Схема подключения трехфазного счетчика: через трансформаторы, напрямую
Трехфазные сети в частные дома проводят нечасто, но все-таки, при большом планируемом потреблении разрешение можно получить. С одной стороны, это хорошо, так как есть возможность мощные приборы подключать к трехфазной цепи, то есть использовать провода меньшего сечения. С другой — сама схема сложнее, сложнее разбиение потребителей на группы, так как далеко не вся нагрузка трехфазная, а при использовании обычной техники нежелательно допускать перекос фаз. К тому же даже схема подключения трехфазного счетчика гораздо сложнее, чем однофазного. В общем, нет плюсов без минусов.
Содержание статьи
- 1 Типы трехфазных счетчиков
- 2 Принцип работы счетчика
- 2.1 Электронные модели
- 2.2 Электромеханические или индукционные
- 3 Схема подключения трехфазного счетчика прямого включения
- 4 Через трансформаторы тока
- 4.1 Трансформаторы тока и их подключение
- 4. 2 Десятипроводная
- 4.3 Звездой
- 4.4 Через испытательную колодку
- 5 Как подключить трехфазный счетчик в однофазную сеть
Типы трехфазных счетчиков
Вообще, тип счетчика, а иногда и его марка, указан в проекте электрификации. Очень редко случается, но у вас могут спросить, какой трехфазный счетчик вы желаете. Такие либеральные проэктанты встречаются крайне редко, и все же, стоит хоть немного разбираться в теме. Есть трехфазные счетчики для подключения трех и четырех проводов. Первые подключаются если нет «нулевого» повода. С этим разобраться несложно.
Далее необходимы выбрать тип счетчика:
Выбирать вам особо не придется, так как тип счетчика, обычно, тоже указывается в проекте. Для частных домов либо прямого, либо полукосвенного подключения, в квартирах преимущественно прямого. Прямое подключение проще в реализации (просто завести провода на клеммы), элементарно считать показания — просто списывать их. При установке полукосвенного счетчика, нужны трансформаторы тока (ТТ) или напряжения (зависит от проекта) и рекомендовано подключение через испытательную коробку. Под все эти устройства требуется место в щите. Что еще надо помнить, что при расчете показаний требуется учитывать коэффициент трансформации для каждой фазы. То есть, надо будет показания умножать на этот коэффициент.
Принцип работы счетчика
Однофазные и трехфазные счетчики устроены по одному принципу. Разница только в том, что в сети 380 вольт учет ведется отдельно по каждой из фаз, а затем суммируется. Давайте разберемся, как работает счетчик для одной фазы, после чего понять устройство з-х фазного несложно. Ниже изображена блок-схема современного прибора с прямым подключением.
Клеммы для подключения проводов обычно располагаются в указанном на рисунке порядке, но лучше проверить по паспорту конкретного счетчика
Электронные модели
Электронные счетчики электроэнергии могут работать как в сетях переменного, так и в сетях постоянного тока. Постоянное напряжения обычно используется на предприятиях, так что для квартир и частных домов оно не слишком важно. Если сравнивать с электромеханическими моделями, по размерам электронные намного меньше, так как в них мало крупногабаритных элементов. Кроме того, они надежнее, так как нет подвижных деталей. Есть у электронных еще один плюс — они учитывают как активную, так и реактивную нагрузку (сумма индуктивной и емкостной составляющей).
Трансформатор напряжения подключен между фазой и нулем, трансформатор тока — в разрыв фазного проводника. Данные с трансформаторов передаются на преобразователь, где трансформируются в частотные сигналы и поступают в микроконтроллер. В нем расшифровываются показания и записываются в ОЗУ (оперативное запоминающее устройство). Параллельно микропроцессор руководит электронным реле и дисплеем.
Блок-схема электронного счетчика электроэнергии
Данные в ОЗУ сохраняются продолжительный период времени, записи делаются по типу дневника. В нем фиксируется расход электроэнергии по датам и времени, что позволяет провести анализ расхода. В некоторых модификациях, электронные трехфазные счетчики могут передавать информацию о расходе по специальному каналу. Этот канал может быть подключен к домашнему компьютеру, системе умный дом. При определенных настройках может автоматически передавать данные в абонентскую службу для проведения расчетов.
Еще одна функция электронных приборов учета — многотарифный учет. При наличии нескольких тарифных сеток, зависящих от времени, величина потребленной в разное время энергии, записывается в разные ячейки. При снятии показаний, данные списываются, умножаются на свой тариф. Использование многотарифного учета позволяет экономить на счетах за электричество.
Электромеханические или индукционные
Учет энергии в индукционных счетчиках построен на отслеживании параметров переменного магнитного поля, поэтому работать такие устройства могут только с переменным током.
Устройство индукционного электромеханического счетчика
Основной элемент индукционного 3-х фазного счетчика — специально сконструированный магнитопровод с прорезью. В прорезь вставляется край диска, закрепленного на оси. Через одну из катушек магнитопровода проходит ток, вторая подключена параллельно. К плоскости диска при помощи шестеренок подключен механический счетчик, отсчитывающий повороты диска.
Ток, проходя по магнитопроводу, создает магнитное поле, а оно вихревые потоки в алюминиевом диске. Взаимодействие магнитного поля и вихревых потоков создает крутящий момент, который заставляет диск крутиться вокруг своей оси. Чем больше сила тока, тем более мощное генерируется поле, тем быстрее вращается диск, тем быстрее сменяются показания на счетчике.
Схема подключения трехфазного счетчика прямого включения
Как уже сказано выше, подключение трехфазного счетчика прямого включения очень простое. Как и в случае с однофазным, к входным клеммам подключаются провода с вводного автомата. С выходных клемм уходят на нагрузку (обычно на противопожарное УЗО, а далее, уже на автоматы линий).
Схема подключения трехфазного счетчика прямого подключения
Обратите внимание, с выхода счетчика провод нейтрали заводится на шину. На другие устройства ноль подается с этой шины. Как видите, подключение совсем несложное. Важно не запутаться с фазами. Для этого лучше использовать цветные провода. Соблюдение цветовой маркировки в разы облегчает разводку электропроводки.
На схеме выше на счетчик заведено сразу четыре провода, включая нейтраль. И это правильно и резонно. Но есть и другая схема, по которой защитный PEN проводник подается не на счетчик, а заводится на шину, а с нее при помощи тонкого провода подается на соответствующий вход счетчика. Эта схема может существовать, так как в ПУЭ пункт 1.7.135 есть прямое указание на возможность такого подключения. Даже есть счетчики под такую схему — с семью выходами (а не с восемью, как обычно). Например, Энергомера СЕ303-S34.
Вторая схема подключения трехфазного счетчика прямого типа
Но не все подразделения энергосбыта одобряют эту схему. Дело в том, что при таком подключении провод PEN можно отключить. В случае с однофазной сетью это приводит к останову счетчика. С трехфазными не так. Экран погаснет, но счетчик продолжит считать, так как для работы ему достаточно наличия трех фаз. Во всяком случае так утверждают производители. Вот только они не исключают того, что погрешность учета повысится. И никто не знает в какую сторону. Чтобы предотвратить остановку счетчика, некоторые подразделения Энергосбыта ставят три пломбы — как на рисунке выше. Самое неприятное в этом случае — опломбировка шины, ведь может понадобится вносить изменения в схему.
Через трансформаторы тока
При большом потреблении тока — более 100 А — счетчики прямого подключения работать не могут. В этом случае для частного дома рекомендовано подключение полукосвенного прибора учета через трансформаторы тока. Для этого подключения необходимы три трансформатора с определенными параметрами.
Для чего нужны трансформаторы тока при подключении счетчиков? Чтобы измерение потребленной электроэнергии было проще и дешевле. Если у вас максимальное потребление тока 100 А, соответственно, измерительный прибор (счетчик) должен быть рассчитан на прохождение такого тока. Обмотка измерительного прибора, которая выдержит 100 А, во-первых, будет дорогой, во-вторых, громоздкой. И провода для подключения такого прибора придется использовать очень толстые. В общем, неудобно и дорого. Трансформаторы тока подключаются к фазным, пропорционально преобразуют входной ток в меньший номинал и подают на стандартный измерительный прибор (счетчик в данном случае). Во сколько раз уменьшается ток и показывает коэффициент трансформации? Например, трансформатор с коэффициентом трансформации 40/5 уменьшает ток в 8 раз, 100/5 — в 20 раз.
А почему почти всегда ток уменьшается до 5 А? Это одна из стандартных величин, прописанная в нормативах. Могут быть еще варианты с 1 А, но они используются очень редко. Просто все измерительные приборы для трансформаторов тока выпускаются на 5 А или 1 А, все схемы строятся исходя из этого.
Трансформаторы тока и их подключение
Для корректной работы схемы необходимо строго соблюдать правила подключения трансформаторов. Трансформатор имеет следующие клеммы:
- Л1 — для подключения фазного провода от входного автомата.
- Л2 — подключают провод на нагрузку.
- И1 и И2 — измерительные контакты для подключения клемм счетчика.
Что такое трансформатор тока для подключения счетчика
Весь потребляемый ток протекает по первичной обмотке трансформатора тока. Во вторичной обмотке возникает пропорционально уменьшенный ток, который идет на счетчик.
Вот так выглядит наглядная схема подключения 3-х фазного счетчика через ТТ
При вычислении расхода электроэнергии показания счетчика умножаются на коэффициент трансформации. Таким образом высчитывается реальный расход электричества. Все это так, но подключать трансформаторы можно по-разному.
Десятипроводная
Десятипроводная схема подключения трехфазного счетчика через трансформаторы тока
Подключение происходит в следующем порядке:
- С выхода защитного автомата фазные провода подаем на входные клеммы первичной обмотки трансформаторов тока. Обозначаются они Л1.
- С выходов первичной обмотки трансформатора провода идут к нагрузке. Если говорит конкретно по приборам, после счетчика обычно ставят противопожарное УЗО. В этом случае выходы Л2 подают на входы этого устройства.
- С клеммы И1 провод подаем на клемму для подключения первой фазы, со второго выхода этой фазы тянем провод на клемму И2. так подключаем все три фазы.
- Нулевой провод подключать можно двумя способами (описано для прямого подключения):
- Если на счетчике есть две клеммы для нейтрали, заводим на N1, с выхода N2 подключаем к шине и далее разводку по схеме делаем с шины.
- Если на счетчике только одна клемма для подключения нейтрали, сначала провод заводим на шину, с нее подаем на гнездо счетчика для подключения нуля.
В общем, вполне понятная и логичная схема, вот только проводов много. Чтобы не запутаться, собирайте схему последовательно. Сначала можно линейную часть, затем — измерительную. Или наоборот.
Звездой
Есть еще одна популярная схема подключения трехфазного счетчика — звездой. В этом случае все выхода измерительных обмоток трансформатора (И2) сходятся в одной точке.
Подключение счетчика электроэнергии через трансформаторы тока по схеме звезда
От описанной выше она отличается двумя моментами:
- Все выходы измерительных обмоток трансформаторов подаются в последнее гнездо счетчика.
- Все выходные гнезда для подключения фаз также соединяются между собой и подключаются в предпоследнее гнездо на счетчике. Туда же заводится провод с шины нейтрали.
При таком подключении проводов меньше, и обратите внимание, общая точка вторичных обмоток обязательно заземлена. Недостаток этой схемы — она слишком сложна для проверки.
Через испытательную колодку
Чтобы проще было проверять состояние трансформаторов тока, рекомендовано подключать трехфазный счетчик через испытательную колодку (называют еще испытательный блок). Как известно, оставлять вторичную обмотку без нагрузки нельзя, так как это приводит к ее пробою. При подключении трехфазного счетчика через испытательную колодку, закоротить вторичную обмотку трансформатора при необходимости легко — достаточно установить перемычку между гнездами.
Подключение через клеммную колодку
Испытательная клеммная колодка (блок) устанавливается только если используется десятипроводная схема подключения трехфазного счетчика. Сам блок ставится между счетчиком и трансформаторами.
Более наглядная схема подключения трехфазного счетчика через испытательный блок
Суть схемы не меняется, но в обслуживании узел учета проще. Всегда можно обесточить оборудование обеспечив видимый разрыв цепи. Это оборудование стоит не так много, обслуживание и измерения оно значительно упрощает. Вот только увеличивается число точек коммутации, но, в данном случае, этот недостаток не так критичен.
Как подключить трехфазный счетчик в однофазную сеть
Редко, но бывает, что есть трехфазный счетчик, а его надо установить в сеть 220 В. Это возможно, если прибор учета прямого включения. В этом случае подключается одна из фаз, остальные остаются просто незадействованными.
Схема подключения трехфазного счетчика в однофазную сеть
Само подключение несложное, но могут возникнуть проблемы с энергопоставляющей организацией. Они далеко не всегда принимают такое подключение. Обычно мотивируя тем, что остаются варианты для хищения электроэнергии.
Способы подключения электросчетчиков к электросетям
По способу подключения к сети счетчики разделяют на 3 группы:
Счетчики непосредственного включения
- Схема прямого подключения однофазного счетчика
- Схема прямого подключения трехфазного счетчика к сети TNS
- Схема прямого подключения трехфазного счетчика к сети TNС
Счетчики полукосвенного включения — подключаются к сети напрямую только обмотками напряжения, токовые обмотками подключаются через трансформаторы тока. Выпускаются только трехфазные модели (для электротранспорта существуют и однофазные) на напряжение 0,4 кВ. Величина измеряемого тока зависит от характеристик подключенных трансформаторов тока.
- Схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNS (без испытательной коробки)
- 8-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNS через испытательную коробку
- 10-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNS через испытательную коробку
- Схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNC (без испытательной коробки)
- 8-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNC через испытательную коробку
- 10-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNC через испытательную коробку
- Схема полукосвенного (2-х трансформаторного) подключения трехфазного электросчетчика к сети TNS (без испытательной коробки)
- Схема полукосвенного (2-х трансформаторного) подключения трехфазного электросчетчика к сети TNC через испытательную коробку
Счетчики косвенного включения — подключаются к сети через трансформаторы тока и трансформаторы напряжения.
- Схема косвенного подключения трехфазного электросчетчика (без испытательной коробки)
- 8-проводная схема косвенного подключения трехфазного электросчетчика через испытательную коробку
- 10-проводная схема косвенного подключения трехфазного электросчетчика через испытательную коробку
Схемы включения индукционных и электронных электросчётчиков абсолютно идентичны.
Схемы прямого (непосредственного) подключения электросчетчиков
Схема прямого подключения однофазного электросчетчика
Схема прямого подключения трехфазного электросчетчика к сети TNS
Схема прямого подключения трехфазного электросчетчика к сети TNС
Схемы полукосвенного (трансформаторного) подключения электросчетчиков
Схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNS (без испытательной коробки)
8-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNS через испытательную коробку
10-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNS через испытательную коробку
Схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNC (без испытательной коробки)
8-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNC через испытательную коробку
10-проводная схема полукосвенного (3-х трансформаторного) подключения трехфазного электросчетчика к сети TNC через испытательную коробку
Схема полукосвенного (2-х трансформаторного) подключения трехфазного электросчетчика к сети TNS (без испытательной коробки)
Схема полукосвенного (2-х трансформаторного) подключения трехфазного электросчетчика к сети TNC через испытательную коробку
Схемы косвенного (трансформаторного) подключения электросчетчиков
Схема косвенного подключения трехфазного электросчетчика (без испытательной коробки)
8-проводная схема косвенного подключения трехфазного электросчетчика через испытательную коробку
10-проводная схема косвенного подключения трехфазного электросчетчика через испытательную коробку
Объяснение схемы подключения CT и PT
В этой статье мы рассмотрим схемы подключения CT и PT. CT означает трансформатор тока, а PT означает трансформатор напряжения. Как следует из названия, трансформатор тока или ТТ работает с электрическим током, тогда как трансформатор напряжения или ТТ работает с электрическим напряжением или потенциалом. Оба они известны как измерительные трансформаторы и в основном используются для измерения таких показателей, как расход электрического тока и напряжение в системе.
Трансформатор напряжения почти такой же, как силовой трансформатор или распределительный трансформатор, с той лишь разницей, что он рассчитан на низкий номинал. Как правило, первичная обмотка трансформатора напряжения рассчитана на напряжение от 100 до 500 вольт-ампер, а вторичная обмотка трансформатора напряжения рассчитана на напряжение от 115 до 120 вольт-ампер. Первичная обмотка PT имеет большее количество витков, чем вторичная обмотка, или, по сути, это понижающий трансформатор. Когда он подключен к системе высокого напряжения, он понижает напряжение, и, рассчитав коэффициент трансформации, мы можем измерить фактическое напряжение системы.
С другой стороны, трансформатор тока в основном является повышающим трансформатором. У него очень мало витков в первичной обмотке и много витков во вторичной обмотке. Существует два типа трансформаторов тока, один из которых подключается непосредственно к цепи. Как правило, первичная обмотка трансформатора тока должна быть соединена последовательно с линией, ток которой измеряется.
Другой тип трансформаторов тока — сенсорный, он не требует прямого подключения к линиям электропередач. В основном проводящая линия, ток которой необходимо измерить, проходит или должна проходить через сердечник ТТ, и ТТ будет использовать эту линию в качестве первичной обмотки.
Схема подключения CT и PT для однофазной системы
Здесь показано подключение CT (трансформатора тока) и PT (трансформатора напряжения) для однофазной системы.
Здесь вы можете видеть, что первичная обмотка ТТ подключена последовательно к линии, а вторичная обмотка ТТ подключена через амперметр. С другой стороны, первичная обмотка PT подключается параллельно линии. А вторичка ТП подключена через вольтметр. Теперь давайте посмотрим на схему подключения ТТ сенсорного типа, который не имеет прямой связи с линией питания. Здесь в основном используется трансформатор тока балансировки ядра (CBCT). В случае PT сенсорного типа нет, он всегда должен быть физически подключен к системе.
Схема подключения ТТ и ТТ для трехфазной системы
Здесь вы можете увидеть схему подключения ТТ и ТТ для трехфазной системы, где доступны три провода под напряжением и нейтральный провод.
Здесь вы можете видеть, что одна клемма каждого трансформатора тока соединена вместе и подключена к земле. Сюда же подключается один вывод каждого амперметра. Это называется звездным соединением. Остальная клемма ТТ подключается к одной клемме амперметра соответственно. С другой стороны, вы можете видеть, что одна клемма каждого PT соединена вместе и подключена к нейтрали и земле. То же, что один вывод вторичной обмотки каждого ПТ соединен вместе. Потенциальные Трансформаторы также подключены в звездной конфигурации. Здесь полярность не столь важна, а подключение конкретного счетчика должно быть точным. Это означает, что для измерения фазного напряжения и линейного напряжения необходимо выполнить разные соединения.
Читайте также:
Благодарим вас за посещение сайта. продолжайте посещать для получения дополнительных обновлений.Физическая схема подключения трансформатора тока — Знание
Трансформатор тока подключается к амперметру и методу подключения вольтметра.
Во-первых, физическая схема подключения выглядит следующим образом:
Описание соответствующего продукта: Трансформатор тока 3, только амперметр 3, три индикатора, один вольтметр, один универсальный переключатель LW2.
Основной метод подключения описан выше, с некоторыми соответствующими инструкциями:
2 5 7 подключен к источнику питания, 3, 6 подключен к вольтметру
A, B, C фаза Линия, A подключена к 5, B подключен к 7, а C подключен к 2. Схема подключения показана на карте знаний, в общем, любое подключение. Поворотный переключатель преобразуется в вольтметр для отображения значений напряжения соответствующих двух фаз.
Обычно используемые трансформаторы имеют проходные трансформаторы, проходные трансформаторы и проводные трансформаторы. Трансформаторы здесь используются в низковольтной энергосистеме AC380V. Токоизмерительные устройства, независимо от того, какой тип трансформатора, принцип один и тот же.
Трансформатор тока состоит из первичной обмотки, вторичной обмотки, сердечника и корпуса, кожуха, клеммы и т.п., изолированных друг от друга. Принцип работы в основном такой же, как и у трансформатора. Количество витков (N1) первичной обмотки меньше, и она включена непосредственно последовательно в линию питания. Когда первичный ток нагрузки проходит через первичную обмотку, возникает переменный магнитный поток. Вторичный ток с пониженным коэффициентом; число витков вторичной обмотки (N2) велико, а вторичная нагрузка токовой катушки, такая как прибор, реле и передатчик (Z), образуют замкнутый последовательный контур, см. рис. 1.
Электропроводка трансформатора относительно проста и понятна. Поскольку у этих трансформаторов один и тот же принцип, все они имеют одно и то же место. Например, есть две вторичные клеммы S1 и S2 для вывода. Токовый сигнал подается на амперметр, а также имеется метка Р1, указывающая текущее направление резьбы или проводки. Кроме того, характеристики амперметра аналогичны, например, AC100/5A, AC500/5A, AC2000/5A и т. д. Эти трансформаторы тока имеют стандартный выходной сигнал 0-5A, но он используется при большом токе. и ток маленький.
Схема подключения трансформатора тока:
Первичный ток трансформатора тока поступает с клеммы P1 и выходит с клеммы P2; то есть клемма P1 подключается к стороне источника питания, а клемма P2 подключается к стороне нагрузки.
Вторичный ток трансформатора тока вытекает из S1 и поступает на положительный вывод амперметра. После выхода отрицательного вывода амперметра он втекает во вторичный вывод S2 трансформатора тока.