Переходим ко второй крайне важной характеристике биполярного транзистора – выходной! Выходная характеристика – это зависимость тока коллектора от напряжения коллектор-эмиттер при постоянном токе базы.
Для нее также указывается семейство характеристик для разных значений тока базы:
Видим, что при небольших значениях U_ коллекторный ток увеличивается очень быстро, а при дальнейшем увеличении напряжения – изменение тока очень мало и фактически не зависит от U_ (зато пропорционально току базы). Эти участки соответствуют разным режимам работы транзистора.
Для наглядности можно изобразить эти режимы на семействе выходных характеристик:
Участок 1 соответствует активному режиму работы транзистора, когда эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. Как вы помните, в данном режиме незначительный ток базы управляет током коллектора, имеющим бОльшую величину.
Для управления током базы мы увеличиваем напряжение U_ , что в соответствии со входными характеристиками приводит к увеличению тока базы. А это уже в соответствии с выходной характеристикой в активном режиме приводит к росту тока коллектора. Все взаимосвязано 🙂
Небольшое дополнение. На этом участке выходной характеристики ток коллектора все-таки незначительно зависит от напряжения U_ (возрастает с увеличением напряжения). Это связано с процессами, протекающими в биполярном транзисторе. А именно – при росте напряжения на коллекторном переходе его область расширяется, а соответственно, толщина слоя базы уменьшается. Чем меньше толщина базы, тем меньше вероятность рекомбинации носителей в ней. А это, в свою очередь, приводит к тому, что коэффициент передачи тока \beta , несколько увеличивается. Это и приводит к увеличению тока коллектора, ведь:
На участке 2 транзистор находится в режиме насыщения. При уменьшении U_ уменьшается и напряжение на коллекторном переходе U_ . И при определенном значении U_ = U_ напряжение на коллекторном переходе меняет знак и переход оказывается смещенным в прямом направлении. То есть в активном режиме у нас была такая картина – эмиттерный переход смещен в прямом направлении, а коллекторный – в обратном. В режиме же насыщения оба перехода смещены в прямом направлении.
В этом режиме основные носители заряда начинают двигаться из коллектора в базу – навстречу носителям заряда, которые двигаются из эмиттера в коллектор. Поэтому при дальнейшем уменьшении U_ ток коллектора уменьшается. Кроме того, в режиме насыщения транзистор теряет свои усилительные свойства, поскольку ток коллектора перестает зависеть от тока базы.
Режим насыщения часто используется в схемах ключей на транзисторе. В одной из следующих статей мы как раз займемся практическими расчетами реальных схем и там используем рассмотренные сегодня характеристики биполярного транзистора!
И, наконец, область 3, лежащая ниже кривой, соответствующей I_ = 0 . Оба перехода смещены в обратном направлении, протекание тока через транзистор прекращается. Это так называемый режим отсечки.
Все параметры транзисторов довольно-таки сильно зависят как друг от друга, так и от температуры, поэтому в документации приводятся характеристики для разных значений. Вот, например, зависимость коэффициента усиления по току (в зарубежной документации обозначается как h_ ) от тока коллектора для биполярного транзистора BC847:
Как видите, коэффициент усиления не просто зависит от тока коллектора, но и от температуры окружающей среды! Разным значениям температуры соответствуют разные кривые.
Основные параметры биполярных транзисторов.
Давайте теперь рассмотрим, какие существуют параметры биполярных транзисторов, и какие предельные значения они могут принимать.
I_ ( I_ ) – обратный ток коллектора – ток через коллекторный переход при определенном обратном напряжении на переходе коллектор-база и разомкнутой цепи эмиттера. |
I_ ( I_ ) – обратный ток эмиттера – ток через эмиттерный переход при определенном обратном напряжении на переходе эмиттер-база и разомкнутом выводе коллектора. |
I_ ( I_ ) – аналогично, обратный ток коллектор-эмиттер – ток в цепи коллектор-эмиттер при определенном обратном напряжении коллектор-эмиттер и разомкнутом выводе базы. |
U_ ( V_ ) – напряжение на переходе база-эмиттер при определенном напряжении коллектор-эмиттер и токе коллектора. |
U_ ( V_ ) – напряжение пробоя перехода коллектор-база при определенном обратном токе коллектора и разомкнутой цепи эмиттера. Например, для все того же BC847: |
U_ ( V_ ) – напряжение пробоя эмиттер-база при определенном обратном токе эмиттера и разомкнутой цепи коллектора. |
U_ ( V_ ) – напряжение пробоя коллектор-эмиттер при определенном прямом токе коллектора и разомкнутой цепи базы. |
Напряжения насыщения коллектор-эмиттер и база-эмиттер – U_ ( V_ ) и U_ ( V_ ). |
Конечно же, важнейший параметр – статический коэффициент передачи по току для схемы с общим эмиттером – h_ ( h_ ). Для этого параметра обычно приводится диапазон возможных значений, то есть минимальное и максимальное значения. |
f_ ( f_ ) – граничная частота коэффициента передачи тока транзистора для схемы с общим эмиттером. При использовании сигнала более высокой частоты транзистор не может быть использован в качестве усилительного элемента. |
И еще один параметр, который следует отнести к важнейшим – I_ ( I_ ) – максимально допустимый постоянный ток коллектора. |
И на этом заканчиваем нашу сегодняшнюю статью, большое спасибо за внимание! Подписывайтесь на обновления и не пропустите новые статьи 🙂
Источник
Характеристики и параметры транзисторов: схемы, описание, формулы
Рассмотрим характерные схемы включения транзистора и соответствующие характеристики.
- Схема с общей базой
- Входные характеристики для схемы с общей базой
- Выходные характеристики для схемы с общей базой
- Схема с общим эмиттером
- Входные характеристики для схемы с общим эмиттером.
- Выходные характеристики для схемы с общим эмиттером
- Инверсное включение транзистора
Схема с общей базой
Приведенная схема включения транзистора в электрическую цепь называется схемой с общей базой, так как база является общим электродом для источников напряжения. Изобразим ее с использованием условного графического обозначения транзистора (рис. 1.56).
Транзисторы традиционно характеризуют их так называемыми входными и выходными характеристиками. Для схемы с общей базой входной характеристикой называют зависимость тока iэ от напряжения и 6э при заданном напряжении uбэ, т. е. зависимость вида iэ= f (uбэ) |uкэ= const, где f — некоторая функция.
Выходной характеристикой для схемы с общей базой называют зависимость тока iк от напряжения uкб при заданном токе iэ, т. е. зависимость вида iк = f (uкб) |iэ= const, где f — некоторая функция.
Входные характеристики для схемы с общей базой
Каждая входная характеристика в значительной степени определяется характеристикой эмиттерного перехода и поэтому аналогична характеристике диода. Изобразим входные характеристики кремниевого транзистора КТ603А (максимальный постоянный ток коллектора — 300 мА, максимальное постоянное напряжение коллектор-база — 30
B при t
Указанный эффект состоит в том, что при увеличении напряжения uкб коллекторный переход расширяется (как и всякий обратно смещенный p-n-переход). Если концентрация атомов примеси в базе меньше концентрации атомов примеси в коллекторе, то расширение коллекторного перехода осуществляется в основном за счет базы. В любом случае толщина базы уменьшается. Уменьшение толщины базы и соответствующее уменьшение ее сопротивления приводит к тому, что при неизменном токе iэ напряжение uбэ уменьшается.
Входные характеристики часто характеризуют дифференциальным сопротивлением rдиф, определяемым аналогично дифференциальному сопротивлению диода.
rдиф= (duбэ/diэ) |iэ– заданный, uкб=const
Выходные характеристики для схемы с общей базой
Изобразим выходные характеристики для транзистора КТ603А (рис. 1.58).
Как уже отмечалось, если коллекторный переход смещен в обратном направлении (uкб> 0), то ток коллектора примерно равен току эмиттера: iк
Это соотношение сохраняется даже при uкб= 0 (если ток эмиттера достаточно велик), так как и в этом случае большинство электронов, инжектированных в базу, захватывается электрическим полем коллекторного перехода и переносится в коллектор.
Режим, соответствующий второму квадранту (uкб Задать вопрос
Наклон выходных характеристик численно определяют так называемым дифференциальным сопротивлением коллекторного перехода (с учетом эффекта Эрли): rк=duкб/diэ|uкб– аданный, iэ=constiк=αст· iэ+ iко+ 1/rк· uкб
Схема с общим эмиттером
Очень часто транзистор характеризуют характеристиками, соответствующими схеме, представленной на рис. 1.59. Эту схему называют схемой с общий эмиттером, так как эмиттер является общим электродом для источников напряжения.
Для этой схемы входной характеристикой называют зависимость тока iб от напряжения uбэ при заданном напряжении uкэ , т. е. зависимость вида iб= f (uбэ) |u кэ = const , где f — некоторая функция.
Выходной характеристикой называют зависимость тока iк от напряжения uкэ при заданном токе iб, т. е. зависимость вида i к = f (u кэ ) |i б = const,где f — некоторая функция.
Очень важно уяснить следующих два факта.
- Характеристики для схемы с общим эмиттером не отражают никакие новые физические эффекты по сравнению с характеристиками для схемы с общей базой и не несут никакой принципиально новой информации о свойствах транзистора. Для объяснения особенностей характеристик с общим эмиттером не нужна никакая информация кроме той, что необходима для объяснения особенностей характеристик схемы с общей базой. Тем не менее характеристики для схемы с общим эмиттером очень широко используют на практике (и приводят в справочниках), так как ими удобно пользоваться.
- При расчетах на компьютерах моделирующие программы вообще никак не учитывают то, по какой схеме включен транзистор. Программы используют математические модели транзисторов, являющиеся едиными для всевозможных схем включения. Тем не менее, очень полезно уметь определить тип схемы включения транзистора. Это облегчает понимание принципа работы схемы.
Входные характеристики для схемы с общим эмиттером.
Изобразим характеристики уже рассмотренного транзистора КТ603А (рис. 1.60).
Теперь эффект Эрли проявляется в том, что при увеличении напряжения uкэ характеристики сдвигаются вправо. Дифференциальное сопротивление теперь определяется выражением rдиф= (duбэ/diб) |iб– заданный , uкэ= const
Выходные характеристики для схемы с общим эмиттером
Изобразим эти характеристики для транзистора КТ603А (рис. 1.61).
Обратимся к ранее полученному выражению iк=αст·iэ+iко В соответствии с первым законом Кирхгофа iэ=iк+iб и с учетом предыдущего выражения получим iкαст· (iк+iб) +iко откуда iк=αст/ (1 -αст) ·iб+ 1 / (1 -αст) ·iко
Коэффициент αст называют статическим коэффициентом передачи базового тока. Его величина обычно составляет десятки — сотни (это безразмерный коэффициент).
Легко заметить, что 1 / (1 -αст) = βст + 1 Введем обозначение i′ко ≡ (βст + 1) ·iко В итоге получаемiк= βст ·iб+i′ко Это выражение в первом приближении описывает выходные характеристики в области активной работы, не учитывая наклона характеристик.
Для учета наклона выражение записывают в виде iк= βст ·iб+i′ко +uкб· ( 1 /r′к ),гдеr′к =duкэ/diк|uкэ – заданное, iб=const
В первом приближении r′к = ( 1 / 1 + βcт) · rк (сопротивление rк определено выше). Часто пользуются так называемым дифференциальным коэффициентом передачи базового тока β.
Для приращения тока коллектора ∆iк и тока базы ∆iб можно записать:
По определению β=diк/diб|iк – заданный, uкэ=const
Для транзистора КТ603А при t = 25°С β = 10…80.
Величина β зависит от режима работы транзистора. Приведем типичный график зависимости β от тока эмиттера (он практически равен току коллектора) для uкб= 2 В (рис. 1.62).
Для нормальной работы транзистора на постоянном токе, кроме рассмотренного выше условия Pк
Обычно допустимо предполагать (с той или иной погрешностью), что выходные характеристики для схемы с общим эмиттером расположены на отрезках прямых, расходящихся веерообразно из одной точки на оси напряжений (рис. 1.64).
Напряжение Uэ (это положительная величина) называют напряжением Эрли. Для транзистора КТ603А Uэ
Источник
Сравнение схем включения транзисторов | Основы электроакустики
Сравнение схем включения транзисторов
Схемы включения биполярных транзисторов. Сравнительные данные свойств транзисторов в схемах с ОБ, ОК и ОЭ приведены в табл. 132. В схеме с общей базой эмиттерный переход включен в прямом направлении, поэтому при незначительных изменениях напряжения ДUэ сильно меняется ток ДIэ, вследствие чего входное сопротивление транзистора rвх = ДUэ/ДIэ при UK=const мало (десятки омов). Коллекторный переход включен в обратном направлении, поэтому изменения напряжения на этом переходе ДUк незначительно влияют на изменения тока ДIк, вследствие чего выходное сопротивление гвых = ДUк/ДIк при Iэ=const велико (до нескольких мегаомов). Большое различие входных и выходных сопротивлений затрудняет согласование каскадов в многокаскадных усилителях.
Таблица 132
Параметры | Сравнительные показатели свойств транзисторов в схемах | ||
с общей базой | с общим эмиттером | с общим коллектором | |
Коэффициенты передачи по току | 0,6 — 0,95
| Десятки — сотни | Больше, чем в схеме с ОЭ |
усиления по напря жению | Тысячи | Меньше, чем в схеме с ОБ | 0,7 — 0,99 |
усиления по мощности | Менее чем на схеме с ОЭ | Большое (тысячи) | Меньше, чем в схеме с ОЭ |
Сопротивление: |
|
|
|
входное
| Малое (единицы — десятки омов) | Большое (десятки —тысячи омов) | Большое (сотни килоомов)
|
выходное
| Большое (тысячи омов — единицы мегаомов) | Сотни омов, — десятки килоомов | Единицы омов — десятки килоомов |
Сдвиг фаз | 0° | 180° | 0° |
В схеме с ОБ входным (управляющим) является ток Iэ, а выходным — ток Iк. Последний всегда меньше тока эмиттера, так как часть инжектируемых носителей заряда рекомбинирует в базе, поэтому а=ДIк/ДIэ<1. Коэффициент усиления по напряжению Kн в схеме велик, поскольку изменения токов на входе ДIэ и выходе ДIк почти одинаковы, а rВЫх>rвх. Коэффициент усиления по мощности также велик (Kм=аKн=1000). Эмиттерный переход включается в проводящем направлении, поэтому изменения тока 13, а следовательно, и тока Iк происходят без фазового сдвига (Ф=0°).
В схеме с общим эмиттером управляющим служит ток базы Is — Is — Iк. Поскольку большинство носителей зарядов, инжектируемых эмиттером, достигает коллекторной области [Iк= (0,9 ч-0,99) Iэ] и лишь незначительная часть рекомбинирует в базе, ток базы мал: Iб=(0,01-0,1) Iэ. При этих условиях Kтэ = ДIк/ДIб>Kтб=ДIк/ДIэ и составляет 10 — 150. Усиление по напряжению примерно такое же, как и в схеме с ОБ. Благодаря высокому коэффициенту передачи тока эта схема обеспечивает большое (Kм до 10000) усиление по мощности.
Напряжение в схеме с ОЭ на входе U3 и выходе UK одного порядка, поэтому гВх=ДUэ/ДIэ здесь больше, чем в схеме с ОБ, и достигает десятков — тысяч омов. В этой схеме напряжение коллекторного источника Ек частично приложено к эмиттерному переходу, поэтому изменения ДUк вызывают большие изменения тока ДIк, вследствие чего rвых=ДUк/ДIк при Iб=const меньше, чем в схеме с ОБ, что облегчает согласование каскадов в многокаскадных усилителях.
В схеме с ОЭ положительные полуволны подводимого напряжения сигнала действуют в противофазе с напряжением смещения, поэтому ток Iэ, а следовательно, и Iк уменьшаются; отрицательные полуволны сигнала действуют согласованно с напряжением смещения, и токи 1д и Iк возрастают. В результате напряжение сигнала, снимаемое с нагрузки в выходной цепи, будет (по отношению к общей точке схемы) противофазным с напряжением подводимого сигнала (т. е. ф=180°).
В схеме с общим коллектором входным является ток Iб, а выходным Iэ. Так как во входной цепи проходит малый ток базы, входное сопротивление rВX=ДUвх/ДIвх достигает десятков килоомов, Выходное напряжение в схеме приложено к эмиттерному переходу, поэтому малые изменения этого напряжения вызывают большие изменения Iэ, вследствие чего rВых=ДUвых/ДIвых мало (десятки омов).
Напряжение подводимого сигнала Uвх и выходное напряжение Uвых в схеме действуют встречно, т. е. U36 = Uвx — Uвых. Для получения на эмиттерном переходе требуемого напряжения необходимо скомпенсировать выходное напряжение, что достигается при Uвх>Uвых. В этих условиях схема с ОК не дает усиления по напряжению (Kн<1). Коэффициент передачи по току Kт=ДIэ/ДIб =ДIэ/(ДIэ — ДIк) = 1/(1 — а) здесь несколько больше, чем в схеме с ОЭ. Отсутствие усиления по напряжению приводит к снижению усиления по мощности против схем с ОБ и ОЭ.
В схеме отрицательные полуволны подводимого напряжения сигнала Uвх действуют встречно напряжению смещения, поэтому результирующее прямое напряжение на эмиттерном переходе и ток Iэ=Iб+Iк уменьшаются. При этом напряжение сигнала, снимаемое с нагрузки в цепи эмиттера, повторяет фазу напряжения подводимого сигнала, т. е. Ф=0 (эмиттерный повторитель).
Схема с ОИ является инвертирующим усилителем, способным усиливать сигналы по напряжению и току и обладает сравнительно небольшими междуэлектродными емкостями, (Сзи=1-20 пФ; Сзс=0,5-8 пФ; Сси<Сзи). Входная емкость СВх.и = Сзи+СэС, проходная Спр.и = Сзс, выходная СВых.и=Сзс+ССи. Крутизна S характеристики Iс=Ф(Uз) представляет собой внешнюю проводимость прямой передачи и для транзисторов малой мощности составляет 0,5 — 10 мСм. Выходное сопротивление сравнительно велико (обычно многократно превышает сопротивление нагрузки), поэтому коэффициент усиления каскада &»5Rн достигает десятков единиц. Входное сопротивление (если пренебречь областями очень низких и высоких частот) .носит емкостной характер; входная емкость Свх= — Сэя+SRнСзс. Поскольку междуэлектродные емкости малы, на параметры схемы существенно влияют емкости монтажа См= 1-5-3 пФ. Общая шунтирующая емкость С0=СЕ1+См определяет частоту верхнего среза fв.ср=1/(2пС0Rн).
Схема с ОЗ подобно схеме с ОБ не изменяет полярности сигнала и обеспечивает его-усиление по напряжению аналогично усилению сигнала в схеме с ОИ. Входное сопротивление гвх= U3m/Iит вследствие потребления от источника сигнала сравнительно большого тока Iст=Iит=SUзот оказывается незначительным. Выходное сопротивление rвых~rси(1+SRи) из-за влияния отрицательной обратной связи по току (элементом которой является внутреннее сопротивление источника сигнала RИ) велико. Влияние емкостной составляющей входной проводимости мало (так как она шунтирована сравнительно большой активной проводимостью gВх=1/rвх=S), поэтому каскад с ОЗ более широкополосен, чем схема с ОИ.
Схема с ОС не меняет фазу входного сигнала на выходе (истоковый повторитель), значительно усиливает ток (но не может усиливать напряжение), обладает высоким активным входным сопротивлением, малой входной емкостью СВх = Сзс+С3и(1 — K), где K. = Ucm/UC3m=SRн/(1+SRн), и небольшим выходным сопротивлением r=l/S (близким к входному сопротивлению схемы с, ОЗ), большой широкополосностью благодаря малой входной емкости.
Схемы составных транзисторов. Составной транзистор представляет собой комбинацию двух (и более) транзисторов, соединенных таким образом, что число внешних выводов этой комбинированной схемы равно числу выводов одиночного транзистора. Составной транзистор, выполненный по схеме сдвоенного эмиттер-ного повторителяне изменяет полярности сигнала, обладает большим коэффициентом передачи тока hzi=hziVihziVz, имеет большое входное и малое выходное сопротивления.
Составной транзистор в виде усилителя на разноструктурных (р-n-р и n-р-n) транзисторах содержит два каскада с ОЭ с глубокой последовательной ООС по напряжению. Поскольку каждый каскад изменяет полярность сигнала, в целом схема представляет собой неинвертирующий усилитель. С выхода схемы напряжение подается на вход (эмиттер первого транзистора) в про-тивофазе с входным сигналом, подводимым к цепи базы. Приведенный составной транзистор обладает свойствами эмиттерного повторителя. Его коэффициент усиления меньше единицы, а из-за ОС входное сопротивление велико, выходное мало. Точкой малого выходного сопротивления является коллектор транзистора V2, так как от него начинается цепь ОС по напряжению, поэтому вывод коллектора транзистора V2 играет роль эмиттера составного транзистора, а вывод эмиттера V2 — роль его коллектора. При выбранных структурах транзисторов, VI и V2 схема обладает свойствами р-n-р-транзистора.
Составной транзистор, выполненный по каскодной схеме представляет собой усилитель, в котором транзистор VI включен по схеме с ОЭ, a V2 — по схеме с ОБ. Схема эквивалентна одиночному транзистору, включенному по схеме с ОЭ с пара* метрами, близкими к параметрам транзистора VI. Последний обладает высоким выходным сопротивлением, что обеспечивает транзи« стору V2 получение широкой полосы частот
Схемы включения транзистора: общая база, коллектор, эмиттер
Транзисторы часто применяют для усиления переменных сигналов (которые при расчетах обычно считают синусоидальными), при этом в выходной цепи транзистора применяется нагрузка с ненулевым сопротивлением.
Во входной цепи, кроме источника постоянного напряжения, необходимого для обеспечения активного режима работы, также используют источник входного переменного напряжения. Изобразим три характерные схемы включения транзистора.
Схема с общей базой (ОБ)
(рис. 1.78). Если сопротивление нагрузки достаточно велико, то амплитуда переменной составляющей напряжения uвых значительно больше амплитуды напряжения uвх. Учитывая, что iвыx ~ iвx, можно утверждать, что схема не обеспечивает усиления тока, но усиливает напряжение. Входной ток такой схемы достаточно большой, а соответствующее входное сопротивление малое.
Схема с общим эмиттером (ОЭ)
(рис. 1.79).
Так как iвыx >> iвx, а при достаточно большом сопротивлении Rн амплитуда переменной составляющей напряжения u выхзначительно больше амплитуды напряжения uвх , следовательно, схема обеспечивает усиление и тока, и напряжения.
Входной ток схемы достаточно мал, поэтому входное сопротивление больше, чем у схемы с общей базой.
Схема с общим коллектором (ОК)
(рис. 1.80).
При определении переменных составляющих токов и напряжений источники постоянного напряжения u1и u2 заменяют закоротками (закорачивают). После этого к коллектору оказываются подключенными и источник входного напряжения uвх, и сопротивление нагрузки. Отсюда и название — схема с общим коллектором.
Васильев Дмитрий Петрович
Профессор электротехники СПбГПУ
Задать вопрос
Само напряжение uбэи особенно переменная составляющая этого напряжения достаточно малы, поэтому амплитуда переменной составляющей напряжения uвх примерно равна амплитуде переменной составляющей напряжения uвых. В соответствии с этим усилительные каскады, в которых транзисторы включены по схеме с общим коллектором, называют эмиттерными повторителями.
Учитывая также, что iвх<< iвых, отмечают, что схема усиливает ток, но не усиливает напряжение.
Схема отличается повышенным входным сопротивлением, так как при увеличении входного напряжения увеличению входного тока препятствует увеличение как напряжения uбэ, так и напряжения uвых. На практике наиболее часто используется схема с общим эмиттером.
Какой управляющий элемент в схеме с оэ. Расчет усилителя с общим эмиттером
Схема с ОЭ обладает наибольшим коэффициентом усиления по мощности, поэтому остается наиболее распространенным решением для высокочастотных усилителей, систем GPS, GSM, WiFi. В настоящее время она обычно применяется в виде готовых интегральных микросхем (MAXIM, VISHAY, RF Micro Devices), но, не зная основы ее работы, практически невозможно получить параметры, приведенные в описании микросхемы.Именно поэтому при приеме на работу и поиске сотрудников основным требованием является знание принципов работы усилителей с ОЭ.
Усилитель, каким бы он не был, (усилитель аудио, ламповый усилитель или усилитель радиочастоты) представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.
Рисунок 1 Структурная схема включения усилителя
Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общим эмиттером — это усилитель, где эмиттер транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с общим эмиттером приведена на рисунке 2.
Рисунок 2 Функциональная схема включения транзистора с общим эмиттером
На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. В настоящее время схема с общим эмиттером практически не применяется в звуковых усилителях, однако в схемах усилителей телевизионного сигнала, усилителях GSM или других высокочастотных усилителях она находит широкое применение. Для питания транзистора в схеме с общим эмиттером можно использовать два источника питания, однако для этого потребуется два стабилизатора напряжения. В аппаратуре с батарейным питанием это может быть проблематично, поэтому обычно применяется один источник питания. Для питания усилителя с общим эмиттером может подойти любая из рассмотренных нами схем:
- схема с эмиттерной стабилизацией.
Рассморим пример схемы усилителя с общим эмиттером и эмиттерной стабилизацией режима работы транзистора. На рисунке 3 приведена каскада на биполярном npn-транзисторе, предназначенная для усиления звуковых частот.
Рисунок 3 Принципиальная схема усилительного каскада с общим эмиттером
Расчет элементов данной схемы по постоянному току можно посмотреть в статье . Сейчас нас будут интересовать параметры , собранного по схеме с общим эмиттером. Его наиболее важными характеристиками является входное и выходное сопротивление и коэффициент усиления по мощности. В основном эти характеристики определяются параметрами транзистора.
Входное сопротивление схемы с общим эмиттером
В схеме с общим эмиттером входное сопротивление транзистора R вхОЭ можно определить по его входной характеристике. Эта характеристика совпадает с вольтамперной характеристикой p-n перехода. Пример входной характеристики кремниевого транзистора (зависимость напряжения U б от тока базы I б) приведен на рисунке 4.
Рисунок 4 Входная характеристика кремниевого транзистора
Как видно из этого рисунка, входное сопротивление транзистора R вхОЭ зависит от тока базы I б0 и определяется по следующей формуле:
(1)Как определить ΔU б0 и ΔI б0 в окрестностях рабочей точки транзистора в схеме с общим эмиттером показано на рисунке 5.
Рисунок 5 Определение входного сопротивления схемы с общим эмиттером по входной характеристике кремниевого транзистора
Определение сопротивления по формуле (1) является наиболее точным способом определения входного сопротивления. Однако при расчете усилителя мы не всегда имеем под рукой транзисторы, которые будем использовать, поэтому было бы неплохо иметь возможность рассчитать входное сопротивление аналитическим способом. Вольтамперная характеристика p-n перехода хорошо аппроксимируется экспоненциальной функцией.
(2)где I б — ток базы в рабочей точке;
U бэ — напряжение базы в рабочей точке;
I s — обратный ток перехода эмиттер-база;
—
температурный потенциал;
k — постоянная Больцмана;
q — заряд электрона;
T — температура, выраженная в градусах Кельвина.
В этом выражении коэффициентом, нормирующим экспоненту, является ток I s , поэтому чем точнее он будет определен, тем лучше будет совпадение реальной и аппроксимированной входных характеристик транзистора. Если в выражении (2) пренебречь единицей, то напряжение на базе транзистора можно вычислить по следующей формуле:
(3)Из выражения (1) видно, что входное сопротивление является производной напряжения на базе транзистора по току. Продифференцируем выражение (3), тогда входное сопротивление схемы с общим эмиттером можно определить по следующей формуле:
(4)Однако график реальной входной характеристики транзистора, включенного по схеме с общим эмиттером, отличается от экспоненциальной функции. Это связано с тем, что омическое сопротивление полупроводника в базе транзистора не равно нулю, поэтому при больших базовых токах транзистора в схеме с общим эмиттером ее входное сопротивление будет стремиться к омическому сопротивлению базы r бб» .
Входной ток схемы с общим эмиттером протекает не только через входное сопротивление транзистора, но и по всем резисторам цепей формирования напряжения на базе транзистора. Поэтому входное сопротивление схемы с общим эмиттером определяется как параллельное соединение всех этих сопротивлений. Пути протекания входного тока по схеме с общим эмиттером показаны на рисунке 6.
Рисунок 6 Протекание тока по входным цепям схемы с общим эмиттером
Значительно проще вести анализ данной схемы по эквивалентной схеме входной цепи, где приведены только те цепи, по которым протекает входной ток от источника сигнала. Эквивалентная схема входной цепи схемы с общим эмиттером приведена на рисунке 7.
Рисунок 7 Эквивалентная схема входной цепи схемы с общим эмиттером
Данная схема построена для средних частот с применением эквивалентной схемы транзистора. На средних частотах входная емкость транзистора не оказывает влияния, поэтому мы ее не отображаем на эквивалентной схеме. Сопротивление конденсатора C3 на средних частотах близко к нулю, поэтому на схеме нет элементов R4C3. Элементы R вых и h 21 ×i вх не влияют на входную цепь и изображены на схеме для отображения усилительных свойств транзистора.
И, наконец, мы можем записать формулу входного сопротивления схемы с общим эмиттером:
(5)После изготовления усилителя, рассчитанного по приведенным выше методикам необходимо измерить входное сопротивление схемы с общим эмиттером. Для измерения входного сопротивления используют схему измерения входного сопротивления усилителя, изображенную на рисунке 8. В данной схеме для измерения входного сопротивления используются измерительный генератор переменного напряжения и два высокочастотных вольтметра переменного тока (можно воспользоваться одним и сделать два измерения).
Рисунок 8 Схема измерения входного сопротивления усилительного каскада
В случае, если сопротивление R и будет равно входному сопротивлению усилителя, напряжение, которое покажет вольтметр переменного тока V2, будет в два раза меньше напряжения V1. В случае, если нет возможности изменять сопротивление R и при измерении входного сопротивления, входное сопротивление усилителя можно вычислить по следующей формуле:
(6)Выходное сопротивление схемы с общим эмиттером
Выходное сопротивление транзистора зависит от конструктивных особенностей транзистора, толщины его базы, объемного сопротивления коллектора. Выходное сопротивление транзистора, включенного по схеме с общим эмиттером, можно определить по выходным характеристикам транзистора. Пример выходных характеристик транзистора приведен на рисунке 9.
Рисунок 9 Выходные характеристики кремниевого транзистора
К сожалению, в характеристиках современных транзисторов выходные характеристики обычно не приводятся. Связано это с тем, что их выходное сопротивление достаточно велико и выходное сопротивление транзисторного каскада с общим эмиттером определяется сопротивлением нагрузки. В схеме, приведенной на рисунке 6, это сопротивление резистора R3.
Дата последнего обновления файла 31.05.2018
Литература:
Вместе со статьей «Схема с общим эмиттером (каскад с общим эмиттером)» читают:
http://сайт/Sxemoteh/ShTrzKask/KollStab/
http://сайт/Sxemoteh/ShTrzKask/EmitStab/
Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.
Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂
Виды транзисторов
Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.
Биполярный транзистор
Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.
Триоды за редким исключением применяют в аппаратуре для меломанов.
Биполярные транзисторы выглядеть могут так.
Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.
Это изображение транзисторов еще называют УГО (Условное графическое обозначение).
Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.
Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки»). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.
У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.
Обычно где какой вывод определяют по справочнику, но можно просто . Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).
Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.
Принцип работы биполярного транзистора
А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.
Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.
Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.
Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги ).
- Коллектор имеет более положительный потенциал, чем эмиттер
- Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
- Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
- В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.
Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.
Коэффициент усиления по току.
Его также обозначают как
Исходы из выше сказанного транзистор может работать в четырех режимах:
- Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
- Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
- Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
- Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.
Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.
Транзистор в ключевом режиме
Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.
Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.
На рисунке изображена схема работы транзистора в ключевом режиме.
Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.
В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.
Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).
На сколько мы знаем, что значение тока это характеристика нагрузки.
Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.
Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.
Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.
В результате мы вполне можем найти сопротивление резистора
Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.
Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.
Все дело в том, что здесь есть небольшой нюанс.
Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂
Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).
Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.
В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.
Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.
Эмиттерный повторитель
Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.
Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.
Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.
Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.
«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока ! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.
Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.
Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.
Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!
Где транзисторы купить?
Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине . Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.
Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, и так сказать вдохнуть в старый радиокомпонет новую жизнь.
Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.
Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.
Желаю вам удачи, успехов и солнечного настроения!
С н/п Владимир Васильев
P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!
Необходимые пояснения даны, переходим к сути.
Транзисторы. Определение и история
Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)
Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.
Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.
Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.
В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.
Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.
И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.
Биполярный транзистор. Принцип работы. Основные характеристики
Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.
Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.
Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой — слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».
Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.
Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.
Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.
Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.
Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.
Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.
Третий параметр биполярного транзистора — коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.
Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .
Также параметрами биполярного транзистора являются:
- обратный ток коллектор-эмиттер
- время включения
- обратный ток колектора
- максимально допустимый ток
Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.
Режимы работы биполярного транзистора
Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.- Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
- Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
- Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
- Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.
Схемы включения биполярных транзисторов
Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.
Схема включения с общим эмиттером
Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.
Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.
Схема включения с общей базой
Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.
В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.
Схема включения с общим коллектором
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.
Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала
Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.
В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.
Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).
Два слова о каскадах
Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.
Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).
Другие области применения биполярных транзисторов
Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.Маркировка
Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173
Теги: Добавить метки
Усилитель с общим эмиттером раньше являлся базовой схемой всех усилительных устройств.
В прошлой статье мы с вами говорили о самой простой схеме смещения транзистора. Эта схема (рисунок ниже) зависит от , а он в свою очередь зависит от температуры, что не есть хорошо. В результате на выходе схемы могут появиться искажения усиливаемого сигнала.
Чтобы такого не произошло, в эту схему добавляют еще парочку и в результате получается схема с 4-мя резисторами:
Резистор между базой и эмиттером назовем R бэ , а резистор, соединенный с эмиттером, назовем R э . Теперь, конечно же, главный вопрос: «Зачем они нужны в схеме?»
Начнем, пожалуй, с R э .
Как вы помните, в предыдущей схеме его не было. Итак, давайте предположим, что по цепи +Uпит—->R к ——> коллектор—> эмиттер—>R э —-> земля бежит электрический ток, с силой в несколько миллиампер (если не учитывать крохотный ток базы, так как I э = I к + I б ) Грубо говоря, у нас получается вот такая цепь:
Следовательно, на каждом резисторе у нас будет падать какое-то напряжение. Его величина будет зависеть от силы тока в цепи, а также от номинала самого резистора.
Чуток упростим схемку:
R кэ — это сопротивление перехода коллектор-эмиттер. Как вы знаете, оно в основном зависит от базового тока.
В результате, у нас получается простой делитель напряжения , где
Мы видим, что на эмиттере уже НЕ БУДЕТ напряжения в ноль Вольт, как это было в прошлой схеме. Напряжение на эмиттере уже будет равняться падению напряжения на резисторе R э .
А чему равняется падение напряжения на R э ? Вспоминаем закон Ома и высчитываем:
Как мы видим из формулы, напряжение на эмиттере будет равняться произведению силы тока в цепи на номинал сопротивления резистора R э . С этим вроде как разобрались. Для чего вся эта канитель, мы разберем чуть ниже.
Какую же функцию выполняют резисторы R б и R бэ ?
Именно эти два резистора представляют из себя опять же простой делитель напряжения . Они задают определенное напряжение на базу, которое будет меняться, если только поменяется +Uпит , что бывает крайне редко. В остальных случаях напряжение на базе будет стоять мертво.
Вернемся к R э.
Оказывается, он выполняет самую главную роль в этой схеме.
Предположим, у нас из-за нагрева транзистора начинает увеличиваться ток в этой цепи.
Теперь разберем поэтапно, что происходит после этого.
а) если увеличивается ток в этой цепи, то следовательно увеличивается и падение напряжения на резисторе R э .
б) падение напряжения на резисторе R э — это и есть напряжение на эмиттере U э . Следовательно, из-за увеличения силы тока в цепи U э стало чуток больше.
в) на базе у нас фиксированное напряжение U б , образованное делителем из резисторов R б и R бэ
г) напряжение между базой эмиттером высчитывается по формуле U бэ = U б — U э . Следовательно, U бэ станет меньше, так как U э увеличилось из-за увеличенной силы тока, которая увеличилась из-за нагрева транзистора.
д) Раз U бэ уменьшилось, значит и сила тока I б , проходящая через базу-эмиттер тоже уменьшилась.
е) Выводим из формулы ниже I к
I к =β х I б
Следовательно, при уменьшении базового тока, уменьшается и коллекторный ток;-) Режим работы схемы приходит в изначальное состояние. В результате схема у нас получилась с отрицательной обратной связью, в роли которой выступил резистор R э . Забегая вперед, скажу, что О трицательная О братная С вязь (ООС) стабилизирует схему, а положительная наоборот приводит к полному хаосу, но тоже иногда используется в электронике.
Расчет усилительного каскада
1) Первым делом находим из даташита максимально допустимую рассеиваемую мощность, которую транзистор может рассеять на себе в окружающую среду. Для моего транзистора это значение равняется 150 миллиВатт. Мы не будем выжимать из нашего транзистора все соки, поэтому уменьшим нашу рассеиваемую мощность, умножив на коэффициент 0,8:
P рас = 150х0,8=120 милливатт.
2) Определим напряжение на U кэ . Оно должно равняться половине напряжения Uпит.
U кэ = Uпит / 2 = 12/2=6 Вольт.
3) Определяем ток коллектора:
I к = P рас / U кэ = 120×10 -3 / 6 = 20 миллиампер.
4) Так как половина напряжения упала на коллекторе-эмиттере U кэ , то еще половина должна упасть на резисторах. В нашем случае 6 Вольт падают на резисторах R к и R э . То есть получаем:
R к + R э = (Uпит / 2) / I к = 6 / 20х10 -3 = 300 Ом.
R к + R э = 300 , а R к =10R э, так как K U = R к / R э , а мы взяли K U =10 ,
то составляем небольшое уравнение:
10R э + R э = 300
11R э = 300
R э = 300 / 11 = 27 Ом
R к = 27х10=270 Ом
5) Определим ток базы I базы из формулы:
Коэффициент бета мы замеряли в прошлом примере. Он у нас получился около 140.
Значит,
I б = I к / β = 20х10 -3 /140 = 0,14 миллиампер
6) Ток делителя напряжения I дел , образованный резисторами R б и R бэ , в основном выбирают так, чтобы он был в 10 раз больше, чем базовый ток I б :
I дел = 10I б = 10х0,14=1,4 миллиампер.
7) Находим напряжение на эмиттере по формуле:
U э = I к R э = 20х10 -3 х 27 = 0,54 Вольта
8) Определяем напряжение на базе:
U б = U бэ + U э
Давайте возьмем среднее значение падения напряжения на базе-эмиттер U бэ = 0,66 Вольт . Как вы помните — это падение напряжения на P-N переходе.
Следовательно, U б =0,66 + 0,54 = 1,2 Вольта . Именно такое напряжение будет теперь находиться у нас на базе.
9) Ну а теперь, зная напряжение на базе (оно равняется 1,2 Вольта), мы можем рассчитать номинал самих резисторов.
Для удобства расчетов прилагаю кусочек схемы каскада:
Итак, отсюда нам надо найти номиналы резисторов. Из формулы закона Ома высчитываем значение каждого резистора.
Для удобства пусть у нас падение напряжения на R б называется U 1 , а падение напряжения на R бэ будет U 2 .
Используя закон Ома, находим значение сопротивлений каждого резистора.
R б = U 1 / I дел = 10,8 / 1,4х10 -3 = 7,7 КилоОм . Берем из ближайшего ряда 8,2 КилоОма
R бэ = U 2 / I дел = 1,2 / 1,4х10 -3 = 860 Ом . Берем из ряда 820 Ом.
В результате у нас будут вот такие номиналы на схеме:
Проверка работы схемы в железе
Одной теорией и расчетами сыт не будешь, поэтому собираем схему в реале и проверяем ее в деле. У меня получилась вот такая схемка:
Итак, беру свой и цепляюсь щупами на вход и выход схемы. Красная осциллограмма — это входной сигнал, желтая осциллограмма — это выходной усиленный сигнал.
Первым делом подаю синусоидальный сигнал с помощью своего китайского генератора частоты :
Как вы видите, сигнал усилился почти в 10 раз, как и предполагалось, так как наш коэффициент усиления был равен 10. Как я уже говорил, усиленный сигнал по схеме с ОЭ находится в противофазе, то есть сдвинут на 180 градусов.
Давайте подадим еще треугольный сигнал:
Вроде бы гуд. Если присмотреться, то есть небольшие искажения. Нелинейность входной характеристики транзистора дает о себе знать.
Если вспомнить осциллограмму схемы с двумя резисторами
то можно увидеть существенную разницу в усилении треугольного сигнала
Заключение
Схема с ОЭ во времена пика популярности биполярных транзисторов использовалась как самая ходовая. И этому есть свое объяснение:
Во-первых , эта схема усиливает как по току, так и по напряжению, а следовательно и по мощности, так как P=UI .
Во-вторых , ее входное сопротивление намного больше, чем выходное, что делает эту схему отличной малопотребляемой нагрузкой и отличным источником сигнала для следующих за ней нагрузок.
Ну а теперь немного минусов:
1) схема потребляет небольшой ток, пока находится в режиме ожидания. Это значит, питать ее долго от батареек не имеет смысла.
2) она уже морально устарела в наш век микроэлектроники. Для того, чтобы собрать усилитель, проще купить готовую микросхему и сделать на ее базе
Рассмотрим схему включения транзистора с общим эмиттером.
— сам термин названия данного включение уже говорит о специфике данной схемы. Общий эмиттер а в крации это ОЭ, подразумевает тот факт, что у входа данной схемы и выхода общий эмиттер.
Рассмотрим схему:
в этой схеме видим два источника питания, первый 1.5 вольт, использован как входной сигнал для транзистора и всей схемы. Второй источник питания 4.5 вольт, его роль питание транзистора, и всей схемы. Элемент схемы Rн – это нагрузка транзистора или проще говоря потребитель.
Теперь проследим саму работу данной схемы: источник питания 1.5 вольт служит входным сигналом для транзистора, поступая на базу транзистора он открывает его. Если рассматривать полный цикл прохода тока базы, то это будет так: ток проходит от плюса к минусу, то есть исходя от источника питания 1.5 вольт, а именно с клеммы + ток проходит по общему эмиттеру проходя по базе и замыкает свою цепь на клемме – батареи 1.5 вольт. В момент прохождения тока по базе транзистор открыт, тем самым транзистор позволяет второму источнику питания 4.5 вольт запитать Rн. посмотрим прохождение тока от второго источника питания 4.5 вольт. При открывании транзистора входным током базы, с источника питания 4.5 вольт выходит ток по эмиттеру транзистора и выходит из коллектора прям на нагрузку Rн.
Коэффициент усиления равен отношению тока коллектора к току базы и обычно может достигать от десятков до нескольких сотен. Транзистор, включённый по схеме с общим эмиттером, теоретически может дать максимальное усиление сигнала по мощности, относительно других вариантов включения транзистора.
Теперь рассмотрим схему включения транзистора с общим коллектором:
На данной схеме видим, что тут общий по входу и выходу транзистора коллектор. По этому эта схема называется с общим коллектором ОК.
Рассмотрим её работу: как и в предыдущей схеме поступает входной сигнал на базу, (в нашем случае это ток базы) открывает транзистор. При открывании транзистора ток с батареи 4.5 в проходит от клеммы батареи + через нагрузку Rн поступает на эмиттер транзистора проходит по коллектору и заканчивает свой круг. Вход каскада при таком включении ОК обладает высоким сопротивлением, обычно от десятых долей мегаома до нескольких мегаом из-за того, что коллекторный переход транзистора заперт. А выходное сопротивление каскада – напротив, мало, что позволяет использовать такие каскады для согласования предшествующего каскада с нагрузкой. Каскад с транзистором, включённым по схеме с общим коллектором, не усиливает напряжение, но усиливает ток (обычно в 10 … 100 раз). К данным подробностям еще вернемся в следующих статьях, так как не возможно охватить все и всех за один раз.
Рассмотрим схему включения транзистора с общей базой.
Название ОБ это уже нам теперь говорит о многом – значит по включению транзистора общая база относительно входа и выхода транзистора.
В данной схеме входной сигнал подают между базой и эмиттером – чем нам служит батарея с номиналом 1.5 в, ток проходя свой цикл от плюса через эмиттер транзистора по его базе, тем самым открывает транзистор для прохода напряжения с коллектора на нагрузку Rн. Входное сопротивление каскада невелико и обычно лежит в пределах от единиц до сотни ом, что относят к недостатку описываемого включения транзистора. Кроме того, для функционирования каскада с транзистором, включённым по схеме с общей базой, необходимо два отдельных источника питания, а коэффициент усиления каскада по току меньше единицы. Коэффициент усиления каскада по напряжению часто достигает от десятков до нескольких сотен раз.
Вот рассмотрели три схемы включения транзистора, для расширения познаний могу добавить следующее:
Чем выше частота сигнала, поступающего на вход транзисторного каскада, тем меньше коэффициент усиления по току.
Коллекторный переход транзистора обладает высоким сопротивлением. Повышение частоты приводит к снижению реактивной ёмкости коллекторного перехода, что приводит к его существенному шунтированию и ухудшению усилительных свойств каскада.
Схема включения транзисторов с общим эмиттером. Как работают транзисторы? Входное сопротивление схемы с общим эмиттером
Необходимые пояснения даны, переходим к сути.
Транзисторы. Определение и история
Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)
Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.
Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.
Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.
В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.
Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.
И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.
Биполярный транзистор. Принцип работы. Основные характеристики
Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.
Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.
Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой — слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».
Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.
Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.
Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.
Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.
Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.
Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.
Третий параметр биполярного транзистора — коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.
Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .
Также параметрами биполярного транзистора являются:
- обратный ток коллектор-эмиттер
- время включения
- обратный ток колектора
- максимально допустимый ток
Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.
Режимы работы биполярного транзистора
Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.- Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
- Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
- Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
- Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.
Схемы включения биполярных транзисторов
Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.
Схема включения с общим эмиттером
Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.
Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.
Схема включения с общей базой
Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.
В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.
Схема включения с общим коллектором
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.
Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала
Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.
В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.
Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).
Два слова о каскадах
Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.
Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).
Другие области применения биполярных транзисторов
Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.Маркировка
Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173
Теги: Добавить метки
Схема включения биполярного транзистора с общим эмиттером приведена на рисунке 5.15:
Характеристики транзистора в этом режиме будут отличаться от характеристик в режиме с общей базой. В транзисторе, включенном по схеме с общим эмиттером, имеет место усиление не только по напряжению, но и по току. Входными параметрами для схемы с общим эмиттером будут ток базы I б, и напряжение на коллекторе U к, а выходными характеристиками будут ток коллектора I к и напряжение на эмиттере U э.
Ранее при анализе биполярного транзистора в схеме с общей базой была получена связь между током коллектора и током эмиттера в следующем виде:
В схеме с общим эмиттером (в соответствии с первым законом Кирхгофа) .
после перегруппирования сомножителей получаем: (5.30)
Рис. 5.15. Схема включения транзистора с общим эмиттером
Коэффициент α/(1-α) перед сомножителем I б показывает, как изменяется ток коллектора I к при единичном изменении тока базы I б. Он называется коэффициентом усиления по току биполярного транзистора в схеме с общим эмиттером. Обозначим этот коэффициент значком β.
Поскольку величина коэффициента передачи α близка к единице (α > 1). При значениях коэффициента передачи α = 0,98÷0,99 коэффициент усиления будет лежать в диапазоне β = 50÷100.
С учетом (5.31), а также I к0 * = I к0 /(1-α) выражение (5.30) можно переписать в виде:
(5.32)
где I к0 * = (1+β)I к0 — тепловой ток отдельно взятого p-n перехода, который много больше теплового тока коллектора I к0 , а величина r к определяется как r к * = r к /(1+β).
Продифференцировав уравнение (5.32) по току базы I б, получаем β = ΔI к /ΔI б. Отсюда следует, что коэффициент усиления β показывает, во сколько раз изменяется ток коллектора I к при изменении тока базы I б.
Для характеристики величины β как функции параметров биполярного транзистора вспомним, что коэффициент передачи эмиттерного тока определяется как α = γ·κ, где . Следовательно, . Для величины β было получено значение: β = α/(1-α). Поскольку W/L
(5.33)
На рисунке 5.16а приведены вольт-амперные характеристики биполярного транзистора, включенного по схеме с общим эмиттером с током базы, как параметром кривых. Сравнивая эти характеристики с аналогичными характеристиками для биполярного транзистора в схеме с общей базой, можно видеть, что они качественно подобны.
Проанализируем, почему малые изменения тока базы I б вызывают значительные изменения коллекторного тока I к. Значение коэффициента β, существенно большее единицы, означает, что коэффициент передачи α близок к единице. В этом случае коллекторный ток близок к эмиттерному току, а ток базы (по физической природе рекомбинационный) существенно меньше и коллекторного и эмиттерного тока. При значении коэффициента α = 0,99 из 100 дырок, инжектированных через эмиттерный переход, 99 экстрагируются через коллекторный переход, и лишь одна прорекомбинирует с электронами в базе и даст вклад в базовый ток.
Рис. 5.16. Вольт-амперные характеристики биполярного транзистора КТ215В, включенного по схеме с общим эмиттером :а) входные характеристики; б) выходные характеристики
Увеличение базового тока в два раза (должны прорекомбинировать две дырки) вызовет в два раза большую инжекцию через эмиттерный переход (должно инжектироваться 200 дырок) и соответственно экстракцию через коллекторный (экстрагируется 198 дырок). Таким образом, малое изменение базового тока, например, с 5 до 10 мкА, вызывает большие изменения коллекторного тока, соответственно с 500 мкА до 1000 мкА.
Приветствую вас дорогие друзья! Сегодня речь пойдет о биполярных транзисторах и информация будет полезна прежде всего новичкам. Так что, если вам интересно что такое транзистор, его принцип работы и вообще с чем его едят, то берем стул по удобнее и подходим поближе.
Продолжим, и у нас тут есть содержание, будет удобнее ориентироваться в статье 🙂
Виды транзисторов
Транзисторы бывают в основном двух видов: биполярные транзисторы и полевые транзисторы. Конечно можно было рассмотреть все виды транзисторов в одной статье, но мне не хочется варить кашу у вас в голове. Поэтому в этой статье мы рассмотрим исключительно биполярные транзисторы а о полевых транзисторах я расскажу в одной из следующих статей. Не будем все мешать в одну кучу а уделим внимание каждому, индивидуально.
Биполярный транзистор
Биполярный транзистор это потомок ламповых триодов, тех что стояли в телевизорах 20 -го века. Триоды ушли в небытие и уступили дорогу более функциональным собратьям — транзисторам, а точнее биполярным транзисторам.
Триоды за редким исключением применяют в аппаратуре для меломанов.
Биполярные транзисторы выглядеть могут так.
Как вы можете видеть биполярные транзисторы имеют три вывода и конструктивно они могут выглядеть совершенно по разному. Но на электрических схемах они выглядят простенько и всегда одинаково. И все это графическое великолепие, выглядит как-то так.
Это изображение транзисторов еще называют УГО (Условное графическое обозначение).
Причем биполярные транзисторы могут иметь различный тип проводимости. Есть транзисторы NPN типа и PNP типа.
Отличие n-p-n транзистора от p-n-p транзистора состоит лишь в том что является «переносчиком» электрического заряда (электроны или «дырки»). Т.е. для p-n-p транзистора электроны перемещаются от эмиттера к коллектору и управляются базой. Для n-p-n транзистора электроны идут уже от коллектора к эмиттеру и управляются базой. В итоге приходим к тому, что для того чтобы в схеме заменить транзистор одного типа проводимости на другой достаточно изменить полярность приложенного напряжения. Или тупо поменять полярность источника питания.
У биполярных транзисторов есть три вывода: коллектор, эмиттер и база. Думаю, что по УГО будет сложно запутаться, а вот в реальном транзисторе запутаться проще простого.
Обычно где какой вывод определяют по справочнику, но можно просто . Выводы транзистора звонятся как два диода, соединенные в общей точке (в области базы транзистора).
Слева изображена картинка для транзистора p-n-p типа, при прозвонке создается ощущение (посредством показаний мультиметра), что перед вами два диода которые соединены в одной точке своими катодами. Для транзистора n-p-n типа диоды в точке базы соединены своими анодами. Думаю после экспериментов с мультиметром будет более понятно.
Принцип работы биполярного транзистора
А сейчас мы попробуем разобраться как работает транзистор. Я не буду вдаваться в подробности внутреннего устройства транзисторов так как эта информация только запутывает. Лучше взгляните на этот рисунок.
Это изображение лучше всего объясняет принцип работы транзистора. На этом изображении человек посредством реостата управляет током коллектора. Он смотрит на ток базы, если ток базы растет то человек так же увеличивает ток коллектора с учетом коэффициента усиления транзистора h31Э. Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.
Эта аналогия не имеет ничего общего с реальной работой транзистора, но она облегчает понимание принципов его работы.
Для транзисторов можно отметить правила, которые призваны помочь облегчить понимание. (Эти правила взяты из книги ).
- Коллектор имеет более положительный потенциал, чем эмиттер
- Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды
- Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
- В том случае если правила 1-3 соблюдены то ток коллектора Iк прямо пропорционален току базы Iб. Такое соотношение можно записать в виде формулы.
Из этой формулы можно выразить основное свойство транзистора — небольшой ток базы управляет большим током коллектора.
Коэффициент усиления по току.
Его также обозначают как
Исходы из выше сказанного транзистор может работать в четырех режимах:
- Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. В результате ток базы отсутствует и следовательно ток коллектора тоже будет отсутствовать.
- Активный режим транзистора — это нормальный режим работы транзистора. В этом режиме напряжение база-эмиттер достаточное для того, чтобы переход база-эмиттер открылся. Ток базы достаточен и ток коллектора тоже имеется. Ток коллектора равняется току базы умноженному на коэффициент усиления.
- Режим насыщения транзистора — в этот режим транзистор переходит тогда, когда ток базы становится настолько большим, что мощности источника питания просто не хватает для дальнейшего увеличения тока коллектора. В этом режиме ток коллектора не может увеличиваться вслед за увеличением тока базы.
- Инверсный режим транзистора — этот режим используется крайне редко. В этом режиме коллектор и эмиттер транзистора меняют местами. В результате таких манипуляций коэффициент усиления транзистора очень сильно страдает. Транзистор изначально проектировался не для того, чтобы он работал в таком особенном режиме.
Для понимания того как работает транзистор нужно рассматривать конкретные схемные примеры, поэтому давайте рассмотрим некоторые из них.
Транзистор в ключевом режиме
Транзистор в ключевом режиме это один из случаев транзисторных схем с общим эмиттером. Схема транзистора в ключевом режиме применяется очень часто. К этой транзисторной схеме прибегают к примеру когда нужно управлять мощной нагрузкой посредством микроконтроллера. Ножка контроллера не способна тянуть мощную нагрузку, а транзистор может. Получается контроллер управляет транзистором, а транзистор мощной нагрузкой. Ну а обо всем по порядку.
Основная суть этого режима заключается в том, что ток базы управляет током коллектора. Причем ток коллектора гораздо больше тока базы. Здесь невооруженным взглядом видно, что происходит усиление сигнала по току. Это усиление осуществляется за счет энергии источника питания.
На рисунке изображена схема работы транзистора в ключевом режиме.
Для транзисторных схем напряжения не играют большой роли, важны лишь токи. Поэтому, если отношение тока коллектора к току базы меньше коэффициента усиления транзистора то все окей.
В этом случае даже если к базе у нас приложено напряжение в 5 вольт а в цепи коллектора 500 вольт, то ничего страшного не произойдет, транзистор будет покорно переключать высоковольтную нагрузку.
Главное чтобы эти напряжения не превышали предельные значения для конкретного транзистора (задается в характеристиках транзистора).
На сколько мы знаем, что значение тока это характеристика нагрузки.
Мы не знаем сопротивления лампочки, но мы знаем рабочий ток лампочки 100 мА. Чтобы транзистор открылся и обеспечил протекание такого тока, нужно подобрать соответствующий ток базы. Ток базы мы можем корректировать меняя номинал базового резистора.
Так как минимальное значение коэффициента усиления транзистора равно 10, то для открытия транзистора ток базы должен стать 10 мА.
Ток который нам нужен известен. Напряжение на базовом резисторе будет Такое значение напряжения на резисторе получилось из-зи того, что на переходе база-эмиттер высаживается 0,6В-0,7В и это надо не забывать учитывать.
В результате мы вполне можем найти сопротивление резистора
Осталось выбрать из ряда резисторов конкретное значение и дело в шляпе.
Теперь вы наверное думаете, что транзисторный ключ будет работать так как нужно? Что когда базовый резистор подключается к +5 В лампочка загорается, когда отключается -лампочка гаснет? Ответ может быть да а может и нет.
Все дело в том, что здесь есть небольшой нюанс.
Лампочка в том случае погаснет, когда потенциал резистора будет равен потенциалу земли. Если же резистор просто отключен от источника напряжения, то здесь не все так однозначно. Напряжение на базовом резисторе может возникнуть чудесным образом в результате наводок или еще какой потусторонней нечисти 🙂
Чтобы такого эффекта не происходило делают следующее. Между базой и эмиттером подключают еще один резистор Rбэ. Этот резистор выбирают номиналом как минимум в 10 раз больше базового резистора Rб (В нашем случае мы взяли резистор 4,3кОм).
Когда база подключена к какому-либо напряжению, то транзистор работает как надо, резистор Rбэ ему не мешает. На этот резистор расходуется лишь малая часть базового тока.
В случае, когда напряжение к базе не приложено, происходит подтяжка базы к потенциалу земли, что избавляет нас от всяческих наводок.
Вот в принципе мы разобрались с работой транзистора в ключевом режиме, причем как вы могли убедиться ключевой режим работы это своего рода усиление сигнала по напряжению. Ведь мы с помощью малого напряжения в 5В управляли напряжением в 12 В.
Эмиттерный повторитель
Эмиттерный повторитель является частным случаем транзисторных схем с общим коллектором.
Отличительной чертой схемы с общим коллектором от схемы с общим эмиттером (вариант с транзисторным ключем) является то, что эта схема не усиливает сигнал по напряжению. Что вошло через базу, то и вышло через эмиттер, с тем же самым напряжением.
Действительно допустим приложили к базе мы 10 вольт, при этом мы знаем что на переходе база-эмиттер высаживается где-то 0,6-0,7В. Выходит что на выходе (на эмиттере, на нагрузке Rн) будет напряжение базы минус 0,6В.
Получилось 9,4В, одним словом почти сколько вошло столько и вышло. Убедились, что по напряжению эта схема нам сигнал не увеличит.
«В чем же смысл тогда таком включении транзистора?»- спросите вы. А вот оказывается эта схема обладает другим очень важным свойством. Схема включения транзистора с общим коллектором усиливает сигнал по мощности. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока ! Ток в нагрузке складывается из тока базы плюс ток коллектора. Но если сравнивать ток базы и ток коллектора то ток базы очень мал по сравнению с током коллектора. Получается ток нагрузки равен току коллектора. И в результате получилась вот такая формула.
Теперь я думаю понятно в чем суть схемы эмиттерного повторителя, только это еще не все.
Эмиттерный повторитель обладает еще одним очень ценным качеством — высоким входным сопротивлением. Это означает, что эта транзисторная схема почти не потребляет ток входного сигнала и не создает нагрузки для схемы -источника сигнала.
Для понимания принципа работы транзистора этих двух транзисторных схем будет вполне достаточно. А если вы еще поэкспериментируете с паяльником в руках то прозрение просто не заставит себя ждать, ведь теория теорией а практика и личный опыт ценнее в сотни раз!
Где транзисторы купить?
Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине . Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.
Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, и так сказать вдохнуть в старый радиокомпонет новую жизнь.
Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.
Также обязательно подпишитесь на новые статьи, потому что дальше вас ждет много интересного и полезного.
Желаю вам удачи, успехов и солнечного настроения!
С н/п Владимир Васильев
P.S. Друзья, обязательно подписывайтесь на обновления! Подписавшись вы будете получать новые материалы себе прямо на почту! И кстати каждый подписавшийся получит полезный подарок!
Схема с ОЭ обладает наибольшим коэффициентом усиления по мощности, поэтому остается наиболее распространенным решением для высокочастотных усилителей, систем GPS, GSM, WiFi. В настоящее время она обычно применяется в виде готовых интегральных микросхем (MAXIM, VISHAY, RF Micro Devices), но, не зная основы ее работы, практически невозможно получить параметры, приведенные в описании микросхемы.Именно поэтому при приеме на работу и поиске сотрудников основным требованием является знание принципов работы усилителей с ОЭ.
Усилитель, каким бы он не был, (усилитель аудио, ламповый усилитель или усилитель радиочастоты) представляет собой четырехполюсник, у которого два вывода являются входом и два вывода являются выходом. Структурная схема включения усилителя приведена на рисунке 1.
Рисунок 1 Структурная схема включения усилителя
Основной усилительный элемент — транзистор имеет всего три вывода, поэтому один из выводов транзистора приходится использовать одновременно для подключения источника сигнала (как входной вывод) и подключения нагрузки (как выходной вывод). Схема с общим эмиттером — это усилитель, где эмиттер транзистора используется как для подключения входного сигнала, так и для подключения нагрузки. Функциональная схема усилителя с транзистором, включенным по схеме с общим эмиттером приведена на рисунке 2.
Рисунок 2 Функциональная схема включения транзистора с общим эмиттером
На данной схеме пунктиром показаны границы усилителя, изображенного на рисунке 1. На ней не показаны цепи питания транзистора. В настоящее время схема с общим эмиттером практически не применяется в звуковых усилителях, однако в схемах усилителей телевизионного сигнала, усилителях GSM или других высокочастотных усилителях она находит широкое применение. Для питания транзистора в схеме с общим эмиттером можно использовать два источника питания, однако для этого потребуется два стабилизатора напряжения. В аппаратуре с батарейным питанием это может быть проблематично, поэтому обычно применяется один источник питания. Для питания усилителя с общим эмиттером может подойти любая из рассмотренных нами схем:
- схема с эмиттерной стабилизацией.
Рассморим пример схемы усилителя с общим эмиттером и эмиттерной стабилизацией режима работы транзистора. На рисунке 3 приведена каскада на биполярном npn-транзисторе, предназначенная для усиления звуковых частот.
Рисунок 3 Принципиальная схема усилительного каскада с общим эмиттером
Расчет элементов данной схемы по постоянному току можно посмотреть в статье . Сейчас нас будут интересовать параметры , собранного по схеме с общим эмиттером. Его наиболее важными характеристиками является входное и выходное сопротивление и коэффициент усиления по мощности. В основном эти характеристики определяются параметрами транзистора.
Входное сопротивление схемы с общим эмиттером
В схеме с общим эмиттером входное сопротивление транзистора R вхОЭ можно определить по его входной характеристике. Эта характеристика совпадает с вольтамперной характеристикой p-n перехода. Пример входной характеристики кремниевого транзистора (зависимость напряжения U б от тока базы I б) приведен на рисунке 4.
Рисунок 4 Входная характеристика кремниевого транзистора
Как видно из этого рисунка, входное сопротивление транзистора R вхОЭ зависит от тока базы I б0 и определяется по следующей формуле:
(1)Как определить ΔU б0 и ΔI б0 в окрестностях рабочей точки транзистора в схеме с общим эмиттером показано на рисунке 5.
Рисунок 5 Определение входного сопротивления схемы с общим эмиттером по входной характеристике кремниевого транзистора
Определение сопротивления по формуле (1) является наиболее точным способом определения входного сопротивления. Однако при расчете усилителя мы не всегда имеем под рукой транзисторы, которые будем использовать, поэтому было бы неплохо иметь возможность рассчитать входное сопротивление аналитическим способом. Вольтамперная характеристика p-n перехода хорошо аппроксимируется экспоненциальной функцией.
(2)где I б — ток базы в рабочей точке;
U бэ — напряжение базы в рабочей точке;
I s — обратный ток перехода эмиттер-база;
—
температурный потенциал;
k — постоянная Больцмана;
q — заряд электрона;
T — температура, выраженная в градусах Кельвина.
В этом выражении коэффициентом, нормирующим экспоненту, является ток I s , поэтому чем точнее он будет определен, тем лучше будет совпадение реальной и аппроксимированной входных характеристик транзистора. Если в выражении (2) пренебречь единицей, то напряжение на базе транзистора можно вычислить по следующей формуле:
(3)Из выражения (1) видно, что входное сопротивление является производной напряжения на базе транзистора по току. Продифференцируем выражение (3), тогда входное сопротивление схемы с общим эмиттером можно определить по следующей формуле:
(4)Однако график реальной входной характеристики транзистора, включенного по схеме с общим эмиттером, отличается от экспоненциальной функции. Это связано с тем, что омическое сопротивление полупроводника в базе транзистора не равно нулю, поэтому при больших базовых токах транзистора в схеме с общим эмиттером ее входное сопротивление будет стремиться к омическому сопротивлению базы r бб» .
Входной ток схемы с общим эмиттером протекает не только через входное сопротивление транзистора, но и по всем резисторам цепей формирования напряжения на базе транзистора. Поэтому входное сопротивление схемы с общим эмиттером определяется как параллельное соединение всех этих сопротивлений. Пути протекания входного тока по схеме с общим эмиттером показаны на рисунке 6.
Рисунок 6 Протекание тока по входным цепям схемы с общим эмиттером
Значительно проще вести анализ данной схемы по эквивалентной схеме входной цепи, где приведены только те цепи, по которым протекает входной ток от источника сигнала. Эквивалентная схема входной цепи схемы с общим эмиттером приведена на рисунке 7.
Рисунок 7 Эквивалентная схема входной цепи схемы с общим эмиттером
Данная схема построена для средних частот с применением эквивалентной схемы транзистора. На средних частотах входная емкость транзистора не оказывает влияния, поэтому мы ее не отображаем на эквивалентной схеме. Сопротивление конденсатора C3 на средних частотах близко к нулю, поэтому на схеме нет элементов R4C3. Элементы R вых и h 21 ×i вх не влияют на входную цепь и изображены на схеме для отображения усилительных свойств транзистора.
И, наконец, мы можем записать формулу входного сопротивления схемы с общим эмиттером:
(5)После изготовления усилителя, рассчитанного по приведенным выше методикам необходимо измерить входное сопротивление схемы с общим эмиттером. Для измерения входного сопротивления используют схему измерения входного сопротивления усилителя, изображенную на рисунке 8. В данной схеме для измерения входного сопротивления используются измерительный генератор переменного напряжения и два высокочастотных вольтметра переменного тока (можно воспользоваться одним и сделать два измерения).
Рисунок 8 Схема измерения входного сопротивления усилительного каскада
В случае, если сопротивление R и будет равно входному сопротивлению усилителя, напряжение, которое покажет вольтметр переменного тока V2, будет в два раза меньше напряжения V1. В случае, если нет возможности изменять сопротивление R и при измерении входного сопротивления, входное сопротивление усилителя можно вычислить по следующей формуле:
(6)Выходное сопротивление схемы с общим эмиттером
Выходное сопротивление транзистора зависит от конструктивных особенностей транзистора, толщины его базы, объемного сопротивления коллектора. Выходное сопротивление транзистора, включенного по схеме с общим эмиттером, можно определить по выходным характеристикам транзистора. Пример выходных характеристик транзистора приведен на рисунке 9.
Рисунок 9 Выходные характеристики кремниевого транзистора
К сожалению, в характеристиках современных транзисторов выходные характеристики обычно не приводятся. Связано это с тем, что их выходное сопротивление достаточно велико и выходное сопротивление транзисторного каскада с общим эмиттером определяется сопротивлением нагрузки. В схеме, приведенной на рисунке 6, это сопротивление резистора R3.
Дата последнего обновления файла 31.05.2018
Литература:
Вместе со статьей «Схема с общим эмиттером (каскад с общим эмиттером)» читают:
http://сайт/Sxemoteh/ShTrzKask/KollStab/
http://сайт/Sxemoteh/ShTrzKask/EmitStab/
Схема включения биполярного транзистора с общим эмиттером приведена на рис. 6.13:
В транзисторе, включенном по схеме с общим эмиттером, имеет место усиление не только по напряжению, но и по току. Входными параметрами для схемы с общим эмиттером будут ток базы I Б , и напряжение на базе относительно эмиттера U БЭ, а выходными характеристиками будут ток коллектора I К и напряжение на коллекторе U КЭ . Для любых напряжений:
Отличительной особенностью режима работы с ОЭ является одинаковая полярность напряжения смещения на входе (базе) и выходе (коллекторе): отрицательный потенциал в случае pnp -транзистора и положительный в случае npn -транзистора. При этом переход база-эмиттер смещается в прямом направлении, а переход база-коллектор – в обратном.
Ранее при анализе
биполярного транзистора в схеме с общей
базой была получена связь между током
коллектора и током эмиттера в следующем
виде:
.
В схеме с общим эмиттером дляpnp -транзистора
(в соответствии с первым законом Кирхгофа)
(6.1):
,
отсюда получим:
Коэффициент α/(1-α) называется коэффициентом усиления по току биполярного транзистора в схеме с общим эмиттером . Обозначим этот коэффициент знаком β , итак:
. |
Коэффициент передачи тока для транзистора, включенного по схеме с общим эмиттером β показывает, во сколько раз изменяется ток коллектора I К при изменении тока базы I Б. Поскольку величина коэффициента передачи α близка к единице (α β будет существенно больше единицы (β >>1). При значениях коэффициента передачи α =0,98÷0,99 коэффициент усиления тока базы будет лежать в диапазоне β =50÷100.
6.2.1 Статические вольт-амперные характеристики транзистора, включенные по схеме с общим эмиттером
Рассмотрим ВАХ pnp -транзистора в режиме ОЭ (рис. 6.13, 6.14).
При U КЭ =0
.
Сувеличением
напряжения U БЭ концентрация
на переходе ЭБ растет
(рис. 6.15,а),
градиент концентрации инжектированных
дырок растет, диффузионный ток дырок,
как и в прямо смещенном pn -переходе,
растет экспоненциально (т. А) и отличается
от тока эмиттера только масштабом
(6.36).
При обратных напряжениях на коллекторе и фиксированном напряжении на ЭП |U БЭ | (рис. 6.15,б) постоянной будет и концентрация дырок в базе вблизи эмиттера. Увеличение напряжения U КЭ будет сопровождаться расширением ОПЗ коллекторного перехода и уменьшением ширины базы (эффект Эрли) и, следовательно, уменьшением общего количества дырок, находящихся в базе.
При этом градиент концентрации дырок в базе будут расти, что приводит к дальнейшему уменьшению их концентрации. Поэтому число рекомбинаций электронов и дырок в базе в единицу времени уменьшается (возрастает коэффициент переноса ). Так как электроны для рекомбинации приходят через базовый вывод, ток базы уменьшается и входные ВАХ смещаются вниз .
При U БЭ =0 и отрицательном напряжении на коллекторе (U кб 0) ток через эмиттерный переход равен нулю, в базе транзистора концентрация дырок меньше равновесной, так как у КП эта концентрация равна нулю, а у ЭП ее величина определяется равновесным значением. Через коллекторный переход протекает ток экстрагированных из коллектора дырок I КЭ 0 .
В базе, как и в pn -переходе при обратном смещении, процесс тепловой генерации будет преобладать над процессом рекомбинации. Генерированные электроны уходят из базы через базовый вывод, что означает наличие электрического тока, направленного в базу транзистора (т. В). Это – режим отсечки , он характеризуется сменой направления тока базы.
Выходные ВАХ.
В активном режиме
(|U КЭ |> |U БЭ |>0 )
поток инжектированных эмиттером дырок
p экстрагируется коллекторным переходом
также, как и в режиме ОБ, с коэффициентом
.
Часть дырок(1-α) p рекомбинирует в базе в электронами,
поступающими из омического контакта
базы.
При увеличении тока базы отрицательный заряд электронов уменьшает потенциальный барьер эмиттерного перехода, вызывая дополнительную инжекцию дырок в базе.
Проанализируем, почему малые изменения тока базы I Б вызывают значительные изменения коллекторного тока I К. Значение коэффициента β , существенно большее единицы, означает, что коэффициент передачи α близок к единице. В этом случае коллекторный ток близок к эмиттерному току, а ток базы (по физической природе рекомбинационный) существенно меньше и коллекторного и эмиттерного тока. При значении коэффициента α = 0,99 из 100 дырок, инжектированных через эмиттерный переход, 99 экстрагируются через коллекторный переход, и лишь одна прорекомбинирует с электронами в базе и даст вклад в базовый ток.
Увеличение базового тока в два раза (должны прорекомбинировать две дырки) вызовет в два раза большую инжекцию через эмиттерный переход (должно инжектироваться 200 дырок) и соответственно экстракцию через коллекторный (экстрагируется 198 дырок). Таким образом, малое изменение базового тока, например, с 5 до 10 мкА, вызывает большие изменения коллекторного тока, соответственно с 500 мкА до 1000 мкА. Ток базы стократно вызывает увеличение тока коллектора.
По аналогии с (6.34) можно записать:
Учитывая
(6.1):
,
получим:
Учитывая, что
,
а | |
где
— сквозной тепловой ток отдельно взятого
коллекторногоpn -перехода
в режиме оторванной базы (при
,
т. С, режим отсечки ).
За счет прямого смещения базового
перехода (рис. 6.16) ток
много больше теплового тока коллектора I к 0 .
Рис. 6.16 U БЭ =const,U КЭ – переменное |
В режиме насыщения база должна быть обогащена неосновными носителями. Критерием этого режима является равновесная концентрация носителей на КП (U КБ =0 ). В силу уравнения U КЭ = U КБ + U БЭ, равенство напряжения на коллекторном переходе нулю может иметь место при небольших отрицательных напряжениях между базой и эмиттером. При U КЭ 0 иU БЭ U КЭ U БЭ ) U КБ меняет свой знак, сопротивление коллекторного перехода резко уменьшается, коллектор начинает инжектировать дырки в базу. Поток дырок из коллектора компенсирует поток дырок из эмиттера. Ток коллектора меняет свой знак (на выходных ВАХ эта область обычно не показывается).
При больших напряжениях на коллекторе возможен пробой коллекторного перехода за счет лавинного умножения носителей в ОПЗ (т. D). Напряжение пробоя зависит от степени легирования областей транзистора. В транзисторах с очень тонкой базой возможно расширение ОПЗ на всю базовую область (происходит прокол базы).
Сравнивая выходные ВАХ транзистора, включенного по схеме с ОЭ и ОБ (рис. 6.17), можно заметить две наиболее существенные особенности: во-первых, характеристики в схеме с ОЭ имеют больший наклон, свидетельствующий об уменьшении выходного сопротивления транзистора и, во-вторых, переход в режим насыщения наблюдается при отрицательных напряжениях на коллекторе.
Рост тока коллектора
с увеличением U КЭ определяется
уменьшением ширины базы. Коэффициенты
переноса æ и передачи
тока эмиттера α растут, но коэффициент передачи тока
базы в схеме с ОЭ
растет
быстрееα .
Поэтому при постоянном токе базы ток
коллектора увеличивается сильнее, чем
в схеме с ОБ.
Рис. 6.23 Выходные характеристики pnp -транзистора а – в схеме с ОБ, б – в схеме с ОЭ |
6.3 Включение транзистора по схеме с общим коллектором
Если входная и выходная цепи имеют общим электродом коллектор (ОК) и выходным током является ток эмиттера, а входным ток базы, то для коэффициента передачи тока справедливо:
Вв таком включении коэффициент передачи тока несколько выше, чем во включении ОЭ, а коэффициент усиления по напряжению незначительно меньше единицы, так как разность потенциалов между базой и эмиттером практически не зависит от тока базы. Потенциал эмиттера практически повторяет потенциал базы, поэтому каскад, построенный на основе транзистора с ОК, называют эмиттерным повторителем . Однако этот тип включения используется сравнительно редко.
Сопоставляя полученные результаты, можно сделать выводы :
Схема с ОЭ обладает высоким усилением как по напряжению, так и по току, У нее самое большое усиление по мощности. Отметим, что схема изменяет фазу выходного напряжения на 180. Это самая распространенная усилительная схема.
Схема с ОБ усиливает напряжение (примерно, как и схема с ОЭ), но не усиливает ток. Фаза выходного напряжения по отношению к входному не меняется. Схема находит применение в усилителях высоких и сверхвысоких частот.
Схема с ОК (эмиттерный повторитель) не усиливает напряжение, но усиливает ток. Основное применение данной схемы — согласование сопротивлений источника сигнала и низкоомной нагрузки.
Схема с общим эмиттером
В схеме с общим эмиттером (рис.3.4,б) общим электродом является эмиттер. Входным током является ток базы iБ , входным напряжением – напряжение uБЭ , выходным током – ток коллектора iК , выходным напряжением – напряжение uКЭ . Входные ВАХ определяются при постоянном выходном напряжении:
,
выходные ВАХ при постоянном входном базовом токе:
.
Пример входных и выходных ВАХ для транзистора ОЭ приведен на рис.3.7.
Рис. 3.7
Они естественно отличаются от входных и выходных ВАХ транзистора ОБ. На входных ВАХ это отличие проявляется в том, что при увеличении выходного напряжения из-за эффекта модуляции базы характеристики сдвигаются вправо. Выходные ВАХ расположены в одном квадранте, в активном режиме идут с бóльшим наклоном, что означает меньшую величину дифференциального выходного сопротивления транзистора ОЭ по сравнению с ОБ.
Учитывая, что
и
,
имеем
.
Величина называется статическим коэффициентом передачи базового тока. Для малых изменений переменных вводится динамический коэффициент передачи базового тока
.
Так как несколько меньше 1 (0.9…0,995), то величина коэффициента базового тока значительно больше 1 (9…200).
В транзисторе ОЭ выполняются в соотношения:
где rK*— выходное дифференциальное сопротивление, — обратный ток транзистора ОЭ.
Область отсечки (ток базы равен нулю) характеризуется током . Область насыщения ограничивается линией насыщения при небольших значениях выходного напряжения.
Для нормальной работы транзистора должны выполняться условия:
,
где правые части характеризуют максимально допустимые значения соответствующих переменных.
Схема включения ОЭ применяется наиболее часто, так как здесь имеет место усиление как по току, так и по напряжению. Поэтому в справочниках обычно задаются параметры именно для этого типа включения транзистора.
oe-oe-ob
Каскодный усилитель по схеме ОЭ-ОЭ-ОБ и его «производные».
Рис.1. Принципиальная электрическая схема каскодного усилителя по схеме ОЭ-ОЭ.
На рисунке 1 показана широко распространенная схема усилителя, выполненная на двух биполярных транзисторах по каскодной схеме, в которой оба транзистора включены по схеме с общим эмиттером (ОЭ-ОЭ). Входное сопротивление этой схемы такое же, как каскада на одиночном транзисторе по схеме включения с ОЭ (от несколько сотен Ом до нескольких кОм), выходное сопротивление – аналогично вышеназванному каскаду (несколько десятков кОм). Возможный коэффициент усиления по напряжению – 1000…3000. Главной отличительной чертой этого каскада является наличие отрицательной обратной связи по постоянному току из цепи эмиттера второго транзистора в цепь базы первого транзистора. В результате чего схема обладает высокой стабильностью режимов транзисторов. Это выражается в следующем: после прогрева радиодеталей или возникновения других дестабилизирующих факторов схема автоматически возвращается в режим первоначальной установки.
Рис.2. Принципиальная электрическая схема каскодного усилителя по схеме ОЭ-ОБ.
На рисунке 2 показана не менее распространенная каскодная схема усилителя, в которой первый транзистор включен по схеме с ОЭ, а второй с ОБ. Питание транзисторов последовательное. Входное сопротивление соответствует входному сопротивлению одиночного каскада, включенного по схеме с ОЭ (от нескольких сотен Ом до нескольких кОм), а выходное – несколько превышает выходное сопротивление каскада на одиночном транзисторе, включенном по схеме с ОБ (несколько десятков или сотен кОм). Главной отличительной особенностью данного каскада является малая внутренняя обратная связь (с выхода на вход), в результате чего усилитель может дать большое устойчивое усиление без нейтрализации (резонансный усилитель) или коррекции этой связи. Так два каскада на одиночных транзисторах (ОЭ) могут дать усиление по напряжению не выше 40 дБ, а вышеназванный каскад (ОЭ-ОБ) 60 дБ и более.
Рис.3. Принципиальная электрическая схема каскодного усилителя по схеме ОЭ-ОЭ-ОБ.
Если оба вышеназванные каскады объединить в один, то полученный каскад будет обладать полезными свойствами, имеющимися в обоих данных каскадах. То есть, он будет обладать высокой стабильностью режимов транзисторов и большим устойчивым усилением. Что и подтвердилось на практике. Такой каскад показан на рисунке 3. Первый и второй транзисторы включены по схеме с общим эмиттером (ОЭ), а третий с общей базой (ОБ). Входное сопротивление данного каскада такое же, как и каскадов показанных на рисунках 1 и 2 (от нескольких сотен Ом до нескольких кОм), а выходное — как на рисунке 2 (несколько десятков или сотен кОм). Коэффициент усиления по напряжению составляет один — два десятка тысяч. Частотный диапазон усилителя (с теми типами транзисторов и номиналами конденсаторов, что указаны на схеме) простирается от 100 кГц до 23 МГц (ниже и выше по частоте – плавный завал АЧХ). Кроме того, следует обратить внимание на то, что данный усилитель содержит меньшее количество радиодеталей, чем его прототипы вместе взятые. Это как раз тот случай, когда «два плюс два – не равно четырем»! Усилитель очень устойчив – возбудов не наблюдалось во всем рабочем диапазоне частот.
Рис.4. Принципиальная электрическая схема каскодного усилителя по схеме ОИ-ОЭ-ОБ.
На рисунке №4 показана схема каскодного усилителя, в которой первый транзистор (полевой) включен по схеме с общим истоком (ОИ), а два последующих биполярных транзистора с общим эмиттером (VT3 — ОЭ) и общей базой (VT2 — ОБ). Работа этой схемы аналогична схеме, показанной на рисунке №3 и, собственно, является логическим продолжением этой схемы. Но она имеет и некоторые преимущества перед предыдущей схемой, это — возможность регулировки усиления по второму затвору как в ручном режиме, так и с использованием АРУ. Кроме того, вход усилителя обладает высоким входным сопротивлением, а на его выходе применена обмотка связи, с помощью которой можно согласовать выход усилителя с последующим каскадом по сопротивлению. На второй затвор VT1 подается напряжение в пределах 0…+5 вольт. В коллекторную цепь транзистора включен параллельный колебательный контур L1, C4 (нагрузка), настроенный на частоту 500 кГц. Катушка L1 намотана на каркасе ПЧ транзисторного средневолнового приемника и содержит 75 витков провода ПЭЛ-0,16. Отвод от 20-го витка, считая снизу по схеме. Катушка L3 содержит 35 витков провода ПЭЛ-0,16. Намотки выполнены внавал. Сверху обмоток надето ферритовое кольцо (400НН). Резистор R7 служит для установки режима транзисторов, при котором достигается максимальный коэффициент усиления всего усилителя. По своим параметрам этот усилитель аналогичен предыдущему.
Рис.5. Принципиальная электрическая схема каскодного усилителя по схеме с ОИ-ОЭ-ОБ с дополнительными резисторами в базовых цепях.
На рисунке №5 показана схема аналогичная рисунку №4. Отличие состоит во введении в схему двух дополнительных резисторов R5, R6, которые позволяют установить индивидуально каждому биполярному транзистору нужный (наилучший, а не компромиссный) режим работы. Кроме того и сопротивление резисторов в стоке транзистора VT1 позволяет подобрать оптимальный режим и для этого каскада. В результате данный усилитель дает несколько больший коэффициент усиления и обладает лучшей линейностью, по сравнению с предыдущим. На выходе усилителя добавлен парафазный каскад, служащий для получения дух сигналов с одинаковой амплитудой и фазами, отличающимися на 180 градусов (к его выходам можно непосредственно подключать кольцевой диодный SSB-детектор).
Рис.6. Принципиальная электрическая схема каскодного усилителя по схеме ОИ-ОЭ-ОЭ.
На рисунке №6 показана схема каскодного усилителя, выполненного по схеме включения транзисторов ОИ-ОЭ-ОЭ. Обратная отрицательная связь по постоянному току осуществляется через резистор R11. С его помощью происходит и регулировка её глубины, а также установка режимов всех трех транзисторов, так как они гальванически связаны между собой. Вместо ручной регулировки усиления (по второму затвору VT1) может быть применена и АРУ, как показано на рисунке №5.
Рис.7. Принципиальная электрическая схема каскодного усилителя по схеме ОИ-ОБ-ОЭ.
На рисунке №7 показана схема каскодного усилителя, выполненного по схеме включения транзисторов ОИ-ОБ-ОЭ. Резистором R8 регулируется глубина отрицательной обратной связи по постоянному току и производится установка режимов сразу всех трех транзисторов. Подбором сопротивления R7 можно также дополнительно более точно установить режимы транзисторов. Вместо РРУ можно применить и АРУ, аналогично рассказанному выше (рис.6).
P.S. Схемы усилителей, приведённые в этой статье разработаны автором, однако, если эти схемы уже встречались где-либо в печатных изданиях (лично мне они не встречались, кроме прототипов!), и если их уже придумал кто-нибудь раньше меня, то заранее прошу прощения! Рубцов В.П. UN7BV.
26.02.2006г. Рубцов В.П. UN7BV, Казахстан, Астана.
73!
Новая схема отказоустойчивой маршрутизации на основе поворотной модели для сетей на кристалле
БЛАГОДАРНОСТЬ
Это исследование было частично поддержано NSF в рамках гранта CNS-
0905399.
ССЫЛКИ
[1] SS Mukherjee, J Эмер, С. К. Рейнхардт, «Проблема с программной ошибкой
: архитектурная перспектива», Proc. HPCA, 2005.
[2] Э. Норман, «Одно событие на уровне земли», IEEE
Trans. по ядерной науке, 43 (6): 2742–2750, декабрь 1996 г.
[3] К. Константинеску, «Тенденции и проблемы надежности схем СБИС
», IEEE Micro, 23 (4): 14-19, июль-август 2003 г.
[4] С. Нассиф, «Моделирование и анализ производства
вариаций », Тр. CICC, май 2001 г.
[5] К. Константинеску, «Периодические неисправности в схемах СБИС»,
Proc. SELSE, 2007.
[6] С. Пасрича и Н. Датт, On-Chip Communication
Architectures, Morgan Kauffman, апрель 2008 г.
[7] Л.Бенини и Г.Д. Микели, «Сети на микросхемах: новая парадигма SoC
», IEEE Computer, стр. 70-78, январь 2002 г.
[8] У. Дж. Далли, Б. Тоулз, «Маршрутизация пакетов, а не проводов: на кристалле
межсетевых соединений », Тр. DAC, pp. 684-689, 2001.
[9] DC Pham, et al., «Обзор архитектуры, конструкции схемы
и физической реализации процессора ячейки
первого поколения», IEEE J. Твердотельные схемы, 41 (1): 179-196, 2006
[10] Intel Teraflops, http: // download.intel.com/research/platform/
terascale / terascale_overview_paper.pdf.
[11] Picochip PC102. http://www.picochip.com/highlights/pc102.
[12] С. Белл и др., «Процессор TILE64: 64-ядерный SoC с межсоединением mesh
», Proc. ISSCC, 2008.
[13] Д. Бертоцци, Л. Бенини, Г. Де Микели, «Схемы контроля ошибок
для каналов связи на кристалле: компромисс между энергией и надежностью
», IEEE Trans. CAD, 24 (6): 818-831, 2005.
[14] S.Мурали и др., «Анализ схем восстановления после ошибок для сетей
на микросхемах», IEEE Design & Test of Computers,
22 (5): 434-442, 2005.
[15] С. Лин и DJ Костелло , Кодирование с контролем ошибок: основы
и приложения, Энглвуд Клиффс, Нью-Джерси: Прентис-Холл, 1983.
[16] Д. Бертоцци, Л. Бенини, Г. Де Микели, «Ошибка низкого энергопотребления
, устойчивое кодирование для -чиповые шины данных », Тр. ДАТА, стр.
102-109, 2002.
[17] М.Лайоло, «Охрана автобусов: эффективное решение для онлайн-обнаружения и исправления неисправностей
шин системы на кристалле», IEEE Trans. VLSI, 9 (6): 974-982, декабрь 2001 г.
[18] WJ Dally, B. Towles, Principles and Practices of
Interconnection Networks, Morgan Kauffman, 2004.
[19] M. Dehyadgari, M Nickray, A. Afzali-kusha, Z. Navabi,
«Оценка псевдоадаптивной XY-маршрутизации с использованием объектно-ориентированной модели
для NoC», Proc.MICRO, стр. 13–15, 2005.
[20] Х. Чжу, П. П. Панде, К. Греку, «Оценка производительности
алгоритмов адаптивной маршрутизации для достижения отказоустойчивости в фабриках
NoC», Proc. ASAP 2007.
[21] Т. Думитрас, Р. Маркулеску, «Стохастическая связь на кристалле
», Proc. DATE, 2003.
[22] М. Пирретти, Г. М. Линк, Р. Р. Брукс, Н. Виджайкришнан, М.
Кандемир, М. Дж. Ирвин, «Отказоустойчивые алгоритмы для межсоединений сеть на кристалле
», Proc.ISVLSI, 2004.
[23] Ю. Б. Ким, Ю.-Б. Ким, «Отказоустойчивая маршрутизация от источника для сети на кристалле
», Proc. DFT, 2007.
[24] Т. Шонвальд, Дж. Циммерманн, О. Брингманн и У.
Розенштиль, «Полностью адаптивный отказоустойчивый алгоритм маршрутизации для архитектур
сеть-на-кристалле», Proc. DSD, pp. 527–534,
,, август 2007 г.
[25] Т.Шонвальд, О. Брингманн, В. Розенштиль, «Региональный алгоритм маршрутизации
для архитектур« сеть на кристалле »», Proc.
Norchip 2007.
[26] К. Дж. Гласс, Л. М. Ни, «Модель поворота для адаптивной маршрутизации»,
Proc. ISCA, pp. 278–287, 1992.
[27] К. Дж. Гласс и Л. М. Ни, «Отказоустойчивая маршрутизация червоточин в сетках
без виртуальных каналов», IEEE Trans. Parallel and
Distributed Systems, 7 (6): 620-635, 1996.
[28] К. М. Каннингем, Д. Р. Аврески, «Отказоустойчивая адаптивная маршрутизация
для двумерных сетей», Proc. HPCA, 1995.
[29] Г.-М. Чиу, «Модель четно-нечетного поворота для адаптивной маршрутизации»,
IEEE Trans. Parallel and Distributed Systems, 11 (7), pp.729–
738, 2000.
[30] A.Patooghy, SGMiremadi, «XYX: мощность и производительность
эффективный отказоустойчивый алгоритм маршрутизации для сети на чип »
Proc. ICPDNP, стр. 245–251, 2009 г.
[31] Д.Фик, А.Деорио, Г.К.Чен, В.Бертакко, Д.Сильвестр, Д.
Блаау, «Алгоритм маршрутизации с высокой степенью устойчивости к сбоям —
толерантные NoC », Proc.ДАТА, 2009.
[32] Р.В. Боппана и С. Чаласани, «Отказоустойчивые алгоритмы маршрутизации червоточины
для ячеистых сетей», IEEE Trans. on
Computers, 44 (7): 848–864, 1995.
[33] Дж. Ву, «Отказоустойчивый и свободный от тупиков протокол маршрутизации в
2D-сетках, основанный на нечетно-четной модели чередования», IEEE Trans. on
Computers, 52 (9): 1154-1169, сентябрь 2003 г.
[34] А. Резазаде, М. Фати, А. Хасанзаде, «If-cube3: улучшенный отказоустойчивый алгоритм маршрутизации
для достижения меньше задержки
в NoC », Proc.IACC, pp. 278-283, 2009.
[35] С.Йованович, К.Таноугаст, С.Вебер, С.Бобда, «Новый безблокирующий отказоустойчивый алгоритм маршрутизации
для соединений NoC
, Proc. FPLA, pp. 326 — 331, 2009.
[36] М. Андрес, П. Маурицио, Ф. Хосе, «Региональная маршрутизация: механизм
для поддержки эффективных алгоритмов маршрутизации в
NoC», IEEE Trans . СБИС, 17 (3): 356-369, 2009.
[37] Дж. Ху, Р. Маркулеску, «Dyad — интеллектуальная маршрутизация для сетей на микросхеме
», Proc.DAC, 2004.
[38] З. Чжан, А. Грейнер, С. Тактак, «Реконфигурируемый алгоритм маршрутизации
для отказоустойчивой 2D-ячеистой сети на кристалле»,
Proc. DAC, 2008.
[39] W.-C. Квон, С. Ю, Дж. Ум, С.-В. Джеонг, «Внутрисетевой буфер переупорядочения
для повышения общей производительности NoC, в то время как
решает проблему требований к порядку», Proc. DATE,
pp. 1058-1063, 2009.
[40] М. Койбучи, Х. Мацутани, Х. Амано, Т. М. Пинкстон, «Легкий отказоустойчивый механизм
для сети на кристалле»,
Proc.NOCS 2008.
[41] Инициатива SystemC. http://www.systemc.org.
[42] Симулятор ниргама http://nirgam.ecs.soton.ac.uk/.
[43] А. Канг, Б. Ли, Л.-С. Пех и К. Самади, «ORION 2.0: A
быстрая и точная модель мощности и площади NoC для ранней стадии
проектных исследований космоса», Proc. ДАТА, 2009.
Готовность платить за поддержание капитала в местной схеме распределения ивермектина в Торо, Северная Нигерия
Готовность платить (WTP) за поддержание справедливости в местной схеме распределения ивермектина в контексте системы финансирования сообществ была определена в Торо, Северная Нигерия, с использованием 214 случайно выбранных глав домохозяйств или их представителей.Хотя ГП респондентов для их собственных домохозяйств было выявлено, основное внимание в этом документе уделяется ГП для поддержания справедливости в схеме финансирования сообществ. Для проверки использовалась условная оценка, а WTP был получен с помощью открытого вопроса. 97,2% респондентов высказались за то, чтобы позволить тем, у кого нет возможности платить, получить выгоду от схемы и максимальные суммы ГП, которые они готовы вносить ежегодно, чтобы те, кто неспособен платить, могли получить выгоду от схемы, варьировалась от 5 найра (0.06) до 100 найр (1,25 доллара США). Среднее значение WTP для поддержания собственного капитала составило 29,00 найра (0,36 доллара США), а медианное значение — 20,00 найра (0,25 доллара США). Это исследование показывает, что схема общественного финансирования местного распределения ивермектина не будет несправедливой, поскольку от состоятельных членов сообщества будет получено достаточно средств для покрытия расходов тех, кто не в состоянии платить.
PIP: Готовность платить (WTP) за поддержание справедливости в местной схеме распределения ивермектина в контексте системы финансирования сообществ была определена в Торо, северная Нигерия, с использованием 214 случайно выбранных глав домохозяйств или их представителей.Основное внимание в этом документе уделяется поддержанию справедливости ГП в схеме финансирования сообщества. Для упражнения использовалась условная оценка, а WTP — с помощью открытого вопроса. Результат исследования показывает, что 92% респондентов были готовы платить, чтобы получить выгоду от схемы, делая ежегодные взносы определенной суммы. Заявленное среднее значение WTP для поддержания собственного капитала составляло 29,00 найра, а медианное значение — 20,00 найра. Следовательно, коллективные суммы ГП должны быть достаточными для покрытия расходов на ежегодное распространение ивермектина среди малообеспеченных членов сообщества.Это исследование показывает, что схема финансирования сообщества не может быть несправедливой, если будут обнаружены области для сбора средств для неимущих членов сообщества.
Представляем наш план ухода за глазами OE Club
OE Club Eyecare Plan — это наша комплексная программа ухода за глазами, разработанная специально для тех, кто носит очки или контактные линзы, предлагающая золотой стандарт ухода за глазами, потрясающие скидки на очки, наши лучшие цены на контактные линзы и множество дополнительных услуг.
Здоровье глаз — Как член клуба, вы проходите ежегодные расширенные проверки зрения, включая сканирование OCT (оптический когерентный томограф), сверхширокую визуализацию сетчатки Optos *, приемы на прием в неотложную помощь и оценку контактных линз *.Вы также получаете скидки на наши специализированные услуги, такие как оценка сухости и водянистости глаз и лечение блефарита BlephEx.
Эксклюзивные скидки — Члены клуба получают скидки до 20% на оправу и до 30% * † на очковые линзы, скидки на солнцезащитные очки и многие другие товары. Вы также можете получить скидку на любое количество пар, так что у вас может быть больше, чем одна пара, может быть, одна пара для серьезных деловых встреч и одна для встречи с друзьями за обедом?
Контактные линзы и уход — Все может быть включено в схему одним простым ежемесячным платежом.Все ваши процедуры по уходу за глазами, консультации по уходу за контактными линзами и оценки, контактные линзы и растворы могут быть добавлены и даже доставлены к вам домой. Плюс абсолютно лучшие цены на контактные линзы, обычно дешевле, чем в Интернете. И поскольку мы так увлечены контактными линзами, вы знаете, что всегда будете носить лучшие линзы, подходящие для здоровья ваших глаз и образа жизни.
Сколько это стоит?
Стоимость вступления в клуб будет зависеть от ваших потребностей в уходе за глазами, она полностью персонализирована для вас.Мы сообщим вам о расходах во время вашего визита в практику. Платежи производятся ежемесячным прямым дебетом и начинаются всего от £ 4 в месяц.
Когда начинаются выплаты?
Вы регистрируетесь, как только будет произведен первый платеж, и сразу же начнут действовать ваши льготы.
Как мне зарегистрироваться?
Заходите в магазин, и мы можем зарегистрировать вас на месте.
* Только в Platinum Scheme
† Скидки зависят от того, в какой программе вы участвуете.
: синхронизация: разработка и внедрение цифровых открытых значков успеха — живые презентации
Автор : Д-р Уэйн Гиббонс
Учреждение : Голуэй Мэйо IT
Страна : Ирландия
Тема : Технологии для открытого образования
Сектор : Высшее образование
Сфера интересов ЮНЕСКО : Создание потенциала
Формат сессии : Презентация
Аннотация
В этой презентации основное внимание уделяется результатам и последствиям недавнего докторского исследования под названием «Роль, внедрение и влияние цифровых открытых значков на степень в области гражданского строительства».Результат представляет интерес для любой стороны, рассматривающей, как разработать схему открытых значков и какое влияние она может оказать. Ниже представлена аннотация к диссертации: Степень гражданского строительства в Технологическом институте Голуэя-Мейо (GMIT) оставалась ниже среднего уровня на первом году обучения. Руководство GMIT подчеркнуло роль преподавательского состава в увеличении удержания.
В этом исследовании оценивается вмешательство, направленное на повышение вовлеченности и мотивации студентов (два фактора, влияющих на удержание) в модуле автоматизированного проектирования (САПР).Это включало сопоставление навыков и поведения, необходимых для успешного прохождения модуля, с набором цифровых открытых значков. Было показано, что такие значки влияют на вовлеченность студентов и их мотивацию в других условиях.
Это тематическое исследование включало интерпретирующий запрос с использованием смешанных методов (опросы, учебные журналы и полуструктурированные интервью) в течение двух этапов. На этапе 1 оценивалось восприятие цифровых открытых бейджей ключевыми заинтересованными сторонами: студентами, преподавателями, руководством института и работодателем.Это послужило основой для разработки схемы цифровых открытых бейджей, реализация и влияние которой стали в центре внимания Этапа 2.
Результаты показывают, что заинтересованные стороны положительно относятся к цифровым открытым бейджам. Тип мотивации не изменился; студенты показали высокую склонность к внутренней мотивации во всем. Однако уровень мотивации за счет интереса / удовольствия значительно повысился. Студенты ценят цифровые открытые значки за укрепление доверия, взаимное обучение, стимулирование посещаемости и создание ссылок на возможности трудоустройства.Работодатель ценит цифровые открытые значки за выявление кандидатов с желаемыми качествами и готовностью к постоянному профессиональному развитию. Руководство института ценит цифровые открытые значки за поощрение взаимного обучения и посещения занятий.
Выводы заключаются в том, что цифровые открытые значки влияют на вовлеченность и мотивацию студентов, повышая уверенность и стимулируя посещаемость. Заинтересованные стороны признали положительные аспекты, и есть признаки того, что цифровые открытые значки могут сыграть важную роль в повышении возможностей трудоустройства студентов.Приводятся доводы в пользу использования цифровых открытых бейджей в других модулях программы и в более широком смысле в рамках департамента и других институтов.
Ключевые слова
открытые значки, совместный дизайн, исследования, консультации с заинтересованными сторонами, возможность трудоустройства, мотивация студентов, вовлеченность студентов
новозеландцев на работу в Великобритании.
Премьер-министр Хелен Кларк объявила, что со следующего месяца молодые новозеландцы, направляющиеся в Соединенное Королевство для получения оригинального оборудования, получили возможность работать с одним до двух лет.
«Это отличная новость для новозеландцев в возрасте от 18 до 30 лет, желающих испытать жизнь в Великобритании. Текущая двухлетняя рабочая праздничная виза ограничивает право новозеландцев на работу одним годом их пребывания в Соединенном Королевстве», — Хелен — сказал Кларк.
«27 ноября эта виза будет заменена новой категорией визы в соответствии со схемой мобильности молодежи, которая позволит новозеландцам работать в течение своего двухлетнего пребывания.
«Новая договоренность была официально признана на этой неделе в результате обмена письмами между правительствами Великобритании и Новой Зеландии после многих конструктивных обменов деталями новой схемы.
«Британские министры и официальные лица признали низкий риск и высокую ценность новозеландцев в Великобритании во время своих путешествий», — сказала Хелен Кларк.
«Британское правительство проводит широкий обзор своей иммиграционной системы. Правительство Новой Зеландии много работало над поддержанием и улучшением хорошего уровня доступа новозеландцев в Великобританию.
«Схема мобильности молодежи основана на положениях о взаимных визах, и количество стран, которые могут участвовать в новой схеме, значительно меньше, чем при нынешних условиях.
«Около 5000 новозеландцев ежегодно отправляются в Великобританию по рабочей визе в отпуск.
«Молодые новозеландцы работают в школах, больницах, юридических фирмах и финансовых учреждениях, а также в пабах и ресторанах, с которыми многие из нас связывали киви OE.
«Возможность развить свои навыки высоко ценится и принесет более широкую пользу Новой Зеландии, когда наши молодые люди вернутся домой, привезя с собой свои навыки и опыт.
«Мы ценим, что британское правительство учло наши взгляды в своей новой миграционной системе, и мы приветствуем решение продлить право молодых новозеландцев работать на полные два года по новой визе для мобильности молодежи», — Хелен Кларк сказал.
Помимо запуска Программы мобильности молодежи, правительство Великобритании недавно приняло два долгожданных решения о доступе новозеландцев в Великобританию:
- Новозеландцы по-прежнему имеют безвизовый доступ в Великобританию на срок до шести месяцев
- Лица с британскими родовыми связями могут продолжать жить / работать в Великобритании до пяти лет по визе предков.
Чтобы узнать больше об изменениях, посетите www.UKinNewZealand.fco.gov.uk или www.safetravel.govt.nz
Последняя схема оружейного лобби: облегчить тихое совершение преступлений
В феврале 2013 года американцы с ужасом наблюдали, как недовольный бывший офицер полиции Лос-Анджелеса Кристофер Дорнер терроризировал Южную Калифорнию.За девять дней Дорнер убил четырех человек и ранил еще троих во время массовой охоты.
В ходе расследования полиция задавалась вопросом, почему жители поблизости не сообщают о выстрелах. Оказалось, что, пытаясь скрыть свои убийства, Дорнер использовал глушитель, который искажает звук выстрела и маскирует дульную вспышку оружия. (Глушители не позволяют полностью заглушить выстрелы, как некоторые голливудские фильмы заставляют вас поверить.) В опытных руках, говорят SEAL Team Six, глушители использовались, чтобы помочь скрытно уничтожить таких, как Усама бен Ладен.Но в руках преступников, таких как Кристофер Дорнер, они представляют серьезную угрозу для правоохранительных органов и сообществ, которым они служат.
Теперь Конгресс пытается внедрить в несвязанный с этим законопроект некую меру, которая облегчила бы преступникам получение этого специального оборудования. Законопроект, Закон о спортивном наследии и рекреации (SHARE), который скоро будет принят на голосование в Палате представителей, отменяет действие 80-летнего закона, который тщательно регулирует продажу глушителей.
Вскоре после 1930 года, когда за один год было убито 307 сотрудников правоохранительных органов, Конгресс принял Национальный закон об огнестрельном оружии, чтобы помочь регулировать некоторые из наиболее опасных видов оружия в нашей стране, включая пулеметы и обрезные дробовики. Законопроект также требует, чтобы владельцы оружия регистрировали свои глушители, что помогло сохранить их в руках законопослушных владельцев оружия и защитить их от преступной деятельности.
Закон о SHARE подорвет существующую систему регулирования, сделав глушители пистолетов доступными без проверки биографических данных.
Процесс покупки глушителя относительно прост. По словам производителей глушителей, сегодня владельцы оружия с чистой судимостью могут получить глушитель с меньшими затратами документов, чем покупка холодильника.
Если он будет принят, Закон о SHARE уничтожит существующую систему регулирования, сделав глушители доступными без проверки биографических данных через нелицензированные продажи на оружейных выставках и в Интернете.
Закон о SHARE также усложнит гражданским лицам и правоохранительным органам обнаружение активных стрелков.Глушители снижают эффективность технологий обнаружения выстрелов, которые в городах, включая Сан-Франциско, Окленд и Сан-Диего, используются для снижения уровня насилия. Когда пули начинают лететь, на счету секунды. Вот почему так важно, чтобы прохожие и правоохранительные органы могли определить, откуда они. Этот закон только усложнит задачу.
Возможно, что еще хуже, Закон о SHARE включает формулировку, которая разрешает передачу глушителей через границы штата и их продажу лицам в возрасте от 18 лет.Дилерам не придется сообщать правоохранительным органам о множественных покупках, даже если отчеты о множественных продажах являются основным инструментом разведки, который федеральные правоохранительные органы используют для выявления организаций, занимающихся незаконным оборотом огнестрельного оружия.
Только две группы выиграют от отмены регулирования глушителей: те, кто желает нанести вред нашим сообществам, и корпоративное оружейное лобби, которое может заработать состояние.
Теперь, когда президента Обамы больше нет у власти, а продажи оружия резко упали, оружейные лоббисты были вынуждены искать новые способы получения доходов.Учитывая, что глушитель в среднем стоит около 1000 долларов, нетрудно понять их мотивы. Они даже объединились с Дональдом Трампом-младшим в надежде, что большее количество глушителей поможет вовлечь в игру «маленьких детей». Да, он действительно так сказал. Этот законопроект не касается общественной безопасности или спортивного мастерства; дело в прибыли.
Законопроект — это не просто плохая политика, это еще и плохая политика. Новый опрос избирателей 2018 года в колеблющихся округах Калифорнии показал, что подавляющее большинство — 76%, в том числе 65% избирателей Трампа — выступают против отмены регулирования глушителей.К ним присоединяются сотрудники правоохранительных органов и защитники оружия по всей стране, которые считают, что отказ от регулирования глушителей нанесет ущерб общественной безопасности.
Хотя насилия с применением огнестрельного оружия гораздо больше, чем хотелось бы американцам по обе стороны прохода, судьбу этого законопроекта решат республиканцы в таких местах, как Калифорния. (Республиканцы в красных штатах будут голосовать синхронно.) Семь республиканцев из Золотого штата в настоящее время представляют округа, выигранные Хиллари Клинтон. Избиратели в этих округах не разделяют крайних взглядов лидеров оружейного лобби.Они просто хотят разумной политики, которая сделает сообщества Калифорнии более безопасными.
В политике выборные должностные лица часто сталкиваются с решениями, требующими от них выбора между политической целесообразностью и общественными интересами. Это не один из тех случаев. Когда дело доходит до дерегулирования глушителей, с политической точки зрения разумнее всего поступать правильно.
Питер Амблер — исполнительный директор организации «Американцы за ответственные решения», организации по предотвращению насилия с применением огнестрельного оружия, основанной бывшим У.Республиканская партия Габриэль Гиффордс.
Следите за разделом «Мнения» в Twitter @latimesopinion или Facebook
Ответ на запрос | Министерство энергетики
Реагирование на спрос дает потребителям возможность играть значительную роль в работе электросети, сокращая или изменяя потребление электроэнергии в периоды пиковой нагрузки в ответ на временные тарифы или другие формы финансовых стимулов.Программы реагирования на спрос используются некоторыми проектировщиками и операторами электрических систем в качестве вариантов ресурсов для уравновешивания спроса и предложения. Такие программы могут снизить стоимость электроэнергии на оптовых рынках и, в свою очередь, привести к снижению розничных тарифов. Методы привлечения клиентов к усилиям по реагированию на спрос включают предложение основанных на времени ставок, таких как ценообразование по времени использования, ценообразование в критический пик, ценообразование с переменным пиком, ценообразование в реальном времени и скидки за критический пик. Он также включает программы прямого управления нагрузкой, которые дают возможность энергетическим компаниям включать и выключать кондиционеры и водонагреватели в периоды пикового спроса в обмен на финансовый стимул и снижение счетов за электроэнергию.
Электроэнергетика рассматривает программы реагирования на спрос как все более ценный ресурс, возможности и потенциальное воздействие которого расширяются за счет модернизации сети. Например, датчики могут распознавать проблемы с пиковой нагрузкой и использовать автоматическое переключение для переключения или снижения мощности в стратегических местах, устраняя вероятность перегрузки и, как следствие, сбоя питания. Усовершенствованная инфраструктура измерения расширяет диапазон программ тарифов на основе времени, которые могут быть предложены потребителям.Умные клиентские системы, такие как домашние дисплеи или домашние сети, могут облегчить потребителям изменение своего поведения и снизить потребление в пиковый период на основе информации об их энергопотреблении и затратах. Эти программы также могут помочь поставщикам электроэнергии сэкономить деньги за счет сокращения пикового спроса и возможности отложить строительство новых электростанций и систем энергоснабжения, в частности, тех, которые предназначены для использования в часы пик.
Одной из целей программы исследований и разработок Smart Grid является разработка технологий, инструментов и методов модернизации сетей для использования системы реагирования на спрос и помощи в проектировании, тестировании и демонстрации интегрированных национальных электрических / коммуникационных / информационных инфраструктур. для динамической оптимизации сетевых операций и ресурсов, а также для учета реакции спроса и участия потребителей.Для достижения этой цели OE поддерживает исследования, разработку и внедрение технологий интеллектуальных сетей, моделирование и анализ систем распределения, трансактивную энергию, моделирование и анализ поведения потребителей, а также возможности высокоскоростного вычислительного анализа для инструментов поддержки принятия решений
ПУБЛИКАЦИИ
OE Seeking Специалисты в предметной области, выступающие в качестве технических рецензентов
Оценка реагирования на спрос и расширенные измерения
Национальный план действий по реагированию на спрос
Национальная оценка потенциала реагирования на спрос
Реагирование розничного спроса в юго-западном энергетическом пуле
СВЯЗАННЫЕ ССЫЛКИ
Политика реагирования на спрос
Федеральная Комиссия по регулированию энергетики (FERC)
Ассоциация реагирования на спрос и интеллектуальных сетей (ADS)
Альянс управления пиковой нагрузкой (PLMA)
Инициатива реагирования на спрос Новой Англии (NEDRI)
Реагирование на спрос OMS
Проект реагирования на спрос на северо-западе Тихого океана