Фонарь светодиодный – ремонт, схема, замена аккумулятора
Для безопасности и возможности продолжать активную деятельность в темное время суток человек нуждается в искусственном освещении. Первобытные люди раздвигали темень, поджигая ветки деревьев, далее придумали факел и керосинку. И только после изобретения французским изобретателем Джорджем Лекланше в 1866 году прототипа современной батарейки, а в 1879 году Томсоном Эдисоном лампы накаливания, у Дэвида Майзела появилась возможность запатентовать 1896 году первый электрический фонарь.
С тех пор в электрической схеме новых образцов фонарей ничего не изменялось, пока в 1923 году российский ученый Олег Владимирович Лосев не нашёл связь люминесценции в карбиде кремния и p-n-переходе, а в 1990 году ученым не удалось создать светодиод с большей светоотдачей, позволяющий заменить лампочку накаливания. Применение светодиодов вместо ламп накаливания, благодаря низкому энергопотреблению светодиодов, позволило многократно увеличить время работы фонарей при той же емкости батареек и аккумуляторов, повысить надежность фонариков и практически снять все ограничения на область их использования.
Светодиодный аккумуляторный фонарь, который Вы видите на фотоснимке попал мне в ремонт с жалобой, что купленный на днях китайский фонарик Lentel GL01 за $3, не светит, хотя индикатор заряда аккумулятора светится.
Внешний осмотр фонаря произвел положительное впечатление. Качественное литье корпуса, удобная ручка и выключатель. Стержни вилки для подключения к бытовой сети для зарядки аккумулятора сделаны выдвижными, что исключает необходимость хранения сетевого шнура.
Внимание! При разборке и ремонте фонаря, если он подключен к сети следует соблюдать осторожность. Прикосновение к оголенным участкам схемы подключенной к электрической сети может привести к поражению электрическим током.
Как разобрать светодиодный аккумуляторный фонарь Lentel GL01
Хотя фонарик подлежал гарантийному ремонту, но вспоминая свои хождения при при гарантийном ремонте отказавшего электрочайника (чайник был дорогим и в нем перегорел ТЭН, поэтому своими руками его отремонтировать не представлялось возможным), решил заняться ремонтом самостоятельно.
Разобрать фонарь оказалось легко. Достаточно повернуть на небольшой угол против часовой стрелки кольцо, фиксирующее защитное стекло и оттянуть его, затем отвинтить несколько саморезов. Оказалось кольцо фиксируется на корпусе с помощью байонетного соединения.
После снятия одной из половинок корпуса фонарика появился доступ ко всем его узлам. Слева на фотоснимке видна печатная плата со светодиодами, к которой прикреплен с помощью трех саморезов рефлектор (отражатель света). В центре расположен аккумулятор черного цвета с неизвестными параметрами, имеется только маркировка полярности выводов. Правее аккумулятора находится печатная плата зарядного устройства и индикации. Справа установлена сетевая вилка с выдвижными стержнями.
При внимательном рассмотрении светодиодов оказалось, что на излучающих поверхностях кристаллов всех светодиодов имелись черные пятна или точки. Стало ясно даже без проверки светодиодов мультиметром, что фонарик не светит по причине их перегорания.
Почерневшие области имелись также на кристаллах двух светодиодов, установленных в качестве подсветки на плате индикации зарядки аккумулятора. В светодиодных лампах и лентах обычно выходит из строя один светодиод, и работая как предохранитель, защищает остальные от перегорания. А в фонаре вышли из строя все девять светодиодов одновременно. Напряжение на аккумуляторе не могло увеличиться до величины, способной вывести светодиоды из строя. Для выяснения причины пришлось начертить электрическую принципиальную схему.
Поиск причины отказа фонаря
Электрическая схема фонаря состоит из двух функционально законченных частей. Часть схемы, расположенная левее переключателя SA1, выполняет функцию зарядного устройства. А часть схемы, изображенная справа от переключателя, обеспечивает свечение.
Работает зарядное устройство следующим образом. Напряжение от бытовой сети 220 В поступает на токоограничивающий конденсатор С1, далее на мостовой выпрямитель, собранный на диодах VD1-VD4. С выпрямителя напряжение подается на клеммы аккумулятора. Резистор R1 служит для разряда конденсатора после изъятия вилки фонарика из сети. Таким образом, исключается удар током от разряда конденсатора в случае случайного прикосновения рукой одновременно двух штырей вилки.
Светодиод HL1, включенный последовательно с токоограничивающим резистором R2 в противоположном направлении с правым верхним диодом моста, как, оказалось, светится всегда при вставленной вилке в сеть, даже если аккумулятор неисправен или отсоединен от схемы.
Переключатель режимов работы SA1 служит для подключения к аккумулятору отдельных групп светодиодов. Как видно из схемы получается, что если фонарь подключен к сети для зарядки и движок переключателя находится в положении 3 или 4, то напряжение с зарядного устройства аккумулятора попадает и на светодиоды.
Если человек включил фонарик и обнаружил, что он не работает, и, не зная, что движок выключателя обязательно необходимо установить в положение «выключено», о чем в инструкции по эксплуатации фонаря ничего не сказано, подключит фонарь к сети на зарядку, то за счет броска напряжения на выходе зарядного устройства на светодиоды попадет напряжение, значительно превышающее расчетное. Через светодиоды потечет ток, превышающий допустимый и они перегорят. При старении кислотного аккумулятора за счет сульфатации свинцовых пластин напряжение заряда аккумулятора возрастает, что тоже приводит к перегоранию светодиодов.
Еще одно схемное решение, которое удивило, это параллельное включение семи светодиодов, что недопустимо, так как вольтамперные характеристики даже светодиодов одного типа отличаются и поэтому проходящий ток через светодиоды тоже будет не одинаковым. По этой причине при выборе номинала резистора R4 из расчета протекания через светодиоды максимально допустимого тока, один из них может перегружаться и выйти из строя, а это приведет к перегрузке по току параллельно включенных светодиодов, и они тоже перегорят.
Переделка (модернизация) электрической схемы фонаря
Стало очевидным, что поломка фонаря связана с ошибками, допущенными разработчиками его электрической принципиальной схемы. Чтобы отремонтировать фонарь и исключить его повторную поломку необходимо его переделать, заменив светодиоды и внести незначительные изменения в электрическую схему.
Для того чтобы индикатор заряда аккумулятора действительно сигнализировал о его зарядке, необходимо светодиод HL1 включить последовательно с аккумулятором. Для свечения светодиода необходим ток несколько миллиампер, а выдаваемый ток зарядным устройством должен составлять около 100 мА.
Для обеспечения этих условий достаточно отсоединить HL1-R2 цепочку от схемы в местах, указанных красными крестиками и параллельно с ней установить дополнительный резистор Rd номиналом 47 Ом мощностью не менее 0,5 Вт. Ток заряда, протекая через Rd будет создавать на нем падение напряжения около 3 В, которое обеспечить необходимый ток для свечения индикатора HL1. Заодно точку соединения HL1 и Rd необходимо подключить к выводу 1 переключателя SA1. Таким простым способом будет исключена возможность подачи напряжения с зарядного устройства на светодиоды EL1-EL10 во время заряда аккумулятора.
Для выравнивания величины токов, протекающих через светодиоды EL3-EL10, необходимо исключить из схемы резистор R4 и последовательно с каждым светодиодом включить отдельный резистор номиналом 47-56 Ом.
Электрической схема после доработки
Внесенные в схему незначительные изменения повысили информативность индикатора заряда недорогого китайского светодиодного фонаря и многократно повысили его надежность. Надеюсь, что производители светодиодных фонарей после прочтения этой статьи внесут изменения в электрические схемы своих изделий.
После модернизации электрическая принципиальная схема приняла вид, как на чертеже выше. Если необходимо освещать фонариком продолжительное время и не требуется большой яркости его свечения, то можно дополнительно установить токоограничивающий резистор R5, благодаря которому время работы фонарика без подзарядки увеличится в два раза.
Ремонт светодиодного аккумуляторного фонаря
После разборки в первую очередь нужно восстановить работоспособность фонаря, а потом уже заниматься модернизацией.
Проверка светодиодов мультиметром подтвердила их неисправность. Поэтому все светодиоды пришлось выпаять и освободить от припоя отверстия для установки новых диодов.
Судя по внешнему виду, на плате были установлены ламповые светодиоды из серии HL-508H диаметром 5 мм. В наличии имелись светодиоды типа HK5h5U от линейной светодиодной лампы с близкими техническими характеристиками. Они и пригодились для ремонта фонаря. При запайке светодиодов на плату нужно не забывать соблюдать полярность, анод должен быть соединен с плюсовым выводом аккумулятора или батарейки.
После замены светодиодов печатная плата была подключена к схеме. Яркость свечения некоторых светодиодов из-за общего токоограничивающего резистора несколько отличалась от других. Для устранения этого недостатка необходимо удалить резистор R4 и заменить его семью резисторами, включив последовательно с каждым светодиодом.
Для выбора резистора, обеспечивающего оптимальный режим работы светодиода, была измерена зависимость величины тока, протекающего через светодиод, от величины последовательно включенного сопротивления при напряжении 3,6 В, равному напряжению аккумуляторной батареи фонаря.
Исходя из условий применения фонаря (в случае перебоев подачи в квартиру электроэнергии) большой яркости и дальности освещения не требовалось, поэтому резистор был выбран номиналом 56 Ом. С таким токоограничивающим резистором светодиод будет работать в легком режиме, и потребление электроэнергии будет экономным. Если от фонаря требуется выжать максимальную яркость, то следует применить резистор, как видно из таблицы, номиналом 33 Ом и сделать два режима работы фонарика, включив еще один общий токоограничивающий резистор (на схеме R5) номиналом 5,6 Ом.
Чтобы включить последовательно с каждым светодиодом резистор, необходимо предварительно подготовить печатную плату. Для этого на ней нужно перерезать по одной любой токоведущей дорожке, подходящей к каждому светодиоду и сделать дополнительные контактные площадки. Токоведущие дорожки на плате защищены слоем лака, который необходимо соскоблить лезвием ножа до меди, как на фотоснимке. Затем оголенные контактные площадки залудить припоем.
Подготавливать печатную плату для монтажа резисторов и припаивать их лучше и удобнее, если плату закрепить на штатном рефлекторе. В этом случае поверхность линз светодиодов не будет царапаться, и удобнее будет работать.
Подключение диодной платы после ремонта и модернизации к аккумулятору фонаря показало достаточную для освещения и одинаковую яркость свечения всех светодиодов.
Не успел отремонтировать предыдущий фонарь, как в ремонт попал второй, с такой же неисправностью. На корпусе фонарика информации о производителе и технических характеристиках не нашел, но судя по почерку изготовления и причине поломки, производитель тот же, китайский Lentel.
По дате на корпусе фонарика и на аккумуляторе удалось установить, что фонарю уже четыре года и со слов его хозяина фонарь работал безотказно. Очевидно, что прослужил фонарик долго благодаря предупреждающей надписи «Не включать во время зарядки!» на откидной крышке, закрывающей отсек, в котором спрятана вилка для подключения фонаря к электросети для зарядки аккумулятора.
В этой модели фонаря светодиоды включены в схему по правилам, последовательно с каждым установлен резистор номиналом 33 Ом. Величину резистора легко узнать по цветовой маркировке с помощью онлайн калькулятора. Проверка мультиметром показала, что все светодиоды неисправны, резисторы тоже оказались в обрыве.
Анализ причины отказа светодиодов показал, что за счет сульфатации пластин кислотного аккумулятора его внутреннее сопротивление увеличилось и как следствие, напряжение его зарядки возросло в несколько раз. Во время зарядки фонарик был включен, ток через светодиоды и резисторы превысил предельный, что и привело к выходу их из строя. Пришлось заменить не только светодиоды, но и все резисторы. Исходя из выше оговоренных условиях эксплуатации фонаря были для замены выбраны резисторы номиналом 47 Ом. Величину резистора для любого типа светодиода можно рассчитать с помощью онлайн калькулятора.
Переделка схемы индикации режима зарядки аккумулятора
Фонарь отремонтирован, и можно приступать к внесению изменений в схему индикации зарядки аккумулятора. Для этого необходимо перерезать дорожку на печатной плате зарядного устройства и индикации таким образом, чтобы цепочку HL1-R2 со стороны светодиода отсоединить от схемы.
Далее нужно параллельно цепочке HL1-R2 подключить резистор Rd, проходя через который ток зарядки аккумулятора будет создавать необходимое падение напряжения для обеспечения свечения светодиода HL1.
Свинцово-кислотный AGM аккумулятор был доведен до глубокого разряда, и попытка зарядить его штатным зарядным устройством не привела к успеху. Пришлось аккумулятор заряжать с помощью стационарного блока питания с функцией ограничения тока нагрузки. На аккумулятор было подано напряжение 30 В, при этом он в первый момент времени потреблял ток всего несколько мА. Со временем ток начал возрастать и через несколько часов увеличился до 100 мА. После полной зарядки аккумулятор был установлен в фонарь.
Зарядка глубоко разряженных свинцово-кислотный AGM аккумуляторов в результате долгого хранения повышенным напряжением позволяет восстановить их работоспособность. Способ проверен мною на AGM аккумуляторах не один десяток раз. Новые аккумуляторы, не желающие заряжаться от стандартных зарядных устройств, при зарядке от постоянного источника при напряжении 30 В восстанавливаются практически до первоначальной емкости.
Аккумулятор был несколько раз разряжен включением фонарика в рабочий режим и заряжен с помощью штатного зарядного устройства. Измеренный ток заряда составил 123 мА, при напряжении на выводах аккумулятора 6,9 В. К сожалению аккумулятор был изношен и его хватало для работы фонаря в течение 2 часов. То есть емкость аккумулятора составляла около 0,2 А×часа и для продолжительной работы фонаря необходима его замена.
HL1-R2 цепочка на печатной плате была удачно размещена, и понадобилось под углом перерезать всего одну токоведущую дорожку, как на фотоснимке. Ширина реза должна быть не менее 1 мм. Расчет номинала резистора и проверка на практике показала, что для стабильной работы индикатора зарядки аккумулятора необходим резистор номиналом 47 Ом мощностью не менее 0,5 Вт.
На фотоснимке представлена печатная плата с запаянным токоограничивающим резистором. После такой доработки индикатор заряда аккумулятора светится только в случае, если действительно происходит заряд аккумулятора.
Модернизация переключателя режимов работы
Для завершения работы по ремонту и модернизации фонарей необходимо выполнить перепайку проводов на выводах переключателя.
В моделях ремонтируемых фонарей для включения применен четырех позиционный переключатель движкового типа. Средний вывод на приведенной фотографии является общим. При положении движка переключателя в крайнем левом положении общий вывод подключается к левому выводу переключателя. При перемещении движка переключателя из крайнего левого положения на одну позицию вправо, общий его вывод подключается ко второму выводу и при дальнейшем перемещении движка последовательно к 4 и 5 выводам.
К среднему общему выводу (смотри фотографию выше) нужно припаять провод, идущий от положительного вывода аккумулятора. Таким образом, появится возможность подключать аккумулятор к зарядному устройству или светодиодам. К первому выводу можно припаять провод, идущий от основной платы со светодиодами, ко второму можно припаять токоограничивающий резистор R5 величиной 5,6 Ом для возможности переключения фонарика в энергосберегающий режим работы. К крайнему правому выводу припаять проводник, идущий от зарядного устройства. Таким образом будет исключена возможность включить фонарь во время зарядки аккумулятора.
Ремонт и модернизация
светодиодного аккумуляторного фонаря-прожектора «Фотон PB-0303»
Попал мне в ремонт еще один экземпляр из ряда светодиодных фонарей китайского производства под названием Светодиодный фонарь-прожектор «Фотон PB-0303». Фонарь при нажатии на кнопку включения не реагировал, попытка зарядить аккумулятор фонаря с помощью зарядного устройства к успеху не привела.
Фонарь мощный, дорогой, стоит около $20. По заявлению производителя световой поток фонаря достигает 200 метров, корпус выполнен из ударопрочного ABS-пластика, в комплекте имеется отдельное зарядное устройство и ремень для переноса на плече.
Светодиодный фонарь Фотон обладает хорошей ремонтопригодностью. Для получения доступа к электрической схеме достаточно открутить пластмассовое кольцо, удерживающее защитное стекло, вращая кольцо против часовой стрелки, если смотреть на светодиоды.
При ремонте любых электроприборов поиск неисправности всегда начинается с источника питания. Поэтому первым делом было измерено с помощью мультиметра, включенного в режим измерения постоянного напряжения, напряжение на выводах кислотного аккумулятора. Оно составил 2,3 В, вместо 4,4 В положенных. Аккумулятор был полностью разряжен.
При подключении зарядного устройства напряжение на клеммах аккумулятора не изменялось, стало очевидным, что зарядное устройство не работает. Фонариком пользовались, пока аккумулятор полностью не разрядился, а затем он продолжительное время не эксплуатировался, что и привело к глубокой разрядке аккумулятора.
Осталось проверить исправность светодиодов и остальных элементов. Для этого был снять отражатель, для чего были откручены шесть саморезов. На печатной плате находилось всего три светодиода, ЧИП (микросхема) в виде капельки, транзистор и диод.
От платы и аккумулятора пять проводов уходило в ручку. Для того, чтобы разобраться в их подключении понадобилось ее разобрать. Для этого нужно крестовой отверткой открутить внутри фонаря два винта, которые были расположены рядом с отверстием, в которые уходили провода.
Для отсоединения ручки фонаря от его корпуса ее необходимо сдвинуть в сторону от винтов крепления. Делать это нужно аккуратно, чтобы не оторвать от платы провода.
Как оказалось в ручке не было радиоэлектронных элементов. Два белых провода были припаяны к выводам кнопки включения/выключения фонаря, а остальные к разъему для подключения зарядного устройства. К 1 выводу разъема (нумерация условная) был припаян провод красного цвета, который вторым концом был припаян к плюсовому входу печатной платы. Ко второму контакту был припаян сине-белый проводник, который вторым концом был припаян к минусовой площадке печатной платы. К 3 выводу был припаян зеленый провод, второй конец которого был припаян к минусовому выводу аккумулятора.
Электрическая принципиальная схема
Разобравшись с проводами, спрятанными в ручке можно начертить электрическую принципиальную схему фонаря Фотон.
С отрицательного вывода аккумулятора GB1 напряжение подается на вывод 3 разъема Х1 и далее с его вывода 2 через сине-белый проводник поступает на печатную плату.
Разъем Х1 устроен таким образом, что когда штекер зарядного устройства в него не вставлен, то выводы 2 и 3 соединяются между собой. Когда штекер вставляется, то выводы 2 и 3 разъединяются. Таким образом, обеспечивается автоматическое отключение электронной части схемы от зарядного устройства, исключающей возможность случайного включения фонаря во время зарядки аккумулятора.
С положительного вывода аккумулятора GB1 напряжение подается на D1 (микросхема-чип) и эмиттер биполярного транзистора типа S8550. ЧИП выполняет только функцию триггера, позволяющего кнопкой без фиксации включать или выключать свечение светодиодов EL (⌀8 мм, цвет свечения – белый, мощность 0,5 Вт, ток потребления 100 мА, падение напряжения 3 В.). При первом нажатии на кнопку S1 с микросхемы D1 на базу транзистора Q1 подается положительное напряжение, он открывается и на светодиоды EL1-EL3 поступает питающее напряжение, фонарь включается. При повторном нажатии на кнопку S1, транзистор закрывается и фонарь выключается.
С технической точки зрения такое схемное решение безграмотно, так как повышает стоимость фонаря, снижает его надежность, и в дополнение за счет падения напряжения на переходе транзистора Q1 теряется до 20% емкости аккумулятора. Такое схемное решение оправдано при наличии возможности регулировки яркости светового луча. В данной модели вместо кнопки достаточно было поставить механический выключатель.
Вызвало удивление, что в схеме светодиоды EL1-EL3 подключены параллельно к аккумулятору как лампочки накаливания, без токоограничивающих элементов. В результате при включении через светодиоды проходит ток, величина которого ограничена только внутренним сопротивлением аккумулятора и при его полном заряде ток может превысить допустимый для светодиодов, что приведет выходу их из строя.
Проверка работоспособности электрической схемы
Для проверки исправности микросхемы, транзистора и светодиодов от внешнего источника питания с функцией ограничения тока было подано с соблюдением полярности напряжение постоянного тока 4,4 В непосредственно на выводы питания печатной платы. Величина ограничения тока была выставлена 0,5 А.
После нажатия кнопки включения светодиоды засветили. После повторного нажатия – погасли. Светодиоды и микросхема с транзистором оказались исправными. Осталось разобраться с аккумулятором и зарядным устройством.
Восстановление кислотного аккумулятора
Так как кислотный аккумулятор емкостью 1,7 А был полностью разряжен, а штатное зарядное устройство было неисправно то решил его зарядить от стационарного блока питания. При подключении аккумулятора для зарядки к блоку питания с установленным напряжением 9 В, ток заряда составил менее 1 мА. Напряжение было увеличено, до 30 В — ток возрос до 5 мА, и через час под таким напряжением составил уже 44 мА. Далее напряжение было снижено до 12 В, ток упал до 7 мА. После 12 часов заряда аккумулятора при напряжении 12 В ток поднялся до 100 мА, таким током и заряжался аккумулятор в течении 15 часов.
Температура корпуса аккумулятора была в пределах нормы, что свидетельствовало о том, что ток зарядки идет не на выделение тепла, а на накопление энергии. После заряда аккумулятора и доработки схемы, о которой речь пойдет ниже, были проведены испытания. Фонарь с восстановленным аккумулятором просветил беспрерывно 16 часов, после чего начала падать яркость луча и поэтому он был выключен.
Описанным выше способом мне приходилось неоднократно восстанавливать работоспособность глубоко разряженных малогабаритных кислотных аккумуляторов. Как показала практика, восстановлению подлежат только исправные аккумуляторы, о которых на некоторое время забыли. Кислотные аккумуляторы, которые выработали свой ресурс, восстановлению не подлежат.
Ремонт зарядного устройства
Измерение величины напряжения мультиметром на контактах выходного разъема зарядного устройства показало его отсутствие.
Судя по стикеру, наклеенному на корпус адаптера, он представлял собой блок питания, выдающий нестабилизированное постоянное напряжение величиной 12 В с максимальным током нагрузки 0,5 А. В электрической схеме не было элементов, ограничивающих величину тока зарядки, поэтому возник вопрос, а почему в качестве зарядного устройства использовался обыкновенный блок питания?
Когда адаптер был вскрыт, то появился характерный запах горелой электропроводки, что свидетельствовало о том, что обмотка трансформатора сгорела.
Прозвонка первичной обмотки трансформатора показала, что она в обрыве. После разрезания первого слоя ленты, изолирующего первичную обмотку трансформатора, был обнаружен термопредохранитель, рассчитанный на температуру срабатывания 130°С. Проверка показала, что как первичная обмотка, так и термопредохранитель неисправны.
Ремонт адаптера был экономически нецелесообразен, так как необходимо перемотать первичную обмотку трансформатора и установить новый термопредохранитель. Заменил его аналогичным, который был под рукой, на напряжение постоянного тока 9 В. Гибкий шнур с разъемом пришлось перепаять от сгоревшего адаптера.
На фотографии представлен чертеж электрической схемы сгоревшего блока питания (адаптера) светодиодного фонаря «Фотон». Адаптер для замены был собран по такой же схеме, только с выходным напряжением 9 В. Такого напряжения вполне достаточно для обеспечения требуемого тока заряда аккумулятора с напряжением 4,4 В.
Для интереса подключил фонарь к новому блоку питания и измерял ток зарядки. Величина его составила 620 мА, и это при напряжении 9 В. При напряжении 12 В ток был порядка 900 мА, значительно превышающий нагрузочную способность адаптера и рекомендуемый ток заряда аккумулятор. По этой причине от перегрева и сгорела первичная обмотка трансформатора.
Доработка электрической принципиальной схемы
светодиодного аккумуляторного фонаря «Фотон»
Для устранения схемотехнических нарушений с целью обеспечения надежной и долговременной работы в схему фонаря были внесены изменения и выполнена доработка печатной платы.
На фотографии представлена электрическая принципиальная схема переделанного светодиодного фонаря «Фотон». Синим цветом, показаны дополнительно установленные радиоэлементы. Резистор R2 ограничивает ток заряда аккумулятора до 120 мА. Для увеличения тока зарядки нужно уменьшить номинал резистора. Резисторы R3-R5 ограничивают и выравнивают ток, протекающий через светодиоды EL1-EL3 при свечении фонаря. Светодиод EL4 с последовательно включенным токоограничивающим резистором R1 установлен для индикации процесса зарядки аккумулятора, так как разработчиками конструкции фонаря об этом не позаботились.
Для установки на плате токоограничивающих резисторов печатные дорожки были перерезаны, как показано на фотографии. Ограничивающий ток заряда резистор R2 был припаян одним концом к контактной площадке, к которой до этого был припаян положительный провод, идущий от зарядного устройства, а отпаянный провод припаян ко второму выводу резистора. К этой же контактной площадке был припаян дополнительный провод (на снимке желтого цвета), предназначенный для подключения индикатора зарядки аккумулятора.
Резистор R1 и светодиод индикаторный EL4 были размещены в ручке фонаря, рядом с разъемом для подключения зарядного устройства X1. Вывод анода светодиода был припаян к выводу 1 разъема X1, а ко второму выводу, катоду светодиода токоограничивающий резистор R1. Ко второму выводу резистора был припаян провод (на фото желтого цвета), соединяющий его с выводом резистора R2, припаянного к печатной плате. Резистор R2, для простоты монтажа, можно было разместить и в ручке фонарика, но так как он при зарядке нагревается, то решил его разместить в более свободном пространстве.
При доработке схемы применены резисторы типа МЛТ мощностью 0,25 Вт, кроме R2, который рассчитан на 0,5 Вт. Светодиод EL4 подойдет любого типа и цвета свечения.
На этой фотографии показана работа индикатора зарядки во время зарядки аккумулятора. Установка индикатора позволила не только следить за процессом зарядки аккумулятора, но и контролировать наличие напряжения в сети, исправность блока питания и надежность его подключения.
Чем заменить сгоревший ЧИП
Если вдруг ЧИП – специализированная микросхема без маркировки в светодиодном фонаре «Фотон», или аналогичном, собранном по подобной схеме, выйдет из строя, то для восстановления работоспособности фонаря ее можно успешно заменить механическим выключателем.
Для этого нужно удалить из платы микросхему D1, а вместо транзисторного ключа Q1 подключить обыкновенный механический выключатель, как показано на выше приведенной электрической схеме. Выключатель на корпусе фонаря можно установить вместо кнопки S1 или в любом другом подходящем месте.
Ремонт с модернизацией
светодиодного фонаря Keyang KY-9914
Посетитель сайта Марат Пурлиев из Ашхабада поделился в письме результатами ремонта светодиодного фонаря Keyang KY-9914. В дополнение представил фотографию, схемы, подробное описание и дал согласие на публикацию информации, за что я выражаю ему свою признательность.
Спасибо Вам за статью «Ремонт и модернизация светодиодных фонарей Lentel, Фотон, Smartbuy Colorado и RED своими руками».
Воспользовавшись примерами ремонта, я отремонтировал и модернизировал фонарь Keyang KY-9914, в котором сгорели четыре светодиода из семи, и выработал ресурс аккумулятор. Светодиоды сгорели из-за переключения переключателя во время зарядки аккумулятора.
В доработанной электрической схеме изменения выделены красным цветом. Неисправный кислотный аккумулятор я заменил на три последовательно включенных бывших в употреблении пальчиковых АА аккумуляторов Sanyo Ni-NH 2700, которые оказались под рукой.
После переделки фонаря ток потребления светодиодов в двух положениях переключателя составил 14 и 28 мА, а ток заряда аккумуляторов 50 мА.
Ремонт и переделка светодиодного фонаря
14Led Smartbuy Colorado
Перестал включаться светодиодный фонарь Smartbuy Colorado, хотя три батарейки типоразмера ААА были установлены новые.
Влагонепроницаемый корпус был выполнен из анодированного алюминиевого сплава, имел длину 12 см. Фонарик выглядел стильно и был удобен в эксплуатации.
Как проверить в светодиодном фонаре батарейки на пригодность
Ремонт любого электроприбора начинается с проверки источника питания, поэтому, несмотря на то, что в фонарь были установлены новые батарейки, ремонт следует начинать с их проверки. В фонаре Smartbuy батарейки устанавливаются в специальный контейнер, в котором с помощью перемычек соединены последовательно. Для того чтобы получить доступ к батарейкам фонарика нужно разобрать, вращая против часовой стрелки заднюю крышку.
Батарейки в контейнер необходимо устанавливать, соблюдая обозначенную на нем полярность. На контейнере тоже обозначена полярность, поэтому его нужно заводить в корпус фонаря стороной, на которой нанесен знак «+».
В первую очередь необходимо визуально проверить все контакты контейнера. Если на них имеются следы окислов, то контакты необходимо зачистить до блеска с помощью наждачной бумаги или соскоблить окисел лезвием ножа. Для исключения повторного окисления контактов их можно смазать тонким слоем любого машинного масла.
Далее нужно проверить пригодность батареек. Для этого, прикоснувшись щупами мультиметра, включенного в режим измерения постоянного напряжения, необходимо измерять напряжение на контактах контейнера. Три батарейки включены последовательно и каждая из них должна выдавать напряжение 1,5 В, следовательно напряжение на выводах контейнера должно составлять 4,5 В.
Если напряжение меньше указанного, то необходимо проверить правильность полярности батареек в контейнере и измерять напряжение каждой из них индивидуально. Возможно, села только одна из них.
Если с батарейками все в порядке, то нужно вставить, соблюдая полярность контейнер в корпус фонаря, закрутить крышку и проверить его на работоспособность. При этом надо обратить внимание на пружину в крышке, через которую передается питающее напряжение на корпус фонаря и с него прямо на светодиоды. На ее торце не должно быть следов коррозии.
Как проверить исправность выключателя
Если батарейки хорошие и контакты чистые, но светодиоды не светят, то нужно проверить выключатель.
В фонаре Smartbuy Colorado установлен кнопочный герметичный выключатель с двумя фиксированными положениями, замыкающий провод, идущий от положительного вывода контейнера батареек. При первом нажатии на кнопку выключателя его контакты замыкаются, а при повторном – размыкаются.
Так как в фонаре установлены батарейки, то проверить выключатель можно тоже с помощью мультиметра, включенного в режим вольтметра. Для этого нужно вращением против часовой стрелки, если смотреть на светодиоды, открутить его переднюю часть и отложить в сторону. Далее одним щупом мультиметра прикоснуться к корпусу фонарика, а вторым к контакту, который находится в глубине по центру пластиковой детали, показанной на фотографии.
Вольтметр должен показать напряжение 4,5 В. Если напряжение отсутствует нужно нажать кнопку выключателя. Если он исправен, то напряжение появится. В противном случае нужно ремонтировать выключатель.
Проверка исправности светодиодов
Если на предыдущих шагах поиска неисправность обнаружить не удалось, то на следующем этапе нужно проверить надежность контактов, подающих питающее напряжение на плату со светодиодами, надежность их пайки и исправность.
Печатная плата с запаянными в нее светодиодами фиксируется в головной части фонаря с помощью стального подпружиненного кольца, через которое по корпусу фонаря одновременно подается на светодиоды питающее напряжение от минусового вывода контейнера батареек. На фотографии кольцо показано со стороны, которой оно прижимает печатную плату.
Стопорное кольцо зафиксировано довольно крепко, и извлечь его удалось только с помощью приспособления, показанного на фотографии. Такой крючок можно выгнуть из стальной полоски своими руками.
После извлечения стопорного кольца печатная плата со светодиодами, которая изображена на фото, легко извлеклась из головной части фонаря. Сразу бросилось в глаза отсутствие токоограничивающих резисторов, все 14 светодиодов были включены параллельно и через выключатель непосредственно к батарейкам. Подключение светодиодов непосредственно к батарейке недопустима, так как величина протекающего через светодиоды тока ограничивается только внутренним сопротивлением батареек и может вывести светодиоды из строя. В лучшем случае сильно сократит срок их службы.
Так как в фонаре все светодиоды были включены параллельно, то проверить их с помощью мультиметра, включенного в режим измерения сопротивления не представлялось возможным. Поэтому на печатную плату было подано питающее постоянное напряжение от внешнего источника величиной 4,5 В с ограничением тока до 200 мА. Все светодиоды засветились. Стало очевидным, что неисправность фонаря заключалась в плохом контакте печатной платы с фиксирующим кольцом.
Ток потребления светодиодного фонаря
Для интереса измерял ток потребления светодиодами от батареек при включении их без токоограничительного резистора.
Ток составил более 627 мА. В фонарике установлены светодиоды типа HL-508H, рабочий ток которых не должен превышать 20 мА. 14 светодиодов включены параллельно, следовательно, суммарный ток потребления не должен превышать 280 мА. Таким образом, ток, протекающий через светодиоды, превысил номинальный более чем в два раза.
Такой форсированный режим работы светодиодов недопустим, так как ведет к перегреву кристалла, и как следствие, преждевременный выход светодиодов из строя. Дополнительным недостатком является быстрый разряд батареек. Их хватит, если раньше не перегорят светодиоды, не более чем на час работы.
Конструкция фонарика не позволяла впаять токоограничительные резисторы последовательно с каждым светодиодом, поэтому пришлось установить один общий на все светодиоды. Номинал резистора пришлось определять экспериментально. Для этого фонарик был запитан от штатных батареек и в разрыв положительного провода был включен амперметр последовательно с резистором номиналом 5,1 Ом. Ток составил около 200 мА. При установке резистора 8,2 Ом ток потребления составил 160 мА, что, как показала проверка, вполне достаточно для хорошего освещения на расстоянии не менее 5 метров. На ощупь резистор не нагревался, поэтому подойдет любой мощности.
Переделка конструкции
После проведенного исследования стало очевидным, что для надежной и долговечной работы фонаря необходимо дополнительно установить ограничивающий ток резистор и продублировать дополнительным проводником соединение печатной платы с светодиодами и фиксирующим кольцом.
Если раньше надо было, чтобы отрицательная шина печатной платы касалась корпуса фонаря, то в связи с установкой резистора, понадобилось исключить касание. Для этого с печатной платы по всей ее окружности, со стороны токоведущих дорожек с помощью надфиля был сточен угол.
Для исключения касания прижимного кольца к токоведущим дорожкам при фиксации печатной платы на нее были приклеены клеем «Момент» четыре резиновых изолятора толщиной около двух миллиметров, как показано на фотографии. Изоляторы можно изготовить из любого диэлектрического материала, например пластмассы или плотного картона.
Резистор был заранее припаян к прижимному кольцу, а к крайней дорожке печатной платы припаян отрезок провода. На проводник была надета изолирующая трубка, и затем провод припаян ко второму выводу резистора.
Далее печатная плата была зафиксирована прижимным кольцом, после чего головная часть фонаря была прикручена к его корпусу.
После простой модернизации фонаря своими руками он стал стабильно включаться и световой луч хорошо освещать предметы на расстоянии более восьми метров. Дополнительно срок службы батареек увеличился более чем в три раза, и многократно повысилась надежность работы светодиодов.
Анализ причин отказов отремонтированных китайских светодиодных фонарей показал, что все они вышли из строя из-за безграмотно разработанных электрических схем. Осталось только выяснить, сделано это намеренно, чтобы сэкономить на комплектующих и сократить срок эксплуатации фонарей (чтобы больше покупали новые), или в результате безграмотности разработчиков. Я склоняюсь к первому предположению.
Ремонт светодиодного фонаря RED 110
Попал в ремонт фонарик со встроенным кислотным аккумулятором китайского производителя торговой марки RED. В фонаре имелось два излучателя: – с лучом в виде узкого пучка и излучающий рассеянный свет.
На фотографии представлен внешний вид фонаря RED 110. Фонарь мне сразу понравился. Удобная форма корпуса, два режима работы, петля для подвески на шею, выдвигающаяся вилка подключения к сети для зарядки. В фонаре секция светодиодов рассеянного света светила, а узкого пучка – нет.
Для ремонта сначала было откручено кольцо черного цвета, фиксирующее рефлектор, а затем выкручен один саморез в зоне петли. Корпус легко разделился на две половинки. Все детали были закреплены на саморезах и легко снимались.
Схема зарядного устройства была выполнена по классической схеме. Из сети через токоограничивающий конденсатор емкостью 1 мкф напряжение подавалось на выпрямительный мост из четырех диодов и далее на выводы аккумулятора. Напряжение с аккумулятора на светодиод узкого луча подавалось через токоограничивающий резистор 460 Ом.
Все детали были смонтированы на односторонней печатной плате. Провода были припаяны непосредственно к контактным площадкам. Внешний вид печатной платы представлен на фотографии.
10 светодиодов бокового света были соединены параллельно. Напряжение питания на них подавалось через общий токоограничивающий резистор 3R3 (3,3 Ом), хотя по правилам для каждого светодиода нужно устанавливать отдельный резистор.
При внешнем осмотре светодиода узкого пучка дефектов обнаружено не было. При подаче питания через включатель фонарика с аккумулятора напряжение на выводах светодиода присутствовало, и он нагревался. Стало очевидным, что кристалл пробит, и это подтвердила прозвонка мультиметром. Сопротивление составило при любом подключении щупов к выводам светодиода 46 Ом. Светодиод был неисправен и требовалась его замена.
Для удобства работы от платы светодиода был отпаяны провода. После освобождения выводов светодиода от припоя оказалось, что светодиод намертво держится всей плоскостью обратной стороны на печатной плате. Для его отделения пришлось закрепить плату в настольных висках. Далее острый конец ножа установить в место соединения светодиода с платой и легонько ударить по ручке ножа молотком. Светодиод отскочил.
Маркировка на корпусе светодиода, как обычно, отсутствовала. Поэтому необходимо было определить его параметры и подобрать подходящий для замены. По габаритным размерам светодиода, напряжению аккумулятора и величине токоограничивающего резистора было определено, что для замены подойдет светодиод мощностью 1 Вт (ток 350 мА, падение напряжения 3 В). Из Справочной таблицы параметров популярных SMD светодиодов для ремонта был выбран светодиод LED6000Am1W-A120 белого свечения.
Печатная плата, на которой установлен светодиод выполнена из алюминия и одновременно служит для отвода тепла от светодиода. Поэтому при установке его необходимо обеспечить хороший тепловой контакт за счет плотного прилегания задней плоскости светодиода к печатной плате. Для этого перед запайкой на места контакта поверхностей была нанесена термопаста, которая применяется при установке радиатора на процессор компьютера.
Для того, чтобы обеспечить плотное прилегание плоскости светодиода к плате необходимо сначала положить его на плоскость и немного отогнуть вверх выводы, чтобы они отступали от плоскости на 0,5 мм. Далее выводы залудить припоем, нанести термопасту и установить светодиод на плату. Далее прижать его к плате (удобно это сделать отверткой с вынутой битой) и прогреть выводы паяльником. Далее убрать отвертку, ножом прижать в месте изгиба вывода его к плате и прогреть паяльником. После затвердевания припоя нож убрать. За счет пружинных свойств выводов светодиод будет плотно прижат к плате.
При установке светодиода необходимо соблюдать полярность. Правда в этом случае, если будет допущена ошибка, то можно будет поменять местами подающие напряжение провода. Светодиод припаян и можно проверить его работу и измерять потребляемый ток и падение напряжения.
Ток протекающий через светодиод составил 250 мА, падение напряжения 3,2 В. Отсюда потребляемая мощность (нужно умножить ток на напряжение) составила 0,8 Вт. Можно было увеличить рабочий ток светодиода уменьшив сопротивление 460 Ом, но я этого делать не стал, так как яркость свечения была достаточной. Зато светодиод будет работать в более легком режиме, меньше нагреваться и увеличится время работы фонарика от одной зарядки.
Проверка нагрева светодиода проработавшего в течении часа показала эффективный отвод тепла. Он нагрелся до температуры не более 45°С. Ходовые испытания показали достаточную дальность освещения в темноте, более 30 метров.
Замена кислотного аккумулятора в светодиодном фонаре
Вышедший из строя в светодиодном фонаре кислотный аккумулятор можно заменить как аналогичным кислотным, так и литий-ионным (Li-ion) или никель-металгидридными (Ni-MH) аккумуляторами типоразмера АА или ААА.
В ремонтируемых китайских фонарях были установлены свинцово-кислотные AGM аккумуляторы разных габаритных размеров без маркировки напряжением 3,6 В. По расчету емкость этих аккумуляторов составляет от 1,2 до 2 А×часов.
В продаже можно найти аналогичный кислотный аккумулятор российского производителя для ИБП 4V 1Ah Delta DT 401, который имеет напряжение на выходе 4 В при емкости 1 А×часа, стоимостью пару долларов. Для замены достаточно просто, соблюдая полярность, перепаять два провода.
Через несколько лет эксплуатации светодиодный фонарь Lentel GL01, ремонт которого описан в начале статьи, опять принесли мне в ремонт. Диагностика показала, что выработал свой ресурс кислотный аккумулятор.
Был куплен для замены аккумулятор Delta DT 401, но оказалось, что его геометрические размеры были больше, чем неисправного. Штатный аккумулятор фонарика имел размеры 21×30×54 мм и был выше на 10 мм. Пришлось дорабатывать корпус фонарика. Поэтому прежде, чем покупать новый аккумулятор убедитесь, что он вместится в корпус фонаря.
Был удален упор в корпусе и ножовкой по металлу отпилена часть печатной платы, с которой предварительно был выпаян резистор и один светодиод.
После доработки новый аккумулятор хорошо установился в корпус фонаря и теперь, надеюсь, прослужит не один год.
Замена кислотного аккумулятора
аккумуляторами типоразмера АА или ААА
Если нет возможности приобрести аккумулятор 4V 1Ah Delta DT 401, то его можно успешно заменить тремя любыми пальчиковыми никель-металгидридными (Ni-MH) аккумуляторами типоразмера АА или ААА емкостью от 1 А×часа, которые имеют напряжение 1,2 В. Для этого достаточно соединить последовательно, соблюдая полярность, три аккумулятора проводами методом пайки. Однако экономически такая замена нецелесообразна, так как стоимость трех качественных пальчиковых аккумуляторов типоразмера АА может превышать стоимость покупки нового светодиодного фонаря.
Но где гарантия, что в электрической схеме нового светодиодного фонаря не имеются ошибки, и не придется его тоже дорабатывать. Поэтому считаю, что замена свинцового аккумулятора в доработанном фонаре целесообразна, так как обеспечит надежную работу фонаря еще несколько лет. Да и всегда будет приятно пользоваться фонариком, отремонтированным и модернизированным своими руками.
Замена кислотного аккумулятора Li-ion
Замене батареек или аккумуляторов в светодиодном фонаре посвящена отдельная статья «Как заменить свинцовый аккумулятор литий-ионным».
Евгений 25.05.2016
Здравствуйте.
Занимаюсь подводной охотой, сейчас вышли новые светодиоды XHP70, у меня есть два фонаря, в которых установлено по одному светодиоду Т6. Возможна ли замена их в моих фонарях на новые XHP70 и какая стоимость работы и запчастей, заранее благодарен.
Здравствуйте, Евгений.
Оптимальный ток потребления светодиода Т6 составляет 0,7 А, а светодиодной сборки XHP70 – 4,0 А. Следовательно, потребуется замена не только светодиода, но и драйвера, то есть практически замена всей электроники фонаря.
Возможность отвести тепло от светодиода ХНР70 штатным радиатором, установленным в фонаре тоже под вопросом. В дополнение время работы фонаря со штатным аккумулятором уменьшится в 6 раз, то есть вместо 2 часов фонарь будет работать 20 минут.
Таким образом, после модернизации нет гарантий надежной работы фонаря в связи с возможным перегревом светодиода. В дополнение стоимость такой переделки может превысить стоимость нового фонаря с светодиодом XHP70.
Здравствуйте, Александр Николаевич.
Есть в собственности фонарь «Облик 6002». Использовал редко. Более 2-х лет не включал. Сейчас не светит. Включил зарядку, но пока реакции нет. Как быть?
Прочел вашу статью, но там много «мудрёного», а я не специалист по электротехнике, а врач. Жду ваш совет. Спасибо!
Здравствуйте, Степан Тимофеевич.
Аккумуляторы имеют свойство со временем терять емкость, особенно если находятся в разряженном состоянии. Это как раз Ваш случай. Нужно заменить аккумулятор, а если нет такой возможности, то купить новый фонарь.
Попал на вашу страничку в поисках Схемы на фонарик YJ-2828 … Схемы не оказалось. Пришлось самому рисовать.
Если хотите — можете выставить на вашей страничке.
Схема вычерчена с фонаря мной лично (гарантирую) проблем с авторством не будет.
Может кому-то пригодится. Да вы много и добротно потрудились …
Удачи !!!
Александр
Здравствуйте, Владимир!
Спасибо за высокую оценку сайта и представленную сему фонаря YJ-2828.
Схемы и конструкции фонариков и модернизация китайских излучателей
В жизни каждого человека бывают моменты, когда необходимо наличие освещения, а электричества нет. Это может быть и банальное отключение электроэнергии, и необходимость ремонта проводки в доме, а возможно, и лесной поход или что-либо подобное.
И, конечно же, все знают, что в таком случае выручит только электрический фонарик – компактное и в то же время функциональное устройство. Сейчас на рынке электротехники множество различных видов данного товара. Это и обычные фонари с лампами накаливания, и светодиодные, с аккумуляторами и батарейками. Да и фирм, производящих эти приборы, великое множество – «Дик», «Люкс», «Космос» и т. п.
А вот каков принцип его работы, задумываются не многие. А между тем, зная устройство и схему электрического фонарика, можно при необходимости его починить или вообще собрать собственными руками. Вот в этом вопросе и попробуем разобраться.
Простейшие фонари
Так как фонарики бывают разные, то имеет смысл начать с самого простого – с батарейкой и лампой накаливания, а также рассмотреть его возможные неисправности. Схема подобного прибора элементарна.
Схема простейшего фонарикаПо сути, в нем нет ничего, кроме батарейки, кнопки включения и лампочки. А потому и проблем с ним особых не бывает. Вот несколько возможных мелких неприятностей, которые могут повлечь за собой отказ такого фонаря:
- Окисление любого из контактов. Это могут быть контакты выключателя, лампочки или батареи. Нужно просто почистить эти элементы схемы, и приборчик снова заработает.
- Сгорание лампы накаливания – тут все просто, замена светового элемента решит эту проблему.
- Полный разряд батареек – замена элементов питания на новые (либо зарядка, если они аккумуляторные).
- Отсутствие контакта или перелом провода. Если фонарик уже не новый, в таком случае есть смысл поменять все провода. Сделать это совершенно не сложно.
Фонарик на светодиодах
Этот вид фонарей отличается более мощным световым потоком и при этом потребляет очень мало энергии, а значит, и элементы питания в нем прослужат дольше. Все дело в конструкции световых элементов – в светодиодах отсутствует нить накаливания, они не расходуют энергию на нагрев, ввиду этого коэффициент полезного действия таких приборов выше на 80–85%. Также велика роль дополнительного оборудования в виде преобразователя с участием транзистора, резистора и высокочастотного трансформатора.
Если аккумулятор фонарика встроенный, то с ним в комплекте обязательно идет и зарядное устройство.
Схема подобного фонаря состоит из одного или нескольких светодиодов, преобразователя напряжения, выключателя и элемента питания. В более ранних моделях фонариков количество потребления энергии светодиодами должно было соответствовать вырабатываемому источником.
Сейчас эта проблема решена при помощи преобразователя напряжения (его также называют умножителем). Собственно, он-то и является главной деталью, которую содержит электрическая схема фонарика.
Схема преобразователя напряженияПри желании сделать такой прибор своими руками особых сложностей не возникнет. Транзистор, резистор и диоды – не проблема. Самым непростым моментом будет намотка высокочастотного трансформатора на ферритовом кольце, который называется блокинг-генератор.
Но и с этим можно справиться, взяв подобное колечко из неисправного электронного пускорегулирующего аппарата энергосберегающей лампы. Хотя, конечно, если не хочется возиться или нет времени, то в продаже можно найти высокоэффективные преобразователи, такие как 8115. С их помощью, при применении транзистора и резистора, и стало возможным изготовление светодиодного фонарика на одной батарейке.
Сама же схема светодиодного фонаря подобна простейшему прибору, и на ней останавливаться не стоит, т. к. собрать ее способен даже ребенок.
Кстати, при применении в схеме преобразователя напряжения на старом, простейшем фонаре, работающем от квадратной батареи в 4.5 вольт, которую сейчас уже не купить, можно будет спокойно ставить элемент питания в 1.5 вольт, т. е. обычную «пальчиковую» или «мизинчиковую» батарею. Никакой потери в световом потоке наблюдаться не будет. Основная задача при этом – иметь хотя бы малейшее представление о радиотехнике, буквально на уровне знания, что такое транзистор, а также уметь держать в руках паяльник.
Доработка китайских фонариков
Иногда бывает так, что купленный (с виду вполне качественный) фонарик с аккумулятором полностью отказывает. И вовсе не обязательно покупатель виноват в неправильной эксплуатации, хотя и это тоже встречается. Чаще – это ошибка при сборке китайского фонарика в погоне за количеством в ущерб качеству.
Конечно, в таком случае придется его переделать, как-то модернизировать, ведь потрачены деньги. Сейчас необходимо понять, как это сделать и возможно ли побороться с китайским производителем и выполнить ремонт такого прибора самостоятельно.
Рассматривая наиболее часто встречающийся вариант, при котором при включении прибора в сеть индикатор зарядки светится, но фонарь не заряжается и не работает, можно заметить вот что.
Обычная ошибка производителя – индикатор заряда (светодиод) включается в цепь параллельно с аккумулятором, чего допускать никак нельзя. При этом покупатель включает фонарь, и видя, что тот не горит, снова подает питание на заряд. В результате – перегорание всех светодиодов разом.
Дело в том, что не все производители указывают, что заряжать подобные устройства с включенными светодиодами нельзя, т. к. отремонтировать их будет невозможно, останется только заменить.
Итак, задача по модернизации – подключить индикатор заряда последовательно с аккумулятором.
Модернизация китайского бракаКак видно из схемы, эта проблема вполне решаема.
А вот если китайцы в свое изделие поставили резистор 0118, то светодиоды придется менять постоянно, т. к. ток, поступающий на них, будет очень высоким, и какие бы световые элементы ни были установлены – они не выдерживают нагрузки.
Налобный светодиодный фонарь
В последние годы подобный световой прибор получил достаточно широкое распространение. Действительно, ведь очень удобно, когда руки свободны, а луч света бьет туда, куда смотрит человек, в этом как раз главное преимущество налобного фонарика. Раньше таким могли похвастаться только шахтеры, да и то для его ношения нужна была каска, на которую фонарь, собственно, и крепился.
Сейчас же крепление подобного прибора удобно, носить его можно при любых обстоятельствах, да и на поясе не висит довольно объемный и тяжелый аккумулятор, который, к тому же, еще и обязательно нужно раз в сутки заряжать. Современный намного меньше и легче, притом имеет очень маленькое энергопотребление.
Так что же представляет собой подобный фонарь? А принцип его работы нисколько не отличается от светодиодного. Варианты исполнения такие же – аккумуляторный или со съемными элементами питания. Количество светодиодов варьируется от 3 до 24 в зависимости от характеристик батареи и преобразователя.
К тому же обычно такие фонари имеют 4 режима свечения, а не один. Это слабый, средний, сильный и сигнальный – когда светодиоды моргают через короткие промежутки времени.
Схема налобного светодиодного фонаряРежимами налобного светодиодного фонарика управляет микроконтроллер. Причем при его наличии возможен даже режим стробоскопа. К тому же светодиодам это совсем не вредит, в отличие от ламп накаливания, т. к. их срок службы не зависит от количества циклов включения-выключения по причине отсутствия нити накаливания.
Так какой же фонарь выбрать?
Конечно, фонарики могут быть различными и по потребляемому напряжению (от 1.5 до 12 В), и с различными выключателями (сенсорный или механический), с наличием звукового оповещения о разряде батареи. Это может быть оригинал или его аналоги. Да и не всегда можно определить, что же за прибор перед глазами. Ведь пока он не выйдет из строя и не начнется его ремонт, нельзя увидеть, какая в нем стоит микросхема или транзистор. Наверное, лучше выбирать тот, который нравится, а возможные проблемы решать уже по мере поступления.
Страница не найдена — ЛампаГид
Светодиоды
Каждая лампочка имеет свое название и описание излучаемого освещения: «теплый», «холодный» свет или «дневной».
Дом и участок
Освещение двора частного дома является важнейшим элементом не только красивого дизайна, но и безопасности.
Прочее
Название «соляная лампа» формирует у людей мнение, что изделие предназначено для освещения, на самом
Светодиоды
Компания Cree, производящая светодиод XM-L T6, является одним из лидеров среди производителей светотехнических приборов.
Квартира и офис
До сих пор освещение квартиры естественным светом не удавалось полностью повторить никакими ухищрениями и
Теория
Кто изобрел лампочку? Ответ на этот вопрос не совсем точный. Электрическая лампочка была изобретена
Страница не найдена — ЛампаГид
Производственные помещения
Свет – это излучение, воспринимаемое человеческим глазом. Он необходим для жизни и очень важен
Люминесцентные лампы
Говоря на тему осветительных приборов для бытового использования, нельзя не отметить то, что на
Светодиоды
Галогенные светильники уже очень давно и прочно осели на рынке электротехники. И даже сейчас,
Флора и фауна
Чтобы создать комфортные условия для обитателей аквариума и растений, нужно правильно выбрать источники света
Квартира и офис
Лампы освещения любых типов имеют ограниченный срок службы. Даже если обещанная продолжительность работы приборов
Монтаж
Гипсокартон – один из тех материалов, которые часто используются для отделки потолков, этот материал
МОЩНЫЕ СВЕТОДИОДНЫЕ ФОНАРИКИ
Предлагаю на ваше усмотрение сразу три варианта схем мощных светодиодных фонариков, которыми пользовался длительное время, и лично меня вполне устраивает яркость свечения и длительность работы (в реале одной зарядки мне хватает на месяц использования – то есть пошел, нарубил дров или сходил куда нибудь). Светодиод использовал во всех схемах мощностью 3 Вт. C различием лишь в цвете свечения (теплый белый или холодный белый), но лично мне кажется, что холодный белый светит ярче, а теплый более приятный для чтения, то есть легко восприимчив для глаз, так что выбор за вами.Первый вариант схемы фонарика
На испытаниях эта схема показала невероятную стабильность в пределах питающего напряжения 3.7-14вольт (но знайте, при повышении напряжения падает КПД). Как настроил на выходе 3.7 вольт, так и было во всем диапазоне напряжения (выходное напряжение задаем резистором R3, при уменьшении этого сопротивления увеличивается выходное напряжение, но не советую слишком уменьшать, если экспериментируете, рассчитывайте максимальный ток на светодиоде LED1 и максимальное напряжение на втором). Если питаем эту схему от Li-ion аккумуляторов, то КПД приблизительно равен 87-95%. Спросите, а для чего тогда придумали ШИМ? Если не верите, посчитайте сами.
При 4.2вольта КПД = 87%. При 3.8вольт КПД = 95%. P =U*I Светодиод потребляет 0.7А при 3.7 вольт, а это значит 0.7*3.7=2.59 Вт, отнимаем напряжение заряженного аккумулятора и умножаем на ток потребления: (4.2 — 3.7) * 0.7 = 0.35Вт. Теперь узнаем КПД: (100/(2.59+0.37)) * 2.59 = 87.5%. И половина процента на нагрев остальных деталей и дорожек. Конденсатор C2 — плавный пуск для безопасного включения светодиода и защита от помех. Обязательно мощный светодиод устанавливать на радиатор, я использовал один радиатор от компьютерного блока питания. Вариант расположения деталей:
Приступим ко второму варианту диодного фонаря
Первый фонарик продал и почувствовал, что без него ночью немного напрягает, а деталей не было чтобы повторить предыдущую схему, поэтому пришлось импровизировать из того, что было в тот момент, а именно: КТ819, КТ315 и КТ361. Да, даже на таких деталях, возможно собрать низковольтный стабилизатор, но с чуть большими потерями. Схема напоминает предыдущую, но в этой все совсем наоборот. Конденсатор С4 тут тоже плавно подает напряжение. Разница в том, что тут выходной транзистор открыт резистором R1 и КТ315 закрывает его до определенного напряжения, а в предыдущей схеме выходной транзистор закрыт и открывается вторым. Вариант расположения деталей:
Пользовался, около полугода, пока линза не треснула повредив контакты внутри светодиода. Он еще работал, но всего три ячейки из шести. Поэтому ушел как подарок:) Теперь расскажу, почему такая хорошая стабилизация с применением дополнительного светодиода. Кому интересно читаем, может пригодиться при проектировании низковольтных стабилизаторов или пропускаем и переходим к последнему варианту.
Итак, начнем с температурной стабилизации, кто проводил опыты знает на сколько это важно зимой или летом. Так вот, в этих двух мощных фонариках действует такая система: при увеличении температуры полупроводниковый канал увеличивается разрешая проходить большему количеству электронов чем обычно, поэтому кажется что сопротивление канала уменьшается и следовательно проходимый ток увеличивается, так как на всех полупроводниках действует одинаковая система, ток через светодиод тоже увеличивается закрывая все транзисторы до определенного уровня, а то есть напряжения стабилизации (эксперименты проводились в температурном диапазоне -21…+50 градусов Цельсия). Я собирал много схем стабилизаторов в интернете и удивлялся «как можно было допускать такие ошибки!” Кто-то даже рекомендовал свою схему для питания лазера, в которой 5 градусов превышения температуры готовило лазер на выброс, так что учитывайте и такой нюанс! Теперь о самом светодиоде. Каждый, кто игрался с напряжением питания светодиодов знает, что при его увеличении резко увеличивается и ток потребления. Поэтому при незначительном изменении выходного напряжения стабилизатора транзистор (КТ361) во много раз легче реагирует, чем с простым резисторным делителем (для которого необходим серьезный коефициент усиления) что решает все проблемы низковольтных стабилизаторов и уменьшает количество деталей.
Третий вариант LED фонаря
Приступим к последней рассматриваемой схеме и использующейся мной до сегодняшнего дня. КПД больше, чем в предыдущих схемах, и яркость свечения выше, и естественно, к светодиоду купил дополнительную фокус линзу, также тут уже 4 аккумулятора, что примерно равняется ёмкости 14А*часа. Принципиальная эл. схема:
Схема довольно проста и собрана в SMD исполнении, здесь нет дополнительного светодиода и транзисторов, потребляющих лишний ток. Для стабилизации применен TL431 и этого вполне достаточно, КПД тут от 88 — 99%, если не верите — посчитайте. Фото готового самодельного устройства:Форум по самодельным LED фонарикам
Форум по обсуждению материала МОЩНЫЕ СВЕТОДИОДНЫЕ ФОНАРИКИ
СХЕМА ФОНАРИКА НА СВЕТОДИОДАХ
Всем доброго времени суток. Валялся дома фонарик с диодной матрицей на 16 светодиодов, захотел его переделать в смысле усовершенствования схемы питания, тем более было из чего. Сама по себе матрица светит достаточно ярко, но все же не то, как говориться. За основу взял светодиод 1 Вт с коллиматором на 60 градусов, в качестве драйвера светодиода взял схему уже мной приводимую в других материалах.
Схема номер 1
В качестве источника питания выбрал конечно литиевый аккумулятор SAMSUNG 18650 2600ma/h.
Для контроллера разряда аккумулятора применил специализированный контроллер, который стоит в АКБ мобильных телефонов — микросхему DW01-P с ключом на полевом транзисторе.
Задача стояла всё это хозяйство утолкать без переделки корпуса фонаря, так как свободного места оказалось очень мало, а точнее вообще не оказалось, кроме как внутри резьбовой гайки, крепящей родную диодную матрицу в корпусе. Всё это дело поместил на двух печатных платах: на первой сам контроллер разряда АКБ, на второй драйвер светоизлучающего диода. Светодиод припаян к алюминиевой подложке и прижимается к корпусу фонаря все той же резьбовой гайкой. В виду того, что гайка имеет непосредственный тепловой контакт с подложкой светодиода и корпусом фонаря, который также из алюминия, мы получили превосходный радиатор.
Платы между собой спаяны шпильками, для жесткости, на плате контроллера разряда имеется контактная пружина под минус аккумулятора.
Выключатель питания, как и всё остальное, остался не тронутым. Для зарядки аккумулятора его необходимо извлечь из корпуса фонаря. Плата драйвера светодиода на одностороннем текстолите, плата контроллера разряда двусторонняя. На второй стороне контактная пружина, соединение обоих сторон через пропаянную сквозную шпильку. Вот что в результате вышло:
Но на этом дело не закончилось, позже решил разобрать временно свой фонарик. Причина — кривая работа контроллера разряда аккумулятора. Оказался дохлым элемент DW01-P, собственно это и следовало ожидать, так как взят он был из раздутого аккума. Всёже очень хотелось организовать контроль разряда и заряда, и отключение нагрузки при переходе ниже допустимого уровня.
Очередной донор был выковырян из аккумулятора — какого-то SIEMENS, купленного по спекулятивной цене аж 5 гривен, и имел вид примерно такой же как на фото. Пришлось конечно проверить режимы на минимальных и максимальных предельных напряжениях. Он показал свою устойчивую и четкую работу защиты при КЗ. Так как мой аккумулятор не имеет своего контроллера, пришлось его прицепить поверх его корпуса, благо он очень мал и имеет малую толщину. Это дало возможность выкинуть первую плату контроллера в мусорное ведро и немного освободить места под аккумулятором, что дало скрутить части фонарика до упора — теперь все стало как влитое. Доделка платы драйвера не особенная, только в дополнении площадки под пружину для аккумулятора и всё. Если изначально приобрести аккумулятор со встроенным контроллером, то задача переделки сводится вообще к минимуму.
Схема номер 2
Очередная переделка фонарика заключалась в смене драйвера светодиода на более «продвинутый», а именно ZXSC400, причина наличие дополнительного входа для строба от супервизора, дополнительный вход по токовой стабилизации светодиода. Собственно схема совмещенная с супервизором показана далее.
При достижении напряжения питания ниже порогового значения супервизора, появляется стробирующий импульс на выводе 3 микросхемы ZXSC400, что отправляет его в спящий режим до тех пор, пока напряжение питания не выйдет выше порогового уровня. Таким образом мы можем отказаться от контроллера разряда аккумулятора и не переживать за его жизнь при разряде. Все это хозяйство вместилось на одной плате всё такого же размера и установлено под аккумулятором. Внешне это имеет такой вид:
Обратная сторона двусторонней платы имеет всего лишь пружину под минус аккумулятора:
Резисторы имеют типоразмер 0603, конденсатор электролитический танталовый размер А 47,0х16 Вольт. Новая плата прилагается:
Очередная доработка фонарика, а именно установлен светодиод мощностью 3 Ватт, при этом пришлось подобрать резистор R1 до получения необходимого тока через диод и R2 для контроля тока. Привожу зависимость тока на диоде, в зависимости от питающего напряжения:
- 4.0 Вольт — 0.9 Ампер
- 3.9 Вольт — 0.9 Ампер
- 3.8 Вольт — 0.9 Ампер
- 3.7 Вольт — 0.9 Ампер
- 3.6 Вольт — 0.25 Ампер
Правда тут есть один нюанс — при просадке батареи до 3.6 вольт, микросхема ZXSC переходит специально в пониженный режим потребления для ещё возможной работы фонарика (мало ли что, вот неожиданно выключился к примеру и всё, а так есть потенциальная возможность потянуть ещё значительное время, думаю не один час, правда яркость упадет до 1-ваттного) и так до тех пор пока не поступит стробирующий сигнал на вывод 3. Пришлось между резьбовой гайкой и подложкой светодиода положить медную проставку через КПТ для лучшего отвода тепла от подложки светодиода и передачи на корпус фонаря. Автор материала ГУБЕРНАТОР.
Форум по LED
Форум по обсуждению материала СХЕМА ФОНАРИКА НА СВЕТОДИОДАХ
Принципиальная Электрическая Схема Фонаря — tokzamer.ru
Зарядный ток в амперах обычно выбирают в десять раз меньше численного значения емкости аккумулятора в ампер-часах. Далее нужно параллельно цепочке HL1-R2 подключить резистор Rd, проходя через который ток зарядки аккумулятора будет создавать необходимое падение напряжения для обеспечения свечения светодиода HL1.
Если использовать светиков больше 6 штук — начинает сильно греться транзистор, яркость свечения падает. Виктор Донской.
Однако на практике это не совсем так, т. В данном случаи, теоретически, если не обращать внимание на габариты, то чем больше индуктивность, тем лучше по всем показателем.
Ремонт налобного фонаря
Если все сделано правильно преобразователь начинает работать .
Простейший расчет показывает, что такой фонарик на светодиодах будет значительно экономичней.
Источником питания является одна минипальчиковая батарейка с напряжением 1,5 Вольт. На корпусе фонарика информации о производителе и технических характеристиках не нашел, но судя по почерку изготовления и причине поломки, производитель тот же, китайский Lentel.
Каждый из нас выбирает тип фонарика по своему усмотрению: налобный фонарик;.
Когда светодиодный фонарик стоит на зарядке в сети В, категорический нельзя включать и отключать светодиоды кнопкой отключения, так как в момент переключения возникают скачки напряжения, что приведет к перегоранию светодиодов.
Ремонт обычного фонарика
Схема светодиодного фонарика
Величину резистора легко узнать по цветовой маркировке с помощью онлайн калькулятора. Так вот у меня есть специальная коробка для мобильных остатков шнурки, старые батареи, карточки и т. А располагать светодиоды удобнее в линейку, на расстоянии около 5 мм друг от друга, например, как это показано в конструкции на рисунке ниже. Следовательно конденсатор С будет оставаться в заряженном состоянии.
Если светодиод не светит, необходимо поменять местами крайние выводы первичной или вторичной обмотки трансформатора. Если блокинг генератор не запустился — вы перепутали концы обмоток трансформатора.
Парафин для заливания всего преобразователя.
Во время зарядки фонарик был включен, ток через светодиоды и резисторы превысил предельный, что и привело к выходу их из строя.
По заявлению производителя световой поток фонаря достигает метров, корпус выполнен из ударопрочного ABS-пластика, в комплекте имеется отдельное зарядное устройство и ремень для переноса на плече. Как получают переменный ток — преобразование механической энергии в электрическую энергию при помощи генератора.
Я измерял выходное напряжение, и оно составило В. Разумеется, возможно, применение и других светодиодов с напряжением питания 2, В.
Устройство заряда аккумуляторов для фонаря Для подзаряда аккумуляторов от бортовой сети автомобиля можно воспользоваться схемой, показанной на рисунке ниже.
Садовый фонарь на солнечной батарее. Как он …
Проекты по теме:
К сожалению аккумулятор был изношен и его хватало для работы фонаря в течение 2 часов.
Ремонт зарядного устройства Измерение величины напряжения мультиметром на контактах выходного разъема зарядного устройства показало его отсутствие. После 15 мин.
Недостатком схемы является высокое 1,25V напряжение на входе FB вывод 8. Проволока 0,1 мм — витков с отводом от середины, намотанные на тороидальное колечко. Переделка схемы индикации режима зарядки аккумулятора Фонарь отремонтирован, и можно приступать к внесению изменений в схему индикации зарядки аккумулятора.
Светодиод был подключен через ограничительный резистор 6,2 Ом, ток потребления светодиода составил мА. Спасибо за статью. Вот такая простая защита. Минус крепим к плечевой части, с помощью завинчивающей крышки просто зажав провод крышкой.
Короткие импульсы повышенного потенциала отпирают p-n переход. При повторном нажатии на кнопку S1, транзистор закрывается и фонарь выключается. Только если сделать отдельную схемку для мигания на NE Ирина Спасибо, что ответили!
По этой причине от перегрева и сгорела первичная обмотка трансформатора. При подключении зарядного устройства напряжение на клеммах аккумулятора не изменялось, стало очевидным, что зарядное устройство не работает. Однако на практике это не совсем так, т. Но, хочу заострить ваше внимание, если корпус фонарика металлический — зарядное устройство туда не монтируйте, а сделайте его выносным, то есть отдельно. Назначение кружка — двойное.
Состоит из двух ячеек по 2 вольта, соединённых последовательно. Типовыми неисправностями фонариков с аккумулятором являются: Выход из строя элементов сетевого выпрямителя диодов, электролитического конденсатора, резистора в цепи индикации ; Неисправность кнопки-выключателя легко чинится любой подходящей кнопкой с фиксацией или же рокерным выключателем ; Деградация старение аккумулятора;.
При положении движка переключателя в крайнем левом положении общий вывод подключается к левому выводу переключателя. Этот фонарик за доллара. Все три светодиода от аккумуляторов при номинальном напряжении 3,6 В потребляют ток не более 75…80 мА по мере разряда элементов ток будет снижаться, но все равно свечение будет достаточно ярким для подсветки. Введение транзисторов выровняло яркость, однако они имеют сопротивление и на них падает напряжение, что вынуждает преобразователь повышать уровень выходного до 4В, для снижения падения напряжения на транзисторах можно предложить схему на рис. Как оказалось в ручке небыло радиоэлектронных элементов.
✅ ВОССТАНОВЛЕНИЕ ГЕЛЕВЫХ АККУМУЛЯТОРОВ СВОИМИ РУКАМИ
Как разобрать светодиодный аккумуляторный фонарь Lentel GL01
При этом аккумуляторы не придется вынимать из отсека фонарика, если на его корпусе установить соединительный разъем Х2. В авторском варианте в качестве трансформаторного блока применен стандартный блок, предназначенный для питания модемов.
Алюминиевая плечевая часть тюбика от зубной пасты , крема и т.
Для простоты и наглядного примера рассмотрим простейший генератор, состоящий из двух полюсного магнита и одной обмотки. Настройка электрической схемы фонаря сводится к регулировке тока заряда аккумулятора. Он настолько слаб, что полежав неделю, уже не горит.
Брать делитель еще меньше, чтобы понизить напряжение в точке V2, нельзя т. Лампа гореть при таком напряжении, конечно, еще будет, но вряд ли можно говорить о ней как о реальном источнике света. В схеме для получения высокого КПД желательно использовать чип-компоненты.
Смотрите также: Гост на прокладку кабеля в земле
На этот раз речь пойдёт о фонарике с аккумулятором. Его можно сделать из железной проволоки 0.
Если не сложно сбросьте параметры катушки. Диод Шоттки. Трансформатор я делал на небольшом ферритовом кольце — выпаянном из нерабочей материнки. Master
Ремонт бытовой техники своими руками
Можно ли собрать схему на более простых компонентах транзисторах? Так как LP это микромощный стабилизатор, ток до mA , то пришлось поэкспериментировать. Обязательно попробую скорее всего на выходных , надеюсь на успех!
Операционный усилитель U2B — усиливает напряжение, снимаемое с датчика тока. Доработка Фонарика vlad — Затем переменное напряжение после гасящего конденсатора выпрямляется диодным мостом на диодах VD1 — VD4 1N С увеличением номинала резистора допустимое напряжение разряда увеличивается, и наоборот.
ДЕЛАЕМ ПРОСТОЕ ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ АКБ с авто выключением при полном заряде
Как сделать схему светодиодного фонарика
Белые светодиоды стали настолько распространенными в наши дни, что даже школьники сегодня знают, как использовать их для создания простых светодиодных проектов. Светодиоды обычно используются для освещения, обсуждаемая схема также предназначена для аналогичных приложений. В публикации рассказывается, как подключить светодиоды и батарею, чтобы сделать простой светодиодный фонарик своими руками.
Белые светодиоды — это круто
До появления эффективных белых светодиодов лампы накаливания были единственным вариантом, который можно было использовать для изготовления фонарей.
Хотя и не такие яркие, как белые светодиоды, фонарики с лампой накаливания служили этой цели достаточно хорошо, пока не были изобретены светодиоды, которые полностью изменили ситуацию.
Белые светодиоды настолько эффективны, что излучают в 4 раза больше света, чем обычный фонарь накаливания, но при этом потребляют на 60% меньше энергии.
Неудивительно, почему белые светодиоды рассматриваются в качестве будущего варианта для всех осветительных приборов.
Схема светодиодного фонарика, описанная здесь, очень проста, и для ее успешного выполнения требуется просто следовать приведенным инструкциям.
В предлагаемой схеме используется только один ярко-белый светодиод, три кнопочных элемента на 1,5 В и переключатель.
Белый светодиод, прямое падение напряжения
Как мы все знаем, для прямого включения белого светодиода обычно требуется напряжение 3,5 В, без использования каких-либо токоограничивающих резисторов.
Таким образом, здесь мы подключаем три разъема кнопочного элемента на 1,5 В непосредственно к клемме светодиода для его включения и получения от него желаемого освещения.
При низком токе выходное напряжение 4,5 В от ячеек не вызывает никакого повреждающего воздействия, а автоматически регулируется для очень яркого свечения светодиода.
Теперь добавьте переключатель в любом месте между указанной выше ячейкой и подключением светодиода, он станет переключаемым вручную, ваша простая схема светодиодного фонарика готова.
Обсуждаемая конструкция фонаря потребует надлежащего кожуха для надежного удержания всех частей на месте, чтобы им можно было удобно управлять вручную.
Ниже показан образец конструкции, которую можно скопировать для изготовления корпуса для указанной выше схемы. Принципиальная схема
Экономичный фонарик с переключаемым выходом
Поскольку полное освещение фонарика не всегда требуется, соответствующий диммер может быть приятным энергосберегающим средством.
Устройство создано на основе нестабильного мультивибратора, рабочий цикл которого можно регулировать с помощью потенциометра P1. Диод включен для увеличения времени нарастания.Диод может быть 1N4148.
Через T3 AMV переключает транзистор T4, который, в свою очередь, включает светодиодную лампу. T4 может работать без радиатора.
Диапазон управления таков, что лампу можно настроить так, чтобы она потребляла примерно одну треть ее общего уровня яркости; Это означает, что батареи, вероятно, будут продолжать работать в 3 раза дольше, чем обычно.
Реализация схемы, естественно, не ограничивается только фонариками; он также может использоваться для солнечного освещения, яркости радиоприемника и т. д.
Если LDR используется вместо P1, можно получить автоматический диммер, который самостоятельно регулирует освещенность лампы в зависимости от условий фонового освещения.
Схема светодиодного фонарика высокой мощности с батареей AA 1,5 В
Эта схема светодиодного фонарика высокой мощности выглядит как фонарик при использовании только от батареи 1,5 В, поэтому ее можно использовать. Так как маленький, поэтому легко носить с собой в разных местах. И к тому же очень яркий.
Техническая информация
Источник питания: один 1.Батарея 5V AA.
Максимальный используемый ток 200 мА
Использует 6 белых светодиодов.
Печатная плата малого размера.
Как это работает
Как обычно, светодиод загорается при напряжении 1,8 В или 2 В,
Нам нужен способ увеличения напряжения для повышения путем переключения режима питания в цепи повышающего преобразователя постоянного тока в постоянный. .
Рисунок 1 Принципиальная схема 6-светодиодного фонарика повышенной мощности для батарейки 1,5 В AA.
Как Рисунок 1 — Принципиальная схема этого проекта.Работа схемы определяется катушкой и С2. Что будет служить частотой производственного цикла. Цепь LC Frequency с конденсаторами и конденсатором поочередно вызывает частоту.
Когда мы подаем напряжение питания на схему, транзистор TR1 заработает. Тогда TR2 тоже будет работать. Тем временем C2 будет заряжать накопительный ток. Значит, все светодиоды погаснут. Но при полной зарядке TR1 перестанет работать, в результате C2 разрядится на все светодиоды.
Так как зарядка и разрядка очень быстрая, мы видим их одинаковую яркость.Конденсатор C1 будет фильтровать ток для сглаживания.
Как построить.
Этот проект небольшой и состоит из нескольких частей, поэтому мы можем использовать перфорированную доску. Или используйте настоящую печатную плату, как показано на рисунке 2. Затем соберите все детали на печатной плате и подключите проводку, как показано на рисунке 3.
Рисунок 2 настоящая печатная плата этого проекта.
Рисунок 3 компоновка компонентов .
Катушка индуктивности L1 имеет мощность 100 мкГн, как показано на рисунке 4, которое я вам измерил. И вы можете использовать любой похожий тип.
Рисунок 4 Катушка составляет около 100 мкГн.
Рис. 5. 6 светодиодных фонарей повышенной мощности для батарей 1,5 В AA.
Тестирование
После завершения сборки схемы Подайте напряжение 1,5 В на схему.
Затем переведите переключатель в положение ВКЛ. Все светодиоды загорятся, схема готова к работе.
Как видео ниже.
Я хочу видеть волны через светодиоды (все параллельно) через панель осциллографа.
Мы увидим, что высокий амплитуда около 3Vp-p вызывает свечение светодиодов.
Примечание: батарея AA, которую мы должны, является своего рода щелочным домом. Потому что высокая производительность
Список запчастей.
Резисторы 0,25 Вт
R1: 10 кОм
R2: 6,8 кОм
R3: 100 Ом
Электролитические конденсаторы
C1: 220 мкФ 16 В
Керамические конденсаторы
C2: 680 пФ 50 В
Катушка индуктивности
L1: 100 мкГ Пожалуйста, как собрать здесь
Транзисторы
TR1: CS9012__ 0.Транзисторы PNP 8А, 40 В.
TR2-TR4: CS9013__0.8A, 40 В, NPN транзисторы.
PCB, 1.5V AABattery и т. Д.
Другие схемы светодиодных фонарей
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
Занятия со светодиодным фонариком | WIRED
Это может быть немного ОКР, GeekDads, но технические детали, по крайней мере, немного интересны, так что терпите меня. Понимаете, у меня есть светодиодный фонарик, который я вообще очень люблю.В фонаре используются литиевые элементы (18650), которые я извлек из старого аккумуляторного блока ноутбука, поэтому он работает вечно и излучает поразительное количество света. Единственное, что мне не понравилось / не понравилось, так это то, что это был многорежимный свет, то есть при быстром нажатии переключателя свет переключается между низким, средним, высоким и (очень раздражающим). мигающий режим. Низкий, средний и высокий режимы хороши, хотя переключатель слишком чувствителен и склонен к случайному переключению режимов. Однако последний режим — режим моргания, вызывающий судороги, — был решающим фактором.
Итак, старый фонарик с лампой накаливания состоит из лампы, батареи, переключателя и некоторого провода, так что тут особо нечего настраивать или переделывать. А современный светодиодный фонарик включает в себя небольшую печатную плату, состоящую из регулятора тока и микроконтроллера.
Да, вы правильно прочитали: мы живем так далеко в будущем, что даже в наших фонариках есть компьютеры.
«ЦП» на плате драйвера отвечает за контроль переключателя и соответствующее изменение режимов.По сути, это маленький PIC, который использует ШИМ для управления уровнем выходного сигнала светодиода. И, к счастью для меня, оказалось, что эти платы драйверов довольно стандартны по размеру, поэтому вполне разумно заменить их на замену, НЕ включающую режим моргания, вызывающего ярость.
Чтобы понять, в чем дело, взгляните на следующий набор изображений. Прежде всего, это «вставной» модуль, который содержит светодиод и схему драйвера.
После небольшой аккуратной разборки обнаруживается латунное «таблеточное» кольцо и схема драйвера.Если вы также обратитесь к изображению выше, вы заметите, что схема драйвера на самом деле припаяна к латунной таблетке, которая, в свою очередь, контактирует с алюминиевым вставным модулем. Ток проходит через все это и через сам корпус фонаря, поэтому очень важны хороший контакт и проводимость.
И да, красный провод оторвался от плюсовой клеммы схемы драйвера. Виноват.
В верхней части вставки вы можете увидеть настоящий светодиод с черным и красным проводами от драйвера, припаянными на место.Эти соединения обычно блокируются пластиковым изолирующим диском, который предотвращает короткое замыкание алюминированного отражателя. Было легко нагреть паяные соединения наверху и отсоединить старые провода.
После удаления старого драйвера очень легко установить новый. Все, что требовалось, — это пропустить провода через отверстия и аккуратно припаять их на место (соблюдая полярность!).
Единственной сложной частью всего упражнения было отпаяние старого драйвера от латунной таблетки.Как только это было сделано, можно было легко вставить новый драйвер на место и припаять его к таблетке.
После замены драйвера и сборки фонарика пришло время протестировать. Успех! Больше никаких стробоскопов!
Если вы хотите узнать больше о настройке и ремонте фонарика, зайдите в вики по фонарикам и загляните на страницу DIY P60. Кроме того, Candlepowerforums — это и место в Интернете для заядлых фанатов фонарика.
И, наконец, если вас не устраивают предварительно запрограммированные режимы в вашем фонарике, есть даже прошивка с открытым исходным кодом, которая позволяет вам настраивать и записывать собственный драйвер.Как я уже сказал, мы живем в будущем …
Схема светодиодного фонаря 1,5 В
Схема светодиодного фонарика 1,5 В домой | электроника | ящик для инструментов | научный клуб | tuxtalk | фотографии | электронные открытки | интернет магазин Большинство фонарей, которые можно купить сегодня, очень яркие и мощные. У меня был маленький светодиодный фонарик, который я купил 16 лет назад. Это был один из первых светодиодных фонарей, и он не очень яркий. Я использую его ночью, когда мне нужно пойти в ванную, и я не хочу никого будить.Он излучает достаточно света, чтобы хорошо видеть, но он не ослепляет и недостаточно силен, чтобы разбудить других. Выключатель на этом фонарике недавно сломался, и его невозможно покупать такой фонарик уже нет.Я хотел иметь «не такой яркий фонарик», который работает от одной батарейки 1,5 В и должен хорошо работать. даже если батарея устарела, и я все еще могу использовать некоторые батареи, которые слишком слабы для других приложений. Для включения всех светодиодов требуется напряжение более 1,5 В. Для белого светодиода требуется около 3 В постоянного тока .
Простая схема, известная как Joule Thief (см. Https://en.wikipedia.org/wiki/Joule_thief), может использоваться для увеличения напряжения так, чтобы загорелся белый светодиод. Эта схема небольшая и делает ее идеальным самодельным светодиодным фонариком.
Схема усилителя светодиодов 1,5 В, Joule Thief, светодиодный фонарик 1,5 В
Фонарь светодиодный 1.5V в сборе
В основе этой схемы лежит небольшая катушка, которую вы наматываете сами. На ферритовый тороид понадобится около 10-30 петель.Светодиод будет ярче с катушкой, которая может накапливать больше магнитной энергии. Чтобы построить его, вы берете два параллельных эмалированных медных провода и соединяете их вместе примерно 25 раз через ферритовый тороид. Получается 2 катушки на одном феррите. Катушки подключены в противоположном направлении, как показано точками на принципиальной схеме. Это означает, что вы берете стартовый провод одной катушки и скручиваете его вместе с концом другой катушки. Теперь у вас есть своего рода высокочастотный трансформатор с 3-мя проводами: 2-мя отдельными проводами и витой парой.Витая пара — это то место, где вы подключаете плюс от аккумулятора. Соскребите эмалевую изоляцию очень мелкой наждачной бумагой.
катушки на ферритовом тороиде, внешний диаметр феррита: около 9 мм
Я использовал эмалированный медный провод AWG 30 и 2 разных цвета эмали, золотисто-коричневый и красный, чтобы можно было легко различить 2 катушки на феррите. Яркость светодиода будет зависеть от количества энергии, которое вы можете сохранить в магнитном поле (чем выше индуктивность, тем больше энергии).Как видно из принципиальной схемы, катушка, которая соединяется с базой транзистора, представляет собой всего лишь «катушку датчика». Он не создает магнитного поля. Таким образом, если вы хотите, чтобы на феррите было больше петель и более сильный провод (более высокий ток), вы можете сэкономить место, используя очень тонкий провод (например, AWG 42) для одной катушки и более толстый провод для другой катушки (той, которая подключается к коллектору транзистора).
Моя установка с двумя проводами AWG30 и 25 витками для обоих проводов приводит к току 5 мА постоянного тока через светодиод (напряжение будет таким же, как и напряжение этого светодиода при 5 мА; входное напряжение было 1.4В). Это идеально подходило для моего не очень яркого фонарика. Я знаю, что некоторые читатели хотели бы получить больше от этой схемы, и это возможно. Вы можете не только сэкономить место на тороиде, используя более тонкий провод для катушки датчика, но и используя другое передаточное число. Я пробовал 15 витков AWG30 на катушке датчика и 30 витков AWG25 на катушке, подключенной к коллектору. Для этого достаточно взять два эмалированных провода разной длины. Установка с 15/30 витками и проводом AWG25 для коллекторной катушки дала мне ток 8 мА постоянного тока через светодиод (размер тороида, как показано выше; входное напряжение 1.4В).
Схема выдает выходной сигнал на выводе коллектора транзистора, который выглядит, как показано ниже. Выходное напряжение — это просто функция нагрузки, которую вы кладете. Он может производить очень высокое напряжение, если нет нагрузки, и вы можете испортить транзистор, если запустите его без подключенного светодиода. Цепь колеблется с частотой около 20-40 кГц в зависимости от входного напряжения и типа катушки. Светодиоды работают на этих высоких частотах, но они не предназначены для этого, а их внутренние PN-слои представляют собой конденсатор.Схема будет иметь более высокий КПД (выходной свет к потребляемой энергии), если вы немного исправите сигнал. Поэтому я добавил диод 1N4148 и небольшой электролитический конденсатор (подойдет все от 1 мкФ до 10 мкФ) между светодиодом и выходом транзистора.
Выходной сигнал на выводе коллектора транзистора, около 23 кГц, напряжение зависит от нагрузки
Можно сначала установить эту схему на макетной плате. Макетные платы не работают на высоких частотах, но частоты от 20 кГц до 40 кГц, которые производит эта схема, в порядке.Перед установкой на настоящую печатную плату рекомендуется проверить комбинацию светодиода и катушки, которая лучше всего подходит для вас.
Макетная плата
Светодиодный фонарик 1.5V на матричной матрице малой
Распиновка всех полярных компонентов
Держатель батарейки AAA из луженого стального листа (дно коробки с шоколадной пудрой). Пружина от шариковой ручки.
Joule Thief будет работать при очень низких напряжениях, и белый светодиод загорится примерно 0.4 В от аккумулятора, но он будет давать немного света. Схема хорошо работает с хорошей яркостью при выходном напряжении батареи от 1 В до 1,6 В. Даже уже использованные батареи на 1,5 В будут иметь 1 В. Таким образом, вы все еще можете питать этот фонарик от аккумулятора, который в противном случае вы бы выбросили.
Полностью собранный светодиодный фонарик на 1,5 В, держатель батареи сделан из жестяного листа (дно жестяной коробки с шоколадным порошком) и пружины от старой шариковой ручки
Полностью собран 1.Светодиодный фонарик 5 В, с гильзой из алюминиевой фольги для фокусировки света, гильза из алюминиевой фольги представляет собой алюминиевую фольгу с пластиковым покрытием (изолированную) из упаковки масляного печенья
Наслаждайтесь фонариком. Счастливого Рождества.
© 2004-2021 Гвидо Сочер
Схема светодиодного фонарика Music Rhythm
В этом электронном проекте я показал, как сделать схему светодиодной вспышки Music Rhythm с использованием BC547, TIP122 и микрофона на макетной плате и спроектировать печатную плату для этой схемы.Вы можете подключить несколько светодиодных лент к этой схеме, и все подключенные светодиодные ленты будут мигать в ритме музыки.
Микрофон улавливает музыкальный ритм и генерирует электрический импульс, который усиливается транзисторами BC547 и TIP122. Затем подключенная светодиодная лента начнет мигать.
Я поделился принципиальной схемой, макетной платой и всеми необходимыми деталями для этого проекта Music Rhythm LED Flasher, так что вы можете легко сделать эту светодиодную вспышку Music Rhythm дома.
Схема светодиода музыкального ритма
Принцип работы светодиодной схемы музыкального ритма:
- Музыкальный ритм улавливается микрофоном, и микрофон преобразует звук в электрические импульсы.
- Затем электрические импульсы подаются на базу транзистора BC547 NPN, транзистор усиливает сигнал электрического импульса.
- После этого усиленный сигнал поступает на базу силового транзистора TIP122 NPN. При положительном импульсе на базе транзистор TIP122 включается.
- Светодиодные ленты 12 В подключаются к коллекторному выводу транзистора TIP122. Таким образом, когда транзистор TIP122 включается, ток может течь через светодиодные ленты 12 В, и светодиодные ленты включаются. Когда транзистор TIP122 отключается, ток не может протекать через светодиодные ленты 12 В, поэтому светодиодные ленты выключаются.
Необходимые компоненты:
- Резисторы мощностью 1 кОм 0,25 Вт 2 шт.
- Резисторы мощностью 10 кОм 0,25 Вт 2 шт.Конденсатор 1 мкФ 1 шт.
- Светодиоды 5 мм 1,5 В 2 шт. (Опционально)
- Конденсаторный микрофон 1 шт. макет, я разработал печатную плату для этого проекта электроники.
Вы можете загрузить Gerber-файл печатной платы и заказать его на PCBWay.com
О PCBWay и их услугах
Вы можете мгновенно получить расценки на вашу печатную плату и печатную плату перед размещением заказа на PCBWay.Вы также можете проверить статус изготовления и обработки заказа онлайн на панели своего аккаунта PCBWay. После того, как печатные платы будут отправлены на ваш адрес, вы сможете отслеживать статус доставки вашего заказа онлайн.
В PCBWay все платы проходят самые строгие тесты, кроме базовой визуальной проверки. Они используют летающий зонд, машину рентгеновского контроля, машину автоматизированного оптического контроля (AOI) для тестирования и проверки печатной платы, чтобы гарантировать качество.
Чтобы перейти на страницу мгновенного предложения онлайн, посетите — pcbway.com / orderonline
Перед размещением заказа проверьте свой файл Gerber — OnlineGerberViewerУ PCBWay можно заказать всего 5 печатных плат. И всякий раз, когда у вас возникают какие-либо проблемы, вы всегда можете связаться с сотрудником службы поддержки клиентов из PCBWay, чтобы ответить на ваши электронные письма или сообщения.
Шаги для заказа печатной платы на PCBWay
Чтобы заказать печатную плату, сначала посетите PCBWay.com .
Затем введите следующие данные:
- PCB Размер (длина и ширина) в мм и количество PCB
- Выберите цвет маскировки для печатной платы
- Выберите страну и способ доставки
- Нажмите кнопку « Сохранить в корзину »
Теперь нажмите « Добавить файлы Gerber », чтобы загрузить файл Gerber печатной платы.
Затем нажмите « Отправить заказ сейчас », чтобы разместить заказ.
После этого они рассмотрят файл Gerber и, соответственно, подтвердят заказ.
В моем случае я получил печатную плату в течение недели. Это зависит от выбранного вами способа доставки.
Размещение компонентов на плате
Теперь разместите все компоненты, как отмечено на плате. После этого припаяйте все компоненты.
Проверка цепи светодиода музыкального ритма
Подключите к выходу любую светодиодную ленту 12 В.Вы также можете подключить несколько светодиодных лент параллельно.
Затем подключите источник постоянного тока 12 В на входе. Номинальный ток зависит от транзистора TIP122. Вы также можете использовать MOSFET вместо транзистора.
Теперь светодиодная лента должна мигать в ритме музыки.
Пожалуйста, поделитесь своими отзывами об этом мини-проекте, а также дайте мне знать, если у вас возникнут какие-либо вопросы.
Вы также можете посетить наш канал YouTube, чтобы увидеть больше таких полезных проектов в области электроники.
Надеюсь, вам понравился этот проект. Спасибо за уделенное время.
Как работает фонарик
1 — Кейс Трубка, в которой находятся части фонарика, включая батареи и лампу (лампочку).
2 — Контакты Очень тонкая пружина или полоска металла (обычно из меди или латуни), которая расположена по всему фонарю и обеспечивает электрическое соединение между различными частями — батареями, лампой и выключателем. Эти части проводят электричество и «все подключают», замыкая цепь.
3 — Выключатель Поток электричества активируется, когда вы нажимаете выключатель в положение ВКЛ, давая вам свет. Подача электричества прерывается, когда переключатель переводится в положение ВЫКЛ., Таким образом выключая свет.
4 — Отражатель Пластиковая деталь, покрытая блестящим алюминиевым слоем, которая окружает лампу (лампочку) и перенаправляет световые лучи от лампы, чтобы обеспечить устойчивый световой луч, который вы видите, излучаемый из фонарик.
5 — Лампа Источник света в фонарике. В большинстве фонарей лампа представляет собой либо вольфрамовую нить (лампа накаливания), либо светоизлучающий диод (твердотельная лампа), также известный как светодиод. Вольфрамовая нить или светодиод светится, когда через нее проходит электричество, производя видимый свет. Вольфрам — это природный элемент, а вольфрамовая нить — очень тонкая проволока. Вольфрамовые лампы необходимо заменить при обрыве вольфрамовой нити. Светодиод содержит очень маленький полупроводник (диод), заключенный в эпоксидную смолу, и эта часть излучает свет, когда через нее проходит электричество.Светодиодные фонарики om широко считаются «небьющимися» и незаменимыми лампами на весь срок службы.
6 — Объектив Объектив — это прозрачная пластиковая часть, которую вы видите на передней части фонарика, которая защищает лампу, поскольку лампа сделана из стекла и легко разбивается.
7 — Батарейки При активации батарейки служат источником энергии для фонарика.
Собираетесь ли вы на улице в ночное приключение или оказались в темноте из-за отключения электричества после шторма, удобство портативного фонаря — это всего лишь простая кнопка на вашем фонарике.Но как же работает фонарик?
Как все эти части фонарика работают вместе?
Когда переключатель фонаря переводится в положение ВКЛ, он вступает в контакт между двумя контактными полосками, которые начинают электрический ток, питаемый от батареи. Батареи соединены таким образом, что электричество (поток электронов) проходит между положительным и отрицательным электродами батареи. Батареи опираются на небольшую пружину, которая соединена с контактной полосой.Контактная полоса проходит по длине батарейного отсека и контактирует с одной стороной переключателя. На другой стороне переключателя есть еще одна плоская контактная полоса, которая идет к лампе (лампочке), обеспечивая электрическое соединение. К лампе подключена еще одна часть, которая контактирует с положительным электродом верхней батареи, замыкая цепь лампы и завершая выработку электричества.
При активации электричеством вольфрамовая нить или светодиод в лампе начинает светиться, производя видимый свет.Этот свет отражается от отражателя, расположенного вокруг лампы. Отражатель перенаправляет световые лучи от лампы, создавая устойчивый луч света, который вы видите излучаемого фонариком. Прозрачная линза закрывает лампу фонарика, чтобы стекло лампы не разбилось.
Когда переключатель фонарика переводится в положение «ВЫКЛ.», Две контактные полоски физически раздвигаются, и путь электрического тока прерывается, что приводит к прекращению производства света и выключению фонарика.
Чтобы портативный фонарик работал, все вышеперечисленные детали должны быть соединены и установлены на свои места. Иначе у вас обрыв цепи и электричество не пойдет.
Схема светодиодного фонарикаработает при напряжении до 0,5В
В большинстве коммерческих светодиодных фонарей используются три батареи типа AAA или AA, которые вырабатывают напряжение 4,5 В. Затем аккумуляторы управляют четырьмя белыми светодиодами, которые подключаются параллельно. Эти светодиоды могут работать при напряжении от 2,7 В до 2,4 В. При таком напряжении светодиоды тускнеют, и вам необходимо часто менять батареи.Таким образом, минимальное рабочее напряжение в этом случае составляет примерно 0,8–0,9 В на батарею.
Когда щелочная батарея 1,5 В разряжается до 0,9 В, у нее остается более 10% ее первоначальной энергии. Если вы замените или выбросите батарею, вы потратите эту энергию впустую. Однако вы можете использовать это небольшое количество энергии батареи со схемой в Рисунок 1 . Светодиодный драйвер TheLinear Technology LT1932 — это микросхема повышения напряжения с возможностью постоянного тока для светодиодного освещения. Он работает при входном напряжении от 1 до 10 В и может управлять несколькими последовательными светодиодами.
Рисунок 1 Эта схема позволяет использовать оставшуюся энергию от «разряженной» батареи.Хитрость заключается в выборе напряжения питания. Поскольку LT1932 может работать при напряжении до 1 В, при использовании двухэлементного источника питания 3 В достигается самое низкое рабочее напряжение: 0,5 В на элемент. Выбор трехэлементного источника питания 4,5 В приводит к снижению напряжения на 0,33 В на элемент. Источник питания 4,5 В может питать до восьми светодиодов. Тесты показывают, что эта схема работает в диапазоне от 4,5 В до 0,94 В, что ниже 1 В., указанного в технических данных.В драйвере светодиода используется индуктор на 4,7 мкГн.
Установка номинала резистора R 1 регулирует постоянный ток с помощью светодиодов. Установка более высокого сопротивления приводит к снижению яркости. В этом случае ток составляет 18 мА. LT1932 доступен только в крошечном шестиконтактном корпусе SOT для поверхностного монтажа с малым шагом 0,037 дюйма. Таким образом, для его использования требуется печатная плата.
Как только вы построите фонарик по этой схеме, вы не выбрасываете «мертвые» батарейки из коммерческих светодиодных фонарей.Вместо этого используйте их для питания схемы LT1932. В зависимости от того, используете ли вы элемент AA или элемент AAA, он даст вам еще несколько часов света. Имейте в виду, что некоторые производители батарей определяют 0,5 В на элемент как напряжение отключения щелочной батареи и рекомендуют снимать батарею с нагрузки, чтобы избежать возможности утечки батареи и эффектов газообразования. Не позволяйте этим эффектам происходить с вашим фонариком.
.