Site Loader

Схема инвертора напряжения 12В — 220 В

На рисунке приведена схема преобразователя напряжения 12В постоянного тока в 220 В переменного. Предлагаемый вариант преобразователя можно использовать для питания магнитолы, телевизионного приемника и других радиоэлектронных устройств с мощностью до 100 Вт.

Принципиальная схема

Преобразователь состоит из задающего генератора, выполненного по схеме симметричного мультивибратора на транзисторах VT1, VT2, и усилителя мощности на транзисторах VT3 — VT8. Он работает следующим образом.

При подаче питания выключателем SB1 мультивибратор начинает генерировать симметричные импульсы (меандр). С коллекторов транзисторов мультивибратора импульсы через цепочки R2C3 и R6C4 поступают на транзисторы двухтактного усилителя мощности. Когда на коллекторе транзистора VT1 высокий уровень напряжения, на коллекторе транзистора VT2 — низкий.

Рис. 1. Принципиальная схема инвертора напряжения с мощностью 100 Ватт.

В течение полупериода транзисторы VT4, VT6 и VT8 открыты через них и обмотку трансформатора Т1 протекает ток от источника питания 12 В. Транзисторы верхнего плеча усилителя мощности закрыты. В течение второго полупериода открыты транзисторы VT3, VT5 и VT7 — и ток протекает через соответствующую обмотку.

Таким образом, на первичной обмотке трансформатора Т1 формируется переменное напряжение прямоугольной формы с амплитудой, примерно равной напряжению источника.

Переменный магнитный поток в магнитопроводе трансформатора индуцирует во вторичной обмотке напряжение, амплитуда которого зависит от соотношения витков вторичной и первичной обмоток.

Диоды VD1 и VD2 служат для устранения импульсов отрицательной полярности, возникающих при работе задающего генератора в моменты переходных процессов. Диоды VD3 и VD4 защищают транзисторы выходной ступени усилителя мощности от напряжений обратной полярности, возникающих за счет самоиндукции.

Трансформатор Т1 выполнен на магнитопроводе ШЗ6хЗ6. Каждая из половин первичной обмотки имеет по 21 витку, намотанных проводом ПЭЛ 2,1, вторичная обмотка имеет 600 витков провода ПЭЛ 0,59.

Вторичная обмотка при вы­полнении трансформатора укладывается первой, а поверх нее -первичная обмотка, которую для лучшей симметрии следует выполнять одновременно в два провода.

При выполнении транзисторы VT5 и VT7, VT6 и VT8 следует попарно расположить на теплоотводах. Теплоотводы должны быть изолированы друг от друга и от шины общей цепи питания.

Для измерения тока потребления от источника постоянного тока (он не должен превышать 10А) в разрыв провода, идущего от средней точки первичной обмотки трансформатора Т1 к плавкой вставке FU1, желательно включить амперметр с током полного отклонения 10А (на схеме не показан). Это облегчит визуальный контроль при работе с мощными потребителями.

Настройка

Настройка преобразователя состоит в установке частоты задающего генератора переменным резистором R9. Для настройки следует подключить осциллограф или частотомер к коллектору одного из транзисторов мультивибратора и включить питание преобразователя. Регулировкой переменного резистора добиться частоты генерируемых колебаний 50 Гц.

Смонтированное и отрегулированное устройство следует разместить в корпусе, на передней панели которого располагают клеммы для подключения внешнего источника тока (аккумулятора) и нагрузки, держатели плавких вставок, выключатель напряжения задающего генератора, светодиоды индикаторов рабочего состояния — красный (HL2), сигнализирующий подключение внешнего источника тока, и зеленый (HL1 ) — включение задающего генератора.

При изготовлении инвертора напряжения допустимы следующие замены элементов: 2Т6551 — КТ601А, 277531 — KT801A. 2N3055 -КТ819ГМ, 205607 -Д226А. диод КД208А применен российского производства. В качестве индикаторов можно применить светодиоды АЛ307В (зеленый) и АЛ307Б (красный).

A. Стоилов. Инвертор напряжение. Радио, телевизия, електроника», 1998, №6, с. 12, 13  РАДИО № 10. 1998 г., с. 79.

Применение нулевых схем инверторов тока с квазирезонансной

В автономных инверторах напряжения и тока с квазирезонансной коммутацией электро­магнитные процессы на временных интерва­лах переключения силовых вентилей протекают при колебательном или (в общем случае) монотон­ном изменении токов через вентили и напряжений на вентилях за счет основных и (или) дополни­тельных, монтажных и собственных (паразитных) реактивных элементов цепей коммутации, включа­ющих реактивности нагрузки и схемы инвертора, в том числе и собственные реактивности вентилей [1-3]. Включение и выключение силовых вентилей в таких инверторах осуществляется при малом или нулевом значении тока и (или) напряжения на них, другими словами, имеет место «мягкая» коммута­ция, что существенно снижает коммутационные потери и перенапряжения в схемах. В коммутаци­онном процессе участвуют вспомогательные вен­тили (стабилизирующие, отсекающие, встречно-параллельные), которые являются необходимым элементом схемы автономного инвертора с квази­резонансной коммутацией. При малой относитель­ной длительности временного интервала коммута­ции (угла коммутации

s), по сравнению с установ­ленным периодом выходного параметра Т, то есть при выполнении условия

s << 2π (1)

характеристики автономного инвертора в целом можно считать соответствующими (в зависимости от реализации) характеристикам инвертора напря­жения или тока.

Классификационные обозначения — «мягкая» коммутация, квазирезонансный инвертор, инвер­тор с «мягкой» коммутацией — нельзя считать в полной мере корректными.

Неудачным следует признать и примененный автором термин «токо-резонансный инвертор» [4]. И совсем неправиль­ным, по моему мнению, является обозначение «резонансный инвертор тока», приведенное в ста­тье уфимских специалистов [5]. Инвертор тока не может одновременно быть резонансным инвер­тором (как, впрочем, и наоборот) — это противо­речило бы устоявшимся представлениям. В этой связи необходимо отметить, что с появлением но­вых типов полностью управляемых вентилей и раз­работкой на их основе новых серий полупроводни­ковых приборов — преобразователей электрической энергии сложившаяся классификация автономных инвер­торов по результирующей реакции нагрузочной цепи (выходной ток опережает или отстает от вы­ходного напряжения) [6, 7] нуждается в некотором уточнении. Действительно, при классическом под­ходе неясно, например, к какому классу следует от­носить автономные инверторы на полностью уп­равляемых вентилях, работающие на резистивную нагрузку. А это, в настоящее время, значительное число применений автономных инверторов [8].
Не отходя от установившейся классификационной терминологии автономные инверторы, безусловно, следует разделять на три основных класса: инверто­ры тока, напряжения и резонансные. При этом в ос­нову классификации необходимо положить отно­шение эквивалентных (кажущихся) импедансов (не смешивать с линейными электрическими) це­пей постоянного и переменного тока (напряжения) схемы инвертора относительно определенных (ха­рактеристических) точек схемы. Как известно, в цепь переменного тока (напряжения) автономно­го инвертора включается нагрузка. При этом, на­пример, очевидно, что увеличением сопротивления нагрузки в классическом параллельном инверторе тока (эквивалентный импеданс цепи постоянного тока существенно превышает эквивалентный им­педанс цепи переменного тока) всегда можно пере­вести указанный инвертор в резонансный режим работы (сравнимые эквивалентные импедансы це­пей постоянного и переменного тока). Что же каса­ется классификационной оценки типа коммутации вентилей в автономных инверторах, то, по мнению автора, в реальных системах так называемая «жесткая» коммутация фактиче­ски не реализуется.
Тем не менее, возвраща­ясь к определению принципа квазирезонанс­ной коммутации, необходимо отметить, что выделение в общем электромагнитном про­цессе процесса коммутации и возможность целенаправленного регулирования (задания) его характера приводят к образованию само­стоятельной группы, куда входят соответст­вующие схемы автономных инверторов.

Квазирезонансная коммутация улучшает электромагнитную совместимость инверто­ров с питающей сетью и нагрузкой, повы­шает нагрузочную способность вентилей и надежность работы инвертора за счет обеспечения безопасных траекторий пере­ключений вентилей с малыми потерями, на­иболее оптимально соответствует свойст­вам нагрузки и способу ее подключения к инвертору в абсолютном большинстве применений. Автономные инверторы с ква­зирезонансной коммутацией особенно пер­спективны для использования на высоких частотах преобразования и в системах с по­вышенными требованиями по электромаг­нитной совместимости.

Пример мостовой схемы инвертора напря­жения с квазирезонансной коммутацией при­веден на рис.

1. Выключение вентилей в этом инверторе может осуществляться при нуле­вом значении напряжения на вентиле, а включение — при нулевых значениях тока и напряжения (за счет колебательного переза­ряда параллельного конденсатора в интерва­ле коммутации). Указанная схема была пред­ложена и впервые применена автором для бытовых индукционных электроплит [9-13]. Реализация преобразователей на основе ин­вертора напряжения с квазирезонансной коммутацией позволила создать надежные изделия с достаточно высокими технико-эко­номическими и энергетическими показателя­ми при использовании доступных в то время полупроводниковых приборов с не очень ка­чественными характеристиками. Достаточно подробно данный инвертор исследован (реа­лизация в источника питания барьер­ных генераторов озона) в [2].

Рис. 1. Схема мостового инвертора напряжения с квазирезонансной коммутацией

В настоящее время схема инвертора напря­жения с квазирезонансной коммутацией счи­тается перспективной для использования в те­лекоммуникационных системах и источниках питания электротехнологических установок различного назначения, в частности устано­вок дуговой сварки [14, 15] (в последнем случае безусловная оптимальность применения инвертора напряжения вызывает сомнение).

Для указанной схемы фирмой International Rectifier специально разработан новый класс транзисторов с полевым управлением.

Инверторы тока, в отличие от инверторов напряжения, являются фактически «идеаль­ными» устройствами для большого числа применений [2, 16]. Значение инверторов то­ка в настоящее время существенно возросло с развитием силовой элементной базы.

Классическим вариантом мостовой схемы автономного инвертора тока с квазирезо­нансной коммутацией является инвертор со стабилизирующим силовым диодом (рис. 2). Режи­мы работы схемы впервые рассматривались в [17, 18]. В окончательном виде схема дана в [19], возможные способы управления ею представлены в [20-24], а подробный анализ выполнен в [25]. В настоящее время схема автономного инвертора тока с квазирезо­нансной коммутацией используется в серии преобразователей частоты для индукцион­ного нагрева на обычных симметричных (SCR) тиристорах [5, 26].

Рис. 2. Схема мостового инвертора тока со стабилизирующим силовым диодом

Следует отметить, что основным преиму­ществом данной схемы является не высокий уровень выходного напряжения, как указано в [5] (что имеет место и в классическом ин­верторе тока с «жесткой» коммутацией), а оптимальная форма тока через силовой вентиль и напряжения на нем. В свое время эта схема, а также ряд других схем [27] бы­ли предложены автором в первую очередь для новых типов приборов (реверсивно-включаемые динисторы [28], асимметрич­ные тиристоры). В указанных схемах, в от­личие от схем со встречно-параллельными вентилями, достаточно просто обеспечива­ется управление силовым вентилем (накач­ка), если, например, в качестве силовых вен­тилей используются реверсивно-включаемые динисторы и другие приборы, работающие на принципах коммутации с помощью управляющего плазменного слоя и задержанной ударно-ионизационной волны. В инверторах в этом случае отсутст­вует необходимость в применении для раз­вязки управляющих цепей отсекающих дио­дов, рассчитанных на прямой ток вентиля (при реализации преобразователей по рас­пространенным схемам резонансных инвер­торов со встречно-параллельными силовыми диодами). При работе инвертора тока с квазирезонанс­ной коммутацией обратное напряжение на вентиле, выключившемся в интервале вос­становления его управляющих свойств, равно сумме напряжений на смежном вентиле и стабилизирующем силовом диоде (в статье [5] ука­зано неверно), что является фактически оп­тимальным уровнем обратного напряжения для любого вентиля с регенеративным меха­низмом включения.

Скорость нарастания то­ка вентиля ограничена схемотехнически, а фронт импульса прямого напряжения на вентиле в указанной схеме минимален, что обеспечивает ее надежную и устойчивую работу и снижает требования к демпфирую­щим цепям и их установленную мощность. Схема работоспособна и на обычных SCR — тиристорах, а также при использовании сим­метричных и асимметричных запираемых тиристоров (GTO, GCT, MCT, МТО) и тран­зисторов (IGBT, MOSFET), в том числе с об­ратной блокирующей способностью, и имеет те же положительные свойства.

Нулевые схемы инверторов тока имеют важное общее преимущество перед мосто­выми, заключающееся в уменьшенном числе силовых вентилей. При этом коэффициент использования вентилей по мощности кР в нулевых схемах равен соответствующему коэффициенту для мостовых схем

кР= РИ/(nUVIV), (2)

где РИ — выходная мощность инвертора, n — общее число силовых вентилей в схеме, UV — максимальное значение напряжения на силовом вентиле, IV— максимальный ток вентиля. То есть нулевые схемы инверторов тока не проигрывают мостовым схемам по установленной мощности вентилей.

Нулевая схема инвертора тока с выходным трансформатором известна достаточно дав­но [6, 7, 29]. Вариант нулевой схемы инвер­тора тока на SCR-вентилях с квазирезонанс­ной коммутацией и выходным трансформа­тором рассмотрен в [4].

Схема инвертора тока с квазирезонансной коммутацией и выходным силовым трансформато­ром на полностью управляемых вентилях приведена на рис. 3.

Рис. 3. Нулевая схема инвертора тока с выходным силовым трансформатором

Нагрузка инвертора тока имеет активно-емкостной характер. Примером такой на­грузки может служить генератор озона барь­ерного разряда. Изменение тока вентиля на интервале коммутации по колебательно­му закону, включение и выключение венти­ля при низком уровне напряжения обеспе­чиваются цепью коммутации, включающей индуктивность выходного трансформатора (а также соединительных шин) и эквивалентную емкость нагрузки. Питание генера­торов озона осуществляется через развязы­вающий согласующий трансформатор, по­этому нулевая схема инвертора тока более предпочтительна, чем мостовая схема, именно за счет простого устройства и мень­шего числа вентилей. Областями примене­ния нулевой схемы инвертора тока с квази­резонансной коммутацией и выходным трансформатором являются плазмохимия, источники питания и управления разрядных источников излучения, сварочных устано­вок и других электротехнологических уста­новок, в которых используется электричес­кий разряд.

Для индукционного нагрева, в том числе в источниках питания индукционных пла­вильных печей, целесообразно использовать нулевую схему инвертора тока с квазирезо­нансной коммутацией и нагрузкой, включа­емой между входными дросселями фильтра (рис. 4). Работу инвертора тока иллюстриру­ют временные диаграммы, приведенные на рис. 5. На диаграммах соответственно uУ1, uУ2 — импульсы управления вентилями, uИ, iИ — мгновенные значения выходного на­пряжения (напряжения на нагрузочном кон­туре С1, Z1) и выходного тока инвертора (входного тока нагрузочного контура), uV 1, uV2 — мгновенные значения напряжений на вентилях, iV 1, iV2 — мгновенные значения токов вентилей, iD1, iD2 — мгновенные значе­ния токов встречно-параллельных силовых диодов. Вентили инвертора VT1, VT2 работают с пе­рекрытием токов. Очередной вентиль VT1 (VT2) включается с опережением относи­тельно момента перехода мгновенного зна­чения выходного напряжения через нуль. Выключение вентилей осуществляется в мо­мент указанного перехода либо в интервале проводимости соответствующего встречно-параллельного силового диода VD2 (VD1). Угол опе­режения в оптимизируется (парарезонансное управление в≈s, в>s)

Рис. 4. Нулевая схема инвертора тока с нагрузкой, включаемой между входными дросселями фильтра

Рис. 5. Временные диаграммы сигналов в системе управления и силовой схеме инвертора тока с нагрузкой, включаемой между входными дросселями

Выходное напряжение UV (действующее значение) в нулевой схеме инвертора тока (при равенстве углов опережения в) в два ра­за превышает выходное напряжение в мос­товой схеме

UИ = 2νЕ/сos{s/2}, (3)

где v — схемный числовой коэффициент (одинаковый для нулевой и мостовой схем н ≈ 1,11), Е — напряжение питания инверто­ра тока.

Коэффициент использования вентилей по мощности для обеих схем равен

кР= сos {s/2} /(4ν21/2) (4)

Можно легко показать, что нулевая и мос­товая схемы имеют и одинаковую установ­ленную мощность конденсаторов.

Значение индуктивности L дросселей фильт­ра L1, L2 выбирается из условия качественно­го сглаживания входного тока инвертора

Временные диаграммы сигналов в системе управления и силовой схеме инвертора тока с нагрузкой, включаемой между входными дросселями

Основным параметром сглаживающего дросселя (для заданных индуктивности и тока) являются его весогабаритные показатели. Известно, что весогабаритные показатели дроссельного оборудования могут быть сни­жены при выполнении дросселя составным (из двух дросселей, имеющих в два раза меньшую индуктивность). В реальных систе­мах нулевая схема может также не проигры­вать мостовой и по установленной мощнос­ти дроссельного оборудования.

Более высокое выходное напряжение, обеспечиваемое нулевой схемой инвертора тока, позволяет качественно улучшить энергетические характеристики плавиль­ных печей за счет снижения электрических потерь в соединительных шинах и водоохлаждаемых кабелях, используемых для под­ключения батареи компенсирующих кон­денсаторов к индуктору печи. Например, при питании индукционного плавильного комплекса от стандартной трехфазной про­мышленной сети 380 В напряжение на ин­дукторе плавильной печи может быть более 1100 В (вместо 550-600 В), что энергетичес­ки выгодно. Создаются условия для реали­зации плавильных печей с встраиваемыми батареями компенсирующих конденсато­ров, в некоторых случаях это позволяет от­казаться от применения водоохлаждаемых кабелей, увеличивает на 5-7% передавае­мую на нагрев полезную мощность и значи­тельно улучшает технико-экономические показатели. Увеличение передаваемой в на­грузку активной мощности приводит к су­щественному сокращению времени плавки.

При этом становится возможным сни­зить удельные затраты электроэнергии, например при плавке чугуна до величины 500 кВт•ч/тн.

Для дальнейшего уменьшения весогабаритных показателей и установленной мощ­ности дроссельного оборудования, а также для ограничения уровня и аварийной ско­рости нарастания тока вентилей при замы­кании витков индуктора на «землю» в схе­му инвертора тока с квазирезонансной коммутацией включается дополнительный дроссель L3 (рис. 6). В схеме силовые диоды VD3, VD4 предотвращают разряд компенсирую­щего конденсатора С1 через фильтровые дроссели L1, L2, что может, например, улучшить пусковые режимы инвертора тока с квазирезонансной коммутацией. Указанные силовые диоды являются низкочастот­ными и в номинальном режиме проводят ток постоянно.

Инвертор тока по нулевой схеме с нагруз­кой, включаемой между входными дросселя­ми фильтра, может быть выполнен и на обыч­ных SCR тиристорах с встречно-параллель­ными силовыми диодами и без них.

Рис. 6. Нулевая схема инвертора тока с квазирезонансной коммутацией и отсекающими силовыми диодами

Замыкание витков индуктора на «землю» происходит при повреждениях футеровки тигля плавильной печи, вызываемых ее раз­мывом и растрескиванием при термоударах и механических воздействиях и выходе рас­плавленного металла из тигля. Такая авария часто приводит к полному выходу из строя индуктора печи. Существуют контактные методы контроля состояния футеровки пла­вильной печи. Однако они не могут быть применены в наиболее распространенных на практике системах с глухозаземленной нейтралью. Кроме того, контактные методы достаточно сложны в реализации. Поэтому оптимальными считаются бесконтактные методы контроля состояния футеровки, на­пример использующие измерение индук­тивности плавильной печи по ходу плавки. Инверторы тока в плавильных комплексах управляются с помощью методов самовоз­буждения. Соответственно косвенный кон­троль состояния футеровки в данном случае может осуществляться путем простого кон­троля собственной частоты плавильной печи. Подобный контроль легко выполняется для любых систем, так как текущая информа­ция о собственной частоте плавильной пе­чи уже имеется в системе управления ин­вертора тока.

Схема инвертора тока с квазирезонансной коммутацией использована при разработке новой серии энергосберегающих преобразо­вателей частоты для плавильных печей на ем­кости 160 и 400 кг (по стали) типа ИСТ-0,16 и ИСТ-0,4 с рабочей частотой 4 кГц, номи­нальным выходным напряжением 1200 В и выходной мощностью 120 и 275 кВт.

Литература

  1. Силкин Е. М. Релейно-импульсное управ­ление в инверторах тока и напряжения с квазирезонансной коммутацией // Тези­сы доклада международной научно-техни­ческой конференции, посвященной мето­дам и средствам управления технологичес­кими процессами. 25-27 октября 1999 г. Саранск, 1999. С. 282-284.
  2. Силкин Е. М., Кузьмин А. Ф. Системы уп­равления с транзисторными преобразова­телями для промышленных озонаторов большой мощности // Электротехника. № 5’2001. С. 42-46.
  3. Силкин Е. М. Транзисторные преобразова­тели частоты для индукционного нагрева // Электротехника. № 10’2004. С. 24-30.
  4. П. 2081499 РФ, МКИ Н02 М 7/523. Силкин Е.М. Автономный токо-резонансный инвертор // Б. И. № 16’1997.
  5. Белкин А. К., Исхаков И. Г., Таназлы Г. И. и др. Индукционная установка для разо­грева крайних ниппелей кронштейнов анододержателей // Силовая электроника. № 1’2005. С. 100-103.
  6. Толстов Ю. Г. Автономные инверторы то­ка. М.: Энергия, 1978. 208 с.
  7. Чиженко И. М., Руденко В. С, Сенько В. И. Основы преобразовательной техники. М.: Высшая школа, 1974. 430 с.
  8. Силкин Е. М. Электронные пускорегулирующие аппараты для разрядных ламп повы­шенной мощности // Электрика. № 5’2004. С. 38-42.
  9. Силкин Е. М., Дзлиев С. В., Тазихин С. Н. Разработка индукционных электроплит // Тезисы доклада научно-технической кон­ференции, посвященной научным осно­вам создания энергосберегающей техники и технологий, 27-29 ноября 1990 г. М., 1990. С. 259-261.
  10. П. 2031534 РФ, МКИ Н02 М5/45. Силкин Е. М. Преобразователь переменного тока для питания индуктора // Б. И. № 8’1995.
  11. П. 2040105 РФ, МКИ Н02 М5/458. Сил­кин Е. М., Мизин Г. В., Пахалин А. И. и др. Преобразователь переменного тока для питания индуктора // Б. И. № 20’1995.
  12. П. 2061292 РФ, МКИ Н02 М5/44. Сил­кин Е. М., Мизин Г. В., Пахалин А. И. и др. Способ управления преобразователем ча­стоты // Б. И. № 15’1996.
  13. Силкин Е. М. Транзисторные ВЧ-генераторы для электротехнологии // Тезисы докла­да II международной научно-технической конференции, посвященной электромеха­нике и электротехнологии, 1-5 октября 1996 г. Симферополь, 1996. С. 103-105.
  14. International Rectifier. Catalogue СА05 — 10/2001. Moscow: IR, 2001.Башкиров В. И. Оптимизированные МОП-транзисторы для инверторов с жесткими и мягкими режимами переключения // Электротехника. № 12’2002. С. 10-14.
  15. Силкин Е. М. Применение инверторов то­ка в электротермии // Вопросы преобразо­вательной техники, частотного электро­привода и управления: Межвуз. сб. статей. Саратов, 2000. С. 49-54.
  16. Дзлиев С. В., Силкин Е. М. Регулируемый автономный инвертор со стабилизирую­щими диодами // Тезисы доклада Всесо­юзной научно-технической конферен­ции, посвященной автоматизации элект­ротехнологических процессов в гибких производственных системах машиност­роения на основе полупроводниковых преобразователей частоты, 21-25 мая 1987 г. Уфа, 1987. С. 39-42.
  17. А. с. 1415384 СССР, МКИ Н02 М 7/523. Васильев А. С, Дзлиев С. В., Силкин Е. М. Последовательный резонансный инвер­тор // Б. И. № 29’1988.
  18. А. с. 1683150 СССР, МКИ Н02 М 5/45. Силкин Е. М. Преобразователь частоты // Б. И. №37’1991.
  19. Силкин Е. М. Управление по вычисляе­мому прогнозу параллельным инверто­ром тока со стабилизирующим диодом // Тезисы доклада Всесоюзной научно-тех­нической конференции, посвященной микроэлектронике в машиностроении, 14-16 ноября 1989 г. Ульяновск, 1989. С. 81-84.
  20. А. с. 1690117 СССР, МКИ Н02 М 1/08. Силкин Е. М. Способ управления инверто­ром тока со стабилизирующим диодом // Б. И. №41’1991.
  21. А. с. 1758802 СССР, МКИ Н02 М 5/45. Силкин Е. М. Статический преобразова­тель частоты // Б. И. № 32’1992.
  22. А. с. 1753564 СССР, МКИ Н02 М 7/521. Силкин Е. М. Инвертор тока // Б. И. № 29’1992.
  23. А. с.1758812 СССР, МКИ Н02 М 7/523. Силкин Е. М., Дзлиев С. В., Качан Ю. П. и др. Параллельный инвертор тока // Б. И. №32’1992.
  24. Силкин Е. М., Дзлиев С. В., Тарасова М. М. Исследование возможности создания се­рии тиристорных генераторов для пита­ния электротермических и ультразвуко­вых установок на мощности 4-25 кВт, ча­стоты 4-22 кГц с применением новых схемотехнических решений // Отчет о НИР, гос. рег. №001390, инв. №88945. Ульяновск, 1990. 142 с.
  25. Рогинская Л. Э., Иванов А. В., Мульменко М. М. и др. Выбор структуры и пара­метрический синтез симметричного ре­зонансного инвертора // Электротехника. № 7’1998. С. 1-5.
  26. А. с. 1654955 СССР, МКИ Н02 М 7/523. Силкин Е. М. Резонансный инвертор // Б. И. № 21’1991.
  27. Тучкевич В. М., Грехов И. В. Новые прин­ципы коммутации больших мощностей полупроводниковыми приборами. Л.: Наука, 1988. 117 с.
  28. Бедфорд Б., Хофт Р. Теория автономных инверторов. М.: Энергия, 1969. 280 с.
Схема инвертора

: полное руководство

Знания

Знайте все о принципиальной схеме инвертора

Хотите сделать схему инвертора?

EdrawMax может с легкостью создавать бесплатные карты активов и модели для команд разработчиков программного обеспечения. Попробуйте!

Попробуйте бесплатно

Что такое инвертор?

9Инвертор 0017 представляет собой электронное устройство, используемое для преобразования постоянного тока (DC) в переменный ток (AC). Переменный ток — это ток, который постоянно меняет свою величину во времени. Этот ток течет только в одном направлении. Постоянный ток также является однонаправленным током, который обычно протекает через проводник, но иногда он также может протекать через изоляторы.

Эти инверторы используются для работы, противоположной 9.0019 преобразователи . Он не производит мощность, но источник постоянного тока также производит ее. Обычно инвертор представляет собой электронное устройство, но иногда он может состоять из механических компонентов. Они обычно используются в приложениях, где присутствуют напряжения и большие токи. КПД силового инвертора составляет более 95%. Инверторы мощности также используются для управления скоростью и крутящим моментом в электронных двигателях.

Вы также можете сделать собственную схему подключения инвертора :

Как работает инвертор?

Инвертор предназначен для подачи напряжения 220 В переменного тока или 110 В переменного тока на подключенное к нему устройство в выходной розетке в качестве нагрузки. Когда основной источник переменного тока открыт, датчики инвертора учитывают это и передают этот переменный ток в секцию реле и зарядки аккумулятора. От реле переменный ток будет поступать на нагрузку, которая управляется линейным напряжением. Это линейное напряжение также подается на участок зарядки аккумулятора, преобразуя его в постоянный ток.

Типы и классификация инверторов

Ниже приведены основные типы инверторов, которые вы должны знать.

Синусоидальные инверторы

Это базовые типы инверторов без дополнительных функций. Они используются в типичных бытовых приборах, таких как кондиционеры, холодильники, стиральные машины, компьютеры, телевизоры и т. д.

Модифицированный инвертор синусоиды

Это инверторы, которые дешевле инвертора, как упоминалось выше. Они используются в устройствах с низким энергопотреблением, таких как вентиляторы, лампочки, микроволновые печи и т. д. Они преобразуют 12-вольтовые батареи и заряжают их с помощью генераторов на солнечных батареях.

Солнечные инверторы

Это инверторы с более продвинутыми функциями, и вместо традиционной энергии они используют солнечную энергию для преобразования постоянного тока в переменный.

Электрические характеристики инвертора

Инвертор внутри состоит из переключателей, трансформатора, батареи, МОП-транзистора и усилителя. Постоянный ток, хранящийся в батарее, преобразуется в переменный ток. Выключатели играют важную роль в этом процессе, поскольку они постоянно включаются и выключаются. МОП-транзистор, трансформатор, также последовательно включает и выключает постоянное напряжение, создавая противоположное напряжение, переменное напряжение.

Универсальное программное обеспечение для построения диаграмм

Создавайте более 280 типов диаграмм без особых усилий

Легко начинайте строить диаграммы с помощью различных шаблонов и символов

  • Превосходная совместимость файлов: Импорт и экспорт чертежей в файлы различных форматов, например Visio
  • Кроссплатформенная поддержка (Windows, Mac, Linux, Web)

ПОПРОБУЙТЕ БЕСПЛАТНО

Безопасность подтверждена | Переключиться на Mac >>

ПОПРОБУЙТЕ БЕСПЛАТНО

Безопасность подтверждена | Перейти на Linux >>

ПОПРОБУЙТЕ БЕСПЛАТНО

Безопасность подтверждена | Переключиться на Windows >>

Как сделать схему инвертора?

Прежде чем перейти к принципиальной схеме инвертора, необходимо знать логический символ инвертора мощности. В области электроники или логического проектирования инвертор также известен как 9.0019 NOT gate , который ничего не делает, кроме логического отрицания. Более подробно, инвертор или вентиль НЕ превращает высокий уровень в низкий, а низкий в высокий.

Инвертор является важной темой в мире электроники и логического проектирования, поскольку конечные автоматы, декодеры, мультиплексоры и т. д. используют его для своей работы. В той же теме, если у вас нет инвертора, который НЕ является вентилем, вы можете сделать его с комбинацией вентилей И-НЕ и НЕ-ИЛИ.

Логический символ инвертора показан ниже.

Шаги по созданию электрической схемы инвертора

В этом разделе будет рассказано о том, как сделать схему простого 100-ваттного инвертора. В домашних или промышленных сценариях вы обычно покупаете его на рынке, но когда вам нужно сделать его своими руками для целей проекта, вы можете точно выполнить эти шаги.

Вещи, необходимые для строительства

Для изготовления инвертора вам понадобятся следующие вещи.

  • 12В Аккумулятор-1
  • Конденсатор — 0,1 мкФ
  • Конденсатор — 0,01 мкФ — 1
  • Резистор – 390кОм – 1
  • Резистор – 1кОм – 2
  • Резистор – 220 Ом – 2 шт.
  • Резистор – 330 Ом – 1 шт.
  • Переключатель – 1
  • ИС – CD4047 – 1
  • МОП-транзистор IRF540-2
  • ИС – CD4047 – 1

Лучший способ разработать принципиальную схему инвертора — использовать компьютерное программное обеспечение, доступное в Интернете. Программное обеспечение, такое как EdrawMax , имеет все функции для создания идеальной принципиальной схемы. Вы также можете использовать любую программу для создания диаграмм.

  • Чтобы создать целую схему с нуля, вам нужно обратиться к разделу программного обеспечения по электротехнике или электрическому проектированию.
  • Второй шаг — получить все символы, необходимые инвертору. Перетащите все компоненты, упомянутые выше, в свой рабочий проект из доступных символов. Если вы не знаете их символов, не волнуйтесь. Просто введите название символа в строке поиска, и вы получите его.
  • Получите провод, также известный как символы разъема, из доступного варианта.
  • Теперь соедините все эти символы с помощью перетаскивания в соответствии с принципиальной схемой, показанной ниже, или вы также используете теории, которые у вас есть.
  • В текстовой функции программного обеспечения напишите все значения компонентов и краткие имена.
  • Теперь ваш проект готов к загрузке. Используйте программное обеспечение и загрузите его.
Важность использования инвертора

Инвертор играет жизненно важную роль в нашей повседневной жизни. Оборудование, использующее инвертор, экономит затраты на электроэнергию до 50%. Эти типы оборудования производят меньше шума, чем оборудование без инверторов. Кроме того, они более устойчивы во время работы.

Инверторы могут легко управлять изменением температуры устройств. Они могут легко рассчитать напряжение, ток и затем работать в соответствии с этим.

О чем вы все еще сомневаетесь?
Смотрите видео и попробуйте сделать схему подключения инвертора своими руками:

Используйте EdrawMax для создания принципиальных схем

Вы можете использовать EdrawMax для создания принципиальной схемы инвертора. EdrawMax — это надежное и простое в использовании программное обеспечение, которое делает вашу диаграмму более совершенной. Это программное обеспечение используется для создания диаграмм. Он содержит все необходимые функции и библиотеки, которых вам будет достаточно при создании диаграмм.

Программное обеспечение можно использовать бесплатно для создания основных диаграмм, но вы должны выбрать вариант с ценой, чтобы использовать более продвинутые функции. Программное обеспечение позволяет импортировать ваши шаблоны или использовать предварительно созданные шаблоны. Кроме того, это программное обеспечение также позволяет загружать ваш проект в нескольких форматах.

Связанные статьи

Схема архитектуры микросервисов: полное руководство Картирование активов | Картирование активов сообщества Что такое графический органайзер? Как законопроект становится законом Блок-схема Блок-схема «Как привести дела в порядок» (GTD)

Схема инвертора, получающая 5 В от четырех элементов типа АА и упрощающая конструкцию