Индикатор окончания заряда аккумулятора на светодиодах
Индикатор заряда аккумулятора – нужная штука в хозяйстве любого автомобилиста. Актуальность такого устройства возрастает многократно, когда холодным зимним утром автомобиль, почему-то, отказывается заводиться. В этой ситуации стоит определиться, то ли звонить другу, что бы тот приехал и помог завестись от своей батареи, либо аккумулятор приказал долго жить, разрядившись ниже критического уровня.Зачем следить за состоянием аккумулятора?
Автомобильный аккумулятор состоит из шести последовательно соединённых аккумуляторных батарей с напряжением питания 2,1 — 2,16В. В норме АКБ должен выдавать 13 — 13,5В. Нельзя допускать значительного разряда аккумуляторной батареи, поскольку при этом падает плотность и, соответственно, повышается температура промерзания электролита.
Чем выше износ аккумулятора, тем меньшее время он удерживает заряд. В тёплое время года это не критично, а вот зимой забытые во включённом состоянии габаритные огни к моменту возвращения способны полностью «убить» аккумулятор, превратив содержимое в кусок льда.
В таблице можно увидеть температуру промерзания электролита, в зависимости от степени заряженности агрегата.
Критическим считается падение уровня заряда ниже 70%. Все автомобильные электроприборы потребляют не напряжение, а ток. Без нагрузки даже сильно разряженный аккумулятор может показывать нормальное напряжение. Но при низком уровне, во время запуска двигателя, будет отмечаться сильная «просадка» напряжения, что является тревожным сигналом.
Своевременно заметить приближающуюся катастрофу возможно лишь в том случае, когда непосредственно в салоне установлен индикатор. Если во время работы автомобиля он постоянно сигнализирует о разрядке – пора ехать на СТО.
Какие существуют индикаторы
Многие АКБ, особенно необслуживаемые, имеют встроенный датчик (гигрометр), принцип работы которого основан на измерении плотности электролита.
Этот датчик контролирует состояние электролит и ценность его показателей относительна. Не очень удобно по несколько раз залазить под капот автомобиля, что бы проконтролировать состояние электролита в разных режимах работы.
Для контроля состояния АКБ значительно удобнее электронные приборы.
Виды индикаторов заряда аккумуляторной батареи
В автомагазинах продаётся множество таких устройств, различающихся дизайном и функционалом. Фабричные приборы условно делятся на нескольких типов.
По способу подключения:
- к разъёму прикуривателя;
- к бортовой сети.
По способу отображения сигнала:
- аналоговые;
- цифровые.
Принцип работы у них одинаков, определение уровня заряда АКБ и отображение информации в наглядном виде.
Принципиальная схема индикатораКак сделать индикатор заряда аккумулятора на светодиодах?
Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.
Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.
Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3, ниже 12В — VD1.
Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284).
Схема led индикатора уровня заряда АКБ на компараторе напряжения
Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.
Контроллер зарядки АКБ
Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.
Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.
Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.
Понравилась статья? Расскажите о ней! Вы нам очень поможете:)
Материалы по теме:
Индикатор заряда аккумулятора | Каталог самоделок
Очень удивительно, что во многих автомобилях, пусть даже донехочу напичканной всякой электроникой отсутствует банальный индикатор заряда АКБ. Как определить уровень заряда аккумулятора особенно зимой, когда аккумуляторы особо уязвимы?
Для решения данной проблемы я и смастерил индикатор, схема и сборка которой не займет много времени и особых профессиональных навыков, но базовые умения должны присутствовать. Еще одним плюсом сборки – маленькая себестоимость по отношению к дешевым китайским аналогам, качество которых оставляет желать лучшего.
Схема.В схеме присутствуют светодиоды, цвета которых и будут обозначать степень зарядки – Красный – от 6-ти до 11-ти вольт; Синий – от 11-ти до 13-ти вольт; Зеленый от 13 вольт. Советую также ознакомиться со статьей “Как определить катод и анод у светодиода“
Запитывать схему рекомендуется от замка зажигания, чтобы индикатор не работал постоянно.
Необходимые элементы:- Резисторы:
- 1 КОм – 2 шт;
- 220 ОМ – 3 шт;
- 2 КОм – 1 шт.
- Транзисторы:
- ВС547 – 1 шт;
- BC557 – 1 шт.
- Светодиоды:
- RGB светодиод – 3 шт.(можно любые светодиоды)
- Стабилитроны:
- 9.1 v – 1 шт; (9v1)
- 10 v – 1 шт.
Проверяем светодиод тестером на работоспособность, определяем выводы.
Далее примеряем элементы к плате и вырезаем кусок, необходимой величины.
Далее необходимо приклеить светодиод к плате и начать монтаж деталей. Светодиоды рекомендуется выводить на проводах, а не припаивать намертво к плате, так как (скорее всего) эти индикаторы вы будете фиксировать где-то в приборной панели вашего авто. А для наглядности сборки они будут установлены прямо на плате.
Транзисторы.Конечная сборка.Заключение.Данная схема тестировалась около получаса (не на авто) прогоном напряжения. Источником тока был обычный блок питания с регулируемым напряжением от ноутбука. Одним единственным сбоем срабатываения было, то что при переходе от красного и от синего цветов индикатор немного тупил, это связано с тем, что падения напряжения было очень резким и тестер не успевал вовремя фиксировать это, а на обычный АКБ – работать сборка будет безотказно.
Также советую ознакомиться с еще одним вариантом изготовления таких индикаторов – Простой высокоточный индикатор разряда АКБ и Простой индикатор разряда АКБ
Удачи на дорогах.
Автор: Скрыльников Валерий. г. Москва.
ОБЯЗАТЕЛЬНО !!!
Приборы, действия и свойства которых вам мало известны, особенно самоделки, подключайте через предохранители.
10 схем индикаторов разряда Li-ion аккумуляторов
Индикатор разряда Li-ion аккумулятора отражает уровень оставшегося заряда и помогает избегать разочарований из-за внезапно разрядившихся элементов питания. Зная, что аккумулятор скоро сядет, можно заблаговременно поставить его на зарядку и избежать простоя в работе приборов. Разработкой схем индикаторов разряда Li-ion аккумуляторов занимались многие радиолюбители. Результатом их труда стало множество схемотехнических решений разной степени сложности.
В этой статье приведены 10 популярных схем, которые относительно просты в реализации. Собранные по ним индикаторы информируют о малом напряжении на ячейке, но не защищают ее от глубокого разряда. Для этой цели используются присоединенные к элементам питания платы защиты или самостоятельное отключение нагрузки пользователем.
Схема 1 – на стабилитроне и транзисторе
При величине напряжения выше 3,25 В стабилитрон пребывает в пробое, транзистор – в закрытом состоянии, и ток полностью идет через зеленый светодиод. При падении напряжения до его значений в диапазоне 3+1,2 В происходит открытие транзистора, и ток распределяется между светодиодами. Между цветами происходит плавный переход. Чем ярче горит красный индикатор, тем сильнее разрядился элемент. При 3 В цветового перехода нет – светится красная лампочка.
При реализации этой схемы могут возникнуть трудности с поиском стабилитронов, обеспечивающих нужный порог срабатывания. Еще один ее недостаток – постоянное энергопотребление около 1 мА.
Схема 2 – на микросхеме TL431 в роли стабилизатора напряжения
Порог срабатывания зависит от делителя R2-R3 и здесь равен 3,2 В. Когда вольтаж достигает этой величины, микросхема прекращает шунтировать светодиод, и он загорается. Это сигнал пользователю о скорой разрядке элемента питания.
Схема 3 – на паре транзисторов
Здесь границы срабатывания определяют транзисторы R2, R3. Вместо старых моделей уместно использовать BC237, BC238 или BC317 взамен КТ3102 и BC556 или BC557 вместо КТ3107.
Схема 4 – на паре полевых транзисторов
В режиме ожидания она потребляет минимальные токи. Транзисторы нужны n-канальные с минимальным напряжением отсечки. При питании нагрузки на затворе транзистора VT1 при участии делителя R1-R2 создается положительное напряжение. Если оно превышает напряжение отсечки транзистора, происходит его открытие, затвор VT2 притягивается на землю и закрывается. По мере снижения напряжения VT1 закрывается, а VT2 – открывается, обеспечивая сияние светодиода. Это знак о необходимости подзарядить элемент питания.
Схема 5 – на 3-х транзисторах
Схема обеспечивает высокую точность – между светящимся и несветящимся светодиодом хватает отличия в 0,01 В. При включенном индикаторе потребляется ток 3 мА, при отключенном – 0,3 мА. Вместо транзисторов BC848 и BC856 подходят ВС546 и ВС556.
Схема 6 – с отключением нагрузки
Она обеспечивает индикацию и отключение нагрузки при критическом падении напряжения, но сама продолжает потреблять ток около 15–20 мА.
Схема 7 – с мониторами напряжения
Мониторы, супервизоры или детекторы напряжения представляют собой микросхемы, созданные для отслеживания напряжения. По этой схеме светодиод начинает светиться при падении напряжения до 3,1 В. BD47xx с открытым выходным коллектором ограничивает выходной ток на границе 12 мА, поэтому светодиод можно подключать напрямую. Главные преимущества этого варианта – простота реализации и малое энергопотребление.
Схема 8 – на инверторе 74HC04
Используются стабилитроны с рабочим вольтажом менее напряжения срабатывания – на 2–2,7 В. Граница срабатывания подстраивается посредством резистора R2. Энергопотребление – порядка 2 мА.
Схема 9 – на контроллере ATMega328
Предусматривает использование микроконтроллера ATMega328 с интегрированным источником опорного напряжения и входом АЦП. Светодиод используется 3-цветный, но синий цвет не задействуется. Контроллер управляет светодиодами через ШИМ и выдает индикацию путем смешения цветов:
- мигающий зеленый – соответствует напряжению 4,2 В;
- зеленый – 4,1 В;
- оба цвета – в промежутке от 3,5 до 4,1 В;
- мигающий красный – ниже 3,5 В.
Схема 10 – на микросхеме LM3914
Линия из 10 светодиодов информирует пользователя о степени разряда элемента питания. Пороговые напряжения (минимальное DIV_LO и максимальное DIV_HI) определяет делитель R3-R4-R5. Для экономии энергии рекомендуется подключить 9-й вывод на землю. В результате будет светиться не линия светодиодов, а один, который соответствует текущему напряжению. Энергопотребление этой схемы – порядка 2,5 мА и еще по 5 мА на каждый светящийся светодиод.
Читайте в нашей предыдущей статье о том, почему взрываются аккумуляторные батареи самокатов.
Простой и точный индикатор заряда-разряда АКБ
Сегодня статья будет с процессом сборки простого индикатора уровня заряда аккумуляторов, но с более высокоточной схемой, которая пригодна для реального использования и может стать отличным дополнением на панели приборов вашего автомобиля.
Индикатор построен на базе микросхемы ELM339, она в свою очередь представляет из себя четыре отдельных компаратора в едином корпусе.
Компаратор имеет два входа и один выход, он просто сравнивает напряжение на входах, исходя из этого на выходе получаем либо логический 0, либо единицу.
Использованный в схеме компаратор можно найти на платах компьютерного блока питания, ориентируйтесь по цифрам 339, буквы могут отличаться в зависимости от производителя.
В качестве индикаторов задействованы 3 миллиметровые светодиоды.
Схема работает очень простым образом, имеем источник опорного напряжения в лице стабилитрона, цепочки из резисторов представляют из себя делители, которые создают на входах компараторов определенное напряжение, назовем их пороговыми.
Компаратор постоянно сравнивает эти напряжения с напряжением, которые образуют делитель на резисторах R5 и R6, этот делитель снижает напряжение тестируемой батареи в три раза, если напряжение на прямом входе компаратора больше чем на инверсном, то на выходе получаем логическую единицу или напряжение питания.
Светодиод светится, если всё наоборот, то на выходе получаем логическую 0 или массу питания, светодиод в данном случае не светится.
Входные делители подобраны в узком диапазоне, поскольку схема предназначена для работы в качестве индикатора заряда 12-вольтовых аккумуляторов.
Маломощный диод 4148 защищает микросхему компаратора от обратной полярности.
Токо-ограничивающие резисторы для светодиодов подбираются с сопротивлением от 1 до 2,2 килом, можно ограничиться всего одним резистором.
Печатная плата довольно компактна, рисовал на скорую руку, но разводка неплохая, кстати её вы можете скачать в конце статьи.
Для проверки этой платы нам нужен лабораторный источник питания на котором нужно выставить напряжение около 13,5 — 14 вольт, имитируя полностью заряженный автомобильный аккумулятор.
Загораются сразу все светодиоды, постепенно снижая напряжение на блоке питания мы можем наблюдать потухание светодиодов при определенных напряжениях.
Горение только красных светодиодов означает, что аккумулятор почти разряжен.
Можно пересчитать входные делители и использовать схему для аккумуляторов с иным напряжением, кстати эту схему можно также применить и в зарядных устройствах.
Плата___ скачать…
Автор; АКА Касьян
Устройство светодиодного индикатора зарядки аккумуляторной батареи
Индикатор заряда аккумулятора – нужная штука в хозяйстве любого автомобилиста. Актуальность такого устройства возрастает многократно, когда холодным зимним утром автомобиль, почему-то, отказывается заводиться. В этой ситуации стоит определиться, то ли звонить другу, что бы тот приехал и помог завестись от своей батареи, либо аккумулятор приказал долго жить, разрядившись ниже критического уровня.
Зачем следить за состоянием аккумулятора?
Автомобильный аккумулятор состоит из шести последовательно соединённых аккумуляторных батарей с напряжением питания 2,1 — 2,16В. В норме АКБ должен выдавать 13 — 13,5В. Нельзя допускать значительного разряда аккумуляторной батареи, поскольку при этом падает плотность и, соответственно, повышается температура промерзания электролита.
Чем выше износ аккумулятора, тем меньшее время он удерживает заряд. В тёплое время года это не критично, а вот зимой забытые во включённом состоянии габаритные огни к моменту возвращения способны полностью «убить» аккумулятор, превратив содержимое в кусок льда.
В таблице можно увидеть температуру промерзания электролита, в зависимости от степени заряженности агрегата.
Зависимость температуры промерзания электролита от степени заряда аккумулятора | ||||
---|---|---|---|---|
Плотность электролита, мг/см. куб. | Напряжение, В (без нагрузки) | Напряжение, В (с нагрузкой 100 А) | Степень заряда АКБ, % | Температура замерзания электролита, гр. Цельсия |
1110 | 11,7 | 8,4 | 0,0 | -7 |
1130 | 11,8 | 8,7 | 10,0 | -9 |
1140 | 11,9 | 8,8 | 20,0 | -11 |
1150 | 11,9 | 9,0 | 25,0 | -13 |
1160 | 12,0 | 9,1 | 30,0 | -14 |
1180 | 12,1 | 9,5 | 45,0 | -18 |
1190 | 12,2 | 9,6 | 50,0 | -24 |
1210 | 12,3 | 9,9 | 60,0 | -32 |
1220 | 12,4 | 10,1 | 70,0 | -37 |
1230 | 12,4 | 10,2 | 75,0 | -42 |
1240 | 12,5 | 10,3 | 80,0 | -46 |
1270 | 12,7 | 10,8 | 100,0 | -60 |
Критическим считается падение уровня заряда ниже 70%. Все автомобильные электроприборы потребляют не напряжение, а ток. Без нагрузки даже сильно разряженный аккумулятор может показывать нормальное напряжение. Но при низком уровне, во время запуска двигателя, будет отмечаться сильная «просадка» напряжения, что является тревожным сигналом.
Своевременно заметить приближающуюся катастрофу возможно лишь в том случае, когда непосредственно в салоне установлен индикатор. Если во время работы автомобиля он постоянно сигнализирует о разрядке – пора ехать на СТО.
Какие существуют индикаторы
Многие АКБ, особенно необслуживаемые, имеют встроенный датчик (гигрометр), принцип работы которого основан на измерении плотности электролита.
Этот датчик контролирует состояние электролит и ценность его показателей относительна. Не очень удобно по несколько раз залазить под капот автомобиля, что бы проконтролировать состояние электролита в разных режимах работы.
Для контроля состояния АКБ значительно удобнее электронные приборы.
Виды индикаторов заряда аккумуляторной батареи
В автомагазинах продаётся множество таких устройств, различающихся дизайном и функционалом. Фабричные приборы условно делятся на нескольких типов.
По способу подключения:
- к разъёму прикуривателя;
- к бортовой сети.
По способу отображения сигнала:
- аналоговые;
- цифровые.
Принцип работы у них одинаков, определение уровня заряда АКБ и отображение информации в наглядном виде.
Принципиальная схема индикатораКак сделать индикатор заряда аккумулятора на светодиодах?
Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.
Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся
Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284).
Схема led индикатора уровня заряда АКБ на компараторе напряжения
Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.
Контроллер зарядки АКБ
Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.
Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.
Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.
Электрические аккумуляторы повсеместно применяются в нашей жизни. Они используются как первичные электрохимические источники электропитания для переносных или передвижных электроприборов. К примеру, для телефонов, ноутбуков, автомобилей, шуруповёртов, квадрокоптеров, игрушек.
Индикатор заряда аккумулятора
Аккумулятор представляет собой сложную конструкцию. Он при зарядке накапливает в себе электроэнергию за счёт физико-химических процессов (электролиза), при подключении нагрузки отдаёт энергию, то есть происходит разряд (разряжается).
При правильном обслуживании необходимо постоянно следить за основным параметром – уровнем зарядки. В этом владельцу поможет индикатор заряда аккумулятора. Он вовремя подскажет, какой параметр вышел из нормы (плотность, уровень электролита), и требуется ли вмешательство.
Применяются разнообразные индикаторы. По назначению они равные, по функциональным элементам – многообразные: от электромеханических до интеллектуальных.
Технические данные аккумуляторов
Основные применяемые типы аккумуляторов:
- Щелочные – Ni-Cd,
- Ni-MH – никель-металлогидридные,
- кислотные – аккумуляторы для автомобилей,
- Li-ion – литий-ионные,
- Li-po – литий-полимерные.
При эксплуатации аккумулятора необходимо учитывать его функциональные характеристики, такие как:
- значение ёмкости,
- выходное напряжение,
- размеры,
- сколько весит,
- допустимое минимальное напряжение,
- срок эксплуатации,
- коэффициент полезного действия,
- диапазон рабочей температуры,
- рабочий ток заряда и разряда.
К сведению. Все параметры указываются для 20 или 25 °С.
Аккумулятор для автомобиля (АКБ) состоит из 6 последовательно соединённых аккумуляторных секций с напряжением питания каждой 2,1-2,16 В, на хорошей батарее напряжение 13-13,5 В.
Важно! Не допускается снижение напряжения ниже 9 вольт, поскольку из-за особенностей процессов, происходящих в батареях, садится плотность, что повышает температуру промерзания электролита и ускоряет разрушение электродов. В свою очередь, уменьшается и срок службы аккумулятора.
Разновидности индикаторов заряда аккумулятора
Контроллер заряда аккумулятора
Разделяют индикаторы по методу подключения и индикации сигнала. Зарядка – это сложный процесс, поэтому в основном индикаторы информируют только об окончании зарядки в аналоговом или цифровом виде.
Для каждого типа аккумулятора необходимы адекватные схемы и конструкции зарядки, электроизмерительные или электронные. Так, для телефонов и ноутбуков используются импульсные зарядки, которые должны обладать интеллектом, в них используют микропроцессоры. Электронный контроллер ШИМ Weswen применяется для зарядки аккумуляторных батарей для независимого электроснабжения домов.
Одним из простых является встроенный индикатор заряда батареи, который выполнен в виде глазка. Устанавливается в одну из банок автомобильного аккумулятора. Разновидность работы индикатора с двумя шариками показана на рис. ниже.
Встроенный индикатор зарядки аккумулятора
Индикатор представляет собой пластмассовый цилиндр с плавающими шариками зелёного и красного цветов. В работе индикатора используется принцип ареометра. Красный шарик реагирует только на уровень электролита, зелёный – на уровень и плотность электролита. Есть варианты и с одним зелёным шариком.
Используются ещё и электроизмерительные индикаторы в виде стрелочных вольтметров. Один из них показан на рис. ниже. Подключается параллельно, в цепи аккумулятора.
Электроизмерительный индикатор напряжения на батареи
Устанавливается как на приборной панели, так и в удобном месте. При нормальном напряжении на аккумуляторе стрелка должна находиться в пределах последнего зелёного сектора. Если стрелка показывает ниже 75%, то требуется подзарядка. Нахождение стрелки в начале шкалы (красный сектор) говорит о том, что аккумулятор неисправен.
Опытные владельцы аккумуляторов могут использовать простые готовые цифровые индикаторы. Один из таких изображён на рис. ниже
Цифровой вольтметр
Он просто показывает напряжение в данное время. Владельцу самому решать, что делать. При диагностике аккумулятора можно использовать стрелочный или цифровой тестер.
Радиолюбители могут использовать индикацию, сделанную своими руками. В основном изготавливают схемы разнообразных индикаторов для контроля заряда аккумулятора на световых индикаторах, двух или больше. Схемное решение устройств индикации зависит от сложности зарядки.
Важно! Чем проще зарядка, тем сложнее должна быть схема индикации.
На рис. ниже изображена схема проверки степени зарядки на 5 индикаторах.
Схема контроля напряжения на светодиодах
На рисунке изображена одна из возможных эл.схем, собранная на компараторе Lm339 с термокомпенсацией. HL1 будет гореть при недозаряженном или плохом аккумуляторе. HL2 – это недозаряд, значит, требуется зарядка. HL3 – напряжение в норме. HL4 – небольшой перезаряд. HL5 – недопустимый перезаряд. Остановить зарядку необходимо при загорании HL4.
Нужно отметить! Во время работы будет гореть только один световой индикатор. Таких вспомогательных плат можно разработать столько, на сколько хватит знаний и необходимости.
В современных гаджетах, использующих питание от аккумуляторных батарей, зарядки делают более сложными, чтобы создать оптимальные условия работы батареи. Например, в зарядках для шуруповёртов используются импульсные блоки с применением запрограммированных контроллеров. В таких автоматических зарядках два состояния индикации: разряжен и заряжен. Для удобства в качестве световых индикаторов применяются и жидкокристаллические индикаторы.
В нынешних авто за состоянием аккумулятора следят главный модуль, модуль управления двигателем и датчик, который следит за параметрами батареи. Электронная система автомобиля сама следит за правильной эксплуатацией аккумулятора. Водителю остаётся только наблюдать за информацией на экране дисплея.
Развивается использование батарей при автономном электроснабжении домов. Ветрогенераторы и солнечные панели объединяются в общую электросеть, и аккумуляторы управляются с помощью ШИМ контроллера, например, от компании WESWEN.
Необходимо постоянно следить за работоспособностью аккумуляторных батарей. Для этого предназначены указатели заряда. Простые устройства – просто следят, а контроллеры контролируют и управляют подзарядкой аккумулятора.
Видео
Зарядка для телефона без розетки
Сегодня статья будет с процессом сборки простого индикатора уровня заряда аккумуляторов, но с более высокоточной схемой, которая пригодна для реального использования и может стать отличным дополнением на панели приборов вашего автомобиля.
Индикатор построен на базе микросхемы ELM339, она в свою очередь представляет из себя четыре отдельных компаратора в едином корпусе.
Компаратор имеет два входа и один выход, он просто сравнивает напряжение на входах, исходя из этого на выходе получаем либо логический 0, либо единицу.
Использованный в схеме компаратор можно найти на платах компьютерного блока питания, ориентируйтесь по цифрам 339, буквы могут отличаться в зависимости от производителя.
В качестве индикаторов задействованы 3 миллиметровые светодиоды.
Схема работает очень простым образом, имеем источник опорного напряжения в лице стабилитрона, цепочки из резисторов представляют из себя делители, которые создают на входах компараторов определенное напряжение, назовем их пороговыми.
Компаратор постоянно сравнивает эти напряжения с напряжением, которые образуют делитель на резисторах R5 и R6, этот делитель снижает напряжение тестируемой батареи в три раза, если напряжение на прямом входе компаратора больше чем на инверсном, то на выходе получаем логическую единицу или напряжение питания.
Светодиод светится, если всё наоборот, то на выходе получаем логическую 0 или массу питания, светодиод в данном случае не светится.
Входные делители подобраны в узком диапазоне, поскольку схема предназначена для работы в качестве индикатора заряда 12-вольтовых аккумуляторов.
Маломощный диод 4148 защищает микросхему компаратора от обратной полярности.
Токо-ограничивающие резисторы для светодиодов подбираются с сопротивлением от 1 до 2,2 килом, можно ограничиться всего одним резистором.
Печатная плата довольно компактна, рисовал на скорую руку, но разводка неплохая, кстати её вы можете скачать в конце статьи.
Для проверки этой платы нам нужен лабораторный источник питания на котором нужно выставить напряжение около 13,5 — 14 вольт, имитируя полностью заряженный автомобильный аккумулятор.
Загораются сразу все светодиоды, постепенно снижая напряжение на блоке питания мы можем наблюдать потухание светодиодов при определенных напряжениях.
Горение только красных светодиодов означает, что аккумулятор почти разряжен.
Можно пересчитать входные делители и использовать схему для аккумуляторов с иным напряжением, кстати эту схему можно также применить и в зарядных устройствах.
Плата___ скачать…
Автор; АКА Касьян
Данный индикатор заряда аккумулятора основан на регулируемом стабилитроне TL431. С помощью двух резисторов можно установить напряжение пробоя в диапазоне от 2,5 В до 36 В.
Приведу две схемы применения TL431 в качестве индикатора заряда/разряда аккумулятора. Первая схема предназначена для индикатора разрядки, а вторая для индикатора уровня заряда.
Единственная разница — это добавление n-p-n транзистора, который будет включать какой-либо сигнализатор, например, светодиод или зуммер. Ниже приведу способ вычисления сопротивления R1 и примеры на некоторые напряжения.
Схема индикатора разряда аккумулятора
Стабилитрон работает таким образом, что начинает проводить ток при превышении на нем определенного напряжения, порог которого мы можем установить с помощью делителя напряжения на резисторах R1 и R2. В случае индикатора разряда, светодиодный индикатор должен гореть, когда напряжение батареи меньше, чем необходимо. Поэтому в схему добавлен n-p-n транзистор.
Как можно видеть регулируемый стабилитрон регулирует отрицательный потенциал, поэтому в схему добавлен резистор R3, задачей которого является включение транзистора, когда TL431 выключен. Резистор этот на 11k, подобранный методом проб и ошибок. Резистор R4 служит для ограничения тока на светодиоде, его можно вычислить с помощью закона Ома.
Конечно, можно обойтись и без транзистора, но тогда светодиод будет гаснуть, когда напряжение упадет ниже выставленного уровня — схема ниже. Безусловно, такая схема не будет работать при низких напряжениях из-за отсутствия достаточного напряжения и/или тока для питания светодиода. Данная схема имеет один минус, который заключается в постоянном потреблении тока, в районе 10 мА.
Схема индикатора заряда аккумулятора
В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.
Пришло время для того, что всем нравится больше всего — математики
Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.
Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).
Резистор R1 рассчитаем по следующей формуле:
R1=R2*(Vo/2,5В — 1)
Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).
Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).
R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).
Т. е. сопротивление резисторов для 12В выглядят следующим образом:
R1= 3,8к
R2=1к
А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:
- 5В – 1к
- 7,2В – 1,88к
- 9В – 2,6к
- 12В – 3,8к
- 15В — 5к
- 18В – 6,2к
- 20В – 7к
- 24В – 8,6к
Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.
Источник
$0.90-1.00 Перейти в магазин Иногда заказываю для сборок аккумуляторов небольшие измерители и вот дошли руки протестировать их, ну и заодно написать микрообзор.Осмотр, немножко тестов и выводов, надеюсь что будет полезно.К сожалению доставка в магазине платная, потому заказывал сразу по нескольку штук чтобы компенсировать это.На момент заказа у продавца вроде были только четыре версии, 1S, 2S, 3S, 4S, но сейчас появились 6S и 7S, при этом странно что нет в продаже версии 5S, подозреваю что скоро появится.Большая часть измерителей отдал товарищу, но по одной штучке оставил и себе.Каждый измеритель упакован в отдельный пакет, из отличий только наклейка с маркировкой на китайском и указанием диапазона измеряемого напряжения.1S — 3.3-4.3 Вольта2S — 6.6-8.4 Вольта3S — 11.1-12.6 Вольта4S — 13.2-16.8 ВольтаТакже имеется маркировка цвета свечения (предположительно), но у продавца они только в одном варианте.Если покупается несколько разных вариантов, то лучше их пометить сразу, так как сами по себе они ни маркировки, ни внешних отличий нет.На одной из сторон платы есть место под кнопку, скорее всего для включения индикатора, но ни кнопки, ни сопутствующих компонентов на плате нет.Когда получил индикаторы, то немного удивил размер, почему-то я ожидал что они будут меньше, тем более зная как в китайских магазинах любят делать фото.Размеры самого индикатора — 31.5х20 мм, общие размеры — 43.5х20х9.5мм, расстояние между крепежными отверстиями — 36мм.Чтобы не запутаться где какой индикатор, пришлось маркером сделать отметки на каждом из них.Общее качество на троечку, есть следы флюса, пайка так себе, индикатор на некоторых платах припаян криво относительно самих плат.Схемотехника довольно проста, стабилизатора напряжения питания нет, потому яркость зависит от напряжения питания. Имеется источник опорного напряжения на базе регулируемого стабилитрона TL431, а также защита от неправильной подачи питания.Что за чип занимается измерением я определить не смог, сначала думал что это четырехканальный компаратор LM339, но у него выходы выведены на 1, 2, 13 и 14 контакты, а у чипа обозреваемой платы на 1, 7, 8, 14 выводы.Ниже на фото две платы, 1S и 4S, чтобы понять в чем между ними отличия.1. Резисторы через которые питаются сегменты индикатора (R1-R5).2. Резистор R9.Все остальные компоненты идентичны на всех платах. При этом номинал резистора питания TL431 одинаков для всех плат и из-за этого ток потребления будет зависеть от входного напряжения.Индикатор пятисегментный, один общий в виде символа батарейки и четыре сегмента для индикации уровня заряда (собственно потому я и думал что здесь применен LM339), но при этом существует и индикатор с пятью сегментами уровня заряда, мне такой попадался на Таобао.Мало того, есть еще и много вариантов цветов индикации.Размеры индикатора платы в обзоре и показанного выше очень похожи, 30.8х17.8мм против 31.5х20мм у обозреваемой платы.Теперь немного тестов.Индикатор обозреваемой платы имеет два цвета свечения, символ батарейки — красный, сегменты — синий. При этом символ батарейки состоит из шести параллельно включенных светодиодов.Яркость достаточная, но у самой низковольтной версии сильно зависит от напряжения питания, но это вполне предсказуемо, остальные ведут себя гораздо стабильнее.Есть и небольшая сложность, из-за того что цвета свечения синий и красный, то лучше использовать нейтральный светофильтр.Для примера ниже четыре варианта — 1. Без светофильтра2. Зеленый светофильтр, видны все сегменты, но яркость сильно падает и становятся более заметны светодиоды подсветки символа батарейки.3. Красный светофильтр — виден только символ батарейки4. Синий светофильтр, отлично видны сегменты, но символ батарейки почти не виден.Измерения, для начала ток потребления.Ниже на фото результат измерений для четырех режимов из пяти — только символ батарейки, + один сегмент, + два сегмента и + четыре сегмента, фото с тремя сегментами выкладывать не стал, но думаю что можно принять среднее между третьим и четвертым фото.На всех фото где включены сегменты измерен ток сразу после его включения.1-4, 1S5-8, 2S9-12, 3S13-16, 4SВидно что ток постоянно растет, хотя номиналы резисторов, через которые питаются светодиоды сегментов, разные. Происходит это из-за того, что резистор питания TL431 один и тот же на всех платах. Если необходимо уменьшить ток потребления, то можно номинал этого резистора (R14) пропорционально увеличить, например для платы 2S поставить 2кОм.А теперь напряжение включения сегментов. Сразу сделаю отступление, гистерезиса или нет или он очень мал, потому у самой низковольтной версии бывает «дрожание» яркости, хотя в тесте я поднимал напряжение с дискретностью в 10мВ.Также я сделал пересчет зависимости напряжения индикации к одному аккумулятору в зависимости от версии измерителя и у меня получилось:1S…….2S…….3S…….4S3.35 — 3.36 — 3.43 — 3.373.57 — 3.53 — 3.64 — 3.573.72 — 3.70 — 3.81 — 3.763.92 — 3.90 — 4.03 — 3.97Видно что результаты немного «плавают», но в целом картина довольно ясна, диапазон измерения примерно 3.4-4.0 Вольта, что примерно соответствует почти полностью разряженному и заряженному аккумулятору. Напряжение литиевого аккумулятора обычно резко снижается с 4.2 до 4 Вольт, затем идет относительно плавное снижение до 3.3-3.4 Вольта и далее опять более резкое падение. Я бы сказал, что индикатор отображает примерно диапазон от 15 до 90%.Уже позже было найдено еще пару вариантов более простых измерителей.Например влагозащищенный — ссылка.И вариант «с циферками» — ссылкаМой читатель из Франции прислал вариант схемы данного измерителя, изначально он настроен на сборку 4S, за что ему большое спасибо 🙂По итогам осмотра и тестов могу сказать, что индикаторы вполне работоспособны и полезны, но есть несколько замечаний:1. Заметны отдельные светодиоды у символа батарейки2. Ток потребления заметно растет с ростом напряжения, исправляется заменой резистора R143. Нет кнопки включения.По последнему пункту поясню. Так как нет кнопки «программно» включающей индикатор, то сделать это можно только подачей питания, но обычно нет смысла держать его всегда включенным, а обычная мелкая кнопка имеет относительно высокое сопротивление и результат измерения будет сильно зависеть как от силы нажатия не кнопку, так и от срока ее службы.В остальном вещь полезная и на мой взгляд недорогая, а большой выбор вариантов дает возможность использовать в разных устройствах, например в шуруповерте.На этом у меня все, надеюсь что обзор пыл полезен, как всегда жду вопросов и просто комментариев. $0.90-1.00 Перейти в магазин Эту страницу нашли, когда искали: индикатор заряда аккумулятора 3,7v, самодельный индикатор разряда аккумулятора, цифровой индикатор напряжения и тока со схемой подключения акб, tl431 в радиолюбительских схемах контроля рвзряда аккумуляторов 18650, как настроить цифровой индикатор напряжения акб с алиэкспресс, зарядка 18650 с индикатором заряда, индикатор ращряда liion, зарядка схема индикатор 10 сегментов, индикатор заряда для li ion аккумуляторов на 36 вольт купить на алиэкспресс, xw228dkfr схема, индикатор емкости литиевых батарей дисплей питания батареи 40×15 мм тестер li po li ion пакет, экономичная схема индикации разрядки аккумуляторной литиевой батареи на tl431, индикатор заряда 4s gjlrk.xtybt, схема индикатора заряда аккумулятора на 12.6 вольт, светодиодный волметр для литийионных акб, самодельный индикатор заряда аккумулятора, дешевый индикатор напряжения для аккумулятора 18650, xw228dkfr4 datasheet, индикатор заряда li ion на лм 339, электрическая схема контроля индикатора заряда шуруповерта на 12в показать, индикатор уровня разряда li ion аккумулятора, модуль индикации разряда литий ионного, подключение индикатора заряда 18650, распиновка spbkas 10 5. 8 xw228dkfr4, звуковой индикатор разряда литиевого, индикатор зарядки аккумулятора, индикатор напряжения аккумулятора, устройство индикатора напряжения
Вас может заинтересоватьТовары по сниженной стоимостиКомментарии: 13
Используемые источники:- https://svetodiodinfo.ru/svetodiody-v-avtomobil/indikator-okonchaniya-zaryada-akkumulyatora-na-svetodiodax.html
- https://amperof.ru/elektropribory/indikator-zaryada-akkumulyatora.html
- https://xn--100—j4dau4ec0ao.xn--p1ai/prostoj-i-tochnyj-indikator-zaryada-razryada-akb/
- http://www.joyta.ru/9375-prostoj-indikator-zaryada-i-razryada-akkumulyatora/
- https://www.kirich.blog/obzory/izmeritelnoe/644-indikator-napryazheniya-dlya-sborok-litievyh-batarey-1-7s.html
Схема индикатора уровня заряда батареи на транзисторах. Индикатор разряда аккумулятора. Как собрать индикатор заряда самостоятельно
- 20.09.2014
Триггер — это уст-во с двумя устойчивыми состояниями равновесия, предназначенные для записи и хранения информации. Триггер способен хранить 1 бит данных. Условное обозначение триггера имеет вид прямоугольника, внутри которого пишется буква Т. Слева к изображению прямоугольника подводятся входные сигналы. Обозначения входов сигнала пишутся на дополнительном поле в левой части прямоугольника. …
- 23.11.2017
Термопара (термоэлектрический преобразователь) — устройство, применяемое в промышленности, научных исследованиях, медицине, в системах автоматики. Применяется в основном для измерения температуры. Принцип действия основан на эффекте Зеебека или, иначе, термоэлектрическом эффекте. Между соединёнными проводниками имеется контактная разность потенциалов; если стыки связанных в кольцо проводников находятся при одинаковой температуре, сумма таких разностей …
- 17.01.2019
ИМС TEA5767 производимая компанией NXP применяется для конструирования низковольтных FM-радио тюнеров. В составеTEA5767 имеются внутренние цепи выделения промежуточной частоты и демодуляции принимаемого сигнала, что позволяет обходиться минимальным набором внешних компонентов. Технические параметры TEA5767: Напряжение питания от 2,5 до 5 В Потребляемый ток при Uпит = 5 В 12,8 мА Чувствительность 2 …
- 20.09.2014
Марка ферромагнитного материала, вид и тип магнитопровода выбирается в зависимости от назначения компонента, рабочей частоты, требованиям к электромагнитным помехам и так далее. В соответствии с ГОСТом 20249-80 магнитопроводы трансформаторов и дросселей работающих на частоте 50Гц выполняются из электротехнической стали марок 1511, 1521, 3411, 3412 толщиной 0,2…0,5 мм. Применение магнитопроводов из …
nik34 прислал:
Индикатор заряда на основе старой платы защиты от Li-Ion аккумулятора.
Легкое решение для индикации окончания заряда LiIon или LiPo аккумулятора от солнечной батареи можно сделать из… любой дохлой LiIon или LiPo батареи:)
В них используется шестиногий контроллер заряда на специальзированной микрухе DW01 (JW01, JW11, K091, G2J, G3J, S8261, NE57600 и пр. аналоги). Задачей этого контроллера является отключение батареи от нагрузки при полном разряде батареи и отключение аккумулятора от зарядки при достижении 4,25В.
Вот последний эффект и можно использовать. Для моих целей вполне подойдет светодиод, который будет загораться при окончании заряда.
Вот типовая схема включения этой микрухи и схема, в которую надо ее переделать. Вся переделка заключается в отпаивании мосфетов и подпайке светодиода.
Светодиод возьмите красный, у него напряжение зажигания меньше, чем у других цветов.
Теперь надо подключить эту схему после традиционного диода, который так же традиционно крадет от 0,2В (шоттки) до 0,6В от солнечной батареи, но зато он не дает аккумулятору разряжаться на солнечную панель после наступления темноты. Так вот, если подключить схему до диода, то получим индикацию недозаряда аккумулятора на 0,6В, что достаточно много.
Таким образом алгоритм работы будет следующий: наша СБ при освещении дает напругу на липольку и до тех пор, пока не сработает родной контроллер заряда на аккумуляторе при напряжении около 4,3В. Как только срабатывает отсечка и аккумулятор отключается, на диоде подскакивает напряжение выше 4,3В и наша схема в свою очередь пытается защитить свою батарею, которой уже нет и отдавая команду так же несуществующему мосфету зажигает светодиод.
Убрав со света СБ напряжение на ней упадет и светодиод отключится, прекратив кушать драгоценные миллиамперы. Это же решение можно использовать и с другими зарядниками, не обязательно зацикливаться на солнечной батарее:)
Оформить можно как угодно, благо платка контролера миниатюрна, не более 3-4 мм шириной, вот пример:
Наша волшебная микруха слева, два мосфета в одном корпусе справа, их надо убрать и запаять на плату в соответствии со схемой светодиод.
Вот и все, пользуйтесь, благо это просто.
С помощью двух резисторов можно установить напряжение пробоя в диапазоне от 2,5 В до 36 В.
Приведу две схемы применения TL431 в качестве индикатора заряда/разряда аккумулятора. Первая схема предназначена для индикатора разрядки, а вторая для индикатора уровня заряда.
Единственная разница — это добавление n-p-n транзистора, который будет включать какой-либо сигнализатор, например, светодиод или зуммер. Ниже приведу способ вычисления сопротивления R1 и примеры на некоторые напряжения.
Стабилитрон работает таким образом, что начинает проводить ток при превышении на нем определенного напряжения, порог которого мы можем установить с помощью R1 и R2. В случае индикатора разряда, светодиодный индикатор должен гореть, когда напряжение батареи меньше, чем необходимо. Поэтому в схему добавлен n-p-n транзистор.
Как можно видеть регулируемый стабилитрон регулирует отрицательный потенциал, поэтому в схему добавлен резистор R3, задачей которого является включение транзистора, когда TL431 выключен. Резистор этот на 11k, подобранный методом проб и ошибок. Резистор R4 служит для ограничения тока на светодиоде, его можно вычислить с помощью .
Конечно, можно обойтись и без транзистора, но тогда светодиод будет гаснуть, когда напряжение упадет ниже выставленного уровня — схема ниже. Безусловно, такая схема не будет работать при низких напряжениях из-за отсутствия достаточного напряжения и/или тока для питания светодиода. Данная схема имеет один минус, который заключается в постоянном потреблении тока, в районе 10 мА.
В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.
Пришло время для того, что всем нравится больше всего — математики
Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.
Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).
Резистор R1 рассчитаем по следующей формуле:
R1=R2*(Vo/2,5В — 1)
Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).
Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).
R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).
Т. е. сопротивление резисторов для 12В выглядят следующим образом:
А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:
- 5В – 1к
- 7,2В – 1,88к
- 9В – 2,6к
- 12В – 3,8к
- 15В — 5к
- 18В – 6,2к
- 20В – 7к
- 24В – 8,6к
Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.
От качества зарядки аккумулятора зависит, насколько успешно пройдет запуск автомобиля. Не многие водители следят за степенью зарядки АКБ. В статье рассматривается такое полезное устройство как индикатор заряда автомобильного аккумулятора: как устроен, работает, дается инструкция и видео, как его самостоятельно изготовить.
[ Скрыть ]
Характеристика индикатора уровня заряда батареи
На современных автомобилях с бортовым компьютером водитель имеет возможность получить информацию об уровне . Старые модели оборудованы аналоговыми вольтметрами, но они не отражают истиной картины состояния аккумулятора. Индикатор напряжения (ИН) аккумулятора — вариант иметь оперативную информацию о напряжении батареи.
Предназначение и устройство
На ИН возложены две функции – показывать, как заряжается АКБ от генератора, и информировать о величине заряда аккумулятора автомобиля. Проще всего собрать такое устройство своими руками. Схема самодельного устройства простая. Приобретя необходимые детали, легко собрать индикатор своими руками. Таким образом можно сэкономить, так как себестоимость прибора получается низкой (автор видео — AKA KASYAN).
Принцип действия
Индикатор уровня заряда имеет три светодиодные лампочки разных цветов. Обычно это: красный, зеленый и синий. Каждый из цветов имеет свою информативную нагрузку. Красный цвет означает низкую зарядку, которая является критичной. Синий цвет соответствует рабочему режиму. Зеленый цвет говорит о полной заряженности аккумулятора.
Разновидности
ИН могут быть размещены на аккумуляторных батареях в виде гидрометра или в виде отдельных устройств с информационным дисплеем. Встроенные ИН обычно размещают на . Они оснащаются поплавковым индикатором (гидрометром). Он имеет простую конструкцию.
Выпускаются заводские ИН:
- DC-12 В. Устройство представляет собой конструктор. С его помощью можно контролировать заряженность АКБ и работоспособность реле-регулятора.
- Для тех, у кого машина оборудована вторым аккумулятором, полезным устройством будет панель с индикатором от TMC. Это панель из алюминия с размещенным на ней вольтметром и переключателем с одной батареи на другую.
- ИН Signature Gold Style и Faria Euro Black Style – определяют уровень заряда аккумулятора. Но их стоимость слишком высокая, поэтому на них небольшой спрос.
Руководство по изготовлению устройства в домашних условиях
Самым простым и дешевым вариантом является ИН, изготовленный своими руками. Его назначение – контролировать, как работает АКБ при значении напряжения в бортовой сети в пределах 6-14В.
Чтобы прибор не работал постоянно, его следует подключать через замок зажигания. В этом случае он будет работать, когда вставлен ключ.
Для схемы понадобятся следующие детали:
- печатная плата;
- резисторы: 2 сопротивлением 1 кОМ, 1 сопротивлением 2 кОм и 3 сопротивлением 220 Ом;
- транзисторы: ВС547 — 1 и ВС557 — 1;
- стабилитроны: один на 9,1 В, один на 10 В;
- светодиодные лампочки (RGB): красный, синий, зеленый.
У светодиодов с помощью тестера нужно определить и проверить выводы, чтобы они соответствовали цвету. Собирается прибор согласно схеме.
Компоненты примеряют на плату и вырезают ее соответствующих размеров. Желательно компоновать комплектующие так, чтобы они занимали поменьше места.
Светодиоды лучше припаивать к проводам, а не на плату, чтобы индикаторы удобнее было размещать на приборной панели.
По изготовленному устройству нельзя определить конкретные значения напряжения батареи, можно лишь ориентироваться в каких пределах оно находится:
- красный горит, если напряжение от 6 до 11 В;
- синий соответствует напряжению от 11 до 13 В;
- зеленый означает полную зарядку, то есть напряжение превышает 13 В.
Индикатор напряжения аккумулятора можно устанавливать в любом месте салона. Удобнее всего размещать его в нижней части рулевой колонки: светодиоды будут хорошо видны, и не будут мешать управлению. Кроме того, прибор легко будет подключить к замку зажигания. После установки водитель сможет всегда знать, насколько заряжена батарея его автомобиля и заряжать свой аккумулятор в случае необходимости.
Некоторые аккумуляторы (обычно выше среднего уровня по качеству) имеют сверху (на лицевой панели), справа или слева зеленый индикатор (некоторые называют лампочкой). Этот «глазок» дает вам представление о заряде или разряде вашей батареи. Всего у него три основных положения, и не всегда оно светится зеленым светом. Сегодня я подробно расскажу, что это такое, и для чего вообще создано. А также разберем, почему может не гореть вообще …
Если честно, то этот индикатор создан лишь для того чтобы сигнализировать вам о вашей батарее, ведь как правило конструкция у них не разборная, а поэтому вы не можете залезть внутрь и посмотреть что у них с электролитом – элементарно посмотреть его уровень или замерить его плотность. Поэтому такая «лампочка» дает вам полное представление, по которому вы можете принять то или иное решение. Однако индикатор, не всегда может гореть зеленым цветом, как правило, здесь применяется три режима.
Очень часто распространено такое сочетание: — зеленый, белый, черный. Однако некоторые производители, применяют сочетание: — зеленый, белый, красный. Но по сути это одно и тоже. Давайте пробежимся по этим показаниям.
Зеленый режим – полностью заряженная батарея, можно использовать в обычном штатном режиме. То есть зарядка не нужна.
Белый индикатор – он нам говорит о низком уровне электролита. В необслуживаемых такое тоже бывает, скорее всего, АКБ часто перезаряжали, и произошел выброс газообразного электролита через специальный клапан. Нужно разбирать и добавлять дистиллированной воды.
Черный или красный индикатор – это говорит нам о разряде нашего АКБ, причем показатель критичный, требуется обязательная подзарядка! Это важно! Если оставить батарею долго не подзаряженной она может выйти из строя.
Как видите эти цвета, дают определенные сигналы владельцу, заглядывайте изредка и тогда ваша батарея прослужит долго. Также хочу отметить — что этот индикатор, вообще не имеет никаких лампочек в своем строении, следующий пункт перевернет ваше представление …
Про лампочку – не лампочкуХотел написать эту информацию сверху, однако так получается больше интриги. В строении этого датчика, не применяется вообще никаких лампочек — ни обычных накаливания (слаботочных) – как многие думают, ни светодиодных, ни еще каких-либо.
Здесь строение другое . По сути это обычный ареометр, только встроенный в корпус аккумулятора. Он автоматически измеряет плотность электролита, и при различных значениях всплывает – тот или иной шарик, который через увеличительную стеклянную трубку и лупу проецируется в специальное окошко. Нужно отметить, что шарики всплывают как бы по специальным канавкам, которые сделаны в форме пирамидки – это важно! ЗАПОМНИТЕ!
Если батарея заряжена, то всплывает зеленый шарик, и вы его видите в окошке. Если разряжена, то вплывает либо красный, либо вообще – никакой, поэтому вы видите черноту. А вот если нет электролита, то конец пирамидки как бы оголяется – вы видите ее конец в окошке, многие путают с белым цветом.
Применение бы, электрики в аккумуляторе, было бы не оправдано – даже если лампочка была бы низковольтной, она все равно бы высасывала часть энергии из батареи (а зимой это ой, как не нужно). ДА и если она перегорит, то владелец начнет нервничать.
Сейчас подробное видео, может кто-то не понял про пирамидку …
Почему не горит, даже после полной зарядки?Очень частый вопрос, многие все же думают — что это лампочка и после зарядки она должна загораться! Как мы уже с вами разобрали, что это совсем не так. И вполне возможно, что при полном заряде зеленый индикатор не выйдет! ПОЧЕМУ?
ДА все просто:
- Зеленый шарик может просто «заедать» на этих «маленьких полозьях». Стоит батарею потрясти, и он займет свое место. Очень часто так бывает.
- Попала грязь от пластин, со временем пластины начинают осыпаться, электролит становится мутным, он имеет частички свинца, поэтому он препятствует индикатору нормально передавать информацию.
- Батарея действительно вышла из строя, такое тоже исключать нельзя, даже при длительных зарядках она не берет плотность.
На большинстве батарей да, это окошко выкручивается схоже пробке – но его придется с силой крутить, даже можно сломать, мои знакомые выкручивали при помощи плоскогубцев с тонкими концами, причем в окошечке были сделаны маленькие «лунки» для зацепления. В общем – «колхоз», но теоритически снять можно! Также стоит помнить, что если вы его выкрутили — то безвоздушное пространство внутри, было нарушено, вполне возможно — что выйдет газообразный состав – «гремучий газ» или «HHO». Затем нужно будет добавлять дистиллированной воды. Так что всегда думайте, а нужно вам разбирать АКБ!
Собственно заканчиваю статью, информация четкая и по существу, думаю была вам полезна, читайте наш АВТОБЛОГ.
Мастерим индикатор напряжения АКБ сами: высокое качество с минимальными затратами
От качества зарядки аккумулятора зависит, насколько успешно пройдет запуск автомобиля. Не многие водители следят за степенью зарядки АКБ. В статье рассматривается такое полезное устройство как индикатор заряда автомобильного аккумулятора: как устроен, работает, дается инструкция и видео, как его самостоятельно изготовить.
Содержание
[ Раскрыть]
[ Скрыть]
Характеристика индикатора уровня заряда батареи
На современных автомобилях с бортовым компьютером водитель имеет возможность получить информацию об уровне зарядки аккумуляторной батареи. Старые модели оборудованы аналоговыми вольтметрами, но они не отражают истиной картины состояния аккумулятора. Индикатор напряжения (ИН) аккумулятора — вариант иметь оперативную информацию о напряжении батареи.
Предназначение и устройство
На ИН возложены две функции – показывать, как заряжается АКБ от генератора, и информировать о величине заряда аккумулятора автомобиля. Проще всего собрать такое устройство своими руками. Схема самодельного устройства простая. Приобретя необходимые детали, легко собрать индикатор своими руками. Таким образом можно сэкономить, так как себестоимость прибора получается низкой (автор видео — AKA KASYAN).
Принцип действия
Индикатор уровня заряда имеет три светодиодные лампочки разных цветов. Обычно это: красный, зеленый и синий. Каждый из цветов имеет свою информативную нагрузку. Красный цвет означает низкую зарядку, которая является критичной. Синий цвет соответствует рабочему режиму. Зеленый цвет говорит о полной заряженности аккумулятора.
Разновидности
ИН могут быть размещены на аккумуляторных батареях в виде гидрометра или в виде отдельных устройств с информационным дисплеем. Встроенные ИН обычно размещают на необслуживаемых АКБ. Они оснащаются поплавковым индикатором (гидрометром). Он имеет простую конструкцию.
Конструкция встроенного ИНВыпускаются заводские ИН:
- DC-12 В. Устройство представляет собой конструктор. С его помощью можно контролировать заряженность АКБ и работоспособность реле-регулятора.
- Для тех, у кого машина оборудована вторым аккумулятором, полезным устройством будет панель с индикатором от TMC. Это панель из алюминия с размещенным на ней вольтметром и переключателем с одной батареи на другую.
- ИН Signature Gold Style и Faria Euro Black Style – определяют уровень заряда аккумулятора. Но их стоимость слишком высокая, поэтому на них небольшой спрос.
Руководство по изготовлению устройства в домашних условиях
Самым простым и дешевым вариантом является ИН, изготовленный своими руками. Его назначение – контролировать, как работает АКБ при значении напряжения в бортовой сети в пределах 6-14В.
Чтобы прибор не работал постоянно, его следует подключать через замок зажигания. В этом случае он будет работать, когда вставлен ключ.
Для схемы понадобятся следующие детали:
- печатная плата;
- резисторы: 2 сопротивлением 1 кОМ, 1 сопротивлением 2 кОм и 3 сопротивлением 220 Ом;
- транзисторы: ВС547 — 1 и ВС557 — 1;
- стабилитроны: один на 9,1 В, один на 10 В;
- светодиодные лампочки (RGB): красный, синий, зеленый.
У светодиодов с помощью тестера нужно определить и проверить выводы, чтобы они соответствовали цвету. Собирается прибор согласно схеме.
Схема самодельного прибораКомпоненты примеряют на плату и вырезают ее соответствующих размеров. Желательно компоновать комплектующие так, чтобы они занимали поменьше места.
Светодиоды лучше припаивать к проводам, а не на плату, чтобы индикаторы удобнее было размещать на приборной панели.
По изготовленному устройству нельзя определить конкретные значения напряжения батареи, можно лишь ориентироваться в каких пределах оно находится:
- красный горит, если напряжение от 6 до 11 В;
- синий соответствует напряжению от 11 до 13 В;
- зеленый означает полную зарядку, то есть напряжение превышает 13 В.
Индикатор напряжения аккумулятора можно устанавливать в любом месте салона. Удобнее всего размещать его в нижней части рулевой колонки: светодиоды будут хорошо видны, и не будут мешать управлению. Кроме того, прибор легко будет подключить к замку зажигания. После установки водитель сможет всегда знать, насколько заряжена батарея его автомобиля и заряжать свой аккумулятор в случае необходимости.
Цена вопроса
Если покупать готовый индикатор зарядки АКБ, то возможны варианты, представленные ниже:
Загрузка …Видео «Самодельный индикатор уровня заряда АКБ»
На видео демонстрируется, как изготовить индикатор заряда аккумулятора своими руками (автор ролика — Паяльник TV).
Схема индикатора уровня заряда батареис использованием LM3914
Введение
В этом проекте я покажу вам, как разработать простую схему индикатора уровня заряда батареи, используя легко доступные компоненты. Индикатор уровня заряда батареи показывает состояние батареи просто горящими светодиодами. Например, горят шесть светодиодов, значит, осталось 60% заряда батареи.
В этой статье объясняется, как проектировать индикатор уровня заряда батареи. Вы можете использовать эту схему для проверки автомобильного аккумулятора или инвертора. Таким образом, используя эту схему, мы можем увеличить срок службы батареи.
Эта схема разработана на базе микросхемы lM3914 (интегрированная микросхема). Эта микросхема представляет собой драйвер светодиодного дисплея.
Принцип цепи индикатора уровня заряда батареиСердце этой цепи индикатора уровня заряда батареи — LM3914 IC. Эта ИС принимает входное аналоговое напряжение и управляет 10 светодиодами линейно в соответствии с входным аналоговым напряжением. В этой схеме нет необходимости в резисторах, соединенных последовательно со светодиодами, потому что ток регулируется микросхемой.
Цепь индикатора уровня заряда батареи D iagram Схема цепи индикатора уровня заряда Компоненты цепиПолучите представление о соответствующей публикации — Как работает схема автоматического зарядного устройства с использованием LM317?
- LM3914 IC
- Светодиоды -10 (красный — 3, желтый — 4, зеленый — 3)
- SPST Switch
- Резисторы — 18кОм, 4.7 кОм, 56 кОм
- Потенциометр — 10 кОм
- Аккумулятор 12 В (для проверки)
- Соединительные провода
В этой цепи светодиоды (D1-D10) отображают емкость аккумулятора либо в точечном режиме, либо в режиме отображения. Этот режим выбирается внешним переключателем sw1, который подключен к выводу 9 -го IC. Выводы 6 -й и 7 -й микросхемы соединены с землей через резистор.Этот резистор регулирует яркость светодиодов. Здесь резистор R3 и POT RV1 образуют цепь делителя потенциала. Здесь горшок RV1 используется для калибровки. Для этой схемы нет необходимости во внешнем питании.
Схема предназначена для контроля от 10 В до 15 В постоянного тока. Схема будет работать даже при напряжении аккумулятора 3 В. Рабочее напряжение этой ИС составляет от 3 до 25 В постоянного тока. Lm3914 управляет светодиодами, ЖК-дисплеями и вакуумными люминесцентными лампами. Микросхема содержит регулируемый эталон и точный 10-ступенчатый делитель. Эта ИС также может действовать как секвенсор.
LM3914 Характеристики- Внутреннее опорное напряжение от 1,2 до 12 В постоянного тока.
- Программируемый выходной ток от 2 мА до 30 мА.
- Выходы драйвера светодиодов регулируются по току.
- Нет мультиплексирующего взаимодействия между выходами.
- Поддерживает широкий диапазон температур от 0 до 70 градусов Цельсия.
- Для отображения гистограммы — подключите 9 -й вывод IC к источнику питания
- Для точечного отображения — оставьте 9 -й вывод IC
Мы также можем подключить различные цветные светодиоды для индикации состояния.Подключите красные светодиоды D1 к D3, которые указывают на стадию выключения вашей батареи, и используйте зеленые светодиоды D8-D10, которые показывают от 80 до 100 процентов заряда батареи, и используйте желтый цвет для оставшегося заряда.
Знаете ли вы о концепции — как работает схема беспроводной передачи энергии?
С небольшими изменениями мы можем использовать эту схему для измерения и других диапазонов напряжения. Для этого снимите резистор R2 и подключите ко входу верхний уровень напряжения. Теперь изменяйте сопротивление Pot RV1, пока не загорится светодиод D10.Теперь снимите верхний уровень напряжения на входе и подключите более низкий уровень напряжения. Подключите переменный резистор высокого номинала вместо резистора R2 и изменяйте его, пока не загорится светодиод D1. Теперь отключите потенциометр, измерьте сопротивление на нем и подключите резистор того же номинала вместо R2. Теперь схема готова к мониторингу других диапазонов напряжения.
Эта схема наиболее подходит для индикации уровня заряда батареи 12 В. В этой схеме каждый светодиод показывает 10-процентный уровень заряда батареи. Мы можем расширить эту схему до 100 шагов, подключив ИС lm3914 каскадом.
Как работать с цепью индикатора уровня заряда батареи?- Подключите тестируемую батарею ко входу цепи.
- Теперь отрегулируйте потенциометр RV1 так, чтобы светодиод D1 только начал светиться.
- Теперь медленно увеличивайте входное напряжение постоянного тока и наблюдайте за светодиодом.
- Первый светодиод будет светиться при 1,2 В, второй светодиод — на 2,4 В и так далее.
В таблице ниже показано состояние светодиодов с уровнем входного напряжения.
Уровень заряда батареи | Процент | Состояние светодиодов | |||
---|---|---|---|---|---|
1.2В | 10 | D1 — ВКЛ | |||
2,4 В | 20 | D1, D2 — ВКЛ | |||
3,6В | 30 | D1, D2, D3 — ВКЛ | 40 | D1, D2, D3, D4 — ВКЛ | |
6.0V | 50 | D1, D2, D3, D4, D5 — ВКЛ | |||
7.2V | 60 | , D1, D1, D1, D1, D1 D3, D4, D5, D6 — ВКЛ | |||
8.4V | 70 | D1, D2, D3, D4, D5, D6, D7 — ВКЛ | |||
9.6V | 80 | D1, D2, D3, D4, D5, D6, D7, D8 — ON | |||
10,8V | 90 | D1, D2, D3, D4, D5, D6, D7, D8, D9 — ВКЛ. | |||
12В | 100 | ВСЕ светодиоды — ВКЛ. |
Цепь индикатора уровня заряда аккумулятора Приложения
- Мы можем использовать эту схему для измерения уровня заряда аккумулятора автомобиля.
- Эта схема используется для калибровки состояния инвертора.
- Этот индикатор уровня заряда батареи работает только при малых напряжениях.
- Эта схема является теоретической и может потребовать некоторых изменений для практической работы.
Цепь индикатора заряда батареи с 3 состояниями
В этой статье рассказывается, как сделать простую цепь индикатора уровня заряда батареи с 3 состояниями, 3 светодиода и пару операционных усилителей
Описание схемы
Чтобы узнать состояние заряда, в котором батарея расположена, эта схема была разработана в соответствии с оконным компаратором с использованием операционных усилителей с низким энергопотреблением.В схеме используются три светодиода (D1, D2 и D3), подключенные между их выходами, чтобы указать одно из трех возможных состояний батареи: полный заряд, умеренный заряд и разряженный.
Схема приводится в действие предохранителем на 100 мА, несмотря на то, что его потребление составляет всего около 20 мА, она напрямую подключается к клеммам батареи, которые она может контролировать, и она может выполнить эту задачу с батареями с напряжением 6 и 12 В.
Через переменные резисторы RV1 и RV2 уровни напряжения V1 и V2 настраиваются на уровни, при которых красный и желтый, желтый и зеленый светодиоды включаются или выключаются.
В качестве примера рассмотрим ситуацию с автомобильным аккумулятором на 12 В, используя V1, равный 12 В, и V2, соответствующий 11 В; в этом случае зеленый светодиод загорается при напряжении 12 В или более, красный светится при напряжении ниже или около 11 В, а желтый продолжает гореть между этими двумя напряжениями.
Прототип протестированного изображения
Цепь индикатора заряда / разряда аккумулятора
Эта схема индикатора заряда / разряда аккумулятора предназначена для отслеживания напряжения автомобильного аккумулятора.
Он отличается от всех других схем тем, что обеспечивает индикацию минимального напряжения питания наряду с низким или высоким напряжением.
Это делает его особенно хорошим выбором для определения отклонения напряжения питания от номинала.
Используются три светодиода — красный, желтый и зеленый. Желтый означает минимальное напряжение, а красный и зеленый — соответственно низкие и высокие значения.
RV1 и RV2 изменяют точку, с которой красный / желтый и желтый / зеленый светодиоды включаются или выключаются.
В результате можно было проверить большое напряжение питания. Фактически, прототип устанавливается в автомобиле и размещается так, чтобы красный светодиод загорался при 11 В 7, а также зеленый светодиод при 1 2 В 8.
Желтый светодиод горит между этими значениями.
Схема контроля батареи с использованием стабилитронов и светодиодов
Вот концепция простой схемы контроля батареи с 3 светодиодами с помощью монитора напряжения для источников питания 1 2 В, подразумевающая два превышающих или меньших допустимых напряжения.
Используя три светодиода, человек может сразу увидеть, включено ли напряжение, повышенное или пониженное напряжение.
Это может быть достигнуто с помощью симметричного моста, в котором используются стабилитроны ZD1 и ZD2 в противоположных плечах моста и светодиоды, расположенные спина к спине между центрами плеч моста, на случай, если входное напряжение не будет превышать двух стабилитронов. напряжения пробоя (2 x 6V8 = 1 3V6) Светодиод 1 горит, однако при напряжении выше 13V6 светодиод 1 смещается в обратном направлении и остается выключенным.
Как только напряжение батареи увеличивается до такой степени, что на переходе ZD2 оно превышает напряжение стабилитрона ZD1, а также напряжение светодиода, равное 1.6 В, затем включается светодиод 2, а резистор 100R ограничивает ток светодиода. Обратите внимание на то, что полный сток блока составляет около 50 мА.
Простая схема индикатора уровня заряда батареи с использованием операционного усилителя
В современном мире мы используем батареи почти во всех электронных гаджетах, от вашего портативного мобильного телефона, цифрового термометра, умных часов до электромобилей, самолетов, спутников и даже роботов-вездеходов, используемых на Марс, батарея которого продержалась около 700 солей (марсианских дней). Можно с уверенностью сказать, что без изобретения этих электрохимических запоминающих устройств а.к.а. Батареи, мир, каким мы его знаем, не существует. Существует много различных типов батарей, таких как свинцово-кислотные, никель-кадмиевые, литий-ионные и т. Д. С появлением технологий мы видим новые изобретенные батареи, такие как литий-воздушные батареи, твердотельные литиевые батареи и т. Д., Которые имеют более высокую мощность. емкость накопителя энергии и высокий диапазон рабочих температур. Мы уже обсуждали больше о батареях и о том, как они работают в наших предыдущих статьях. В этой статье мы узнаем, как спроектировать простой индикатор уровня заряда батареи 12 В, , используя операционный усилитель.
Хотя уровень заряда батареи — это неоднозначный термин, потому что мы не можем реально измерить оставшийся в батарее заряд, если мы не используем сложные вычисления и измерения с использованием системы управления батареями. Но в простых приложениях у нас нет роскоши этого метода, поэтому мы обычно используем простой метод для оценки уровня заряда батареи на основе напряжения разомкнутой цепи , который действительно хорошо работает для свинцово-кислотных аккумуляторов 12 В, поскольку их кривая разряда почти линейна, начиная с 13.8–10,1 В, которые обычно считаются его верхним и нижним крайними пределами. Ранее мы также создали индикатор уровня заряда батареи на базе Arduino и схему мониторинга напряжения нескольких ячеек, вы также можете проверить их, если вам интересно.
В этом проекте мы спроектируем и построим индикатор уровня заряда батареи 12 В с помощью микросхемы LM324 на базе четырехканального компаратора OPAMP, которая позволяет нам использовать 4 компаратора на базе OPAMP на одной микросхеме. Мы измерим напряжение аккумулятора и сравним его с заранее заданным напряжением, используя LM324 IC, и включим светодиоды для отображения выходного сигнала, который мы получаем.Давайте прыгнем прямо в это, ладно?
Необходимые компоненты- LM324 Quad OPAMP IC
- 4 × светодиодные фонари (красные)
- Резистор 1 × 2,5 кОм
- Резистор 5 × 1 кОм
- Резистор 1 × 1,6 кОм
- 4 × 0,5 кОм Резистор
- 14-контактный держатель микросхемы
- Винтовой зажим для печатной платы
- Перфорированная плита
- Набор для пайки
LM324 — это микросхема с четырьмя операционными усилителями, интегрированная с четырьмя операционными усилителями с питанием от общего источника питания.Диапазон дифференциального входного напряжения может быть равен диапазону напряжения источника питания. Входное напряжение смещения по умолчанию очень низкое и составляет 2 мВ. Диапазон рабочих температур составляет от 0 ° C до 70 ° C при температуре окружающей среды, тогда как максимальная температура перехода может достигать 150 ° C. Как правило, операционные усилители могут выполнять математические операции и могут использоваться в различных конфигурациях, таких как усилитель, повторитель напряжения, компаратор и т. Д. Таким образом, используя четыре OPAMP в одной микросхеме, вы сэкономите место и уменьшите сложность схемы.Он может питаться от одного источника питания в широком диапазоне напряжений от -3 В до 32 В, что более чем достаточно для тестирования уровня заряда батареи до 24 В.
Принципиальная схема индикатора уровня заряда батареи 12 ВПолная схема, используемая в индикаторе батареи 12 В, , представлена ниже. Я использовал батарею 9 В для иллюстрации на изображении ниже, но предполагаю, что это батарея 12 В.
Если вам не нравятся графические схемы, вы можете проверить их на изображении ниже.Здесь Vcc и Земля — это клеммы, которые должны быть подключены к плюсу и минусу батареи 12 В соответственно.
Теперь давайте приступим к пониманию работы схемы. Для простоты мы можем разделить схему на 2 разные части.
Секция эталонных напряжений:
Во-первых, нам нужно решить, какие уровни напряжения мы хотим измерить в цепи, и вы можете соответствующим образом разработать схему резисторного делителя напряжения.В этой схеме D2 представляет собой эталонный стабилитрон с номинальным напряжением 5,1 В и 5 Вт, поэтому он будет регулировать выходное напряжение до 5,1 В. Сопротивление 4 кОм подключено последовательно к заземлению, поэтому падение напряжения примерно 1,25 В будет на каждом резисторе, который мы будем использовать для , для сравнения с напряжением батареи . Эталонные напряжения для сравнения составляют приблизительно 5,1 В, 3,75 В, 2,5 В и 1,25 В.
Кроме того, есть еще одна схема делителя напряжения, которую мы будем использовать для сравнения напряжений батареи с напряжениями, выдаваемыми делителем напряжения, подключенным к стабилитрону.Этот делитель напряжения важен, потому что, настраивая его значение, вы определяете точки напряжения, за пределами которых вы хотите загореться соответствующие светодиоды. В этой схеме мы последовательно выбрали резистор 1,6 кОм и резистор 1,0 кОм, чтобы обеспечить коэффициент деления 2,6.
Таким образом, если верхний предел батареи составляет 13,8 В, то соответствующее напряжение, выдаваемое делителем потенциала, будет 13,8 / 2,6 = 5,3 В, что больше, чем 5,1 В, заданное первым опорным напряжением стабилитрона, поэтому все светодиоды будут светится, если напряжение батареи 12.5 В, т.е. ни полностью заряжен, ни полностью разряжен, тогда соответствующее напряжение будет 12,5 / 2,6 = 4,8 В, что означает, что оно меньше 5,1 В, но больше трех других опорных напряжений, поэтому три светодиода загорятся, а один нет. Таким образом, мы можем определить диапазоны напряжения для включения отдельного светодиода.
Секция компаратора и светодиодов:
В этой части схемы мы просто управляем разными светодиодами для разных уровней напряжения. Поскольку IC LM324 является компаратором на основе OPAMP, поэтому всякий раз, когда неинвертирующий терминал конкретного OPAMP имеет более высокий потенциал, чем инвертирующий терминал, выход OPAMP будет повышен до приблизительно уровня напряжения VCC, который в нашем случае является напряжением батареи. .Здесь светодиод не загорится, потому что напряжения на аноде и катоде светодиода равны, поэтому ток не будет течь. Если напряжение инвертирующего терминала выше, чем напряжение неинвертирующего терминала, то выход OPAMP будет понижен до уровня GND, поэтому светодиод загорится, потому что на его терминалах есть разность потенциалов.
В нашей схеме мы подключили неинвертирующую клемму каждого OPAMP к резистору 1 кОм цепи делителя потенциала, подключенной к батарее, а инвертирующие клеммы подключены к различным уровням напряжения от делителя потенциала, подключенного к стабилитрону.Таким образом, всякий раз, когда распределенное напряжение батареи ниже, чем соответствующее опорное напряжение этого OPAMP, выход будет повышен, и светодиод не будет гореть, как объяснялось ранее.
Проблемы и улучшения:
Это довольно грубый и простой метод аппроксимации напряжения батареи, и вы можете дополнительно изменить его, чтобы считывать диапазон напряжения по вашему выбору, добавив дополнительный резистор последовательно с делителем потенциала, подключенным через 5.Стабилитрон 1 В, таким образом, вы можете получить большую точность в меньшем диапазоне, чтобы вы могли определять больше уровней напряжения в меньшем диапазоне для реальных приложений, таких как свинцово-кислотная батарея.
Вы также можете связать разные цветные светодиоды для разных уровней напряжения и, если вам нужна гистограмма. Я использовал только один LM324 в этой схеме, чтобы упростить ее, вы можете использовать n количество микросхем компаратора и с n резисторами, последовательно соединенными с стабилитроном опорного напряжения, вы можете иметь столько опорных напряжений для сравнения, сколько захотите. что еще больше повысит точность вашего индикатора.
Сборка и тестирование индикатора уровня заряда батареи 12 ВТеперь, когда мы закончили проектирование схемы, нам нужно изготовить ее на печатной плате. Если вы хотите, вы также можете сначала протестировать его на макетной плате, чтобы увидеть, как он работает, и отладить ошибки, которые вы можете увидеть в схеме. Если вы хотите избавиться от хлопот по пайке всех компонентов вместе, вы также можете спроектировать свою собственную печатную плату в AutoCAD Eagle, EasyEDA или Proteus ARES или любом другом программном обеспечении для проектирования печатных плат, которое вам нравится.
Поскольку LM324 может работать с широким диапазоном источников питания в диапазоне от -3 В до 32 В, вам не нужно беспокоиться о предоставлении какого-либо отдельного источника питания для LM324 IC, поэтому мы использовали только одну пару винтовых клемм для печатной платы, которые будут быть напрямую подключенным к клеммам аккумулятора и питать всю печатную плату. Вы можете проверить уровни напряжения от мин. 5,5 В до макс. 15 В. с помощью этой схемы. Я настоятельно рекомендую вам добавить еще один резистор последовательно в делитель потенциала через стабилитрон и уменьшить диапазон напряжений каждого светодиода.
Если вы хотите увеличить диапазон тестирования напряжения с 12 В до 24 В, поскольку LM324 способен тестировать аккумулятор до 24 В, вам просто нужно изменить коэффициент деления напряжения делителя напряжения, подключенного к аккумулятору, чтобы сделать их сопоставимыми с уровнями напряжения. задается опорной схемой стабилитрона, а также удваивает сопротивление, подключенное к светодиодам, чтобы защитить его от протекания через них сильного тока.
Полную работу этого руководства можно также найти в видео по ссылке ниже.Надеюсь, вам понравилось это руководство и вы узнали что-то полезное, если у вас есть какие-либо вопросы, оставьте их в разделе комментариев или вы можете использовать наши форумы для других технических вопросов.
Цепь индикатора уровня заряда батареи 12 В
Этот индикатор уровня заряда батареи имеет (5) светодиодов, которые постепенно загораются при увеличении напряжения:
- Красный: Питание подключено (0%)
- Желтый: более 10,5 В (25%)
- Зеленый 1: более 11,5 В (50%)
- Зеленый 2: больше 12.5 В (75%)
- Зеленый 3: более 13,5 В (100%)
Конечно, вы можете выбрать свои собственные цвета, если хотите.
Схема цепи индикатора уровня заряда батареи 12 В
Работа индикатора уровня заряда аккумулятора
D1 — стабилитрон опорного напряжения. К нему привязана цепочка резисторов делителя (R2-6), которые устанавливают различные фиксированные уровни напряжения. R7 и 8 образуют делитель напряжения, который снижает напряжение батареи в 3 раза.U1 — это счетверенный компаратор LM339, который сравнивает различные напряжения от двух делителей. Секции компаратора имеют выходы с открытым коллектором, которые просто функционируют как переключатели для управления светодиодами. D7 защищает от обратного подключения АКБ.
Светодиоды смещены для работы с током около 4 мА, что довольно ярко, если используются современные светодиоды. Этот ток можно отрегулировать, просто меняя резисторы в серии (с R9 по R13). Общий ток потребления, как показано, составляет около 25 мА, что имеет тенденцию быть расточительным для непрерывной работы.Для экономии энергии подключите батарею с помощью кнопки (нажмите для проверки).
Связанные товары: Аккумуляторы | Аккумуляторы | Контакты, зажимы и держатели для батарей
Печатная плата
Я сделал макет SMT www.expresspcb.com с использованием компонентов размера 0805, стабилитрона 1N753 и SOIC-14 IC. D7 находится в упаковке SOT-23. Эти компоненты настолько малы, насколько мне нравится работать. Макет еще не был тщательно проверен и построен. Обратите внимание, что при создании прототипов много сюрпризов.
Печатная плата имеет размеры всего 0,5 x 1,5 дюйма.
Совсем недавно я обнаружил недорогой стабилитрон SOT-23 с допуском по напряжению 2% — он еще не был встроен.
У меня были хорошие результаты со светодиодами размера 0805, купленными в Китае на eBay. Они оба недорогие и ЯРКИЕ!
Блок индикатора уровня заряда батареи 12 В на фотографии не имеет диода обратной полярности, а R2 — это калибровочный потенциометр.
Цепь индикатора заряда аккумулятора 10 уровней
Мы уже указываем состояние батареи с помощью схемы индикатора состояния батареи и индикатора состояния напряжения батареи с помощью микросхемы 741 IC, на этот раз мы указываем состояние батареи на 10 различных уровнях.Проект «10-уровневая схема индикатора заряда аккумулятора» разработан с использованием компаратора IC LM3914, который используется для индикации заряда аккумулятора на 10 различных уровнях. В проекте используются 10 светодиодов для индикации заряда аккумулятора на 10 уровнях, т.е. каждый светящийся светодиод указывает на 10% заряда аккумулятора. Допустим, если горят семь светодиодов, доступный заряд аккумулятора составляет 70%. Также он имеет функцию автоматического отключения цепи зарядки при 100% заряде аккумулятора.
Как работает 10-уровневая цепь индикатора заряда аккумулятора?
Основными компонентами 10-уровневой цепи индикатора заряда аккумулятора является LM3914, он содержит 10 внутренних компараторов и расположен в сети делителя напряжения, которая в основном работает по правилу деления цепи.Напряжение батареи разделено на 10 частей, и его выход отображается с помощью 10 светодиодов, расположенных в точечном режиме. Для лучшей обычной индикации предпочтительны светодиоды разных цветов, например 3 красных светодиода, 3 желтых светодиода и 4 красных светодиода. Когда светится светодиод 10 th , транзистор Q1 переходит в состояние насыщения и реле находится под напряжением, схема зарядного устройства выключается и аккумулятор отсоединяется от зарядного устройства.
Если вы хотите разработать свою собственную схему зарядного устройства 12 В, то вот несколько ссылок.
- Интеллектуальное зарядное устройство 12 В, 7 Ач с печатной платой
- Зарядное устройство 12 В с защитой от перезарядки и глубокой разрядки.
Описание цепи 10-уровневого индикатора заряда аккумулятора
Схема 10-уровневой цепи индикатора заряда батареи показана на рисунке 1. Вся схема представляет собой 10-уровневую цепь индикатора заряда батареи, построенную на компараторе IC LM3914, 10 светодиодах и нескольких других электронных компонентах, таких как резисторы, конденсаторы, диоды, транзисторы и т. Д. для безупречной работы схемы.
Батарея, заряд которой будет отслеживаться, подключена к B1, где диод D2 блокирует обратный ток от цепи к батарее, где конденсатор C 1 — не что иное, как конденсатор фильтра.Переменный резистор VR 1 используется для калибровки схемы для свечения светодиодов при разном напряжении, а переменный резистор VR 2 используется для регулировки яркости светодиодов.
Транзистор Q1 — это переключающая схема, которая изначально находится в выключенном состоянии, но когда батарея полностью заряжена, то есть светодиод 10 светится, транзистор Q1 включается в результате срабатывания реле и выключает цепь зарядки. В приведенной ниже таблице показан процент заряда батареи для соответствующего светящегося светодиода.
Таблица 1 | ||
С.Н. | Светящийся светодиод | Аккумулятор заряжен |
1. | Светодиод 1 | 10% |
2. | Светодиод 2 | 20% |
3. | светодиод 3 | 30% |
4. | Светодиод 4 | 40% |
5. | светодиод 5 | 50% |
6. | светодиод 6 | 60% |
7. | светодиод 7 | 70% |
8. | светодиод 8 | 80% |
9. | светодиод 9 | 90% |
10. | светодиод 10 | 100% |
Калибровка 10-уровневой цепи индикатора заряда аккумулятора
- Подключите переменный источник питания 15 В к точке B1 (на месте батареи)
- Установите 3 В на переменный источник питания.
- Отрегулируйте переменную VR 1 до светодиода 1
- Повышение напряжения регулируемого источника питания с интервалом 1 В на шаг.
- Схема готова к использованию.
ПЕРЕЧЕНЬ ДЕТАЛЕЙ ЦЕПИ ИНДИКАТОРА ЗАРЯДА АККУМУЛЯТОРА 10 УРОВНЯ
Резисторы (все ¼-ватт, ± 5% углерода) |
R 1 = 33 кОм R 2 = 1,2 кОм R 3 = 56 кОм VR 1 = 10 Ом VR 2 = 200 кОм |
Конденсаторы |
C 1 = 100 нФ (керамический диск) C 2 = 33 мкФ / 30 В (электролитический конденсатор) |
Полупроводники |
IC 1 = LM3914 (ИС компаратора) Q 1 = BC558 (транзистор PNP) D 1 , D 2 = 1N4001 (кремниевый выпрямительный диод общего назначения) Светодиод 1 — Светодиод 3 = 5 мм Светодиоды красного цвета LED 4 — LED 6 = 5 мм желтые светодиоды Светодиод 7 — Светодиод 10 = 5 мм Светодиоды зеленого цвета |
Разное |
RL 1 = 12 В реле |
Нравится:
Нравится Загрузка…
Индикатор уровня заряда батареис использованием LM 3914
Мы собираемся показать вам, как разработать простой индикатор уровня заряда батареи Схема с использованием LM 3914. Индикатор уровня заряда батареи показывает состояние батареи с помощью светящегося светодиода. В этой схеме у нас есть 9 светодиодов, которые показывают уровень заряда батареи. Схема индикатора уровня батареи увеличивает срок службы батареи, потому что эта схема указывает, что батарея полная, или перезаряженная, или разряженная.
Этот простой и легкий проект объясняет вам, как разработать индикаторы уровня заряда батареи , используя LM3914 с некоторыми другими компонентами.
Компоненты цепи
- IC-LM3914
- 10 светодиодов (красный — 3, желтый — 4, зеленый — 3)
- Точечный переключатель
- Резисторы — 18К, 4,7К, 56К
- Потенциометр — 10K
- Аккумулятор 12В (для тестирования)
- 2-точечные разъемы
В этой схеме светодиоды от D1 до D10 отображают емкость точечной полосы батареи, которая также может использоваться для индикации вместо светодиодов.Внешний переключатель sw1 используется для выбора режима, переключатель sw1 подключен к выводу 9 th LM39-14-IC. Контакты 6 -й и 7 -й подключены к земле через резистор (R1). Этот резистор регулирует яркость светодиодов. Резисторы R3 и RV1 образуют цепь делителя потенциала. Здесь RV1 используется для калибровки. Для работы этой схемы нет необходимости во внешнем источнике питания.
Схема предназначена для контроля тока от 10 В до 15 В постоянного тока. Рабочее напряжение IC-LM3914 составляет от 3 до 25 В постоянного тока, поэтому эта схема будет работать даже при 3 В.IC-LM3914 содержит регулируемый эталон и точный 10-шаговый делитель. IC-LM3914 также может действовать как секвенсор.
Принцип цепи индикатора уровня заряда батареиLM3914 является сердцем схемы индикатора уровня заряда батареи. Lm3914 принимает входное аналоговое напряжение и управляет 10 светодиодами. Нет необходимости в резисторах, соединенных последовательно со светодиодами для защиты, потому что ток регулируется микросхемой.
LM3914 Характеристики- Внутреннее опорное напряжение от 1.2–12 В постоянного тока.
- Выходной ток регулируется для светодиодов.
- Программируемый токовый выход от 2 мА до 30 мА.
- Нет взаимодействия между выходами.
- Поддерживает температуру от 0 до 70 градусов Цельсия.
- Подключите штырь 9 -й микросхемы к источнику питания для отображения гистограммы.
- Оставьте вывод 9 -й микросхемы для точечного отображения.
- Подключите провода аккумулятора ко входу цепи.
- Теперь отрегулируйте горшок так, чтобы светодиод D1 только начал светиться.
- Медленно увеличивайте входное напряжение и наблюдайте за светодиодами
- Первый светодиод будет светиться при 1,2 В, второй — при 1,4 В и так далее.
- Эта схема индикатора уровня заряда батареи работает только при малых напряжениях.
- Схема является теоретической и может потребовать некоторых изменений для работы на практике.
- Мы можем немного изменить, заменив резисторы
Эту схему можно использовать для аккумулятора другого напряжения
Мы можем использовать эту схему для измерения других диапазонов напряжения также с небольшими изменениями.Мы сняли резистор R2 и подключили ко входу верхний уровень напряжения. Теперь изменяйте сопротивление Pot RV1, пока не загорится светодиод D10. Снимите верхний уровень напряжения на входе и подключите нижний уровень напряжения. Подключите переменный резистор высокого номинала (потенциометр) вместо резистора 18k и перемещайте его до тех пор, пока не загорится светодиод D1. Теперь отключите потенциометр, измерьте сопротивление на нем и подключите резистор того же номинала вместо R2. Теперь схема готова контролировать другие диапазоны напряжения в соответствии с вашими желаниями.
Эта схема наиболее подходит для измерения батарей 12 В, потому что светодиоды светятся каждые 10%.
Похожие сообщения
Цепь индикатора уровня заряда батареис LM3915
Описание
В этом проекте электроники я объяснил, как сделать цепь индикатора уровня заряда батареи с LM3915 IC для контроля уровня напряжения любых батарей.
Вы можете отрегулировать максимальный уровень напряжения в соответствии с батареей (12 В или 9 В), поворачивая триммер.
Цепь индикатора уровня заряда батареи
Схема очень проста, я использовал LM3915 IC, чтобы показать уровень напряжения батареи.
Здесь LM3915 будет управлять током через светодиод, поэтому я не использовал резисторы последовательно со светодиодами.
Компоновка печатной платы для индикатора уровня напряжения батареи
Загрузите компоновку печатной платы, затем распечатайте ее на странице A4.
Пожалуйста, проверьте размер печатной платы во время печати, он должен быть таким же, как указано
Необходимые компоненты:
- LM3915 IC
- 3.Резистор 3 кОм 0,25 Вт (R1)
- Резистор 18 кОм 0,25 Вт (R2)
- 56 кОм Резистор 0,25 Вт (R3)
- 5-мм светодиоды 1,5 В (10 шт.)
- Переключатель (S1)
- Потенциометр 10 кОм (VR4)
- Разъемы и основание ИС
- Нулевой PCB или картон
Обучающее видео по индикатору уровня напряжения батареи
В этом обучающем видео я показал все шаги, чтобы сделать схему индикатора уровня напряжения на самодельная печатная плата.
Но вы также можете загрузить Gerber-файл печатной платы для этого проекта LM3915 и заказать печатную плату нестандартной конструкции в PCBWay.com
О PCBWay и их услугах
- Прототипирование и производство печатных плат
PCBWay производит не только платы FR-4 и Aluminium, но также и современные печатные платы, такие как платы Rogers, HDI, Flexible и Rigid-Flex , по очень разумной цене.
Чтобы получить онлайн-страницу мгновенного предложения, посетите — pcbway.com/orderonline
Проверьте свой файл Gerber перед размещением заказа — OnlineGerberViewer - Сборка печатной платы
Сборка SMT и THT начинается всего с 30 долларов США с бесплатным трафаретом и бесплатная доставка по всему миру.
Компоненты могут быть закуплены и предоставлены нами или самими клиентами
Примерное предложение онлайн — pcbway.com/pcb-assembly
С PCBWay вы также можете получить следующие преимущества
- Нет минимальных требований
- Справедливая цена
- Бесплатно DFM
- Своевременная доставка
- Возврат и возврат
- Круглосуточная служба поддержки клиентов
Для получения более подробной информации посетите Почему PCBway .
Вы также можете изучить различные проекты печатных плат в их сообществе разработчиков открытого исходного кода pcbway.com/project/ .
Шаги для заказа печатной платы на PCBWay
Чтобы заказать печатную плату, сначала посетите PCBWay.com .
Затем введите следующие данные:
- PCB Размер (длина и ширина) в мм и количество PCB
- Выберите цвет маскировки для печатной платы
- Выберите страну и способ доставки
- Нажмите кнопку « Сохранить в корзину »
Теперь нажмите « Добавить файлы Gerber », чтобы загрузить файл Gerber печатной платы.
Затем нажмите « Отправить заказ сейчас », чтобы разместить заказ.
После этого они рассмотрят файл Gerber и, соответственно, подтвердят заказ.
Я пользовался их услугами для своих различных проектов электроники, я всегда получал печатную плату вовремя, и качество очень хорошее в этом ценовом диапазоне.
Как сделать печатную плату индикатора уровня заряда батареи
Шаги по созданию схемы индикатора уровня напряжения на печатной плате:
- Распечатайте макет печатной платы и приклейте его на картон или Акриловый лист
При печати учитывайте размер печатной платы, указанный в компоновке печатной платы
- Просверлите отверстия для компонентов как компоновку печатной платы
- Соедините все компоненты согласно компоновке печатной платы
Разместите все компоненты на печатной плате, как показано, затем припаяйте все компоненты в соответствии со схемой.
Теперь печатная плата для цепи индикатора уровня готова.
Установка максимального уровня напряжения
Теперь, чтобы установить индикатор для батареи 12 В, сначала подключите источник питания 12 В.
Затем вращайте потенциометр, пока не загорятся все светодиоды.
После этого отключите питание.
Подключите аккумулятор 12 В
Подключите аккумулятор 12 В к цепи индикатора.
Теперь светодиоды будут светиться в соответствии с уровнем выходного напряжения батареи.И вы можете следить за уровнем напряжения аккумулятора.
Таким образом, вы можете установить любой уровень напряжения и использовать эту же схему для разных батарей, таких как батарея 6 В, батарея 9 В, батарея 12 В и т. Д.
DOT & Graph Mode
Вы можете контролировать уровень напряжения как в режиме DOT, так и в режиме Graph, используя переключатель S1.
Пожалуйста, поделитесь своими отзывами об этом мини-проекте, а также дайте мне знать, если у вас возникнут какие-либо вопросы.
Вы также можете подписаться на на нашу новостную рассылку , чтобы получать больше таких полезных проектов электроники по электронной почте.