Как сделать самодельный металлоискатель своими руками
Содержание
- О принципе действия металлоискателя
- Из чего сделать прибор?
- Сложный способ создания устройства
- Простой способ изготовления металлоискателя
1. О принципе действия металлоискателя
Прежде чем задаваться вопросом, как сделать самодельный металлоискатель своими руками, предлагаем ознакомиться с его принципом работы. Он основывается на законе магнитного притяжения. Есть две катушки: одна из них создает магнитное поле, которое направляется в почву, вторая служит приемником и воспринимает сигналы от находящихся в грунте металлических элементов. Катушку с блоком управления соединяет держатель, представляющий собой длинную штангу. Блок управления имеет плату, микродинамик и элементы питания. О находке пользователя оповещает тональный сигнализатор. Когда металлический предмет находится на глубине, доступной для генерируемого магнитного поля, сигнализатор меняет тональность.
Знаний этого принципа и основ школьного курса физики вполне достаточно для того, чтобы собрать металлоискатель своими руками. Причем вам не нужно делать серьезных вложений. Большинство деталей можно найти дома и приобрести в магазине радиоэлектроники. А необходимый инструмент есть у каждого практичного хозяина. Перечислим, что же вам понадобится…
2. Из чего сделать прибор?
- Плата из текстолита
- Микросхемы
- Резисторы
- Транзистор
Конденсаторы- Выключатель питания (например, MTS-1)
- Медный провод сечением 0,25 – 0,3 мм (без оболочки)
- Медный провод сечением 0,5 мм (без оболочки)
- Провод двухжильный для соединения блока и катушки
- Низкоомные наушники (можно от плеера)
- Разъем для наушников
- Батарейка крона на 9 В
- Пластиковый контейнер для блока управления
- Изолента
- Фольга
- Черенок от лопаты
- Саморезы
Из инструментов вам понадобится
3.
Сложный способ создания устройстваЕсть множество способов изготовления металлоискателя своими руками – начиная от простых, на которые уходит всего несколько минут, и заканчивая сложными, требующими пайки компонентов плат. Сначала расскажем о методе, который заинтересует любителей радиотехники и умельцев, имеющих опыт пайки.
Собираем блок управления
В основе работы лежит плата с основными рабочими элементами. Во-первых, это поисковый генератор (его компоненты IC1.3, IC1.4, C3, R4, R5, R6), к которому будет подключена катушка. Во-вторых, эталонный генератор (его компоненты IC1.3, IC1.4, C3, R4, R5, R6). Он работает на той же частоте, что и поисковый. В-третьих, смеситель (собран на IC1.2) – именно на него будет поступать сигнал с генераторов. В-четвертых, фильтр (сконструирован на R3, C4), который принимает сигнал со смесителя и передает его без высокочастотных помех. В-пятых, есть усилитель (VT1), через который в наушники подается низкочастотный сигнал.
Помимо основных рабочих компонентов на плате предусмотрены: резистор для установки нужной громкости наушников (R2), переменный резистор для установки тональности (R4), усилитель звука с питанием от батарейки, стабилизатор напряжения (IC2) для питания микросхемы IC1.
Все компоненты платы припаиваются в соответствии со схемой. Важно, чтобы паяльник контактировал с выводами не более 1 секунды, чтобы избежать перегрева. Пример представлен на рисунке ниже.
Схема самодельного металлоискателя
Совет: вы можете нарисовать плату в специальной программе, распечатать ее на глянцевой фотобумаге и перевести на заготовку из текстолита. Для этого приложите распечатку к поверхности платы и нагрейте утюгом. Для более глубокого пропечатывания рисунка можно прибегнуть к травлению в растворе соли. Только помните, что распечатывать нужно зеркальное отражение схемы.
Делаем поисковую катушку
Прежде чем делать катушку для металлоискателя, определитесь с ее размером.
Возьмите любой цилиндрический предмет, подходящий по диаметру под будущую катушку. Начинайте обматывать его проводом диаметром в 0,25 или 0,3 мм. Нужно сделать 70 – 80 витков. К примеру, можно взять ведро и наматывать провод в нижней его части плотными витками. После этого получившийся моток снимают. Не забудьте оставить выводы с катушки – 2 провода длиной около 4 см. Полученный круг нужно плотно обмотать изолентой. Лучше сначала зафиксировать ее по окружности короткими отрезками – в 8 местах вполне хватит.
Следующим шагом будет изготовление экрана поисковой головки. Для данной цели подойдет фольга из электролитических конденсаторов. Перед использованием ее обязательно нужно хорошо промыть и просушить. Только потом можно будет наматывать на катушку. Делайте плотную намотку, а концы фольги закрепите изолентой – в процессе эксплуатации она не должна разматываться. Не забудьте оставить отверстия для вывода проводов. Далее с провода диаметром в 0,5 мм требуется снять лаковое покрытие – для этого подойдет наждачная бумага. Затем поверхность провода следует облудить паяльником, после чего его используют для обмотки катушки по окружности с шагом между витками в 1 см. Остается только вывод на 12 см. В местах выводов между началом и концом намотки оставляют зазор. Затем выполняют обмотку заготовки еще несколькими слоями изоляционной ленты. Вы получите катушку с 3 выводами. Последним шагом на данном этапе будет создание контактной площадки для крепежа. Возьмите небольшую пластину из металла и припаяйте ее к выводу от экрана.
Соединяем все составляющие
Плату помещают в пластиковый контейнер, который будет служить блоком управления.
Выполнение настройки и тестирование прибора
Чтобы убедиться в том, что собранный своими руками прибор будет работать, необходимо выполнить основные регулировки. Порядок действий будет следующим. На плате требуется выставить в среднее положение резисторы – подстрочный R2 и переменный R4, а подстрочный R5 перевести в любое крайнее. Затем включается питание. Наденьте наушники и начните вращать R5. Вы услышите сигнал, громкость и частота которого будут меняться от вращения резистора. Найдите такое положение, в котором звук будет самым громким. При дальнейшем вращении он должен снижаться и совсем пропадать. Запомните найденное положение и оставьте резистор в нем. Следующее действие: резистором R4 ищите низкочастотный сигнал. Приблизьте катушку к какой-либо металлической вещи – частота сигнала будет меняться. Если потребуется изменить интенсивность звукового сигнала, в этом поможет резистор R2.
В итоге вы получите поисковый прибор с катушкой на штанге, который удобно удерживать в руках и исследовать местность, не нагибаясь к земле.
4. Простой способ изготовления металлоискателя
Если ваш интерес в изготовлении поискового прибора не заходит так далеко, чтобы паять платы, вы можете пойти простым путем. Достаточно взять радио и калькулятор. Основой для простейшего металлоискателя будет плотная картонная обложка от книги. На одну ее внутреннюю часть крепят калькулятор, на другую – радио. Можно зафиксировать их двухсторонним скотчем. Радиоприемник в диапазоне АМ настраивается на свободную от трансляций волну, и включается максимальная громкость.
Теперь вы можете попробовать сделать металлоискатель своими руками по одной из представленных инструкций. Возможно, это будет для вас первым шагом к искательству. А когда это станет настоящим увлечением, появится повод задуматься о более серьезном приборе. Тогда можно купить металлоискатель известного бренда. Современные модели обладают множеством полезных функций и заметно упрощают процесс. В настройках можно задавать параметры поиска предметов из конкретных металлов, чтобы не копать зря, натыкаясь на ненужный лом. Желаем удачных поисков!
КАТЕГОРИИ СХЕМ СПРАВОЧНИК ИНТЕРЕСНЫЕ СХЕМЫ |
| САМЫЕ ПОПУЛЯРНЫЕ СХЕМЫ ТЕГИ |
Импульсный металлоискатель (044)
Начинающим, радиоконструктор: Импульсный металлоискатель. (044)
В этом варианте представлена принципиально новая схема металлоискателя в отличие от
вариантов (015-Б) и (043-М). Это устройство содержит больше деталей, сложнее функционально. Схема состоит из: генератора импульсов с частотой около 140Гц на микросхеме таймере КР1006ВИ1 или её импортном аналоге NE555; усилителе импульсов на транзисторах VT1,VT2;
приёмо-передающей катушки L1; ограничителя на диодах VD1,VD2, в качестве которых можно применить любые маломощные кремниевые диоды; двух малошумящих операционных усилителей (ОУ), входящих в состав микросхемы К157УД2; приёмного усилителя на транзисторе VT3. Рассмотрим принцип работы металлоискателя: микросхема таймер DD1 вырабатывает короткие (около 130мкс) импульсы с частотой 140Гц. С выхода 3 через резистор R1 импульсы поступают на базу транзистора VT1, усиливаются и через резистор R5 приходят
на затвор мощного полевого транзистора VT2, выполняющего роль транзисторного ключа.
Вместо указанного на схеме можно применить другой полевой транзистор с аналогичной структурой, например, IRF720, IRF540, IRFZ44, IRFZ48, FS5KM10 и др. Главное, чтобы сопротивление канала в открытом состоянии было минимальным (единицы Ом). Далее усиленный импульс поступает на катушку. Проходящий через её обмотку ток возбуждает вокруг катушки магнитное поле, которое в свою очередь при наличии в зоне поиска металлических предметов, наводит в них затухающие вихревые токи, которые в свою очередь возбуждают магнитное поле, наводящее ток в катушке. В результате этого сигнал с выхода катушки меняет свою форму и длительность. Через резистор R8 сигнал поступает на ограничитель VD1,VD2 – диоды, включенные встречно-параллельно. Они защищают вход ОУ DD2.1 от мощного импульса в катушке и не дают напряжению на входе подняться выше 0,5 вольт. Через С3 принятый сигнал поступает на инвертирующий вход 2 ОУ DD2.1, выполняющего функцию дифференциального усилителя. На неинвертирующий вход 3 подаётся напряжение смещения ОУ. Усиленный сигнал с выхода 13 через переменные резисторы R12,R13 поступает на вход 5 и через R14 на вход 6 ОУ DD2.2, который выполняет функцию компаратора. С его выхода 9 сигнал через С7 поступает на приёмный усилитель VT3. Если схема собрана правильно, необходимо только установить уровень чувствительности прибора. Катушку размещаем так, чтобы возле неё не было металлических предметов. Выводим ручку R13 в среднее положение, а R12 выводим положение минимального сопротивления. Подаём на схему напряжение, в динамике будет звучать жужжание с частотой генератора. Резистор R12 выводим в положение, при котором звук генератора в динамике начнёт пропадать, появятся щелчки (реакция компаратора на изменение параметров принимаемого сигнала). Это будет рабочим режимом металлоискателя. Дальнейшие настройки осуществляются резистором R13. Прибор наиболее чувствителен при прослушивании минимального количества щелчков в динамике. Далее подносим металлический предмет к катушке, частота щелчков в динамике должна увеличиваться. Далее экспериментируем с поиском предметов, крупные обнаруживаются на глубине более 1 метра.
Содержание 044:
1. Микросхема КР1006ВИ1 (NE555),
2. Панелька для микросхемы DIP8,
3. Микросхема К157УД2,
4. Панелька для микросхемы DIP14,
5. Печатная плата,
6. Динамик,
7. Поисковая катушка (25 витков),
8. Полевой транзистор VT2 — IRF740(540, 720),
9. Транзистор VT1 – КТ361,
10. Транзистор VT3 – КТ315,
11. Диоды VD1, VD2 – 1N4148 (КД521, КД522) (2 шт.),
12. Подстроечный резистор R12 – 50к,
13. Переменный резистор R13 – 20к,
14. Ручка для переменного резистора,
15. Резисторы постоянные:
R1 – 1к (Кч/Ч/Кр),
R2 – 1,5к (Кч/Зел/Кр),
R3 – 100к (Кч/Ч/Ж),
R4 – 510 Ом (Зел/Кч/Кч),
R5 – 100 Ом (Кч/Ч/Кч),
R6 – 150 Ом (Кч/Зел/Кч),
R7 – 240 Ом (Кр/Ж/Кч),
R8 – 330 Ом (Ор/Ор/Кч),
R9 – 51к (Зел/Кч/Ор),
R10, R14 – 68к (Гол/Кр/Ор) (2 шт.),
R11 – 2,2М (Кр/Кр/Зел),
R15 – 120к (Кч/Кр/Ж),
R16 – 470к (Ж/Ф/Ж),
R17 – 10 Ом (Кч/Ч/Ч),
16. Конденсаторы:
С1, С2 – 0,1МкФ (100Н, 104) (2 шт.),
С3, С7 – 1МкФ (2 шт.),
С4, С6 – 10МкФ (2 шт.),
С5 – 1Н (1000пФ, 102),
С8 – 1000МкФ,
17. Схема и описание.
Время непрерывной пайки одной точки не должно превышать трёх секунд
При сборке схемы соблюдайте полярность подключения питания, стрелочного прибора,
электролитического конденсатора, выпрямительных диодов и цоколёвку при установке микросхемы в панельку!
Металлоискатели, они же металлодетекторы: принципы работы и схемы
BFO металлоискатели на биениях, металлоискатели по принципу электронного
частотомера, импульсные металлоискатели.
Оптимальные частоты излучения.
Металлоискатель, он же металлодетектор — это электронный прибор, позволяющий обнаруживать металлические предметы в
нейтральной или слабопроводящей среде за счёт наличия у этих предметов электрической проводимости.
Так, а кой же должна быть эта слабопроводящая среда, если мы знаем, что практически все материалы в той или иной степени проводят ток?
Ну, как минимум, на несколько порядков ниже, чем проводимость металлов. Золотой портсигар внутри танка, затонувшего в болоте, мы,
само собой, не отыщем, а вот какую-нибудь железяку в грунте, воде, стене, древесине, чемодане,
в чьём-либо организме, в конце концов, и т.д. и т.п. — это пожалуйста, добро пожаловать на металлодетекторное обследование.
Теперь — по какому принципу работают металлоискатели (металлодетекторы)?
Этих принципов работы несколько:
Металлоискатель по принципу «передача-приём» непрерывным сигналом.
Тут всё понятно и соответствует названию:
Передающая катушка непрерывно стреляется переменным электро-магнитным полем в искомый металлический предмет, оказавший поблизости.
Под влиянием этого поля в предмете, выступающем в роли мишени, возникают электрические токи, которые, в свою очередь,
создают собственное магнитное поле, с направленностью обратной магнитному полю передатчика.
Приёмная катушка регистрирует отражённый (или, как говорят, переизлучённый) от металлического предмета (мишени) сигнал.
Далее этот сигнал усиливается и обрабатывается электроникой, предварительно отделив его от более мощного сигнала передатчика.
Чем больше предмет и чем он ближе расположен к катушкам, тем выше будет амплитуда переизлучённого сигнала.
Прибор данного типа подразумевают наличие как минимум двух катушек, одна из которых является передающей, а другая, приёмной.
Мало того, необходимо позаботиться о таком выборе взаимного расположения катушек, при котором магнитное поле излучающей катушки
в отсутствие посторонних металлических предметов наводит минимальный (в идеале — нулевой) сигнал в приёмной катушке
(или в системе приёмных катушек).
Рис.1
Существуют различные варианты взаимного расположения катушек, при которых не происходит непосредственной передачи сигнала из одной катушки в другую. Основные из них: катушки с перпендикулярными осями (Рис.1, а и б), а также вариант расположения приёмной катушки, скрученной в форме восьмёрки, внутри передающей (Рис. 1 в).
Поскольку конструкция данных типов металлоискателей достаточно сложна, так как подразумевает наличие отдельных катушек на приём и передачу, широкого распространения в радиолюбительской практике она не нашла.
Совсем другое дело — металлоискатели, построенные на принципе биений, или так называемые BFO металлоискатели.
Принцип действия металлоискателя на биениях заключается в регистрации разности частот от двух генераторов,
один из которых является стабильным по частоте, а другой содержит датчик — поисковую катушку индуктивности в своей частотозадающей цепи.
Прибор настраивается таким образом, чтобы в отсутствие металла вблизи датчика частоты двух генераторов совпадали или были очень близки
по значению.
Наличие металла вблизи датчика приводит к изменению индуктивности датчика и, как следствие, к изменению частоты соответствующего
генератора. Это изменение, приведёт к изменению разностной частоты двух генераторов, которая выделяется специальным устройством
(смесителем), на входы которого подаются сигналы обоих генераторов, а на выходе выделяется разностная частота, называемая частотой биений.
Разность частот может регистрироваться самыми различными путями, начиная от простейшего, когда сигнал разностной частоты прослушивается
на головные телефоны, и кончая цифровыми способами измерения частоты.
Диапазоны рабочих частот BFO металлоискателей — 40-500 кГц.
При отсутствии металла в поле поисковой катушки разностная частота должна быть в пределах 500…1000 Гц.
В качестве примера приведу схему простейшего компактного металлоискателя на микросхеме К175ЛЕ5 (Источник Яворский В. Металлоискатель на К176ЛЕ5. // Радио, 1999, №8, с. 65).
Рис.2
Схема содержит два генератора (опорный и поисковый). Поисковый генератор собран на элементах DD1.1, DD1.2, а опорный – на элементах
DD1.3 и DD1.4.
Переменным резистором R2 плавно изменяют частоту поискового генератора в диапазоне частот, установленном подстроечным резистором R1.
Частота генератора на элементах DD1.3 и DD1.4 зависит от параметров колебательного контура L1, С2.
Сигналы с обоих генераторов поступают через конденсаторы C3 и С4 на детектор, выполненный на диодах
VD1 и VD2.
Нагрузкой детектора являются наушники BF1, на которых выделяется разностный сигнал в виде низкочастотной составляющей,
преобразуемый наушниками в звук.
Параллельно наушникам включен конденсатор С5, который шунтирует их по высокой частоте. При приближении поисковой катушки L1 к
металлическому предмету происходит изменение частоты генератора на элементах DD1.3, DD1.4, в результате меняется тональность
звука в наушниках. По этому признаку и определяют, находится ли в зоне поиска металлический предмет.
Рис.3
Катушка L1 размещается в кольце диаметром 200 мм, согнутом из медной или алюминиевой трубки с внутренним диаметром 8 мм. Между концами трубки должен быть небольшой изолированный зазор, чтобы не было короткозамкнутого витка. Катушка наматывается проводом ПЭЛШО 0,5. Через трубку необходимо протянуть любым способом максимальное число витков: чем больше, тем лучше.
Несмотря на бытующее мнение, что BFO металлоискатели не имеют чёткой селективности различных видов металлов, при наличии некоторого опыта, данным типом устройств можно-таки производить селекцию, анализируя и отфильтровывая сигналы на слух.
В теории чувствительность BFO металлоискателей должна быть таком же уровне, как и у устройств, построенных по принципу «передача-приём». Однако существует существенная проблема, снижающая чувствительность приборов данного типа. Проблема заключается в том, что два генератора, настроенные на очень близкие частоты, имеют тенденцию к паразитной взаимной синхронизации. А это, в свою очередь, не даёт возможности работы на низких начальных разностных частотах, на которых ухо имеет максимальную чувствительность к изменению тона звукового сигнала.
И тут, лёгким движением руки, BFO металлоискатель превращается в
Металлоискатель, работающий по принципу электронного
частотомера.
Построенный по такому принципу электронный металлоискатель является несомненным родственником прибора «на биениях», но в отличие от него содержит один генератор с частотозадающей поисковой катушкой, а изменение частоты фиксируется электронным устройством, работающим по принципу частотомера. Помимо повышения чувствительности приборы данного класса, обладают и возможностью оценки знака приращения частоты, а соответственно и возможностью селекции чёрных/цветных металлов.
Простейшую реализацию подобной конструкции без селектора видов металлов предложил Адаменко М.В. в книге «Металлоискатели».
Рис.4
Предлагаемая конструкция является устройством, в основу которого положен принцип анализа девиации частоты опорного генератора под влиянием металлических предметов, попавших в зону действия поисковой катушки. Главными отличительными особенностями данного прибора можно считать интересное схемотехническое решение анализатора, выполненного на кварцевом элементе Q1, а также использование в качестве индикатора стрелочного прибора.
Основу схемы рассматриваемого металлодетектора (Рис.4) составляют
измерительный генератор, буферный каскад, анализатор, детектор высокочастотных колебаний и индикаторное устройство.
Колебательный контур генератора высокой частоты, выполненного на транзисторе Т1, состоит из катушки L1 и конденсаторов С3-С6.
Рабочая частота ВЧ-генератора зависит от девиации индуктивности катушки L1, которая одновременно является поисковой катушкой,
а также от изменения ёмкостей подстроечного (С4) и регулировочного (С3) конденсаторов.
При отсутствии металлических предметов в зоне действия катушки L1 частота колебаний, возбуждаемых в ВЧ-генераторе, должна быть
равна частоте кварцевого элемента Q1, то есть в данном случае — 1 МГц.
После того как в зоне действия поисковой катушки L1 окажется металлический предмет, её индуктивность изменится. Это приведёт
к изменению частоты колебаний ВЧ-генератора. Далее сигнал ВЧ подаётся на буферный каскад, обеспечивающий согласование генератора
с последующими цепями. В качестве буферного каскада используется эмиттерный повторитель, выполненный на транзисторе Т2.
С выхода эмиттерного повторителя сигнал ВЧ через регулировочный резистор R7 и кварц Q1 поступает на детектор, выполненный на диоде D2.
Благодаря высокой добротности кварца малейший сдвиг частоты измерительного генератора будут приводить к уменьшению полного
сопротивления кварцевого элемента. В результате на вход усилителя постоянного тока (база транзистора Т3) поступает сигнал,
изменение амплитуды которого обеспечивает соответствующее отклонение стрелки индикаторного прибора.
Нагрузкой УПТ, выполненного на транзисторе Т3, является стрелочный прибор с током полного отклонения 1 мА. При замыкании
выключателя S2 в цепь нагрузки включается генератор звукового сигнала, выполненный на транзисторе Т4.
Поисковая катушка L1 представляет собой кольцевую рамку, изготовленную из отрезка кабеля с внешним диаметром 8-10 мм (например, кабеля марки РК-50). Центральную жилу кабеля следует удалить, а вместо неё протянуть шесть жил провода типа ПЭЛ диаметром 0,1-0,2 мм и длиной 115 мм. Получившийся многожильный кабель необходимо согнуть на подходящей оправке в кольцо таким образом, чтобы между началом и концом образовавшейся петли остался зазор шириной примерно 25-30 мм.
Рис.5
Конец провода, являющийся началом первого витка, следует припаять к экранирующей оплётке кабеля, начало второго витка — к концу первого и так далее. В результате получится катушка, содержащая шесть витков провода. При изготовлении катушки L1 нужно особенно следить за тем, чтобы не произошло замыкания концов экранирующей оплётки, поскольку в этом случае образуется короткозамкнутый виток.
Непосредственное налаживание металлодетектора следует начать с установки нужной частоты колебаний, формируемых ВЧ-генератором.
Частота колебаний ВЧ должна быть равна частоте кварцевого элемента Q1. Для выполнения данной регулировки рекомендуется воспользоваться
цифровым частотомером. При этом значение частоты сначала грубо устанавливается изменением ёмкости конденсатора С4, а затем точно —
регулировкой конденсатора С3.
При отсутствии частотомера настройку ВЧ-генератора можно провести по показаниям индикатора PA1. Поскольку кварц Q1 является
элементом связи между поисковой и индикаторной частями прибора, то его сопротивление в момент резонанса весьма велико.
Таким образом, о точной настройке колебаний ВЧ-генератора на частоту кварца будет свидетельствовать минимальное показание стрелочного
прибора PA1.Уровень чувствительности данного устройства регулируется резистором R8.
Ну и закончу я обзор весьма популярными среди радиолюбительского сообщества —
Импульсными металлоискателями.
Не будем отвлекаться на различные виды импульсных конструкций. Рассмотрим однокатушечный вариант с временным способом
разделения излучаемого и отражённого сигналов.
После воздействия импульса магнитной индукции в искомом проводящем объекте возникает и некоторое время поддерживается (вследствие явления
самоиндукции) затухающий импульс тока, обусловливающий задержанный по времени отражённый сигнал. Он и несёт полезную информацию,
его и надо регистрировать.
Генератор импульсов тока формирует короткие импульсы тока миллисекундного диапазона, поступающие в излучающую катушку,
где они преобразуются в импульсы магнитной индукции. Так как излучающая катушка имеет ярко выраженный индуктивный характер,
всплески напряжения на ней могут достигать по амплитуде десятков-сотен вольт. В связи с этим, необходимо позаботиться: либо о
блокировке входной цепи прибора на определённое время, либо об ограничении данного напряжения на входе приёмной части регистратора.
По истечении времени действия импульса тока в излучающей катушке и времени разрядки катушки в действие должен вступить блок обработки сигнала,
предназначенный для преобразования входного электрического (отражённого от железяки) сигнала в удобную для восприятия человеком форму.
Приведу для примера простую и расхожую схему импульсного металлоискателя ПИРАТ.
Принцип работы этого металлоискателя основан на изменении времени затухания отражённого от металлического предмета импульса в
поисковой катушке, которое увеличивается с приближением металлических предметов.
Дискриминации в данном типе металлоискателя нет, цветной и чёрный металлы реагируют практически одинаково.
Прибор состоит из передающего блока (генератора
импульсов на таймере NE555 и мощного ключа на полевом транзисторе) и приёмной части на операционном усилителе TL072.
По входу приёмника стоят встречно-параллельно включённые ограничивающие диоды, на входе второго каскада ОУ приёмника — фильтр,
отсекающий импульсы, излучаемые передатчиком.
Поисковая катушка L1 намотана на оправку 180-200 мм и содержит 25-30 витков эмалированного провода диаметром 0.5-0.8 мм.
Экранировать катушку не нужно.
Оптимальные параметры работы генератора на NE555 : частота 125-150 Гц, длительность импульса 125-150 мкс.
При соблюдении этих параметров аппарат потребляет минимальный ток и имеет максимальную чувствительность:
Потребляемый ток : 30-50 мА;
Чувствительность : Монета 25 мм — 20 см, крупные предметы — 150 см.
После сборки схемы наладить металлоискатель очень просто. Включаем питание и ждём окончания переходных процессов в течении
15 секунд, подбором резистора R11 добиваемся того, чтобы при среднем положении переменного резистора R12 в динамике не было
слышно звука генератора, а слышались только редкие щелчки.
Поисковая катушка при настройке должна находиться вдали от металлических предметов. При приближении металла в динамике
должен появляться звук с частотой работы таймера NE555.
И подытожим страницу информацией о том,
как частота металлоискателя влияет на качество поиска.
Условно частоты работы металлоискателей можно разделить следующим образом:
2-6 кГц — низкая частота;
6-15 кГц — средняя частота;
15-30 кГц — высокая частота;
от 30 кГц и выше — ну, очень высокая частота.
Низким частотам присущи следующие свойства: бóльшая способность проникать в глубину почвы, а потому и увеличенная глубина
обнаружения, способность работать на почвах с высоким уровнем минерализации, способность хорошо справляться с задачей поиска целей
с высокой проводимостью (медь, бронза, серебро).
Из недостатков: не очень хорошо подходят для поиска мелких объектов и поиска целей с низкой проводимостью, например, железа, никеля и т.д.
Высокие частоты обладают следующими свойствами: показывают отличные результаты при поиске мелких объектов,
хорошо подходят для поиска целей с низкой проводимостью, обладают более высокой точностью, особенно при обнаружении целей,
расположенных близко к поверхности.
Из недостатков: чувствительность к помехам, создаваемым высокоминерализованным грунтом, меньшая глубина обнаружения по сравнению с
низкой частотой.
Средние частоты представляют собой компромисс между низкими и высокими. Средняя частота считается универсальной, подходящей под любой тип находок, поэтому практически все бюджетные одночастотные детекторы промышленного производства обладают стандартной рабочей частотой — 6-8 кГц.
Как сделать металлоискатель своими руками, видео, схема металлоискателя
Автор Светозар Тюменский На чтение 3 мин. Просмотров 3.9k. Опубликовано Обновлено
Поводов в необходимости осуществления поиска металлических предметов в грунте, воде или строительных конструкция существует достаточно много. При этом покупка промышленного образца такого устройства может оказаться неоправданной по затратам или по необходимой эффективности. В таких случаях домашнему умельцу может оказаться вполне по силам изготовить металлоискатель своими руками.
Прежде, чем приступить к изготовлению хорошего металлоискателя как на видео, следует, исходя из планируемых потребностей, определиться с выбором принципиальной электрической схемы прибора. Их создано большое количество и они отличаются, как по используемой элементной базе, так и по достигаемых технических показателях. На что обычно обращают внимание при выборе электрической схемы? В первую очередь, на ее сложность, доступность используемых в ней электронных комплектующих, сложность ее изготовления и настройки. Полезно, если к предлагаемой электрической схеме прилагается внешний вид печатной платы, это облегчает ее изготовление и сборку. Немаловажным является то, какую чувствительность обеспечит выбранный вариант металлоискателя.
После выбора электронной схемы, ее изготовления и настройки другим важным этапом является изготовление чувствительного органа металлоискателя – катушки или рамки.
Даже самый простой металлоискатель, изготавливаемый своими руками, нуждается в индуктивной катушке. Она представляет собой кольцо диаметром от 6-8 см до 14-16 см в зависимости от размеров металлических предметов, которые предстоит искать. Для изготовления самодельной катушки берется заготовка подходящего диаметра, на которую наматывается медный эмалированный провод сечением 0,4-0,5 мм. Количество витков можно рассчитать по известной формуле, учитывающей диаметр катушки. После намотки катушку аккуратно снимают с заготовки и закрепляют с помощью изоляционной ленты. Она защитит ее от механических повреждений и попадания атмосферной влаги. После этого поверх катушки наматывают фольгу-экран с разрывом длиной примерно 10-15 мм.
Полученный экран не должен представлять собой короткозамкнутый виток. Поверх экрана необходимо намотать с шагом 1 см медный луженый провод, который подключается к оплетке коаксиального кабеля, ведущего к электронному блоку. Катушка подключается к схеме двухпроводным коаксиальным кабелем.
Рекомендуется изготовить несколько катушек с разными внутренними диаметрами, что позволит подключать их применительно к каждому конкретному случаю. В заключение остается оформить металлоискатель конструктивно: электронный блок помесить в герметичный корпус, защищенный от влаги и пыли, а индуктивную катушку установить на конец неметаллического шеста необходимой длины. В качестве источника звукового сигнала, формируемого электронной схемой, может быть использован небольшой динамик или наушники, если предстоит пользоваться устройством в зашумленных местах. Электропитание прибора осуществляется от автономного источника тока – батарейки или аккумулятора.
Глубинный самодельный металлоискатель отличается от поверхностного более высокой чувствительностью, позволяющей находить металлические предметы на глубинах до нескольких метров. Кроме этого, в таких устройствах предусмотрена селективность, позволяющая игнорировать мелкие предметы. В технологическом отношении такое устройство ничем не отличается от вышеописанного. Как правило, индуктивная катушка для глубинного металлоискателя изготавливается большего диаметра (до 300 мм) и имеет более качественную защиту от внешних помех. Настройка такого устройства может потребовать использования электронной измерительной аппаратуры. Это позволит добиться необходимого уровня чувствительности устройства.
Мы искренне надеемся, что наша статья с видео поможет вам сделать хороший металлоискатель своими руками.
схемы, катушки, сборка деталей самостоятельно и инструкции
Металлодетекторы используются для поиска металла в почве на определенной глубине. Данное устройство можно собрать самостоятельно в домашних условиях, имея хотя бы минимальный опыт в этом деле или же следуя четким указаниям инструкции. Главное — желание и наличие необходимых инструментов.
Подробная инструкция металлоискателя терминатор 3 своими руками
Данный тип конструкции предназначен для поиска монет. Процесс его сборки совсем несложен. Однако опыт по сборке такого инструмента все же необходим. Терминатор способен обнаружить предмет, даже если цель захвата минимальна.
Для начал следует подготовить необходимое оборудование, а именно:
- мультиметр, который измеряет скорость.
- LC метр.
- Осциллограф.
Далее необходимо найти схему с разбивкой на узлы. Теперь можно изготовить печатную плату, в которую следует впаять по порядку перемычки, резисторы, панели под микросхемы и остальные детали. Следующим шагом будет промывка спиртом платы. Обязательно стоит проверить на наличие дефектов. В рабочем ли состоянии плата можно проверить следующим образом:
- Включить питание.
- Выкрутить регулятор чувствительности до того, как в динамике не будет слышен звук.
- Коснуться пальцами разъема датчика.
- При включении должен мигнуть, а затем погаснуть светодиод.
Если все действия произошли, то все сделано правильно. Теперь можно делать катушку. Необходимо подготовить обмоточный эмальпровод 0,4 мм диаметром, который надо сложить вдвое. На листе фанеры рисуется круг, имеющий диаметр 200 мм и 100 мм. Теперь по кругу надо вбить гвозди, расстояние между ними должно быть 1 см.
Далее можно перейти к наматыванию витков. На 200 мм следует сделать их 30, а на 100 — 48. Затем первую катушку надо пропитать лаком, когда он высохнет, можно обмотать ниткой. Нитку можно снять, и, спаяв середину, получится цельная обмотка из 60 витков. После катушку надо обмотать изолентой довольно плотно. А сверху накладывается фольга в размере 1 см, это будет экран, на нее сверху мотается еще изолента. Концы должны выходить наружу.
youtube.com/embed/IQHpgs-2Po4″ allowfullscreen=»allowfullscreen»/>
На второй катушке также необходимо спаять середину. Для того чтобы запустить генератор, надо первую катушку подключить к плате. Вторую катушку следует обмотать проводом в 20 витков, затем подключаем ее к плате. Теперь требуется подключить осциллограф минус на минус к плате, а плюс подключается к катушке. Обязательно посмотрите какая частота будет при включении и запомните ее или зафиксируйте на бумаге.
Теперь катушки надо положить в специальную форму, чтобы потом залить их смолой. Далее осциллограф подключается к плате, минусовым полюсом, амплитуда должна достигнуть нулевого значения. Катушки в форме заливают смолой примерно на половину глубины. Когда все готово, проводится настройка шкалы дискриминации металлов.
Список деталей для металлоискателя терминатор 3
В качестве деталей для металлоискателя трио понадобятся:
- Конденсаторы металлоплёночные;
- SMD резисторы;
- Микросхемы;
- Транзисторы;
- Диоды.
При наличии данных деталей можно собирать металлодетектор терминатор про самостоятельно.
Схема металлоискателя с дискриминацией металлов
Металлоискатель с дискриминацией металлов своими руками можно сделать, воспользовавшись схемой для импульсного прибора Шанс. Процесс изготовления катушки довольно прост.
Саму схему можно найти в интернете. Но все же опыт в сборке таких устройств будет нелишним. Сборку металлоискателя следует начать с платы.
После того как плата будет изготовлена, предстоит прошить микроконтроллер. И по окончании работы подключаем к питанию устройство по обнаружению металла.
Однако, для того чтобы оборудование работало, требуется катушка. Лучше всего, если она будет с низкой паразитной емкостью. Обмоточный эмальпровод наматывают на катушку. И затем ее можно подключить и проверить работоспособность металлоискателя. Обязательно для него надо изготовить корпус и штангу. И можно приступать к работе.
Металлоискатель своими руками без микросхем
Самодельное оборудование можно изготовить и без сложных микросхем, а использовав простой транзисторный генератор. Металлоискатель будет без дискриминации. Предметы он будет обнаруживать в грунте на 20 сантиметров в глубину, а в сухом песке — на 30 сантиметров. В данном аппарате передающая и приемная катушки работают одновременно.
Катушка для металлоискателя терминатор 3
Для начала следует взять эмаль обмоточный, имеющий диаметр 0,4 мм. Сложить его так, чтобы было два конца и два начала. Далее стоит мотать с двух катушек в раз.
Теперь надо сделать передающую и принимающую катушки, для этого на фанерном листе чертится два круга 200 мм и 100 мм. По данным окружностям вбиваются гвоздики, расстояния между ними должны быть 1 см. На большую оправку наматываются 30 витков эмальпроводом. Затем следует нанести на катушку лак и умотать ниткой, затем сняв с обмотки, спаять серединку. Так получаются провода один средний и крайних два.
Полученную катушку стоит обмотать изолентой и наложить поверх кусок фольги, и сверху еще раз фольгу. Концы обмоток должны выходить наружу.
Теперь стоит перейти к приемной катушке. Здесь уже наматываются 48 витков. Для запуска генератора надо подключить передающую катушку к плате. Средний провод подключается к минусу. А у приемной катушки средний вывод не используется. Для передающей катушки нужна компенсирующая, на которую мотается 20 витков.
Осциллограф к плате подключаем так: щуп с минусом на минус платы, а плюсовой щуп — к катушке. Обязательно следует замерить частоту катушек и записать ее.
После подключения катушек по схеме, их надо поместить в специальную емкость и залить смолой. Теперь на осциллографе устанавливается время деления (10 мс и 1 вольт на клетку). Теперь следует уменьшить амплитуду до нулевого значения. Сматываем витки, пока значение вольт не достигнет нуля. Делаем компенсирующую петлю у катушки, которая будет снаружи.
Форму наполовину следует пролить смолой. Когда все застынет, надо подключить осциллограф и загнуть петлю внутрь. Далее крутить ее, пока значение амплитуды не станет минимальным. После петлю надо приклеить, проверить баланс, и теперь можно залить смолой вторую половину емкости. Катушка готова к работе.
Ремонт катушки металлоискателя
Перед тем как приступить к ремонту, следует подготовить следующие инструменты:
- Нож канцелярский;
- Лампа накаливания;
- Емкость для клея, желательно плоская;
- Специальная или эпоксидная смола;
- Средний и мелкий наждак;
- Небольшой шпатель.
В первую очередь надо просушить катушку с помощью лампы накаливания. И при помощи канцелярского ножа расширить трещины на ней. Клей выдавить на плоскую поверхность и смешать шпателем. Нанести данное вещество на катушку. В местах трещин можно накладывать побольше смолы. Теперь стоит подождать, пока все это тщательно застынет. И затем обработать наждаком, используя сначала средний, а затем мелкий. Такая процедура поможет сгладить все неровности. Таким довольно несложным способом можно реанимировать самую старую катушку от устройства для поиска металла.
Печатная плата для устройства терминатор 3
Печатную плату для такого вида оборудования можно изготовить и произвести настройку самостоятельно. Схема платы для терминатора 3 есть в интернете. После того как она будет найдена, можно приступить к изготовлению печатной платы. После этого в нее впаиваются перемычки, смд резисторы и панели под микросхемы. Конденсаторы в плате обязательно должны обладать высокой термостабильностью.
Далее печатную плату промывают спиртом. Обязательно просушивают, и при наличии дефектов устраняют их. Простая и надежная плата готова.
Датчик для металлодетектора своими руками
Перед началом работы необходимо подготовить прибор, который будет точно мерить емкость и индуксивность. Теперь следует взять корпус для катушки и сделать вставки из текстолита в ушки. Для уплотнения используются куски ткани. Верхнюю поверхность ушек следует отшкурить. Ткань необходимо пропитать эпоксидной смолой. Когда все высохнет, следует все отшлифовать и вставить гермоввод, сделав таким образом заземление. Далее надо нанести специальный лак Дракон.
Теперь делаются обмотки, которые увязываются нитками. Все обмотки кладут в катушку и приклеивают конденсаторы. Можно все соединять и настраивать. Для заливки необходим корпус. Обязательно: металла рядом быть не должно. После заливки эпоксидку следует отшлифовать и тщательно просушить. Датчик подойдет для металлодетектора терминатор 3 и терминатор 4, которые являются самыми популярными моделями приборов.
Металлоискатель терминатор 3: отзывы
Многие считают данную модель аппарата популярной. В качестве положительных качеств выделяют:
- Нахождение объектов из цветного металла.
- Отстутствие ложных срабатываний.
А в качестве отрицательных черт выделяют:
- Ржавое железо определяет довольно плохо.
- Можно потерять часть находок.
Глубина поиска у прибора выше, чем у других похожих моделей. В основном это 30 сантиметров на примере монеты.
Металлоискатель Соха 3: схема и описание
Металлодетектор имеет от 5 до 17 кГц рабочую частоту. Питание его составляет 12 Вольт. Баланс грунта у него ручной.
Схема данного прибора не совсем проста, так как она содержит два микроконтроллера. Схему можно найти в интернете. Сам прибор имеет неплохие характеристики. Однако из- за отсутствия подробной информации по сборке могут возникнуть трудности при изготовлении аппарата.
САМОДЕЛЬНЫЙ МЕТАЛЛОИСКАТЕЛЬ
В современной электронике и радиолюбительском быту, часто требуется собрать металлодетектор различной сложности, как правило это простейшие схемы. Хотя опытные радиолюбители замахиваются и на микроконтроллерные металлоискатели. Именно такие простые конструкции для поиска металлов, с одной катушкой датчиком, парой транзисторов и простейшим генератором, пользуются популярностью у любителей покопать весной и летом черный металл на скрытой поверхностью земли территории. На сайте до сих пор тема металлоискателей не поднималась, так что восстановим этот пробел и познакомим уважаемых посетителей с простым и популярным МД.
Схема самодельного металлоискателя
Для таких целей есть схема довольно хорошего и проверенного в бою аппарата, который зовется «Пират» и получает широкое распространение среди копателей. Схема элементарна и повторяется не раз, я например под себя переделываю печатку и изготавливаю частенько по заказу такие приборы. Схема генератора строится на таймере 555 – тут главное для большей стабильности поставить пару пленочных хороших конденсаторов, проверив их ёмкость предварительно тестером. Часть резисторов паяю для удобства в смд исполнении, микросхема распространенная — операционник УД2, в качестве приемника импульсов. Заказал недавно их несколько десятков, но вы можете легко найти их в старой аппаратуре, таких как радиоприемнике или магнитофоне советских лет.
Катушка прибора на каркасе мотается проводом что есть под рукой — от 0.3 мм до 0.6 мм, чем толще провод — тем лучше чувствительность на металлы, и больше дальность пробивания импульсов, но тем сложнее изготовить, каркас нужен более глубокий, укладывать провод более толстый тяжелее, фиксировать так же проблемно.
Печатную плату выполняю из гетинакса, травлением в растворе хлорного железа, лужение пос-61 обычным плоским паяльником при достаточной температуре, работая с гетинаксом главное не перегреть – при излишних температурах можно запороть заготовку будущей печатной платы и все пойдет пузырями.
Динамик использовать желательно высокоомным – так звук получается по-громче, питание схемы обязательно надо осуществлять от аккумулятора с емкостью от пары ампер, а напряжение к нему подводить проводами потолще, так как прибор то импульсный. Катушку с металлоискателем соединять проводами потолще тоже.
Регуляторы ставлю пару – для грубой и точной настройки, например 100 ком и 10 ком, соответственно. Все выводы и особо опасные и малонадежные элементы закрепляю для большей надежности из термопистолета термоклеем.
Видео работы металлоискателя
На выходе получается вот такой прибор, который нравится копателям, корпус и прочее уже подбираются под нужды и то что нравится, так сказать. Чувствительность на мелкие предметы из металла, например 5 коп СССР — до 30 см. Собрал и проверил устройство — redmoon.
Originally posted 2018-11-20 08:01:27. Republished by Blog Post Promoter
Принципиальная схема и работа металлоискателя Металлоискатель— очень распространенное устройство, которое используется для проверки людей, багажа или сумок в торговых центрах, гостиницах, кинозалах и т. Д., Чтобы убедиться, что человек не имеет при себе металлов или незаконных вещей, таких как пистолеты, бомбы и т. д. Металлоискатели обнаруживают присутствие металлов.
Существуют различные типы металлоискателей, такие как ручные металлоискатели, проходные металлоискатели и металлоискатели с наземным поиском. Металлоискатели могут быть легко созданы, а схема базового металлоискателя не такая сложная.
В этом проекте мы разработали простую схему металлоискателя типа «сделай сам», используя очень простые компоненты, которые можно использовать в наших домах и садах.
Принципиальная схема
На следующем изображении показана принципиальная схема цепи металлоискателя.
Необходимые компоненты
- 1 x TDA0161 Датчик приближения IC
- 2 конденсатора по 47 нФ (код керамического конденсатора 473)
- 1 резистор 1 кОм (1/4 Вт)
- 1 резистор 330 Ом (1 / 4 Вт)
- 1 резистор 100 Ом (1/4 Вт)
- 1 потенциометр 5 кОм
- 1 x 2N2222A (транзистор NPN)
- 1 зуммер 5 В
- Катушка (медный провод 26-30 AWG взят и намотан на катушку диаметром 5-6 см и 140-150 витков)
- Дополнительные компоненты (для светодиода)
- 1 резистор 220 Ом (1/4 Вт)
- 1 светодиод x 5 мм
Описание компонента
TDA0161 ИС датчика приближения: TDA0161 — ИС датчика приближения, производимая STMicroelectronics. Его можно использовать для обнаружения металлических объектов, обнаруживая небольшие изменения в высокочастотных потерях на вихревые токи.
Микросхема TDA0161 действует как генератор с помощью схемы с внешней настройкой. Изменения в токе питания будут определять выходной сигнал, то есть ток высокий, когда рядом находится металлический объект, и низкий, когда металлического объекта нет.
TDA0161 имеет 8 контактов и поставляется в двухрядном корпусе (DIP). На следующем изображении показана схема выводов микросхемы TDA0161.
ПРИМЕЧАНИЕ: Согласно STMicroelectronics, микросхема датчика приближения TDA0161 устарела.Если он доступен на рынке, смело создавайте этот увлекательный проект. Если она недоступна, попробуйте найти новую микросхему. Мы постараемся обновить, если будет доступна подобная микросхема. Если вы найдете какие-либо микросхемы датчика приближения, укажите это в разделе комментариев.
Катушка(индуктор): для этого проекта мы использовали медный провод 30 AWG. Затем он наматывается на катушку с использованием эталона диаметром 5,8 см. Катушка состоит из 140 — 150 витков.
Описание цепи металлоискателя
- Когда LC-цепь, которая является L1 и C1, имеет резонансную частоту от любого металла, который находится рядом с ней, будет создано электрическое поле, которое приведет к индукции тока в катушке и изменению прохождение сигнала через катушку.
- Переменный резистор используется для изменения значения датчика приближения, равного LC цепи, лучше проверять значение, когда катушка находится не рядом с металлом. Когда металл обнаружен, в цепи LC изменится сигнал. Измененный сигнал подается на датчик приближения (TDA 0161), который обнаруживает изменение сигнала и соответствующим образом реагирует. Выход датчика приближения будет составлять 1 мА, когда металл не обнаружен, и около 10 мА, когда катушка находится рядом с металлом.
- Когда на выходном контакте высокий уровень, резистор R3 будет подавать положительное напряжение на транзистор Q1. Q1 будет включен, светодиод будет светиться, а зуммер издаст сигнал. Резистор r2 используется для ограничения тока.
Блок-схема металлоискателя
В цепи металлоискателя есть три основных части: LC-цепь, датчик приближения, выходной светодиод и зуммер. Катушка и конденсатор С1, включенные параллельно, образуют LC-цепь.
Датчик приближения (TDA0161) срабатывает этой LC-цепью при обнаружении любого металла.Затем датчик приближения включит светодиод и подаст сигнал тревоги с помощью зуммера.
LC-цепь: LC-цепь имеет индуктивность и конденсатор, соединенные параллельно. Эта цепь начинает резонировать, когда рядом с ней находится материал той же частоты. Цепь LC заряжает конденсатор и катушку индуктивности поочередно. Когда конденсатор полностью заряжен, заряд передается на катушку индуктивности.
Индуктор начинает заряжаться, и когда заряд на конденсаторе равен нулю, он снимает заряд с индуктора в обратной полярности. Затем заряд индуктора уменьшается, и снова процесс повторяется. Обратите внимание, что индуктор является устройством хранения магнитного поля, а конденсатор — устройством хранения электрического поля.
Датчик приближения: Датчик приближения может обнаруживать объекты без каких-либо физических помех. Датчик приближения будет работать так же, как инфракрасный датчик, приближение также выдает сигнал, он не будет выдавать выходной сигнал до тех пор, пока не произойдет изменение отраженного обратного сигнала.
Если есть изменение в сигнале, он обнаружит и выдаст соответствующий выходной сигнал.Существуют различные датчики приближения, например, для обнаружения пластикового материала, мы можем использовать приближение емкостного типа, а для металлов мы должны использовать индуктивный тип.
Рабочий
Цепь LC, которая состоит из L1 (катушка) и C1, является основной частью цепи металлоискателя. С помощью этой LC-цепи, которая также называется Tank Circuit или Tuned Circuit, микросхема TDA0161 действует как генератор и генерирует колебания с определенной частотой.
Когда LC-цепь обнаруживает любую резонирующую частоту от любого металла, который находится рядом с ней, будет создано электрическое поле, которое приведет к индукции тока в катушке и изменению потока сигнала через катушку.
Переменный резистор используется для изменения значения датчика приближения, равного LC цепи, лучше проверять значение, когда катушка не находится рядом с каким-либо металлическим предметом. Когда металл обнаружен, в цепи LC изменится сигнал.
Измененный сигнал подается на датчик приближения (TDA 0161), который обнаруживает изменение сигнала и соответствующим образом реагирует. Выходной сигнал датчика приближения будет меньше 1 мА, когда металл не обнаружен, и около 10 мА (обычно больше 8 мА), когда катушка находится рядом с металлом.
Когда на выходном контакте высокий уровень, резистор R3 подает положительное напряжение на транзистор Q1. Q1 загорится, светодиод будет гореть (на схеме не показан) и включится зуммер.
Преимущества
- Схема металлоискателя на основе микросхемы бесконтактного детектора TDA0161 — это очень простой и легкий в сборке металлоискатель, который можно использовать для обнаружения мелких металлов в наших домах, офисах и садах.
- Нужен любой микроконтроллер, так как датчика приближения будет достаточно для реализации проекта.
Недостатки
- Основным недостатком данной схемы металлоискателя является дальность обнаружения. Металлический объект должен находиться на расстоянии 10 мм, чтобы детектор его обнаружил.
Приложения
- Этот простой металлоискатель можно использовать для идентификации металлов, таких как железо, золото, серебро и т. Д.
- Поскольку это простой проект, мы можем использовать его у себя дома для сканирования гвоздей, металлических отходов и т. Д. которые нелегко обнаружить невооруженным глазом.
Связанные сообщения:
Цепь металлоискателя со схемой и схемой
Схема металлоискателя
Я всегда хотел сделать металлоискатель, глядя, как это круто во всех голливудских, болливудских фильмах. Я понял одну вещь: все не так сложно, как вы думаете. В конце концов, я обнаружил, что металлоискатель действительно прост и легок в изготовлении. В этом посте я делюсь с вами «Как сделать металлоискатель»
ОписаниеЭто принципиальная схема недорогого металлоискателя , использующего одну транзисторную схему и старый карманный радиоприемник.Это не что иное, как генератор Колпитца , работающий в средней полосе частот, и радиоприемник , настроенный на ту же частоту. Во-первых, радиоприемник и схема ставятся рядом. Затем радио настраивается так, чтобы из радио не было звука. В этом состоянии радиоприемник и схема будут работать на одной и той же частоте, и одни и те же частоты будут отбиваться, чтобы не издавать звука. Это установка. Когда цепь металлоискателя размещается рядом с металлическим предметом, индуктивность его катушки изменяется, как и частота колебаний.Теперь две частоты будут разными, отмены не будет, и радио будет издавать шипящий звук. Это означает, что обнаружен металлический объект.
Простая, га.
CircuitsToday представил список книг, которые помогут вам получить знания по основам электроники. Эти книги написаны некоторыми известными авторами в области электроники и их можно купить в Интернете. Пожалуйста, нажмите на эту ссылку: — 4 ОТЛИЧНЫХ КНИГИ ДЛЯ ИЗУЧЕНИЯ ОСНОВНОЙ ЭЛЕКТРОНИКИ.
Банкноты- Чтобы сделать L1, сделайте 60 витков эмалированного медного провода 36SWG на трубке из ПВХ диаметром 1 см.
- Питание схемы от адаптера, а не от батареи вызывает шум. Радиопроекты всегда хорошо питать от батареи.
Эта простая схема состоит из следующих частей;
- Резистор — 3,3 кОм — 1 шт.
- Резистор — 2,2 кОм — 1 шт.
- Сопротивление — 68 Ом — 1 шт.
- Конденсатор — 10 мкФ / 16 В — 1 шт.
- Конденсатор — 10пФ — 1 шт.
- Конденсатор — 100 пФ — 1 шт.
- Аккумулятор — 6 В Транзистор
- NPN — BC548 — 1 шт.
Приложения
Применения металлоискателей много.Вы можете увидеть их в аэропортах и везде, где требуется проверка безопасности при входе. Помимо этого;
- Можно использовать как крутой мини-проект для инженерии, ну или хотя бы для показухи
- Для обнаружения металлических предметов на конвейерных лентах. В пищевой промышленности важно, чтобы металлы не попадали случайно, поэтому наличие металлоискателя рядом с конвейерными лентами, на которых транспортируются предметы для упаковки, сделает свою работу.
Похожие сообщения
Принципиальная схема простого металлоискателяс использованием таймера 555 IC
Металлоискатель можно найти в аэропортах, театрах и других общественных местах.Они используются для обеспечения безопасности людей и обнаружения любого, у кого есть металл (оружие и т. Д.). В этом проекте мы собираемся разработать простую схему металлоискателя . Существует так много конструкций металлоискателей, но большинство из них имеют сложную конструкцию, поэтому здесь мы собираемся разработать простую схему металлоискателя с использованием микросхемы таймера 555.
Прежде чем идти дальше, нам нужно понять концепцию индуктора и цепей RLC. Сначала поговорим об индукторах. Катушки индуктивности — это не что иное, как катушки из эмалированной медной проволоки разных форм и размеров.Индуктивность катушки индуктивности рассчитывается на основе различных параметров. По всем этим параметрам нас в основном интересует сердечник на катушке индуктивности, поскольку в зависимости от сердечника значение индуктивности резко меняется.
На рисунке ниже вы можете видеть индукторы с воздушным сердечником. В этих индукторах не будет сплошного сердечника. По сути, это катушки, оставленные в воздухе. Средой потока магнитного поля, создаваемого индуктором, является ничто или воздух. Эти катушки индуктивности имеют очень меньшую индуктивность.
Эти катушки индуктивности используются, когда требуется величина в несколько микрогенри. Для значений, превышающих несколько милли, они не подходят. На рисунке ниже вы можете увидеть катушки индуктивности с ферритовым сердечником
.Когда катушка индуктивности намотана на сердечник, который может быть ферритовым или железным, индуктивность катушки сильно возрастает. Это значение намного больше, чем у воздушного порошка того же размера и формы.
Теперь для схемы RLC, показанной на рисунке, реактивное сопротивление или импеданс между клеммами «a» и «c» зависит от значений L и C, если частота приложенного сигнала постоянна.
Итак, если значение индуктивности изменяется, изменяется значение реактивного или импеданса. Как эти две концепции используются вместе для схемы металлоискателя , объясняется в рабочем разделе этого проекта.
Компоненты цепи металлоискателя- +9 напряжение питания
- 555 IC
- Резистор 47 кОм
- Конденсатор 2,2 мкФ (2 шт.)
- Динамик (8 Ом)
- 170 витков бухты диаметром 10 см (подойдет любой калибр)
На рисунке представлена принципиальная схема металлоискателя . Таймер 555 IC здесь действует как генератор прямоугольных сигналов и генерирует импульсы с частотами, слышимыми человеком. Конденсатор между контактом 2 и контактом 1 не следует менять, так как он должен генерировать звуковые частоты.
В цепи используется RLC-цепь, состоящая из резистора 47 кОм, конденсатора 2,2 мкФ и индуктивности на 150 витков. Эта цепь RLC является детектором металла. Как упоминалось ранее в предыдущем разделе, индуктивность индуктора с металлическим сердечником выше, чем у индуктора с воздушным сердечником.
Помните, что здесь намотана катушка с воздушным сердечником, поэтому, когда металлическая деталь приближается к катушке, металлическая деталь действует как сердечник для индуктора с воздушным сердечником.Благодаря этому металлу, действующему в качестве сердечника, индуктивность катушки изменяется или значительно увеличивается. При таком внезапном увеличении индуктивности катушки общее реактивное сопротивление или импеданс цепи RLC изменяется на значительную величину по сравнению с отсутствием металлической детали.
Сначала, когда нет металлической детали, сигнал, подаваемый на динамик, вызывает некоторый слышимый звук. Теперь с изменением реактивного сопротивления вокруг цепи RLC сигнал, отправленный на динамик, больше не будет таким же, как раньше, из-за этого звук, производимый динамиком, будет отличаться от первого.
Таким образом, всякий раз, когда металл приближается к катушке, сопротивление RLC изменяется, заставляя сигнал изменяться, что приводит к изменению звука, генерируемого в динамике. Вы также можете проверить этот металлоискатель на базе Arduino.
Общие советы:- Эмаль следует удалить на концах катушки для пайки соединений.
- С другим калибром у нас будет разный импеданс RLC, поэтому следует поэкспериментировать с сопротивлением в цепи RLC для обнаружения чувствительного металла.
- Динамик может быть любого типа. Но при сопротивлении менее 8 Ом таймер может нагреваться.
- Используйте напряжение питания выше 5 В.
Схема металлоискателя с индуктивным датчиком приближения
Gadgetronicx> Электроника> Принципиальные и электрические схемы> Схемы датчиков> Схема металлоискателя с индуктивным датчиком приближения
Команда Gadgetronicx 4 сентября 2020
Металлоискатели используются для обнаружения металлических предметов с различных поверхностей.Обычно в схемах этого типа используются индукторы и их индуктивные свойства для обнаружения металла. Однако в этой схеме мы используем специальный индуктивный датчик приближения для идентификации металлических предметов и зуммер для подачи сигнала тревоги при обнаружении.
Работа цепи металлоискателя:
Работа индуктивного датчика:
Для этой схемы мы будем использовать индуктивный датчик приближения ПЛ-05П. Этот индуктивный датчик способен обнаруживать металлы в пределах 5 мм.Имеет диапазон напряжения питания 10-30 В. Индуктивный датчик имеет внутренний генератор, который генерирует серию импульсов. Эти импульсы будут создавать магнитное поле вокруг своей поверхности, которое распространяется до диапазона обнаружения. Поэтому, когда металлический объект входит в зону обнаружения (то есть в пределах 5 мм), он нарушает магнитное поле. В зависимости от этого изменяется состояние выхода.
Для этого индуктивного датчика доступны различные варианты. Мы выбрали тот, у которого тип выхода PNP, как показано на диаграмме выше.Здесь, когда в диапазоне срабатывания датчика нет металлических предметов, базовое напряжение транзистора будет> 0,7 В. Это приводит к выходу 0 напряжения на черном проводе (выходе).
В то время как при попадании любого металлического предмета в диапазон срабатывания базовое напряжение упадет <0,7 Вольт. Это активирует транзистор, и на черном проводе будет напряжение 11,3 В (~ 12 В). Мы собираемся использовать это выходное напряжение от черного провода с компаратором и использовать его в качестве металлоискателя.
Зуммер:
Выход индуктивного датчика может управлять нагрузкой до 200 мА.Мы используем зуммер 5-12V в качестве звукового элемента в нашей схеме. Этот зуммер потребляет максимум около 30 мА, что вполне соответствует возможностям нашего индуктивного датчика.
Когда выходной сигнал датчика становится высоким, он включает зуммер и поднимает тревогу для обнаружения. Когда ничего не находится в пределах диапазона датчика, выходной сигнал датчика будет низким, и, следовательно, зуммер будет неактивным.
Потребление тока:
Датчик потребляет около 2,2 мА для своей работы, а зуммер потребляет около 30 мА тока.Таким образом, можно с уверенностью предположить, что эта схема потребляет около 35 мА тока в активном состоянии. Следовательно, он может питаться от аккумулятора 12 В. и будет мобильным.
Надеюсь, этот переключатель металлоискателя был вам полезен. Ознакомьтесь с другими схемами на нашем сайте. Если у вас есть какие-либо вопросы, отзывы и предложения, оставьте их в поле для комментариев ниже.
Датчики / Детекторы: электронные схемы металлоискателей
Металлоискатель с балансировкой ударов — BFO (генератор частоты ударов) металлоискатель использует два генератора, каждый из которых производит радиочастоту.Один из этих генераторов использует катушку с проволокой, которую мы называем поисковой петлей. Второй генератор использует гораздо меньшую катушку с проводом и обычно находится внутри блока управления и называется опорным генератором. Путем настройки осцилляторов так, чтобы их частоты были почти одинаковыми, разница между ними становится слышимой в виде нот биений __ Разработано Essex Metal Detectors
Beat Balance Metal Detector (Rev Thomas Scarborough) — Были опубликованы различные варианты металлоискателя BB, и в прессе он был широко описан как новый жанр.вместо использования поискового и опорного генератора, как в случае с BFO, или катушек Tx и Rx, как в IB, он использует два передатчика или поисковые генераторы с перекрытием катушек в стиле IB. Затем частоты двух осцилляторов смешиваются аналогично BFO, чтобы получить __ Дизайн Энди Коллисона
Металлоискатель BFO — не лучший, но простой, и теперь уже с печатной платой. __ Дизайн Г.Л. Чемелец
CCO Metal Detector — Насколько известно автору, показанный здесь металлоискатель представляет собой еще один новый жанр.он представлен здесь просто как экспериментальная идея и работает вместе со средневолновым радио. Elektor Magazine. __ Разработано Опубликовано в выпуске 345, июль 2005 г.
CCO Металлоискатель — катушечный металлоискатель, сделанный из легко доступных компонентов и использующий в качестве детектора обычный средний приемник. __ Разработан преподобным Томасом Скарборо
Дешевый металлоискатель — Идея этой схемы состоит в том, чтобы взломать схему генератора PIC, заменив кристалл катушкой: частота генератора в этом случае зависит от наличия металла рядом с катушкой, как в классическом металлоискателе.__ Дизайн Бруно Гаванда
Металлоискатель с катушечной связью — Металлоискатель с катушкой, сделанный из легко доступных компонентов и использующий в качестве детектора обычный средний приемник. __ Разработан преподобным Томасом Скарборо
Строительный тепловизор металла — 15.05.14 EDN Идеи дизайна: Создайте изображение скрытого металла, воспринимаемого индуктивно, с помощью программного эквивалента длительной выдержки! Мое проектное предложение состоит в том, чтобы использовать LDC1000 для создания тепловизора для обнаружения металла в домах и офисах.Моя первая идея состояла в том, чтобы переключить массив катушек и управлять светодиодом индикации для каждой. Стоимость даже массива восемь на восемь была непомерно высокой и не давала удовлетворительного изображения. Вторая идея заключалась в том, чтобы использовать соленоид для активации маркера, который проходил бы через центр катушки и отмечал поверхность везде, где был обнаружен металл. Опять же, стоимость будет непомерно высокой, и, хотя на строительной площадке она будет удовлетворительной, домовладелец может возражать против разметки своих стен. __ Схемотехника Джорджа Малларда
Металлоискатель DIY BFO — металлоискатель BFO (генератор частоты биений) использует два генератора, каждый из которых производит радиочастоту. Один из этих генераторов использует катушку с проволокой, которую мы называем поисковой петлей. Второй генератор использует гораздо меньшую катушку с проводом и обычно находится внутри блока управления и называется опорным генератором. Путем настройки осцилляторов так, чтобы их частоты были почти одинаковыми, разница между ними становится слышимой в виде нот биений __ Разработано Essex Metal Detectors
Металлоискатель на основеполевых транзисторов с использованием полевых транзисторов MPF102 / J310 BF998. Создание металлоискателя всегда было моей мечтой.Мне было любопытно послушать эти гудки в аэропорту, когда папа объяснил, что это металлоискатели. Что для меня ничего не значило. Прошлым летом у меня была возможность узнать секреты этой мелочи от моего отца, которая оказалась простым проектом, который можно сделать дома. __ Дизайн Нины Гаджар
Fortune Finder — поиск закопанных сокровищ может быть полезным опытом — попробуйте этот металлоискатель в следующий раз, когда вы отправитесь на разведку или прочесывание пляжа__ SiliconChip
Импульсный индукционный металлоискатель GoldPIC 3 (имеется электронный комплект) — GoldPIC 3 представляет собой импульсный индукционный металлоискатель «Собери сам» __ Разработан Тревором Р. Холм
Ручной металлический локатор— идеально подходит для поиска стальных рам и шпилек, стальных распорок и гвоздей в оштукатуренных стенах. Этот металлический локатор также может показывать длину выступа в рукоятках ножей, отвертках и других инструментах. Кроме того, он может различать черные и цветные металлы .__ SiliconChip
Heathkit Groundtrack GR-1290 УНЧ-металлоискатель — только схема, без описания схемы__ hobbyteam @ hobby-hour.com
Самодельный металлоискатель — эта самодельная схема металлоискателя поможет вам найти объекты, состоящие из материалов с относительно высокой магнитной проницаемостью.он не подходит для обнаружения закопанных монет, которые недостаточно чувствительны, но вы можете обнаружить пиратские сокровища! Металлоискатель питается от 2-х батареек по 9В, каждая из которых заряжается 15мА. Детектор L1__
Простой в сборке импульсный индукционный металлоискатель с DSP — Lammert Bies
Об авторе: Ламмерт Бис папа, муж и полиглот. Он занимается разработкой встраиваемых систем с восьмидесятых годов. Использовал машинное обучение до того, как у него появилось название. Специализируется на соединении компьютеров, роботов и людей.Был сторонником Google Mapmaker и выступал на нескольких международных конференциях Google с 2011 года до тех пор, пока Mapmaker не отключили в 2017 году. Бухантер из Google. В настоящее время распространяет искусственный интеллект в самых диких местах производственной среды. Он никогда не перестает учиться.Введение в обнаружение металлов
Большинство металлоискателей работают на том факте, что металлы в магнитном поле изменяют его поведение. Есть два общих подхода к обнаружению этих изменений.В одном подходе переменный ток подается на передающую катушку. Приемная катушка используется для приема магнитного поля, создаваемого передатчиком. Если кусок металла попадает в зону действия силовых линий магнитного поля, приемная катушка может обнаружить изменение как амплитуды, так и фазы принятого сигнала. Величина изменения амплитуды и изменения фазы является показателем размера и расстояния до металла, а также может использоваться для различения черных и цветных металлов.
В другом подходе импульсы тока отправляются на передающую катушку.Магнитное поле, вызванное этими импульсами, запускает вихревые токи в металлах вблизи катушки. Если магнитное поле переключается достаточно быстро, вихревые токи могут быть обнаружены с помощью передающей катушки, которая затем действует как приемник.
Импульсная индукция часто может достигать более глубоких целей, чем частотные детекторы, но различить разные типы металлов труднее. В связи с особыми потребностями, когда я начал этот проект, на этой странице описывается импульсный индукционный металлоискатель с максимально возможной дискриминацией между различными металлами.Для этого обработка сигналов выполняется полностью в цифровом виде с помощью цифрового сигнального процессора , DSP .
Конструкция поисковой катушки
В Интернете есть много проектов, касающихся индукционных металлоискателей. Хотя они отличаются способом обработки сигналов, электроника, генерирующая импульсы магнитного поля, почти всегда идентична.
Основным элементом для генерации магнитных импульсов является катушка.Размер катушки в основном зависит от требуемой глубины обнаружения и минимального размера объектов, которые еще должны быть обнаружены. В целом можно сказать, что максимальная теоретическая глубина обнаружения катушки в пять раз больше диаметра, а минимальный размер объекта, обнаруживаемого катушкой, составляет пять процентов диаметра. Это максимальные значения, которые сильно зависят от ситуации. Очевидно, что с метровой катушкой вы не обнаружите пятисантиметровый объект на глубине пяти метров. Однако это дает представление о том, какой тип катушки вам нужен для решения конкретной проблемы.Многие люди будут использовать металлоискатели для поиска монет и драгоценностей. Для таких ситуаций подойдет катушка 250 или 400 мм. В моей ситуации мне нужно было разместить железные 100-миллиметровые водопроводные трубы на глубине двух метров. Вот почему я решил использовать катушку длиной 1 метр.
Хотя физический размер и форма катушки могут различаться (квадратные или эллиптические катушки используются в определенных ситуациях и работают так же хорошо, как и круглые), индуктивность катушек незначительно различается между различными физическими конструкциями.Общепринятая оптимальная индуктивность поисковых катушек для импульсных индукционных металлоискателей находится в диапазоне от 300 до 500 мкГн. В этом проекте я предполагаю, что используемые катушки имеют емкость 400 мкГн. Для катушек меньшего размера это обычно означает большее количество витков.
Поисковая катушка должна работать от общедоступных источников питания. Из-за аналоговой схемы для усиления слабых сигналов вихревых токов, регистрируемых после прекращения магнитного импульса, наиболее практичным является двойной источник питания ± 10 В или ± 12 В.Катушка будет заряжаться только с одной из двух сторон источника питания, что дает асимметричный разряд батареи, если мы используем два отдельных аккумуляторных блока для положительной и отрицательной стороны источника питания. Поэтому мы будем использовать только одну аккумуляторную батарею на 10 или 12 вольт и генерировать другую сторону питания с помощью преобразователя постоянного тока в постоянный. Хотя это делается в большинстве коммерческих и самодельных схем металлоискателей, это далеко не идеально. Основная проблема заключается в том, что напряжение, генерируемое преобразователем постоянного тока в постоянный, не является свободным от пульсаций, и особенно на высоких частотах, с которыми мы работаем, это может вызвать некоторую нежелательную связь.Мы отложим эту проблему до параграфа об источнике питания и теперь будем предполагать, что наша катушка заряжена напряжением от 9 до 15 В (в зависимости от фактического выбора аккумуляторной батареи, уровня заряда аккумуляторов и т. .)
Когда это напряжение подается на катушку через высокоскоростной биполярный транзистор или полевой МОП-транзистор, ток в катушке будет постепенно увеличиваться до тех пор, пока он не будет ограничен внутренним сопротивлением катушки, зарядным транзистором и другими возможными компонентами с сопротивлением в линии. .Чем дольше мы заряжаемся, тем выше будет магнитное поле. В этом есть свои преимущества и недостатки. Более сильные магнитные поля могут проникать глубже в почву. Но если мы будем заряжать более длительный период, чем, скажем, 250 мкс, вы можете перенасыщать землю, что сделает небольшие объекты невидимыми из-за фонового шума. Поэтому мы должны ограничить максимальное время зарядки значением около 250 мкс при достаточно низком сопротивлении цепи, чтобы в течение этого периода в катушке генерировался достаточный ток.Нетрудно рассчитать максимальный ток, который может протекать через катушку. Этот ток определяется омическим сопротивлением всех компонентов контура. Можно с уверенностью предположить, что наибольшее сопротивление имеет катушка. Многие силовые транзисторы и полевые МОП-транзисторы, используемые в индукционных металлоискателях, имеют максимальный непрерывный ток от 8 до 10 ампер. Если мы сконструируем катушку таким образом, чтобы она имела сопротивление не менее 2 Ом, максимальный ток, который будет протекать, никогда не будет больше 7. 5 ампер с самой большой аккумуляторной батареей и полностью заряженными батареями. При сопротивлении цепи 2 Ом и минимальном напряжении 9 В ток через катушку достигнет примерно 3,2 А за упомянутые выше 250 мкс, что более чем достаточно для импульсного индукционного металлоискателя общего назначения с возможностью глубокого поиска.
Теперь мы определили индуктивность и сопротивление катушки, но это не многое говорит о физической конструкции катушки, если мы не знаем ее размеры.В таблице ниже я суммировал размер катушки, толщину провода, количество витков и физическое строение для ряда распространенных размеров катушек. Во всех случаях я старался максимально приблизиться к указанным выше значениям индуктивности и сопротивления. Это уменьшит проблемы с длиной импульса заряда и номиналами разрядного резистора при замене катушек.
Размер | Форма | Обороты | Размер провода | Индуктивность | Сопротивление |
---|---|---|---|---|---|
Ø 120 мм | Круглый | 36 | Ø 0. 40 мм / 0,14 мм² | 405 µH | 1,9 Ом |
Ø 150 мм | Круглый | 31 | Ø 0,40 мм / 0,14 мм² | 394 µH | 2,0 Ω |
Круглый | 28 | Ø 0,40 мм / 0,14 мм² | 387 µH | 2,1 Ом | |
Ø 200 мм | Круглый | 26 | Ø 0,40 мм / 0,14 мм² | 406 µ4 2,2 | |
Ø 250 мм | Круглый | 22 | Ø 0.40 мм / 0,14 мм² | 380 мкГн | 2,3 Ом |
Ø 300 мм | Круглый | 20 | Ø 0,50 мм / 0,20 мм² | 390 µH | 1,6 Ом | Круглый | 17 | Ø 0,50 мм / 0,20 мм² | 396 µH | 1,8 Ом |
Ø 500 мм | Круглый | 15 | Ø 0,50 мм / 0,20 мм² | 400 µ4 2,0 µH 9040 | |
1. 0 x 1,0 м | Квадрат | 10 | Ø 0,66 мм / 0,34 мм² | 406 мкГн | 2,0 Ом |
1,4 x 1,4 м | Квадрат | 8 | Ø 0,66 мм / 0,34 мм² | 387 мкГн2,2 Ом | |
1,8 x 1,8 м | Квадрат | 7 | Ø 0,80 мм / 0,50 мм² | 398 мкГн | 1,7 Ом |
Кривая разряда и дискриминация
Цикл обнаружения импульсных индукционных металлоискателей начинается сразу после отключения магнитного поля. Это достигается путем закрытия биполярного силового транзистора или полевого МОП-транзистора, который соединяет катушку с источником питания. График разряда катушки можно разделить на три части.
Этап 1: Эффект пробоя драйвера MOSFET
В большинстве конструкций металлоискателей используются полевые МОП-транзисторы для регулирования импульсов тока через поисковую катушку. В нашей конструкции для этой задачи также будет использоваться полевой МОП-транзистор. Если полевой МОП-транзистор закрыт, ток в катушке разряжается через резистор в токовой петле, который должен точно соответствовать индуктивности катушки. Для идеального демпфирования катушки 400 мкГн используется резистор примерно 680 Ом. Катушки с индуктивностью 300 мкГн должны разряжаться через резистор 600 Ом.Если мы нагружаем катушку током 2 Ампера, нетрудно вычислить по закону Ома, что с разрядным резистором 680 Ом напряжение достигнет пика до 1360 Вольт. Не многие коммерчески доступные электронные компоненты будут способны выдерживать такое напряжение, и особенно силовые полевые МОП-транзисторы, используемые для пробоя катушек металлоискателя в диапазоне от 300 до 750 вольт, в зависимости от марки и модели. Это означает, что во время первой стадии разряда катушки напряжение на катушке будет ограничено примерно до 500 вольт, при этом часть тока протекает через демпфирующий резистор, а часть — через полевой МОП-транзистор драйвера. Это далеко не идеально, потому что более высокое напряжение разряда означает более быстрое отключение магнитного поля, но мы должны быть счастливы, что такое внутреннее поведение полевого МОП-транзистора фактически предотвращает повреждение других компонентов.
Время, в течение которого система остается на стадии 1 кривой разряда, зависит от величины тока, протекающего через катушку в момент начала разряда, напряжения пробоя полевого МОП-транзистора и суммы сопротивлений катушки, проводки и демпфирующего резистора.Предполагая, что основное сопротивление в контуре вызвано демпфирующим резистором, мы можем рассчитать длину первой ступени по следующей формуле:
T s1 = L змеевик * (I змеевик — V brk_down / R влажный ) / V brk_down
Очевидно, эта формула действительна только тогда, когда I змеевик > V brk_down / R damp , потому что в противном случае ступень 1 никогда не вводится, а кривая нагнетания напрямую переходит на ступень 2. В нашем примере с катушкой 400 мкГн, демпфирующим резистором 680 Ом, начальным током катушки 2 Ампера и напряжением пробоя полевого МОП-транзистора 500 В этот первый этап кривой разряда будет длиться одну микросекунду.
Этап 2: Спад тока через демпфирующий резистор при высоких напряжениях катушки
Как только напряжение, индуцированное током в катушке, достигнет значения ниже напряжения пробоя полевого МОП-транзистора, ток будет экспоненциально спадать до нуля. Параметры, которые могут изменить этот распад, — это полное сопротивление в токовой петле и физические свойства магнитного поля в катушке.Металлы, находящиеся в зоне действия силовых линий магнитного поля, могут изменить вторую стадию кривой распада, но есть некоторые проблемы с их обнаружением. Прежде всего, это очень высокие напряжения. Этап 2 вступает в силу, когда напряжение на катушке падает ниже напряжения пробоя полевого МОП-транзистора (где-то около 500 Вольт), и заканчивается, когда напряжение снижается настолько, чтобы его могли поднять обычные аналоговые схемы (часто около 0,5 или 1 В). Этот этап также довольно короткий, что затрудняет выполнение надежных измерений, которые дают информацию о наличии или различении металлов в зоне действия магнитного поля.
Большинство металлоискателей с импульсной индукцией поэтому просто пропускают этот второй этап и ждут, пока третий этап не начнет цикл обнаружения и дискриминации. Наш детектор на основе DSP отличается тем, что он определяет точный момент, когда кривая разряда переходит от стадии 2 к стадии три.
Рассматривая общие схемы обработки сигналов импульсных индукционных металлоискателей, демпфирующий резистор имеет два последовательно соединенных параллельно противоположно расположенных диода. Эти диоды действуют как ограничители напряжения, подтягивая одну сторону резистора к одной из сторон источника питания.Это сторона источника питания, которая функционирует как виртуальная земля при аналоговой обработке сигнала. Пока напряжение на катушке превышает 0,7 В, необходимое для открытия этих диодов, напряжение на диодах практически фиксировано. Когда напряжение на катушке падает ниже этого значения, диоды закрываются, и измеренное напряжение является фактическим остаточным напряжением на катушке.
Для нашей примерной катушки, стадия 2 будет длиться около 3,9 мкс, пока ток катушки не упадет достаточно, чтобы снизить напряжение ниже магического значения 0.7 Вольт. Практически это означает конец второй стадии разрядной кривой и начало последней стадии, на которой могут быть обнаружены длительные вихревые токи. Если металлы находятся в диапазоне действия магнитного поля, момент перехода на третью ступень сместится. Черные металлы вызывают увеличение индуктивности катушки, что практически приводит к задержке точки перехода. Цветные металлы приведут к тому, что третий этап выйдет раньше. Мне не нужно объяснять, что для точного измерения точки перехода нам понадобится хорошая и быстрая аналоговая измерительная система и быстрый цикл вычислений ЦП.Здесь используется наш цифровой сигнальный процессор.
Этап 3: окончательное затухание тока и вихревые токи
На последнем этапе демпфирующий резистор блокируется двумя последовательно включенными диодами, а ток дополнительно затухает через вспомогательные резисторы в цепи. Текущие токи являются остатками первоначального тока катушки и токами, индуцированными вихревыми токами соседних металлов. Это исторически этап, на котором импульсный индукционный металлоискатель на базе аналогового и микроконтроллера выполняет анализ сигналов.Анализ сигналов в этой области затруднен по двум причинам. Прежде всего, это очень низкие уровни сигнала, которые требуют усиления в сотни или тысячи раз для получения некоторой информации. Это также усилит шум в сигнале. Вторая проблема заключается в том, что основная область различения находится примерно в первых 30 микросекундах затухания. Если игнорировать первую часть кривой затухания по замыслу, правильное различение типов металлов будет чрезвычайно трудным.
Аналоговые импульсные индукционные металлоискатели и версии на базе базовых микроконтроллеров идут еще дальше, поскольку не рассматривают саму форму сигнала, а усредняют ее в интегрирующем конденсаторе и используют конечное напряжение этого конденсатора, чтобы определить, был ли обнаружен металл. Это снизит значительный шум, создаваемый высоким коэффициентом усиления в каскаде усиления, но интегрирование сигнала удалит всю информацию, относящуюся к металлу. Вот почему обычные металлоискатели с импульсной индукцией так плохо разбираются. Сначала они выбрасывают почти всю информацию, суммируют то, что осталось, а затем говорят: «Эй, я, наверное, что-то обнаружил, но не спрашивайте меня, как и когда!».
График расхода на графике
Возможный график кривой разряда на входе нашей детекторной электроники можно увидеть на следующем рисунке.Красная кривая — это кривая разряда без цели, две другие кривые показывают разницу, когда цель находится в зоне действия магнитного поля.
График импульсной индукционной характеристики для различных целейВ течение первых пяти микросекунд, когда кривая разряда находится на стадии 1 и стадии 2, сигнал ограничивается защитными диодами во входной цепи. После этого кривая медленно затухает, причем скорость затухания зависит от существования мишени и проводимости этой мишени. В верхней части кривой ферромагнитные металлы вызовут небольшую задержку сигнала, которая упадет ниже 0,7 В, тогда как цветные металлы сместят эту точку перехода немного раньше. Материалы с высокой проводимостью, такие как золото, серебро и медь, будут иметь крутой изгиб и быстро распадаться до нуля. Мы видим, что примерно через 30 микросекунд различение различных типов целей практически невозможно. Анализируя ряд этих кривых, можно сделать обоснованное предположение о материале цели, обнаруженной импульсным индукционным металлоискателем.Как и в случае со всеми металлоискателями, это обоснованное предположение, а не однозначный ответ, потому что размер, глубина, окружающие цели и реакция почвы могут изменить сигнал таким образом, что надлежащее различение невозможно.
Конструкция блока питания
Одной из основных проблем при разработке хорошего импульсного индукционного металлоискателя с цифровой обработкой сигналов является правильная конструкция источника питания. Система будет включать трех опытных пользователей, у каждого из которых будут свои собственные потребности. Пиковые токи в одной части источника питания не должны отрицательно влиять на другие части системы.Аналоговое и цифровое заземление также следует разделять, насколько это возможно. Достичь этого непросто, если мы также хотим запитать всю схему от одной аккумуляторной батареи.
Питание катушки
Катушка, без сомнения, является самым большим потребителем тока в цепи. Импульсы, которые могут достигать нескольких ампер, генерируются включением и выключением катушки через полевой МОП-транзистор. Поэтому катушка должна питаться напрямую от аккумуляторной батареи. Ни у линейного регулятора, ни у преобразователя постоянного / постоянного тока не будет мощности для генерации этих коротких импульсов тока без серьезных последствий где-либо в системе.Мы можем использовать небольшой последовательный резистор и большой буферный конденсатор для защиты батарей от больших токов питания.
Аналоговый блок усиления
Аналоговый каскад усиления работает от двойного источника питания в диапазоне от ± 5 до ± 15 Вольт. Центр этих источников питания должен быть подключен к неподвижной стороне катушки и будет практически работать как аналоговая земля в цепи. Тогда плавающая сторона будет усилена относительно центра подачи.Наша конструкция первого каскада усилителя будет полностью дифференциальной, что снизит помехи, если аналоговый ноль не будет идеально стабильным.
Блок питания цифрового сигнального процессора
Цифровые сигнальные процессоры предназначены для работы при напряжении 3,3 В, 5 В или обоих. Я буду использовать более высокое напряжение питания по двум причинам. Во-первых, из прошлого опыта стало известно, что у процессоров с питанием от 5 Вольт меньше проблем с помехами. Но главная причина в том, что модель DSP, которую я решил использовать, может использовать только самый быстрый режим преобразования АЦП, когда подключен источник питания на 5 вольт. Положение блока питания в общей схеме затруднительно. Для переключения полевого МОП-транзистора, который управляет катушкой, в идеале линия нулевого питания DSP должна быть подключена к нулю полевого МОП-транзистора, который находится на внешнем конце источников питания. Но для правильной выборки аналоговых сигналов в каскаде усиления ноль DSP должен быть около нуля каскада усиления, который находится в центре источников питания. Поскольку легче переключать уровни напряжения аналогового каскада с помощью дифференциального усилителя, чем переключать полевой МОП-транзистор с произвольного уровня напряжения, мы подключим цифровые компоненты к отрицательной линии питания.Это также автоматически разделяет аналоговую и цифровую землю, что снижает проблемы с шумом.
Схема силовой части
Собрав все пожелания, проще всего построить силовую часть схемы, как на следующем рисунке. Катушка питается практически напрямую от аккумуляторной батареи. Я говорю «почти прямо», потому что для уменьшения пиковых токов используются небольшой резистор и большой конденсатор. Цифровые компоненты размещаются рядом с отрицательной линией питания. Линейный регулятор мощности, конденсаторы и диод должны предотвращать возврат слишком большого количества шума, создаваемого цифровыми компонентами, в аналоговую схему.Операционным усилителям аналогового усилителя для работы нужен двойной источник питания. Верхняя часть этого источника питания генерируется микросхемой LT1054 в конфигурации удвоителя напряжения.
Фактически точка соединения R3, C3 и поисковой катушки действует как аналоговая земля. Этот уровень земли будет повышаться и понижаться во время каскада заряда и разряда конденсатора C3, но это не окажет отрицательного влияния на аналоговый усилитель, поскольку входная схема каскада усиления будет полностью дифференциальной.
Вы можете видеть, что клеммы + и — батареи определены как точка звезды. Так же должно быть и при проектировании печатной платы. При наличии как можно более коротких общих линий между тремя основными потребителями (катушкой, процессором и аналоговым усилителем) вероятность помех между этими компонентами будет меньше.
Источник питания импульсного индукционного металлоискателяУ вас никогда не остается нужного количества таблеток в последний день действия рецепта. ЧЕТВЕРТЫЙ ПРИНЦИП ДЛЯ ПАЦИЕНТОВ |
Двухканальный металлоискатель с двумя перпендикулярными антеннами
Предлагается двухканальный металлоискатель с двумя наборами перпендикулярно ориентированных сенсорных антенн для увеличения обнаруживаемого размера металлического сенсора в диапазоне от миллиметров до сантиметров, в то время как обычный Металлический датчик предназначен для обнаружения только в миллиметрах или сантиметрах. Были исследованы характеристики двух каналов датчиков обнаружения металлов, соответственно, и обсуждался эффект интерференции при одновременной работе между двумя каналами датчиков.Канал обнаружения металлов, имеющий чувствительность в миллиметровой шкале, показал обнаруживаемую чувствительность к движущемуся железному шару диаметром до 0,7 мм на частоте возбуждения 50 кГц и улучшенное распределение чувствительности. А канал обнаружения металлов, имеющий чувствительность в сантиметровом масштабе, показал более равномерное распределение чувствительности с гибкостью для будущей модульной конструкции. Эффект интерференции при одновременной работе двух датчиков привел к снижению выходной характеристики, но все еще в пределах полезного диапазона обнаружения.Таким образом, можно было одновременно использовать два датчика с разным диапазоном чувствительности и расширить диапазон обнаружения от миллиметрового до сантиметрового масштаба в пределах практически приемлемых помех.
1. Введение
Датчик обнаружения металла в настоящее время широко используется не только в пищевой, но и в оборонной промышленности [1, 2] для обнаружения металлических предметов в окружающем объекте, и значительные усилия были направлены на повышение чувствительности и селективности. Посторонними материалами являются не только металл, но и дерево, керамика [3] и микробы [4], которые не обнаруживаются с помощью металлического датчика. Предусмотрены другие методы для обнаружения этих материалов, которые нельзя обнаружить с помощью металлического датчика. Среди этих посторонних материалов обнаружение металлических предметов важно [5] в пищевой промышленности, и на этом сосредоточены различные исследования. Спрос на обнаружение металлов высок в пищевой промышленности, и в последнее время для этого уже применяются методы обнаружения с использованием рентгеновских лучей [6] и света [7]. Однако метод, использующий электромагнитную волну, является доминирующим, и недавно были предприняты попытки использования метода с использованием сверхпроводящей катушки [8, 9].Теоретический анализ [10, 11] и анализ чувствительности [12, 13] наряду с формой металлического датчика были выполнены для изучения чувствительности электромагнитного металлического датчика. С другой стороны, были попытки [14] улучшить видимость металлической детали с помощью обработки сигналов. Основное тело, содержащее металлическую деталь, важно с точки зрения селективности, и предпринимались попытки обнаружить инородные частицы в порошке [15]. Структура сенсорной головки в металлоискателе играет важную роль с точки зрения чувствительности, и в этом отношении были проведены соответствующие исследования [16].Активные исследования проводились для различных видов и форм металла в металлической головке датчика [17]. Однако одноканальный датчик обнаружения металла не показал разрешающей способности чувствительности в широком диапазоне размеров металла от миллиметров до сантиметрового масштаба. Таким образом, возникла необходимость каскадировать датчики с разным разрешением чувствительности. Датчик обнаружения металла, использующий электромагнитную волну, обычно находится под сильным влиянием близлежащей электромагнитной волны, которая в несколько раз превышает ширину датчика; таким образом, невозможно разместить второй датчик рядом с первым датчиком.Эта статья посвящена экспериментальной разработке двухканальных металлических датчиков путем каскадного соединения двух металлических датчиков с разным разрешением чувствительности с минимальными помехами друг другу. Представлена модель с двумя перпендикулярными антеннами, чтобы минимизировать физические помехи, и исследован оптимальный метод обнаружения сигнала, чтобы исключить помехи между металлическими датчиками, имеющими разное разрешение чувствительности.
2. Модель с двумя антеннами
2.1. Одноканальная модель
Обычный датчик обнаружения металла с разрешением чувствительности в миллиметрах имеет набор антенн, одну передающую антенну и две приемные антенны, которые подключены с противоположной полярностью для подавления сигнала приема в установившемся режиме.В случае, когда объект, содержащий несферическую металлическую деталь, проходит через пространство поперечного сечения полой антенны, как показано на рисунке 1, тогда датчик показывает хорошую чувствительность только для одного направленного положения, между металлической деталью и антенной, где возмущение в электромагнитных потокосцеплениях становится максимальным. В одноканальной модели движущийся объект, содержащий металлическую деталь, постепенно возмущается от первых связей электромагнитного потока между антенной № 1 передачи и антенной № 1 приема до вторых связей электромагнитного потока между антенной № 1 передачи и антенной № 2 приема. Величины этих пространственно изменяющихся электромагнитных потоков наводят токи в приемные антенны №1 и №2, и разница токов между приемными антеннами №1 и №2 становится выходным током, который представляет собой дисбаланс электромагнитного потока антенного набора №1.
Эквивалентная схема набора антенн, одной передающей и двух приемных антенн, показана на рисунке 2. Мгновенное выходное напряжение без нагрузки может быть выражено как разность взаимной индуктивности между передающей и соответствующая приемная антенна, как показано в (1), а также пропорциональна частоте возбуждения, как показано в (3).В этой модели расстояние между передающей антенной и приемной антенной ближе, чем расстояние до проходящего объекта, содержащего металлическую деталь; таким образом, индуктивности антенны больше взаимной индуктивности, и. Если передающая антенна возбуждается синусоидальным сигналом, то ток антенны становится таким, как показано в (2). Рассмотреть возможность
Когда выражение векторного вектора используется для магнитной связи, тогда векторное напряжение, обусловленное магнитной связью, может быть выражено как в (4), где обозначает векторный ток:
Следует отметить, что отклонение взаимной индуктивности играет ключевую роль в определении чувствительности датчика обнаружения металла. Взаимная индуктивность выражается как в (5), где и представляют собой коэффициент связи между передающей и приемной антеннами соответственно. И эти коэффициенты связи имеют значение:
В установившемся режиме начального измерения, и настраиваются на, и выходное напряжение становится. Когда они выше и больше для того же размера металлической детали, тогда это выгодно с точки зрения чувствительности.
2.2. Двухканальная модель
В двух наборах антенн, как показано на рисунке 3, движущийся объект после прохождения набора антенн №1 постепенно возмущается от третьих связей электромагнитного потока между антенной №2 TX и антенной №4 к четвертой связи электромагнитного потока между антенной №4. антенна №2 и приемная антенна №3.Также величины пространственно изменяющихся электромагнитных потоков индуцируют токи в приемных антеннах №4 и №3, и разность токов между приемными антеннами №4 и №3 становится выходным током антенного набора №2.
Трудно вычислить дисперсию взаимной индуктивности для движущегося объекта; таким образом делается попытка экспериментального метода. При использовании модели на рисунке 4 выходное напряжение в каждом наборе антенн становится произведением матрицы взаимной индуктивности и мгновенного тока каждой передающей антенны, как показано на рисунке.
Предположим, что это векторный ток в одном проводе передающей антенны №1, это расстояние, в нижнем индексе — удаленная точка вне антенны, в первом нижнем индексе — передающая антенна, в первом нижнем индексе — приемная антенна, во втором — цифра. Числовой индекс — это номер антенны, номер в третьем цифровом индексе — это номер проводника антенны, а с 4-го по 6-й алфавитные и цифровые обозначения соответствуют тому же соглашению, что и для букв с 1-го по 3-й.Тогда это расстояние между одним проводником приемной антенны №1 и одним проводником передающей антенны №1, а также расстояние между одним проводником передающей антенны №1 и удаленной точкой. Потоковую связь с одним проводником приемной антенны №1 за счет одного проводника передающей антенны №1 можно выразить как
Если мы рассмотрим потокосоединение к одному проводнику приемной антенны №1 от двух передающих антенн, это потокосцепление можно выразить как
В этой конфигурации сумма двух токов в антенне TX №1 равна нулю,; то же самое и для антенны № 2 передатчика.Пусть точка перемещается бесконечно далеко так, чтобы набор членов, содержащий логарифмы отношений расстояний от, стал бесконечно малым; тогда отношение расстояний приближается к 1. Подставляя их в (8) и повторно комбинируя некоторые логарифмические члены, мы имеем (9) с единицей веб-витков на метр:
Таким образом, потокосцепление в приемной антенне №1 становится суммой и, как показано на
Подобным образом все взаимные индуктивности, включая и выражаются аналогично, как показано на
Когда посторонний объект, например металлический куб, проходит через указанную выше потокосцепление, вышеупомянутая взаимная индуктивность будет нарушена, и нарушенная магнитная связь преобразуется в напряжение на выходном порте датчика.Для металлической сферы, имеющей радиус в метрах от центра антенного проводника, напряженность поля становится равной, и соответственно плотность потока на расстоянии составляет веберс / м 2 . Таким образом, магнитная связь металлической сферой становится такой, как в (12), и эта величина возмущает взаимные индуктивности в установившемся режиме:
3. Метод обнаружения сигнала
3.1. Подавление шума с использованием BPF
Двухканальный датчик обнаружения металла использует две разные частоты между наборами антенн №1 и №2, чтобы избежать помех.В частотной области эти помехи можно минимизировать, увеличив частотную избирательность приемника. Предположим, что характеристика полосового фильтра (BPF) в приемнике №1 равна и для приемника №2, а спектральная плотность мощности входящего сигнала соответствует приемнику №1 и приемнику №2. Тогда спектральные плотности мощности приемника №1 и приемника №2 станут такими, как в
По мере сужения полосы пропускания BPF система становится более устойчивой к окружающим шумам. Однако это также увеличит нестабильность в поддержании центральной частоты BPF, поскольку значения компонентов могут изменяться вместе с изменением температуры.Итак, существует оптимальное с практической точки зрения значение BPF, которое необходимо определить экспериментально.
3.2. Подавление шума с использованием PSD
Входной сигнал после BPF подается в фазочувствительный детектор (PSD) для повышения избирательности против мешающего шума, как показано на рисунке 5. Во временной области выходной сигнал от двух приемных антенн, которые соединены для подавления друг друга. , поступает на приемник как. После BPF его фильтруют, и продукт с снова фильтруют через LPF, в результате чего получают.Если входной сигнал представляет собой смесь сигналов от передающих антенн №1 и №2 и шума, то он выражается как в (14) и как в (15). Следовательно, В случае, если полосовой фильтр идеально настроен, а фильтр нижних частот идеально отсекает ненужную частотную составляющую, тогда выходной сигнал детектора сигнала датчика будет таким, как в (16). Этот выходной сигнал в (16) показывает уровень сигнала постоянного тока, который пропорционален входному сигналу приемника с минимальными помехами:
В случае, если мешающий сигнал имеет ту же частоту, что и сигнал обнаружения датчика, но с другим соотношением фаз, то выходной сигнал после LPF на рисунке 5 будет сдвинут по уровню постоянного тока, в зависимости от степени помех, в идеале. дело.
4. Проектирование системы
4.1. Датчик обнаружения металла с чувствительностью в миллиметровом масштабе
Три частоты, такие как 50 кГц, 200 кГц и 400 кГц, были разработаны для ввода в экспериментальную установку датчика, имеющую чувствительность в миллиметровом масштабе, для исследования частотно-зависимой чувствительности при одновременной работе с чувствительностью датчика в сантиметрах. Антенный набор №1 находился в металлическом корпусе, имеющем внешний размер в см с отверстием и в см для обнаружения входа для защиты внешнего мешающего шума, как показано на рисунке 6.Однооборотные антенны использовались для облегчения балансировки между антеннами.
Выходное напряжение от пары приемных антенн, которая была подключена с противоположной полярностью, было отрегулировано для получения почти нулевого напряжения с помощью двух винтов, как показано на рисунке 7. И степень нулевого выходного сигнала была измерена как CMRR (общий режим коэффициент отклонения). После настройки нулевого положения внутренняя полость антенного комплекта №1 была заполнена эпоксидной смолой для обеспечения устойчивости к внешним ударам или вибрации.
Блок-схема передатчика для набора антенн №1 показана на рисунке 8.Для обеспечения температурной стабильности использовался кварцевый генератор 8 МГц, а основная частота была разделена на желаемые частоты. Переключатель с временным разделением был облегчен для выбора одиночных или смешанных частот. Часть этого сигнала передатчика подавалась на фазочувствительный детектор приемника как источник синхронного триггерного сигнала. Схема согласования антенны использовалась для согласования полного сопротивления антенны с сопротивлением передатчика.
Блок-схема приемника для комплекта антенн №1 показана на рисунке 9.Входной сигнал от приемной антенной пары подавался в схему согласования антенн не только для согласования импеданса, но и для повышения напряжения. После усиления в блоке PRE AMP и фильтрации мешающего сигнала в блоке BPF фаза входного сигнала сравнивалась с синхронным сигналом запуска в блоке PSD. Наконец, высокочастотная составляющая была отфильтрована в блоке LPF, и только постоянная составляющая, пропорциональная разности фаз, появилась и усилилась в блоке AMP в качестве выходного сигнала. Микропроцессор использовался для управления выбором частоты и другими параметрами управления в блоке MICOM.
4.2. Датчик обнаружения металла с чувствительностью в сантиметровом масштабе
В экспериментальную установку датчика была введена единичная частота 20 кГц, имеющая чувствительность в сантиметровом масштабе, для исследования мешающего воздействия на прежний датчик с чувствительностью в миллиметровой шкале при одновременной работе. Расположение комплекта антенн №2 было разработано перпендикулярно антенне №1, чтобы избежать помех. Многооборотные антенны использовались для компенсации дефицита чувствительности из-за относительно большого расстояния между передающей и приемной антеннами, как показано на рисунке 10.Передающая антенна была изготовлена с использованием станка с ЧПУ для получения достаточной толщины и уменьшения сопротивления, а приемные антенны были изготовлены путем нанесения рисунка на печатную плату. Пара приемных антенн подключена с противоположной полярностью и настроена на смещение, близкое к нулю.
Блок-схема передатчика показана на рисунке 11. Частота возбуждения регулировалась с помощью потенциометра для выбора частоты для оптимальной работы.
На стороне приемника, как показано на рисунке 12, входной сигнал от пары приемных антенн напрямую усиливался в блоке PRE AMP без схемы согласования антенн.После фильтрации интерференционного сигнала в блоке BPF фаза входного сигнала сравнивалась с синхронным триггерным сигналом от передатчика в блоке PSD. Наконец, высокочастотная составляющая была отфильтрована в блоке LPF и усилена в блоке AMP в качестве выходного сигнала. В качестве выходного сигнала появлялась только составляющая постоянного тока, пропорциональная разности фаз между входным сигналом и синхронным сигналом запуска.
5. Измерение
5.1. Датчик обнаружения металла с чувствительностью в миллиметрах
Для этого канала обнаружения чувствительность является ключевой частью датчика.Минимальный размер обнаруживаемой металлической детали связан со степенью подавления сигналов от принимающей пары антенн, поскольку это ограничивает максимальный коэффициент усиления. И этот показатель качества (FOM) представлен CMRR, который представляет собой логарифмическое значение дифференциального выхода, 2 мВ pp (до усиления), по одноканальному выходу, 10 В pp . Измеренный CMRR составил -74 дБ, как показано на
Зависимость выходного напряжения от размера черного металла была исследована с использованием испытательных шариков из черных металлов диаметром 0.8 мм, 1,0 мм и 1,2 мм при частоте возбуждения 50 кГц и частоте среза фильтра нижних частот 33 Гц после PSD (фазочувствительный детектор). Данные измерений показали, что выходное напряжение было почти линейно пропорционально объему, как показано на Рисунке 13. Минимальный обнаруживаемый размер был до диаметра 0,8 мм при использовании частоты среза LPF (фильтра нижних частот) 33 Гц.
Зависимость выходного напряжения от частоты приложения (50 кГц, 200 кГц и 400 кГц) была исследована с использованием шарика Fe 1.Диаметр 2 мм, как показано на Рисунке 14. Данные измерений показали, что выходное напряжение возрастало с увеличением частоты подачи, и это было точно согласовано, если мы умножили частотные характеристики согласующей схемы антенны на теоретически ожидаемое значение.
Датчик обнаружения металла, использующий дифференциальные рамочные антенны, обычно страдает неравномерным распределением чувствительности внутри полой центральной области катушки, которая используется для прохождения образца, из-за природы петлевой катушки.В идеале необходимо поддерживать одинаковую чувствительность по всей зоне чувствительности. В противном случае металлический шар образца не будет обнаруживаться при прохождении центральной области, даже если он был обнаружен при прохождении краевой области. Поэтому необходимо скомпенсировать распределение чувствительности для получения почти равной чувствительности. Распределение чувствительности было измерено для указанного выше входа чувствительности, мм, путем приложения частоты 50 кГц и с использованием испытательного шарика из железа диаметром 1,2 мм, как показано на рисунке 15 (а). Две небольшие медные пластины в центре катушки приемной антенны в горизонтальном направлении были исправлены, чтобы компенсировать чувствительность при обнаружении входа за счет обеспечения большего количества связей электромагнитного потока.Данные измерений показали, что чувствительность составляла -6 дБ в центре входа считывания, как показано на рисунке 15 (b), что на +4 дБ выше по сравнению со случаем без пятен.
Ширина полосы LPF после PSD критична для повышения чувствительности. В обычном ФНЧ чем уже полоса пропускания, тем ниже уровень шума. Однако для металлического датчика для обнаружения движущегося объекта чувствительность ухудшается, если полоса пропускания LPF слишком узкая, потому что частотная составляющая из-за движущегося объекта ослабляется.Напротив, уровень шума возрастает, если полоса пропускания LPF слишком велика, что приводит к ухудшению отношения сигнал / шум (SNR). Также улучшенное соотношение сигнал / шум за счет сужения полосы пропускания LPF не означает увеличения чувствительности, если оно не усилено. Поэтому сигнал этого сверхчувствительного металлического датчика, работающего близко к пределу обнаружения, можно усилить только после снижения уровня шума без ущерба для полезной частотной составляющей движущегося объекта. Влияние полосы пропускания LPF измерялось путем изменения частоты среза, чтобы найти оптимальную чувствительность при применении частоты возбуждения 50 кГц.Во время эксперимента сигнал был усилен до уровня, который был эквивалентен уменьшению минимального уровня шума при сохранении общего коэффициента усиления системы, поскольку не существовало запаса на усиление сигнала из-за собственного уровня шума для сверхвысокочувствительного металлического датчика, работающего близко к пределу обнаружения. . Были предприняты попытки установить частоты среза LPF от 33 Гц до менее 11 Гц, а частота ниже 11 Гц привела к более слабому выходному сигналу из-за слишком глубокого ослабления частотной составляющей сигнала.Частота среза 11 Гц показала наилучшие характеристики для движущегося объекта, что было аналогично практическому применению. Характеристики сигнала при частоте среза 11 Гц вместе с частотой среза 33 Гц показаны на рисунке 16 для сравнения.
Дальнейшее испытание проводится с применением 50 кГц для шарика из черных металлов диаметром 0,8 мм и 0,7 мм с использованием той же частоты LPF для определения предела обнаружения, показанного на рисунке 17. Измерения показали, что этот металлический датчик способен обнаруживать железо. тестовый образец шарика до 0.Диаметр 7 мм. Таким образом, минимальный обнаруживаемый размер шарика Fe был увеличен с 0,8 мм до 0,7 мм за счет оптимизации частоты среза LPF.
5.2. Датчик обнаружения металла, имеющий чувствительность в см шкале
Измеренные данные показали, что предыдущий сверхвысокочувствительный металлический датчик имел линейный диапазон отклика примерно 0,7 мм ~ 4 мм диаметра шарика Fe, когда частота возбуждения составляла 50 кГц, а частота среза LPF составляла 11. Гц. При превышении этого предела размера датчик обнаруживает присутствие металла, но выходной отклик становится насыщенным и не может установить дополнительную пороговую точку для другого размера испытательного шара Fe.Конечно, обнаруживаемый размер может быть изменен путем изменения коэффициента усиления датчика; однако дальность обнаружения остается такой же, как указанная выше. Металлический датчик с чувствительностью в сантиметрах был разработан с возможностью размещения другого датчика на соседней оси для компенсации чувствительности, зависящей от направления. Таким образом, этот датчик позволяет обнаруживать в широком диапазоне размеров металла от миллиметров до сантиметрового масштаба, если он совмещен с предыдущим сверхчувствительным металлическим датчиком.
Одноканальный отклик был измерен с уменьшенным усилением, чтобы охарактеризовать частотные характеристики датчика с использованием антенны TX № 2 и антенны RX № 3, как показано на рисунке 18.В ходе эксперимента была вставлена металлическая пластина, занимающая 66% поверхности антенны, чтобы определить влияние металла на чувствительность в проецируемом частотном диапазоне. Наблюдался высокий пик около 50 кГц, и это рассматривалось как характеристики согласования частот между антенной и передатчиком. Однако влияние металлической детали было аналогичным в диапазоне 40 ~ 60%, который был определен как выходное напряжение после вставки по сравнению с выходным напряжением перед вставкой, как показано на Рисунке 19. Следует отметить, что чувствительность увеличивается вместе с увеличением частоты как ожидается, даже если абсолютное значение выходного напряжения уменьшается в области более высоких частот из-за характеристик согласования частот.
Влияние расстояния «» между передающей антенной и приемной антенной было исследовано путем разделения расстояния в два раза, и было вычислено соотношение, выходное напряжение при превышении выходного напряжения при, как показано на рисунке 20. Измеренный результат показывает тенденцию, близкую к правилу. Расхождение между идеальными данными и данными измерений рассматривается из-за утечки электромагнитных потоков по мере увеличения расстояния.
Распределение чувствительности в горизонтальном направлении было исследовано путем постепенного покрытия антенны вдоль средней линии между передающей и приемной антеннами с помощью испытательной металлической пластины.Измеренные данные показали довольно хорошую горизонтальную линейность, нелинейность всего 6.5%. Изменение чувствительности в вертикальном направлении было измерено как ~ 13% вдоль линии 20 ~ 80%, соединяющей передающую антенну и приемную антенну. Это означает, что конфигурация рамочных антенн, обращенных друг к другу, обеспечивает более равномерное распределение чувствительности.
После одноканального эксперимента две приемные антенны были подключены в дифференциальном режиме, и усиление было соответственно увеличено.CMRR был измерен аналогично предыдущему каналу датчика и был рассчитан как –52 дБ, что меньше 22 дБ по сравнению с первым датчиком. Таким образом, этот канал датчика считается подходящим для металлического объекта, имеющего размер в сантиметровом масштабе. Для определения чувствительности по трем осям были испытаны шарики из тестовых образцов из железа, имеющие размер (мм). Результат представлен в Таблице 1. Если мы расширим концепцию конфигурации антенны в горизонтальном направлении вместо нынешнего вертикального направления, то мы сможем получить повернутое распределение чувствительности.Если мы каскадируем эти две конфигурации антенн, то мы сможем получить более равномерное распределение чувствительности, компенсируя чувствительность друг другу.
|
5.3. Одновременная работа двух датчиков
Целью данного исследования является получение широкого диапазона откликов датчиков по всему объекту от миллиметрового до сантиметрового масштаба путем каскадного соединения двух датчиков, имеющих разную чувствительность и распределение. Однако датчик обнаружения металла, работающий в дифференциальном режиме, поддерживает чрезвычайно высокое усиление для повышения чувствительности; таким образом, на него сильно влияют близлежащие электромагнитные волны.Поэтому влияние другого датчика в основном исследуется путем измерения с использованием существующей экспериментальной установки, чтобы проверить осуществимость этой концепции. Поскольку экспериментальная установка была чрезвычайно чувствительна к внешней вибрации и электромагнитным волнам, все антенны были жестко смонтированы, отрегулированы и закреплены с помощью эпоксидной смолы; таким образом, было невозможно изменить такие параметры, как размеры и расстояния. Отклик датчика, имеющего чувствительность в миллиметровой шкале, показал более низкий отклик ~ 30%, как показано на рисунке 21, при одновременной работе с датчиком, имеющим чувствительность в сантиметровой шкале, по сравнению с автономной работой.Это считается из характеристик PSD, потому что выходной сигнал PSD имеет тенденцию к уменьшению вместе с увеличением внешнего шума. Однако невозможно было разделить каждый эффект по отдельности, такой как эффект BPF, эффект экранирования и эффект PSD, из-за тонко интегрированной сенсорной системы.
Напротив, отклик датчика, имеющего чувствительность в сантиметровой шкале, показал немного меньший отклик ~ 85% при одновременной работе с датчиком с чувствительностью в миллиметровой шкале по сравнению с автономной работой.Это также учитывается в характеристиках PSD, но с меньшим эффектом из-за более низкого уровня усиления датчика, имеющего чувствительность в сантиметровом масштабе.
6. Заключение
Характеристики датчика обнаружения металла, имеющего два набора перпендикулярно ориентированных сенсорных антенн, были исследованы для расширения диапазона обнаружения от миллиметрового до сантиметрового масштаба с меньшими помехами за счет каскадного соединения двух датчиков. Датчик обнаружения металла с чувствительностью в миллиметровой шкале имел более высокую чувствительность к железным сферам диаметром до 0.7 мм при частоте возбуждения 50 кГц в автономном режиме. Отклик датчика был пропорционален частоте возбуждения и объему исследуемого образца железа, как и ожидалось. Распределение чувствительности в проходе объекта показало повышенную однородность за счет прикрепления медной накладки к катушке обмотки. Полоса пропускания ФНЧ после фазочувствительного детектора около 11 Гц оказалась оптимальной для повышения чувствительности. Датчик обнаружения металла, имеющий чувствительность в сантиметровой шкале, показал более равномерное распределение чувствительности, но с более низкой чувствительностью, что позволяло расширить диапазон чувствительности до сантиметровой шкалы с минимальными помехами.Эта антенная структура, обращенная друг к другу, имеет преимущество простого добавления дополнительных осей; таким образом, он позволяет модульной конструкции достичь почти равномерного распределения чувствительности без чувствительности, зависящей от направления. Было исследовано влияние помех при одновременной работе двух датчиков, и результат измерения показал пониженный выходной отклик, но все еще в пределах полезного диапазона обнаружения.