Электронный ЛАТР своими руками
В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.
В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.
Выглядит ЛАТР так:
Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки:
Помехи в таком ЛАТРе, всё же были из — за искрения, в момент качения ролика по обмоткам.
В журнале «РАДИО», №11, 1999г на странице 40 была напечатана статья «Беспомеховый регулятор напряжения».
Схема этого регулятора из журнала:
В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.
Схема электронного ЛАТРа
Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.
Вот его схема:
Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.
На красный и чёрный провода подаём питание.
Добавляется напряжение с первой обмотки.
Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.
Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.
Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.
Изготовление ЛАТРа
Можно приступать к сборке регулятора.
Схему из журнала я немного доработал, и получилось вот что:
С такой схемой можно значительно повышать верхний порог напряжения. С добавлением автоматического кулера, снизился риск перегрева регулирующего транзистора.
Корпус можно взять от старого компьютерного блока питания.
Сразу нужно прикинуть порядок размещения блоков устройства внутри корпуса и предусмотреть возможность их надёжного закрепления.
Если нет предохранителя, то обязательно нужно предусмотреть другую защиту от короткого замыкания.
Высоковольтный клеммник надёжно крепим к трансформатору.
На выход я поставил розетку для подключения нагрузки и контроля напряжения. Вольтметр можно поставить любой другой, на соответствующее напряжение, но не меньше 300 Вольт.
Понадобится
Нам понадобятся детали:
- Радиатор охлаждения с кулером (любой).
- Макетная плата.
- Контактные колодки.
- Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
- Диодные мосты VD1 – на 4 — 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
- VD2 — на 2 — 3 А – 700 В.
- T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
- VD3 – диод 1N4007 на 1A 1000 В.
- C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
- C2 – 100n.
- R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
- R2 – 910 — 2 Вт. Подбор по току базы транзистора.
- R3 и R4 — по 1 кОм.
- R5 – подстрочный резистор на 5 кОм.
- NTC1 — терморезистор на 10 кОм.
- VT1 – любой полевой транзистор. Я поставил RFP50N06.
- M – кулер на 12 В.
- HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.
Первым делом нужно приготовить плату для размещения деталей схемы и закрепить её на месте в корпусе.
Размещаем на плате детали и припаиваем их.
Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети.
Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали).
Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.
После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры.
У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм.
Крепим терморезистор рядом с транзистором с применением теплопроводной пасты, как и для транзистора.
Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах.
Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт.
Помещаем всё в корпус на штатные места и закрепляем. Окончательно проверяем и закрываем крышку.
Смотрите, пожалуйста, видео работы беспомехового регулятора напряжения.
Удачи вам.
Смотрите видео
Электронный латр своими руками (схемы)
Основным поводом для создания электронного ЛАТРа своими руками является избыток на рынке электротоваров ненадежных регуляторов. Выходом из ситуации может быть образец промышленного типа, но такие экземпляры стоят дорого и обладают внушительными габаритами, что затрудняет его использование в домашних условиях.
Схема устройства электронного ЛАТРа.
Что представляет собой прибор
Стоит упомянуть, что лабораторные автотрансформаторы (ЛАТР) широко использовались еще полвека тому назад. Прежние варианты прибора обладали токосъемным контактом, который был расположен на вторичной обмотке. Это позволяло плавно изменять выходное напряжение (его значение).
Если подключались всевозможные лабораторные приборы, был вариант оперативной смены напряжения. Например, при необходимости легко можно было повлиять на степень нагрева паяльника, регулировать яркость освещения, обороты электродвигателя и многое другое. Вот такой своеобразный регулирующий блок питания.
Рисунок 1. Схема простого варианта ЛАТРа.
Нынешний вариант ЛАТРа обладает различными модификациями. В целом его можно считать трансформатором, в котором происходит трансформация переменного напряжения одной величины в переменное напряжение другой. Устройство широко используется в качестве стабилизатора напряжения. Основной особенностью является возможность изменения напряжения на выходе из прибора. ЛАТРы бывают нескольких вариантов исполнения:
- однофазного;
- трехфазного.
Трехфазный вариант представляет собой вмонтированные в едином корпусе три однофазных лабораторных автотрансформатора. Кстати, желающих стать обладателем трехфазного варианта значительно меньше.
Простой прибор для регулирования
Существует весьма простенький вариант ЛАТРа, который доступен даже для начинающих, его схема изображена на рис. 1. Регулируемый таким прибором диапазон напряжений находится в пределах 0-220 вольт. Данный самодельный регулятор обладает мощностью 25-500 Вт. Увеличение мощности устройства может быть проведено посредством установки тиристоров VD1 и VD2 на радиаторы.
Полупроводниковые приборы (речь идет о тиристорах ВД1 и ВД2) следует подключить параллельно с нагрузкой R1. Пропускаемый ими ток имеет противоположные направления. Когда прибор включается в сеть, тиристоры остаются закрытыми, в отличие от конденсаторов С1 и С2, зарядка которых производится резистором R5. Если есть потребность, с помощью резистора R5 можно изменить напряжение, которое получается во время нагрузки. Резистор и конденсаторы создают фазосдвигающую цепь.
Рисунок 2. ЛАТР с биполярным транзистором.
Фазосдвигающая цепь – это электрический четырехполюсник, гармонический сигнал на выходе которого сдвигается по фазе относительно входного сигнала. Распространены в САУ в качестве устройств корректировки, которые обеспечивают устойчивость и необходимое качество управления. Частными случаями являются дифференцирующие и интегрирующие цепи.
Данное техническое решение позволяет использовать для нагрузки не половинную мощность, а полную. Достигается это благодаря тому, что используются оба полупериода переменного тока.
К недостаткам можно отнести форму переменного напряжения на нагрузке. В этом варианте она не строго синусоидальная. Специфика работы полупроводниковых приборов является основной причиной. Наличие такой особенности способно вызвать помехи в сети. Но их можно устранить путем дополнительной установки дросселей (фильтров последовательной нагрузки) на схему. Такие фильтры можно найти даже в неисправном телевизоре.
Регулятор напряжения: вариант с трансформатором
Лабораторный автотрансформатор, который не станет причиной помех в сети и способный на выходе давать синусоидальное напряжение, устроен немного сложнее предыдущего.
Его схема (рис. 2) содержит биполярный транзистор VТ1. Он выступает в роли регулирующего элемента в таком устройстве. Мощность этого транзистора определяется в зависимости от необходимой нагрузки. В схеме он включен последовательно с нагрузкой и функционирует как реостат. Такой вариант предоставляет способность производить регулировку рабочего напряжения как во время активных, так и реактивных нагрузок.
К сожалению, и тут имеется свой недостаток. Он заключается в том, что задействованный регулирующий транзистор выделяет слишком большое количество тепла. Чтобы устранить его, понадобится теплоотводящий радиатор, который будет обладать достаточной мощностью. В данном случае площадь такого радиатора должна составлять как минимум 250 см².
В такой модели используется трансформатор Т1, который должен обладать мощностью от 12 и до 15 Вт и вторичным напряжением от 6 до 10 В. Выпрямление тока происходит с помощью диодного моста VD6. Выпрямленный ток к транзистору VТ1 в любом варианте полупериода проходит через мост диодов VD2 и VD5. Чтобы произвести регулировку базового тока транзистора VТ1, необходимо прибегнуть к помощи переменного резистора R1. Таким образом происходит изменение параметров тока нагрузки.
С помощью вольтметра РV1 осуществляется контроль величины напряжения на выходе из устройства. Вольтметр берется с расчетом на напряжение от 250 до 300 В. Если есть необходимость повышения мощности нагрузки, следует произвести замену транзистора VD1 и диодов VD2-VD5 более мощными. За этим, разумеется, последует увеличение площади радиатора.
Как можно заметить, самостоятельная сборка ЛАТРа возможна, необходимо лишь обладать знаниями в этой области и обзавестись нужными материалами.
Поделись статьей:
Оцените статью:
Загрузка…Электронный латр — РадиоСхема
В нынешнее время большое распространение получили автотрансформаторы (ЛАТР — лабораторные автотрансформаторы). Это тип обычного трансформатора в котором первичная и вторичная обмотки друг от друга не изолированы, а соеденены электрически напрямую, следовательно в них используется не только электрическая, но и электромагнитная связь. Общая обмотка трансформатора имеет несколько разных выводов (2, 3, 4 и более), при подключении к ним можно получить разные напряжения.
На рисунке показана схема электронного ЛАТРа, с обмотки III сетевого трансформатора Т1 переменное напряжение (0,5…1В) поступает через делитель напряжения (R15 R16 R3) на УНЧ. Данный УНЧ выполнен по схеме упрощенного УМЗЧ, мощности УНЧ достаточно для питания небольшого по мощности устройства подключенного к ЛАТРу, если необходима большая мощность то надо применить долее мощный УМЗЧ и трансформатора Т2. Непосредственно с выхода УНЧ снимается переменное напряжение величина которого от 0 до максимального питающего напряжения.
Обмотка II Т1 должна выдавать напряжение 22…24В. VT1…VT4 должны быть установлены на общем радиаторе. R3 должен быть расположен на лицевой панели корпуса ЛАТРа.
Напряжение питания ОУ должно быть в пределах +/-13…14В. Падение напряжения на R13 R14 должно быть в пределах 0,34…0,4В. На выходе УЧН должна быть синусоида 50Гц (для этого надо подключить нагрузку 16 Ом мощностью не менее 10…15Вт). Т2 пита ТВ3-1-9 от лампового ТВ УЛПЦТИ.
Или любой другой трансформатор с напряжением на первичной обмотке 6В (то есть подавая на его первичную обмотку (на схеме это вторичная) 222В на выходе должно быть 6В, которая является первичной в схеме ЛАТРа, то есть на выходе УНЧ регуляторами настройки R15 R4 и регулятором выходного напряжения R3 мы должны получить максимальное неискаженное синусоидальное напряжение с частотой 50 Гц в пределах 6,2В, при этом напряжение на выходе Т2 должно быть не менее 230В.) Регулятор R3 позволяет получить на выходе Т2 напряжение от 0 до 230 В с частотой 50Гц.
Литература Ж. Радиосхема 2006-5 Автор: А.Н. Маньковский, пос. Шевченко, Донецкая обл
Схемы электронного латра схема
Трансформатор имеющий электрическую связь между обмотками называют лабораторным автотрансформатором, или ЛАТРом. Вольтаж цепи нагрузки прямо пропорционален обмотке вторичной цепи. В зависимости от конструкции, получение нужного выходного напряжения производиться подключением к соответствующим выводам или вращением ручного регулятора (рис. 1). В этой статье описывается как сделать ЛАТР в домашних условиях.
Подготовка материала
Для сборки ЛАТРа понадобятся следующие материалы и устройства:
- Медная обмотка;
- Тороидальный или стержневой магнитопровод. Можно приобрести в специализированном магазине или извлечь из испорченной техники;
- Термоустойчивый лак;
- Тряпичная изолента;
- Корпус с закрепленными разъемами для подключения нагрузки и питания.
Для лабораторного ЛАТРа с переменным коэффициентом трансформации могут дополнительно понадобиться:
- Цифровой или аналоговый вольтметр.
- Поворотный механизм, включающий в себя ручку и ползунок с угольной щеткой. Он будет регулировать напряжение.
Расчет провода
Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:
- Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
- Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.
Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.
Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:
I = I2 – I1 = P / U2 – P / U1 = 300 / 127 – 300 / 220 = 1 А
- где I, I2, I3 – токи в соответствующих участках цепи, А;
- P – мощность, Вт;
- U1, U2 – напряжения первичной и вторичной цепи, В.
Диаметр провода рассчитываем по формуле:
d = 0,8 * √I = 1 мм.
Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².
Коэффициент трансформации ЛАТРа n вычисляем по формуле:
n = U1 / U2 = 220 / 127 = 1,73
Для дальнейшего расчета вычисляем расчетную мощность Pр:
Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт
где к – коэффициент, учитывающий КПД автотрансформатора.
Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:
S = √ Pр = √ 151,92 = 12,325 см²
W0 = m / S = 35 / 12,325 = 2,839
- где W0 – количество витков, приходящихся на 1 вольт;
- m – 50 для стержневого и 35 для тороидального магнитопроводов.
Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:
w = W0 * U
Получаем 360, 511, 624 и 710 витков.
Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.
Процесс сборки
Для сборки регулируемого ЛАТРа выбираем тороидальный магнитопровод (рис. 2). Место наложения обмотки изолируем тряпичной изолентой. Выводим провод для первой клеммы питания. Все последующие провода выводим не разрывая. Закрепляем первый виток на магнитопроводе и начинаем накручивать рассчитанное количество. При достижении витка соответствующего одному из выбранных напряжений, выводим петлю, и продолжаем наматывать провод. На рисунке 3 изображен процесс намотки на деревянном каркасе.
После наложения обмотки лакируем ЛАТР. Наполняем емкость выбранным лаком, и окунаем в него автотрансформатор. Оставляем на длительную просушку.
После просушки помещаем автотрансформатор в корпус. Первый выведенный провод присоединяем к разъему питания. Этот разъем должен быть электрически связан с общей клеммой нагрузки, поэтому соединяем их между собой каким-нибудь проводником. Петлю выведенную для 220 В, соединяем со второй клеммой питания. Остальные провода подключаем к соответствующим клеммам вторичной цепи. На “схеме” 2 изображены выводы проводов.
Для лабораторного автотрансформатора с переменным коэффициентом трансформации добавляем корпус, и делаем крепление для ручки регулятора. К ручке прикрепляем ползунок с угольной щеткой. Щетка должна плотно касаться верхней части обмотки. Помечаем область по которой будет передвигаться щетка, и в этом месте избавляемся от изоляции. Так щетка будет иметь прямой электрический контакт с вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, заменяем одной, соединенной с угольной щеткой (схема 3). При подсоединяем закрепляем вольтметр.
Если следовать написанной статье, то ЛАТР можно с легкостью сделать своими руками.
Проверка
Что бы убедиться в бесперебойной и надежной работе устройства, выполняем следующие пункты:
- Подключаем автотрансформатор к сети 220 В;
- Проверяем на отсутствие задымления, запаха гари, сильных шумов;
- Вольтметром проверяем соответствие выходных значений;
- Через 10 — 20 минут работы отключаем ЛАТР. Проверяем не перегрелась ли обмотка.
- Снова включаем ЛАТР в сеть и подключаем нагрузку на длительное время.
При отсутствии проблем автотрансформатор готов к работе.
Трансформатор имеющий электрическую связь между обмотками называют лабораторным автотрансформатором, или ЛАТРом. Вольтаж цепи нагрузки прямо пропорционален обмотке вторичной цепи. В зависимости от конструкции, получение нужного выходного напряжения производиться подключением к соответствующим выводам или вращением ручного регулятора (рис. 1). В этой статье описывается как сделать ЛАТР в домашних условиях.
Подготовка материала
Для сборки ЛАТРа понадобятся следующие материалы и устройства:
- Медная обмотка;
- Тороидальный или стержневой магнитопровод. Можно приобрести в специализированном магазине или извлечь из испорченной техники;
- Термоустойчивый лак;
- Тряпичная изолента;
- Корпус с закрепленными разъемами для подключения нагрузки и питания.
Для лабораторного ЛАТРа с переменным коэффициентом трансформации могут дополнительно понадобиться:
- Цифровой или аналоговый вольтметр.
- Поворотный механизм, включающий в себя ручку и ползунок с угольной щеткой. Он будет регулировать напряжение.
Расчет провода
Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:
- Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
- Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.
Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.
Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:
I = I2 – I1 = P / U2 – P / U1 = 300 / 127 – 300 / 220 = 1 А
- где I, I2, I3 – токи в соответствующих участках цепи, А;
- P – мощность, Вт;
- U1, U2 – напряжения первичной и вторичной цепи, В.
Диаметр провода рассчитываем по формуле:
d = 0,8 * √I = 1 мм.
Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².
Коэффициент трансформации ЛАТРа n вычисляем по формуле:
n = U1 / U2 = 220 / 127 = 1,73
Для дальнейшего расчета вычисляем расчетную мощность Pр:
Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт
где к – коэффициент, учитывающий КПД автотрансформатора.
Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:
S = √ Pр = √ 151,92 = 12,325 см²
W0 = m / S = 35 / 12,325 = 2,839
- где W0 – количество витков, приходящихся на 1 вольт;
- m – 50 для стержневого и 35 для тороидального магнитопроводов.
Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:
w = W0 * U
Получаем 360, 511, 624 и 710 витков.
Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.
Процесс сборки
Для сборки регулируемого ЛАТРа выбираем тороидальный магнитопровод (рис. 2). Место наложения обмотки изолируем тряпичной изолентой. Выводим провод для первой клеммы питания. Все последующие провода выводим не разрывая. Закрепляем первый виток на магнитопроводе и начинаем накручивать рассчитанное количество. При достижении витка соответствующего одному из выбранных напряжений, выводим петлю, и продолжаем наматывать провод. На рисунке 3 изображен процесс намотки на деревянном каркасе.
После наложения обмотки лакируем ЛАТР. Наполняем емкость выбранным лаком, и окунаем в него автотрансформатор. Оставляем на длительную просушку.
После просушки помещаем автотрансформатор в корпус. Первый выведенный провод присоединяем к разъему питания. Этот разъем должен быть электрически связан с общей клеммой нагрузки, поэтому соединяем их между собой каким-нибудь проводником. Петлю выведенную для 220 В, соединяем со второй клеммой питания. Остальные провода подключаем к соответствующим клеммам вторичной цепи. На “схеме” 2 изображены выводы проводов.
Для лабораторного автотрансформатора с переменным коэффициентом трансформации добавляем корпус, и делаем крепление для ручки регулятора. К ручке прикрепляем ползунок с угольной щеткой. Щетка должна плотно касаться верхней части обмотки. Помечаем область по которой будет передвигаться щетка, и в этом месте избавляемся от изоляции. Так щетка будет иметь прямой электрический контакт с вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, заменяем одной, соединенной с угольной щеткой (схема 3). При подсоединяем закрепляем вольтметр.
Если следовать написанной статье, то ЛАТР можно с легкостью сделать своими руками.
Проверка
Что бы убедиться в бесперебойной и надежной работе устройства, выполняем следующие пункты:
- Подключаем автотрансформатор к сети 220 В;
- Проверяем на отсутствие задымления, запаха гари, сильных шумов;
- Вольтметром проверяем соответствие выходных значений;
- Через 10 — 20 минут работы отключаем ЛАТР. Проверяем не перегрелась ли обмотка.
- Снова включаем ЛАТР в сеть и подключаем нагрузку на длительное время.
При отсутствии проблем автотрансформатор готов к работе.
Основным поводом для создания электронного ЛАТРа своими руками является избыток на рынке электротоваров ненадежных регуляторов. Выходом из ситуации может быть образец промышленного типа, но такие экземпляры стоят дорого и обладают внушительными габаритами, что затрудняет его использование в домашних условиях.
Схема устройства электронного ЛАТРа.
Что представляет собой прибор
Стоит упомянуть, что лабораторные автотрансформаторы (ЛАТР) широко использовались еще полвека тому назад. Прежние варианты прибора обладали токосъемным контактом, который был расположен на вторичной обмотке. Это позволяло плавно изменять выходное напряжение (его значение).
Если подключались всевозможные лабораторные приборы, был вариант оперативной смены напряжения. Например, при необходимости легко можно было повлиять на степень нагрева паяльника, регулировать яркость освещения, обороты электродвигателя и многое другое. Вот такой своеобразный регулирующий блок питания.
Рисунок 1. Схема простого варианта ЛАТРа.
Нынешний вариант ЛАТРа обладает различными модификациями. В целом его можно считать трансформатором, в котором происходит трансформация переменного напряжения одной величины в переменное напряжение другой. Устройство широко используется в качестве стабилизатора напряжения. Основной особенностью является возможность изменения напряжения на выходе из прибора. ЛАТРы бывают нескольких вариантов исполнения:
Трехфазный вариант представляет собой вмонтированные в едином корпусе три однофазных лабораторных автотрансформатора. Кстати, желающих стать обладателем трехфазного варианта значительно меньше.
Простой прибор для регулирования
Существует весьма простенький вариант ЛАТРа, который доступен даже для начинающих, его схема изображена на рис. 1. Регулируемый таким прибором диапазон напряжений находится в пределах 0-220 вольт. Данный самодельный регулятор обладает мощностью 25-500 Вт. Увеличение мощности устройства может быть проведено посредством установки тиристоров VD1 и VD2 на радиаторы.
Полупроводниковые приборы (речь идет о тиристорах ВД1 и ВД2) следует подключить параллельно с нагрузкой R1. Пропускаемый ими ток имеет противоположные направления. Когда прибор включается в сеть, тиристоры остаются закрытыми, в отличие от конденсаторов С1 и С2, зарядка которых производится резистором R5. Если есть потребность, с помощью резистора R5 можно изменить напряжение, которое получается во время нагрузки. Резистор и конденсаторы создают фазосдвигающую цепь.
Рисунок 2. ЛАТР с биполярным транзистором.
Фазосдвигающая цепь – это электрический четырехполюсник, гармонический сигнал на выходе которого сдвигается по фазе относительно входного сигнала. Распространены в САУ в качестве устройств корректировки, которые обеспечивают устойчивость и необходимое качество управления. Частными случаями являются дифференцирующие и интегрирующие цепи.
Данное техническое решение позволяет использовать для нагрузки не половинную мощность, а полную. Достигается это благодаря тому, что используются оба полупериода переменного тока.
К недостаткам можно отнести форму переменного напряжения на нагрузке. В этом варианте она не строго синусоидальная. Специфика работы полупроводниковых приборов является основной причиной. Наличие такой особенности способно вызвать помехи в сети. Но их можно устранить путем дополнительной установки дросселей (фильтров последовательной нагрузки) на схему. Такие фильтры можно найти даже в неисправном телевизоре.
Регулятор напряжения: вариант с трансформатором
Лабораторный автотрансформатор, который не станет причиной помех в сети и способный на выходе давать синусоидальное напряжение, устроен немного сложнее предыдущего.
Его схема (рис. 2) содержит биполярный транзистор VТ1. Он выступает в роли регулирующего элемента в таком устройстве. Мощность этого транзистора определяется в зависимости от необходимой нагрузки. В схеме он включен последовательно с нагрузкой и функционирует как реостат. Такой вариант предоставляет способность производить регулировку рабочего напряжения как во время активных, так и реактивных нагрузок.
К сожалению, и тут имеется свой недостаток. Он заключается в том, что задействованный регулирующий транзистор выделяет слишком большое количество тепла. Чтобы устранить его, понадобится теплоотводящий радиатор, который будет обладать достаточной мощностью. В данном случае площадь такого радиатора должна составлять как минимум 250 см².
В такой модели используется трансформатор Т1, который должен обладать мощностью от 12 и до 15 Вт и вторичным напряжением от 6 до 10 В. Выпрямление тока происходит с помощью диодного моста VD6. Выпрямленный ток к транзистору VТ1 в любом варианте полупериода проходит через мост диодов VD2 и VD5. Чтобы произвести регулировку базового тока транзистора VТ1, необходимо прибегнуть к помощи переменного резистора R1. Таким образом происходит изменение параметров тока нагрузки.
С помощью вольтметра РV1 осуществляется контроль величины напряжения на выходе из устройства. Вольтметр берется с расчетом на напряжение от 250 до 300 В. Если есть необходимость повышения мощности нагрузки, следует произвести замену транзистора VD1 и диодов VD2-VD5 более мощными. За этим, разумеется, последует увеличение площади радиатора.
Как можно заметить, самостоятельная сборка ЛАТРа возможна, необходимо лишь обладать знаниями в этой области и обзавестись нужными материалами.
Электронный ЛАТР: простая схема
Полвека назад лабораторный автотрансформатор был очень распространен. Сегодня электронный ЛАТР, схема которого должна быть у каждого радиолюбителя, имеет множество модификаций. Старые модели имели токосъемный контакт, расположенный на вторичной обмотке, что давало возможность плавно менять значение выходного напряжения, позволяло оперативно изменять напряжение при подключении различных лабораторных приборов, изменении интенсивности нагрева жала паяльника, регулировки электрического освещения, изменения оборотов электродвигателя и многого другого. Особое значение имеет ЛАТР в качестве устройства стабилизации напряжения, что очень важно при настройке различных приборов.
Современный ЛАТР используется почти в каждом доме для стабилизации напряжения.
Сегодня, когда электронный ширпотреб заполонил прилавки магазинов, приобрести надежный регулятор напряжения простому радиолюбителю стало проблемой. Конечно, можно найти и промышленный образец. Но они часто слишком дорогие и громоздкие, а для домашних условий это не всегда подходит. Вот и приходится многочисленным радиолюбителям «изобретать велосипед», создавая электронный ЛАТР своими руками.
Читайте также: Как соорудить домкрат гидравлический бутылочный.
Простое устройство регулирования напряжения
Схема простой модели ЛАТРа.
Одна из самых простых моделей ЛАТР, схема которой изображена на рис.1, доступна и начинающим. Регулируемое устройством напряжение – от 0 до 220 вольт. Мощность этой модели – от 25 до 500 Вт. Повысить мощность регулятора можно до 1,5 кВт, для этого тиристоры VD1 и VD2 следует установить на радиаторы.
Эти тиристоры (VD1 и VD2) подключаются параллельно нагрузке R1. Они пропускают ток в противоположных направлениях. При включении устройства в сеть эти тиристоры закрыты, а конденсаторы С1 и С2 заряжаются посредством резистора R5. Величину напряжения, получаемого на нагрузке, изменяют по необходимости переменным резистором R5. Он вместе с конденсаторами (С1 и С2) создает фазосдвигающую цепь.
Рис. 2. Схема ЛАТРа, дающего синусоидальное напряжение без помех в системе.
Особенностью этого технического решения является использование обоих полупериодов переменного тока, поэтому для нагрузки используется не половинная мощность, а полная.
Недостатком данной схемы (плата за простоту) надо считать то, что форма переменного напряжения на нагрузке оказывается не строго синусоидальной, что обусловлено спецификой работы тиристоров. Это может привести к помехам по сети. Для устранения проблемы дополнительно к схеме можно установить фильтры последовательно нагрузке (дроссели), например, взять их из неисправного телевизора.
Вернуться к оглавлению
Схема регулятора напряжения с трансформатором
Схема ЛАТРа, не создающего помехи в сети и дающего на выходе синусоидальное напряжение, приведена на рис.2. Регулирующим элементом в используемом приборе является биполярный транзистор VT1 (его мощность рассчитывают из потребности нагрузки), функционирующий как переменный резистор, он включен в схему последовательно с нагрузкой.
Это техническое решение дает возможность регулировать рабочее напряжение при активной, а также реактивной нагрузках.
Недостатком предложенного решения является выделение слишком большого количества тепла используемым регулирующим транзистором (необходим мощный радиатор для теплоотвода). Для данного устройства площадь радиатора должна быть не менее 250 см².
Трансформатор Т1, используемый в этой модели, должен иметь мощность 12-15 Вт и вторичное напряжение 6-10 В. Ток выпрямляется диодным мостом VD6. Далее при любом полупериоде переменного тока через диодный мост VD2-VD5 протекает выпрямленный ток для транзистора VT1. При использовании устройства переменным резистором R2 регулируем базовый ток транзистора VT1. Этим изменяются параметры тока нагрузки. На выходе устройства величина напряжения контролируется вольтметром PV1 (он должен быть рассчитан на напряжение 250-300 В). Для повышения мощности нагрузки необходимо заменить транзистор VD1 и диоды VD2-VD5 на более мощные и, конечно, увеличить площадь радиатора.
Лабараторный ЛАТР своими руками: схема и сборка
Трансформатор имеющий электрическую связь между обмотками называют лабораторным автотрансформатором, или ЛАТРом. Вольтаж цепи нагрузки прямо пропорционален обмотке вторичной цепи. В зависимости от конструкции, получение нужного выходного напряжения производиться подключением к соответствующим выводам или вращением ручного регулятора (рис. 1). В этой статье описывается как сделать ЛАТР в домашних условиях.
Подготовка материала
Для сборки ЛАТРа понадобятся следующие материалы и устройства:
- Медная обмотка;
- Тороидальный или стержневой магнитопровод. Можно приобрести в специализированном магазине или извлечь из испорченной техники;
- Термоустойчивый лак;
- Тряпичная изолента;
- Корпус с закрепленными разъемами для подключения нагрузки и питания.
Для лабораторного ЛАТРа с переменным коэффициентом трансформации могут дополнительно понадобиться:
- Цифровой или аналоговый вольтметр.
- Поворотный механизм, включающий в себя ручку и ползунок с угольной щеткой. Он будет регулировать напряжение.
Расчет провода
Автотрансформатор нецелесообразно использовать для больших трансформаций по следующим причинам:
- Большой риск получить токи, близкие к короткому замыканию. Это компенсируется специальными электронными схемами или дополнительным сопротивлением. Для маленьких нагрузок выгоднее использовать электронный ЛАТР.
- Теряются преимущества перед трансформаторами: высокий КПД, экономия проводника и стали, малые габариты и вес, стоимость.
Определяемся в каких пределах будет работать ЛАТР. Питание сети выбираем 220 В. В качестве вторичных напряжений выбираем 127, 180 и 250 В. Мощность ограничиваем в 300 Вт. Можете выбрать свои значения и произвести аналогичные расчеты на примере этой статьи.
Обмотка рассчитывается по большему току. Наибольший ток будет при преобразовании напряжения 220 в 127 В. Автотрансформатор в этом случае является понижающим, и к нему подходит схема 1. Исходя из предоставленной схемы, рассчитываем максимальный ток I проходящий в обмотке обеих цепей:
I = I2 – I1 = P / U2 – P / U1 = 300 / 127 – 300 / 220 = 1 А
- где I, I2, I3 – токи в соответствующих участках цепи, А;
- P – мощность, Вт;
- U1, U2 – напряжения первичной и вторичной цепи, В.
Диаметр провода рассчитываем по формуле:
d = 0,8 * √I = 1 мм.
Из таблицы 1 выбираем тип провода и сечение. Выбор делаем с учетом расчетного тока и среднего значения плотности тока для трансформаторов – 2 А/мм².
Коэффициент трансформации ЛАТРа n вычисляем по формуле:
n = U1 / U2 = 220 / 127 = 1,73
Для дальнейшего расчета вычисляем расчетную мощность Pр:
Pр = P * k * (1 – 1/n) = 300 * 1,2 * (1 – 1/1,73) = 151,92 Вт
где к – коэффициент, учитывающий КПД автотрансформатора.
Для определения количества витков приходящихся на 1 вольт, необходимо посчитать площадь поперечного сечения сердечника S и определиться с типом магнитопровода:
S = √ Pр = √ 151,92 = 12,325 см²
W0 = m / S = 35 / 12,325 = 2,839
- где W0 – количество витков, приходящихся на 1 вольт;
- m – 50 для стержневого и 35 для тороидального магнитопроводов.
Если сталь не очень высокого качества стоит увеличить значение W0 на 20-30 %. Так же при расчете витков следует увеличить их количество на 5-10 %, чтобы избежать просадки напряжения. Рассчитываем количество витков для выбранных напряжений 127, 180, 220 и 250 В:
w = W0 * U
Получаем 360, 511, 624 и 710 витков.
Для расчета длины провода обматываем один виток на магнитопровод и измеряем его длину. Затем умножаем на максимальное количество витков и прибавляем по 25-30 сантиметров для каждого вывода к клемме.
Процесс сборки
Для сборки регулируемого ЛАТРа выбираем тороидальный магнитопровод (рис. 2). Место наложения обмотки изолируем тряпичной изолентой. Выводим провод для первой клеммы питания. Все последующие провода выводим не разрывая. Закрепляем первый виток на магнитопроводе и начинаем накручивать рассчитанное количество. При достижении витка соответствующего одному из выбранных напряжений, выводим петлю, и продолжаем наматывать провод. На рисунке 3 изображен процесс намотки на деревянном каркасе.
После наложения обмотки лакируем ЛАТР. Наполняем емкость выбранным лаком, и окунаем в него автотрансформатор. Оставляем на длительную просушку.
После просушки помещаем автотрансформатор в корпус. Первый выведенный провод присоединяем к разъему питания. Этот разъем должен быть электрически связан с общей клеммой нагрузки, поэтому соединяем их между собой каким-нибудь проводником. Петлю выведенную для 220 В, соединяем со второй клеммой питания. Остальные провода подключаем к соответствующим клеммам вторичной цепи. На “схеме” 2 изображены выводы проводов.
Для лабораторного автотрансформатора с переменным коэффициентом трансформации добавляем корпус, и делаем крепление для ручки регулятора. К ручке прикрепляем ползунок с угольной щеткой. Щетка должна плотно касаться верхней части обмотки. Помечаем область по которой будет передвигаться щетка, и в этом месте избавляемся от изоляции. Так щетка будет иметь прямой электрический контакт с вторичной обмоткой. Клеммы вторичных напряжений, кроме общей, заменяем одной, соединенной с угольной щеткой (схема 3). При подсоединяем закрепляем вольтметр.
Если следовать написанной статье, то ЛАТР можно с легкостью сделать своими руками.
Проверка
Что бы убедиться в бесперебойной и надежной работе устройства, выполняем следующие пункты:
- Подключаем автотрансформатор к сети 220 В;
- Проверяем на отсутствие задымления, запаха гари, сильных шумов;
- Вольтметром проверяем соответствие выходных значений;
- Через 10 — 20 минут работы отключаем ЛАТР. Проверяем не перегрелась ли обмотка.
- Снова включаем ЛАТР в сеть и подключаем нагрузку на длительное время.
При отсутствии проблем автотрансформатор готов к работе.
Электронный ЛАТР — Меандр — занимательная электроника
В статье рассмотрена конструкция регулируемого источника питания переменного тока промышленной частоты синусоидальной формы, который способен заменить ЛАТР небольшой мощности.
После выхода из строя ЛАТРа, установленного в стенде СИ-СЦБ, предназначенного для испытания приборов железнодорожной автоматики, автор задался целью заменить его электронным аналогом и успешно воплотил ее в жизнь. Описываемое устройство имеет следующие основные технические характеристики:
- напряжение питания — ~19…24 В;
- выходное напряжение переменного тока — регулируемое от 0 до 300 В;
- максимальная мощность нагрузки — 30 Вт.
Такие параметры, как максимальная мощность нагрузки и максимальное выходное напряжение, будут зависеть от мощности источника питания и параметров выходного трансформатора.
Описание схемы устройства
Идея регулятора напряжения переменного тока довольно проста: необходимо взять регулируемый по уровню синусоидальный сигнал и подать его на усилитель мощности низкой частоты, нагруженный на повышающий трансформатор. Таким образом, можно получить напряжение переменного тока, регулируемое от 0 до значения, определяемого параметрами выходного трансформатора.
Принципиальная электрическая схема устройства показана на рис.1. Схема состоит из двух блоков: модуля питания и регулирования, и усилителя низкой частоты (УНЧ).
Рис. 1
В качестве УНЧ использована конструкция двухтактного транзисторного усилителя мощности звуковой частоты, работающего в режиме В. Выбор схемы и конструкции УНЧ обусловлен его простотой, высоким КПД, большой выходной мощностью и высокой температурной стабильностью. Принцип работы такого усилителя подробно описан в [1].
Модуль питания и регулирования служит для преобразования поступающего напряжения переменного тока в двухполярное напряжение постоянного тока, выделения синусоидального сигнала с регулируемой амплитудой для подачи на вход усилителя мощности, и питания вентилятора охлаждения.
Для создания двухполярного напряжения использована однополупериодная схема выпрямления на диодах VD1, VD2 с фильтрующими конденсаторами С2, С3.
Синусоидальный сигнал управления УНЧ снимается с регулируемого делителя R1-R3. Подстроенный резистор R2 служит для установки максимального уровня входного сигнала, обеспечивающего отсутствие нелинейных искажений выходного сигнала УНЧ.
Схема питания вентилятора охлаждения состоит из токоограничивающего резистора R4 и фильтрующего конденсатора С5.
Выход УНЧ защищен от короткого замыкания предохранителем FU1. Для предотвращения возможного протекания через нагрузку постоянной составляющей выходного сигнала, в ее цепи установлен разделительный конденсатор С4.
Конструкция, детали и наладка
Оба функциональных блока устройства собраны на печатных платах из односторонне фольгированного стеклотекстолита. Чертеж печатной платы УНЧ показан на рис.2, а схема расположения элементов — на рис.3.
Рис. 2
Рис. 3
Резистор R5 использован для поверхностного монтажа, все остальные компоненты схемы — выводные. Особых требований к используемым деталям нет, и они могут быть заменены любыми аналогичными по параметрам. В качестве предвыходных транзисторов можно использовать импортные аналоги, например, комплементарную пару SS8050, SS8550. Для замены выходных транзисторов подойдет пара BD912, BD911, или более мощные 2SA1943, 2СА5200.
Выходные транзисторы VT3, VT4 должны быть установлены на радиатор. Для обеспечения компактности конструкции удобно использовать радиатор охлаждения центрального процессора персонального компьютера с установленным на нем вентилятором. Так как коллекторы выходных транзисторов соединены, то изолировать их от радиатора нет необходимости.
Схема УНЧ допускает параллельное включение выходных транзисторов для обеспечения большей выходной мощности. На плате предусмотрена возможность монтажа двух пар транзисторов.
Наладка УНЧ заключается в установке напряжения между базами транзисторов VT1, VT2 на уровне 0,4…0,5 В. Она осуществляется подбором номиналов резисторов R10, R11.
Чертеж платы модуля питания и регулирования не приводится, так как ее размеры и компоновка будут зависеть от типа используемых компонентов и схемы реализации низковольтного питания. В большинстве случаев разводку этого модуля удобней будет произвести навесным монтажом.
Окончательная наладка устройства сводится к регулировке уровня входного сигнала УНЧ для обеспечения необходимой мощности нагрузки при отсутствии нелинейных искажений. Для этого устройство нагружают требуемой максимальной нагрузкой. Затем движок регулятора R3 переводят в верхнее по схеме положение и, контролируя осциллографом форму сигнала на нагрузке. Подстроечным резистором R2 регулируют амплитуду входного сигнала таким образом, чтобы в выходном сигнале отсутствовали искажения.
Регулировка амплитуды входного сигнала УНЧ приведет к изменению уровня выходного напряжения устройства, поэтому лучше использовать выходной трансформатор, имеющий обмотку с отводами, чтобы была возможность регулировки необходимого максимального уровня выходного напряжения.
Следует отметить, что в связи с отсутствием стабилизации питающего напряжения и свойств выходного трансформатора, уровень выходного напряжения будет достаточно сильно зависеть от мощности нагрузки. Но так как ЛАТР обычно используется для плавной регулировки напряжения от нуля на уже подключенной к нему нагрузке с контролем напряжения и тока, то это не имеет значения.
В авторской реализации для питания устройства от сети ~220 В был использован сигнальный трансформатор СТ-6 номинальной мощностью 40 ВА, а выход УНЧ нагружался на часть вторичной обмотки трансформатора Тр2 стенда. На самом деле выбор схемы питания и типа выходного трансформатора будет зависеть от целей применения устройства.
Во время экспериментов и тестирования регулятора его питание осуществлялось от самодельного трансформатора мощностью около 100 Вт, имеющего выходное напряжение около 17 В, а для нагрузки использовалась вторичная обмотка типового трансформатора ТС-40-2. Первичная обмотка трансформатора Т2 нагружалась лампой накаливания мощностью 40 Вт. Получены следующие результаты тестирования экспериментальной схемы:
- на «холостом ходу» при выведенном на ноль регуляторе уровня: ~U1 = 17,3 В, ~I1=30 мА, =U1=±23 В, ~U2=0, ~I2=30 мА, ~Uвых=0, где: ~U1/~I1 — напряжение/ток во вторичной обмотке трансформатора Т1, =U1 — напряжение питания УНЧ, ~U2/~I2 — напряжение/ток в первичной обмотке трансформатора Т2, ~Uвых — напряжение на вторичной обмотке Т2;
- при установленном на максимум регуляторе (до момента появления искажений выходного сигнала): ~U1 = 17 В, ~I1= 1,4 A, =U1=±20,5 В, ~U2=16 В, ~I2=1,2 А, ~Uвых=220 В;
- при нагрузке вторичной обмотки выходного трансформатора лампой накаливания мощностью 40 Вт: ~U1=16,8 В, ~I1=2,5 A, =U1=±17,7 В, ~U2=14 В, ~I2=2,1 А, ~Uвых=170 В.
Как видно из выше приведенных экспериментальных данных, КПД устройства, при потреблении нагрузкой около 30 Вт, составляет приблизительно 70%.
Заключение
Автором было изготовлено и успешно используется уже три таких устройства. Они хорошо себя показали, так как в сравнении с ЛАТРом имеют лучшую плавность регулирования.
В современных условиях для питания УНЧ удобнее использовать импульсный двухполярный источник питания. Однако в этом случае придется изготовить генератор синусоидального сигнала или же брать сигнал из сети через дополнительный маломощный сетевой трансформатор.
Литература
- Дорофеев. М. Режим В в усилителях мощности 34 // Радио. — 1991. — №3. — С.53-56.
Автор: Дмитрий Карелов, г. Кривой Рог
Источник: журнал Радиоаматор №11-12, 2015
LDR — Сборка электронных схем
На этой принципиальной схеме LDR показано, как можно сделать световой детектор. LDR или «светозависимый резистор» — это резистор, сопротивление которого уменьшается с увеличением силы света.
Вот схема для цепи:
Легкозависимые резисторы
Светозависимые резисторы (LDR)также называют фоторезисторами. Они изготовлены из полупроводникового материала с высоким сопротивлением.Когда свет попадает на устройство, фотоны отдают энергию электронам. Это заставляет их прыгать в проводящую полосу и тем самым проводить электричество.
Загляните в Википедию, чтобы узнать о физике;)
Как работает принципиальная схема LDR
Принципиальная схема LDR работает следующим образом:
В темноте LDR имеет высокое сопротивление. Это делает напряжение на базе транзистора слишком низким для включения транзистора.
Следовательно, ток не будет идти от коллектора к эмиттеру транзистора.Вместо этого весь ток будет проходить через LDR и потенциометр.
Когда светится, LDR имеет низкое сопротивление. Это увеличивает напряжение на базе транзистора. Достаточно высокий, чтобы включить транзистор.
Поскольку транзистор включен, через транзистор течет ток. Он течет от положительной клеммы аккумулятора через R1, светодиод и транзистор вниз к отрицательной клемме аккумулятора.
При этом загорается светодиод.
Компоненты, используемые в цепи светового извещателя
Резистор R1 регулирует величину тока, проходящего через светодиод.Подсчитать несложно. Я написал статью о том, как рассчитать номинал резистора для светодиода.
Если вы используете светодиод с падением напряжения 2 В, у вас будет падение напряжения на резисторе 7 В, когда транзистор включен. Используя закон Ома, мы можем найти ток:
И 18 мА обычно хорошее значение тока для обычных светодиодов.
Что делать, если вы хотите запитать схему от чего-то другого, кроме батареи 9 В? Затем вам нужно изменить номинал резистора, чтобы получить правильное количество тока, протекающего через светодиод.
Переменный резистор R2 используется для изменения точки срабатывания светодиода. То есть, сколько света необходимо для включения и выключения светодиода.
Вероятно, вам удастся обойтись потенциометром на 10 кОм. Это зависит от сопротивления вашего LDR. Но с потенциометром 100k у вас будет место для более широкого диапазона значений LDR.
Включение светодиода в темноте
Вы также можете включить светодиод, когда он темный, а не светлый.Для этого замените транзистор NPN на транзистор PNP, например:
Собери сам
Пришло время построить эту схему. Очень важно создавать что-то, а не просто читать об этом. Так что приобретите необходимые компоненты и соберите их!
Приобретите необходимые компоненты в интернет-магазине электроники.
Оставьте свои комментарии или вопросы ниже =)
Основы проектирования и основы разработки драйвера лазерного диода
Введение:Если вы собираетесь начать работать с лазерными диодами, вы, скорее всего, знаете, что есть некоторые очень специфические нюансы для безопасного управления ими и контроля их температуры.Для них требуется специальный набор специально разработанных электронных элементов управления. Этот набор элементов управления объединяется для создания так называемого драйвера лазерного диода или источника тока лазерного диода. По сути, эти элементы определяют, как лазер включается и управляется для получения определенной длины волны и выходной мощности. И как это сделать, не повредив лазерный диод. Подробнее »
БЫСТРАЯ НАВИГАЦИЯ:
МАГАЗИН ЛАЗЕРНЫХ ДИОДОВ:
Купить все драйверы лазерных диодов »
Shop Драйверы для лазерных диодов большой мощности (> 5 А) »
Магазин Печатные платы и OEM-драйверы лазерных диодов »
Краткий обзор лазерных диодов:
Чтобы понять, что такое драйверы лазерных диодов и почему они важны, важно понимать некоторые ключевые особенности устройств с лазерными диодами.Эти устройства требуют особого внимания к тому, как они включаются, работают и выключаются. В сети много подробной информации о лазерных диодах. Короче говоря, лазерный диод — это полупроводниковый прибор, сделанный из двух разных материалов. Один из P-материала, другой из N-материала, зажатого вместе. Прямое электрическое смещение через P-N-переход заставляет соответствующие дырки и электроны с противоположных сторон перехода объединяться, испуская фотон в процессе каждой комбинации.Поверхности зоны стыка (полости) имеют до зеркального блеска. Те, кто знаком с теорией лазеров, знают, что происходит, когда фотоны прыгают по полированной полости. Электрическое смещение для перехода должно быть стабильным, малошумящим источником свободного тока от переходных процессов.
В этой короткой статье содержится основная информация о драйверах лазерных диодов, также называемых источниками постоянного тока, и почему они важны для управления и защиты этих устройств. Он предоставляет общий обзор того, как работают драйверы лазерных диодов, и многие типы драйверов лазерных диодов, доступных в отрасли.
Что такое драйвер лазерного диода? А что такое источник постоянного тока?Драйвер — это источник постоянного тока. Вот полезное короткое видео на YouTube, в котором объясняются источники постоянного тока и постоянного напряжения, а также почему источники тока предпочтительны для управления лазерными диодами. Если вас оскорбила его простота… приносим свои извинения.
Понимание коэффициентов настройки и эффективности:
Лазерные диоды — это токочувствительные полупроводники.Изменение тока возбуждения равно изменению длины волны устройства и выходной мощности. Любая нестабильность управляющего тока (шум, дрейф, индуцированные переходные процессы) повлияет на рабочие характеристики лазерного диода. В частности, они повлияют на выходную мощность и длину волны. Кроме того, на температуру диодного перехода напрямую влияет ток. Текущая нестабильность источника вызовет колебания температуры перехода; выходные характеристики (опять же мощность и длина волны) изменятся.Для того же диода, упомянутого выше:
Нестабильность управляющего тока напрямую приводит к колебаниям температуры перехода, хотя временная шкала несколько медленнее, чем прямое влияние изменений тока.
Понимание динамического импеданса и прямого напряжения вашего драйвера:Прямое напряжение на лазерном диоде непостоянно. Он меняется, особенно после пороговой точки. Пороговая точка — это точка, в которой выходная оптическая мощность лазера линейна с входным током возбуждения, мВт / мА.
Для тех из вас, кто еще помнит вычисления, первая производная кривой V-I показывает график динамического сопротивления диода, оно также не является постоянным. Таким образом, вся нагрузочная характеристика лазерного диода непостоянна. Напряжение и сопротивление изменяются в зависимости от тока (и температуры). Итак, как мы узнали из видео об источниках постоянного тока, хороший, стабильный, малошумящий источник тока будет поддерживать постоянный ток независимо от нагрузки, подключенной к его выходу!
Почему не следует использовать настольный источник напряжения:Источники напряжения (настольные источники питания) нарастают напряжение при включении, но ток не контролируется.Это не подходит для диодов, требующих постоянного регулируемого тока. Изменение сопротивления источника постоянного напряжения приводит к изменению тока. Если приложение требует постоянной мощности лазера и стабильной длины волны, источник напряжения не будет работать и может подвергнуть лазер риску теплового удара и / или переходных процессов из-за быстрого изменения тока.
Какие основные типы драйверов для лазерных диодов?На самом общем уровне существует несколько классов или «типов» драйверов лазеров, которые вы обычно слышите.Это: постоянного тока (CW), импульсные (включая QCW), маломощные и высокомощные драйверы . Постоянный ток — это именно то, что он заявляет, постоянный выходной уровень с течением времени, скажем 30 мА, теоретически навсегда, если это необходимо. Импульсные драйверы лазерных диодов представляют собой интересную разновидность, поскольку выходная мощность является функцией времени, а коэффициент заполнения — лучший способ ее описать. Рабочий цикл — это время, в течение которого источник тока включен — высокий выходной ток, деленный на общее время импульса (время включения и выключения). Небольшое замечание о временах отключения в источниках тока: они никогда не отключены по-настоящему (то есть нулевой ток), но часто находятся на достаточно низком уровне выходного сигнала, при котором выходной сигнал лазерного диода минимален — значительно ниже порогового значения.В следующем разделе дано общее определение версий этих типов драйверов с низким и высоким энергопотреблением.
Какие общепринятые коммерчески доступные уровни мощности доступны для драйверов?
Драйверы «малой мощности» и «высокой мощности» — это общепринятая отраслевая терминология, описывающая величину выходной мощности нагрузки. Однако это немного неправильное название: выходной уровень не выражается в единицах мощности, то есть в ваттах, он выражается в единицах мкА, мА и амперах. В мире мощных импульсных источников тока вы можете увидеть выходной импульс, выраженный в Джоулях, то есть энергии, то есть 1 Вт = 1 Дж / с.В технических паспортах обычно также указывается величина выходного тока и напряжение, вам просто нужно их найти. Драйвер с низким энергопотреблением примерно определяется как от 1 мА до 5 ампер. Драйвер мощного лазерного диода — 5 А и до 100 А в режиме CW. Это драйверы уровня кВт, доступные в импульсном и QCW-режимах. Это ни в коем случае не стандарты, а просто обобщение, основанное на опыте автора в мире контроллеров лазерных диодов.
Краткий обзор схемы лазерного драйвера:Следующий шаг — схематическое представление о том, как работает «типичный» источник тока на лазерном диоде.У Wavelength Electronics есть отличное видео, описывающее их текущие конструкции источников. Это хорошая информация в виде блок-схемы, которую легко понять.
Информация, представленная в этом видео, применима ко всем имеющимся в продаже источникам тока для лазерных диодов, различия в функциях и характеристиках будут определять производительность и, конечно же, цену.
Конечно, вы можете гораздо глубже понять источники лазерного тока.Есть уровень, на котором вы, возможно, захотите построить свой собственный, здесь вам нужно будет разбираться в электрических схемах и компонентах. Быстрый поиск источников тока лазерных диодов на YouTube приведет к созданию множества собственных источников тока. Для тех из вас, у кого есть особые требования, не удовлетворяемые коммерческими производителями, есть хорошая статья под названием «Высокоустойчивый малошумящий лазерный драйвер тока» от BYU. Он очень подробный, содержит отличные схемы для тех, кто разбирается в электрическом проектировании с математически обоснованными принципами проектирования, а производительность подкрепляется данными и графиками.
Итак, с учетом сказанного, следующий уровень — покупка коммерчески доступного источника тока.
Каковы типичные диапазоны цен на имеющиеся в продаже драйверы лазерных диодов?Вот краткий обзор основных стилей корпусов и ценовых диапазонов имеющихся в продаже источников постоянного и импульсного тока.
»Источники тока уровня ИС для монтажа на печатной плате: Это интегральная схема (ИС), припаянная непосредственно к печатной плате (PCB).Как правило, это источники более низкого энергопотребления и базового тока, обеспечивающие от 10 мА до 500 мА. Вы найдете их в своем DVD-плеере, сканерах штрих-кодов, указателях и т. Д. Диапазон цен: от 10 до 100 долларов.
»Драйверы OEM-модулей: Это источники тока, встроенные в небольшой корпус или радиатор; подключения к модулю драйвера необходимы для питания переменного или постоянного тока и источников логического управления, а также подключение к нагрузке. Они доступны в широком диапазоне диапазонов выходного тока, от 50 мА до 100 А.Диапазон цен: от 250 до 2500 долларов.
»Настольные драйверы: Это автономные источники тока, которые размещены в корпусе с передней панелью для облегчения управления. Единственные подключения к нему — это вход переменного тока и выход для нагрузки лазерного диода. Они могут быть многофункциональными (управление микропроцессором, низкий уровень шума, высокая стабильность, многодиапазонный) или базовыми (аналоговое управление, одиночный диапазон, включение / выключение), малой или высокой мощностью. Доступны в импульсном и непрерывном режимах от 100 мА до 100 А или более.Вы найдете их во многих оптических лабораториях, чистых комнатах и т. Д. Диапазон цен: от 1000 до 10 000 долларов
Какая функция наиболее важна? Защита вашего лазерного диода:Защита лазерного диода, о которой часто забывают, забывают или просто игнорируют. Что ж, вы можете рискнуть и просто использовать любой источник тока или напряжения, но вы рискуете либо повредить очень дорогой лазерный диод в разработке, либо рискуете потерять часы лабораторной работы и устранения неполадок из-за перегоревшего лазера.Диодные лазеры имеют низкую стойкость к тепловому удару. Стратегии защиты, используемые в большинстве имеющихся в продаже источников тока лазерных диодов, включают способ включения и выключения источника тока (схемы медленного пуска), защиту от перегрузки по току (ограничения тока), защиту от переходных процессов, прокладку кабелей и т. Д. от Newport Corp. о защите: защита лазерного диода.
Рассмотрение всех уровней защиты должно быть важным фактором не только в коммерческих источниках тока лазерных диодов, но и в реализации и соблюдении в лаборатории или системе разработки продукции.
И не забывайте также о контроле температуры … многие критические параметры лазерного диода, включая длину волны, пороговый ток и эффективность, сильно зависят от температуры перехода. Таким образом, для многих приложений требуется очень стабильный контроль температуры.
Какие наиболее важные характеристики следует учитывать при выборе драйвера?Этот ответ наверняка зависит от области применения диода. Например, к лазерной указке не так много строгих требований по контролю тока, как к диодам, используемым в спектроскопических приложениях, требующих очень узкой ширины линии.В большинстве исследовательских приложений, где вы собираетесь потратить от сотен до нескольких тысяч долларов на источник тока лазерного диода, наиболее важными характеристиками являются: защита от скачков и переходных процессов по току и напряжению, плотность шума тока и долговременная стабильность. Несомненно, есть много других важных функций, но вам нужен источник постоянного тока, прежде всего, чтобы оптимизировать и защитить лазерный диод для конкретного применения.
Еще одно замечание об атрибутах, хотя и не упомянутых в первой тройке, текущий диапазон, конечно, важен.Но помимо очевидной причины, вот почему: если вы покупаете источник тока с диапазоном 2 А, а диоду требуется только 50 мА, обратите внимание на разрешение источника тока, оно зависит от общего выходного диапазона. Точность вывода также зависит от диапазона, если это важно для приложения. Обратите особое внимание на спецификации производителя для этих спецификаций. Поищите технические примечания или спросите производителя, как они определяются, измеряются и проверяются.
Кто делает драйверы для лазерных диодов?
Теперь у вас есть основа, которая поможет вам начать поиск конкретного драйвера источника тока для вашей лаборатории.Вы можете посетить наш индекс драйверов лазерных диодов, чтобы сравнить цены и характеристики многих ведущих мировых производителей. Эти компании предлагают широкий спектр маломощных, высокомощных, непрерывных и импульсных драйверов лазерных диодов, богатых функциями и характеристиками.
Автоматическая схема освещения для начинающих
Создано: 6 августа 2012 г.
В этой электронной схеме, когда уровень внешней освещенности падает ниже определенного уровня, светодиод включается автоматически.
Предварительные требования
Знать, как использовать 8-контактную микросхему DIP, например из учебника 5. Прочтите об операционных усилителях (ОУ).
Компоненты
Помимо макета, проводов, батареи 9 В и зажима для батареи вам понадобятся:
Кол-во | Часть | Обозначение | Банкноты | Тип |
---|---|---|---|---|
2 | резисторы 100к (коричневый — черный — желтый) | R2, R7 | 1 / 4W 5% или лучше | Резисторы |
1 | Резистор 56к (зеленый — синий — оранжевый) | R1 | ||
1 | Резистор 33к (оранжевый — оранжевый — оранжевый) | R6 | ||
1 | резистор 10 кОм (коричневый — черный — оранжевый) | R5 | ||
1 | Резистор 4к7 (желтый — фиолетовый — красный) | R8 | ||
1 | Резистор 1к (коричневый — черный — красный) | R3 | ||
1 | Конденсатор 100 мкФ | C1 | Электролитический конденсатор, 16 В или более | Конденсатор |
1 | LM741 | U1 | LM741 ИС операционного усилителя (8-контактный DIP) | Полупроводники |
1 | PN2222 или KSP2222 | 1 квартал | Транзистор NPN | |
1 | 1N4148 | D2 | Диод | |
1 | светодиод | D1 | Э.грамм. 5мм белый светодиод | |
1 | LDR | R4 | LDR (светозависимый резистор) | LDR |
Вы можете помочь сайту Starting Electronics, сделав пожертвование:
Любое пожертвование приветствуется и используется для оплаты текущих расходов этого веб-сайта. Нажмите кнопку ниже, чтобы сделать пожертвование.
Чтобы регулировать уровень освещенности, при котором включается светодиод, вам также понадобится подстроечный резистор 100k.
Принципиальная схемаВключены две принципиальные схемы. На первой схеме показана автоматическая схема освещения, использующая фиксированный уровень освещенности для автоматического включения светодиода. Вторая схема добавляет подстроечный резистор, чтобы регулировать уровень включения светодиода.
Схема автоматической световой цепи с фиксированным порогом срабатывания
Автоматическая световая цепь с регулируемым порогом срабатывания
Создание схемы
Микросхема LM741 размещена в 8-контактном DIP-корпусе, поэтому к ней применима обычная нумерация контактов DIP-микросхемы.При использовании яркого светодиода разместите светодиод подальше от LDR. Фотография готовой макетной платы представлена ниже. Щелкните фото, чтобы увеличить изображение.
Вы можете помочь сайту Starting Electronics, сделав пожертвование:
Любое пожертвование приветствуется и используется для оплаты текущих расходов этого веб-сайта. Нажмите кнопку ниже, чтобы сделать пожертвование.
Эксплуатация цепи
Закройте LDR светом, и светодиод включится.Если вы построили схему с подстроечным горшком, отрегулируйте подстроечный резистор так, чтобы светодиод загорелся при желаемом уровне освещенности. Сделайте это, накрыв LDR так, чтобы достичь желаемого уровня света. Теперь регулируйте подстроечный резистор, пока не загорится светодиод.
Держите светодиод подальше от LDR. Если свет от светодиода достаточно яркий и достигает LDR, тогда схема отключится, потому что будет достаточно света, достигающего LDR. После выключения схемы свет от светодиода больше не будет достигать LDR, что приведет к тому, что схема снова включит светодиод.Схема будет продолжать «колебаться», как это, до тех пор, пока не будет достаточно окружающего света или пока свет от светодиода не сможет достичь LDR.
Цепь переключателя, активируемого светом, с использованием датчика LDR
Введение
В этом проекте я покажу вам, как построить простую цепь переключателя, активируемого светом, с использованием LDR. Используя эту схему, можно управлять электрическим устройством или прибором, например, лампочкой или вентилятором, в зависимости от интенсивности света вблизи цепи.
Принцип, лежащий в основе схемы
Основной принцип этой схемы основан на работе датчика LDR, то есть светозависимого резистора, и включения или выключения света в зависимости от интенсивности освещения, которому подвергается LDR.
Говоря о светозависимом резисторе, он будет иметь высокое сопротивление в темноте и низкое сопротивление в присутствии света. Это свойство LDR используется в схеме компаратора.
Более подробную информацию можно найти в рабочем.
Также прочтите соответствующий пост: Однозначная схема переключателя ночника
Схема цепи переключателя с активированным освещением
Компоненты цепи
- LM358 Компаратор IC
- Релейный модуль
- LDR резистор
- Сопротивление света
- Потенциометр 20 кОм
- Лампа
- Соединительные провода
- Миниатюрная макетная плата
- Источник питания 5 В
Конструкция цепи переключателя с активированным светом
Цепь переключателя с активированным светом в основном состоит из двух компонентов: компаратора IC LM358 и LDR.Микросхема LM358 имеет 8 контактов и может иметь напряжение питания от 3 до 32 вольт. Он имеет два операционных усилителя с внутренней частотной компенсацией.
В данной схеме используется только один операционный усилитель для сравнения входных напряжений. Из восьми контактов LM358 контакты 1, 2 и 3 используются первым операционным усилителем, а контакты 5, 6 и 7 используются вторым операционным усилителем.
Контакты 4 и 8 являются общими для обоих операционных усилителей, поскольку они являются контактами GND и VCC. Поскольку я использую только один операционный усилитель (первый), я спроектирую схему с использованием контактов 1, 2, 3, 4 и 8.
Вывод 3 — инвертирующий вывод операционного усилителя. Его вход обеспечивается комбинацией светозависимого резистора (LDR) и резистора 10 кОм. Контакт 2 является неинвертирующим контактом, и его вход подается с потенциометра. Контакт 8 подключен к питающему напряжению + 5В, а контакт 4 подключен к земле.
ПРИМЕЧАНИЕ:
- Светозависимый резистор имеет высокое значение сопротивления в темноте, и по мере увеличения интенсивности света, падающего на резистор, его значение сопротивления уменьшается.
- Здесь используется светозависимый резистор 2 МОм. Он имеет значение сопротивления от 2 кОм до 2 МОм.
Также прочтите соответствующий пост: Автоматический контроль яркости светодиодов высокой мощности
Выход операционного усилителя, то есть его контакт 1, подключен к контакту IN модуля реле. Поскольку я использовал релейный модуль на 5 В, его контакты Vcc и GND подключены к + 5 В и GND соответственно.
Что касается подключения лампы, то здесь есть три контакта для подключения нагрузки к реле.Это: нормально открытый NO, нормально закрытый NC и COM.
Первоначально контакт COM подключен к нормально замкнутому, т.е. NC контакту. Когда реле активировано, т.е. на катушку реле подается соответствующее напряжение, контакт COM подключается к нормально разомкнутому контакту.
Следовательно, подключите один конец лампочки к контакту COM реле, а другой — к одному проводу источника питания переменного тока. Другой провод сетевого питания подключается к нормально разомкнутому контакту реле.
ВНИМАНИЕ: При работе от сети переменного тока необходимо проявлять особую осторожность. Рекомендуется наблюдение со стороны взрослых или специалиста.
Рабочий
Работа этого проекта очень проста, и на самом деле, если вы знакомы с LDR и компаратором, то вы, возможно, уже поняли принцип работы.
Когда свет падает на светозависимый резистор, компаратор сравнивает напряжения на неинвертирующем выводе и инвертирующем выводе операционного усилителя. Если напряжение на неинвертирующем выводе больше, чем напряжение на инвертирующем выводе, его выход будет НИЗКОМ, а если напряжение на неинвертирующем выводе меньше, чем напряжение на инвертирующем выводе, выход компаратора будет ВЫСОКИЙ.
В моем случае при нормальном освещении в помещении мощность операционного усилителя НИЗКАЯ, и, следовательно, лампочка остается выключенной. Когда я освещаю LDR (с помощью небольшого фонарика), выход операционного усилителя становится ВЫСОКИМ, и лампочка включается.
Видео моделирования цепи переключателя, активируемого светом
Как управлять этой цепью переключателя, активируемым светом?
- Сначала последовательно подключите лампочку переменного тока к реле.
- Теперь подключите источник питания к цепи.
- Теперь отрегулируйте свет, падающий на светозависимый резистор с помощью фонарика.
- Когда фонарь находится далеко от LDR, лампочка не горит.
- Когда вы поднесете фонарик к LDR, загорится лампочка.
Связь со старым выходным видео
Применение схемы переключателя с активированным светом
- Эту схему можно использовать в приложениях безопасности, например, когда на LDR темно, она перестает светиться.
- Может использоваться в приложениях, где свет включается / выключается в зависимости от окружающего освещения
NU WAVES LTD., Мидлтаун, Огайо, Огайо 45044-3269
Продукты и услуги
NuWaves — это компания, занимающаяся проектированием и разработкой радиочастотных и беспроводных устройств. Современные исследования и разработки в области RF Engineering от концепции до производства.
радиотехника, радиотехника, радиочастотный консалтинг, радиочастотная телеметрия, радиочастотное проектирование, радиочастотная продукция, конструкция усилителя мощности, хилна, радиочастотное проектирование, беспроводное проектирование, латр, ан / уры-5, телеметрический передатчик, дод электроника, военные электронные системы дизайн, беспроводные трансиверы, радиочастотные трансиверы, телеметрические радиоприемники, услуги по проектированию радиочастот, радиочастотные трансиверы связи, радиочастотные, радиочастотные трансиверы, проектирование радиочастотных передатчиков, радиочастотных приемников, радио seiwg, радиочастотных усилителей мощности, радиочастотных синтезаторов, радиочастотных модуляторов, консалтинг в области радиочастотных проектов, радиочастотные трансиверы , распространение радиочастот, радиостанции ОВЧ, радиостанции УВЧ, беспроводные передатчики, связь с трансивером, детектор vswr, разводка печатных плат радиочастот, управление проектами радиочастот, проектирование радиочастотной связи, дальность слежения за большой площадью, latr, latr ssa, эмулятор r3, эмулятор r-cubed, r -cubed, деятельность по поддержке системы, проектирование испытательного стенда, поддержка латр, транспондер r3, an / ury-4, r-cube, hilna, lna, передатчик телеметрии, mmuppt, timter, cris, rf systems, эксплуатация радиосигнала, инженерное проектирование ser пороки, моделирование радиочастотных схем, изготовление радиочастотных схем, инженерия Nuwaves, услуги технического проектирования
Nuwaves Engineering — ведущий поставщик радиочастотных систем, подсистем, радиочастотных продуктов и услуг по инженерному проектированию: разработка радиочастотных продуктов, распространение радиочастот, проектирование телеметрических приемопередатчиков, услуги проектирования радиочастот, трансиверы, передатчики, приемники, seiwg, программно определяемые радиотюнеры, ВЧ, ВЧ усилители мощности, ВЧ синтезаторы, ВЧ модуляторы, интерфейсы, приемопередатчики seiwg, ВЧ PA, УКВ приемопередатчик, УВЧ приемопередатчик, беспроводная связь, СВЧ радио, распространение ВЧ, Разработка РЧ печатных плат, Консультации по ВЧ дизайну
Специальное оборудование
NuWaves разрабатывает индивидуальные решения, включая приемники, трансиверы, усилители мощности, радиочастотные тюнеры, фильтры, усилители и другие высококачественные радиочастотные продукты.
Ключевые слова
- Связь
- Дизайнерские услуги
- Rf
- РФ Инжиниринг
- Беспроводной
- Схемотехника
- Аппаратное обеспечение связи
- Усилители мощности
- Ресиверы
- Приемопередатчики
- Преобразователи
- Инжиниринговые услуги
- R&D
- Исследования
- Развитие
- RF Консультанты
- Инженерное дело
- Консультанты
- Электронный
Интеграция и проверка приемника телескопа с большой апертурой (LATR)
Аннотация
Обсерватория Саймонса (SO) будет наблюдать космический микроволновый фон (CMB) от Серро Токо в пустыне Атакама в Чили.Обсерватория состоит из трех 0,5-метровых телескопов с малой апертурой (SAT) и одного 6-метрового телескопа с большой апертурой (LAT), охватывающих шесть полос частот, расположенных в диапазоне 30, 40, 90, 150, 230 и 280 ГГц. Наблюдения SO изменят наше понимание нашей Вселенной, охарактеризовав свойства ранней Вселенной, измерив количество релятивистских видов и массу нейтрино, улучшив наше понимание эволюции галактик и ограничив свойства космической реионизации. 1 В качестве важного инструмента приемник телескопа с большой апертурой (LATR) разработан для охлаждения ~ 60 000 датчиков с переходной кромкой (TES) 2 до <100 мК на 1.Фокальная плоскость диаметром 7 м. Беспрецедентный масштаб LATR обусловливает сложную конструкцию. 3-5 В этой статье мы сначала сделаем обзор конструкции LATR. Подробно обсуждается интеграция и проверка конструкции LATR, включая механическую прочность, оптическое выравнивание и криогенные характеристики пяти криогенных ступеней (80 К, 40 К, 4 К, 1 К и 100 мК). Мы также обсудим систему считывания с микроволновым мультиплексированием (μMux), реализованную в LATR, и продемонстрируем работу темных прототипов болометров TES.Технология считывания μMux позволяет одному коаксиальному шлейфу считывать Ο (10 3 ) детекторов TES. Его реализация в LATR служит важной проверкой для сложной конструкции радиочастотной цепи. Успешная проверка производительности LATR является не только важной вехой в обсерватории Саймонса, но и является ценным справочным материалом для других экспериментов, например CCAT-prime 6 и CMB-S4. 7, 8
Презентация конференции
© (2020) АВТОРСКОЕ ПРАВО Общество инженеров по фотооптическому приборостроению (SPIE).Скачивание тезисов разрешено только для личного использования.
Libero SoC v12.0 и выше
Загрузки
Мешает ли текущее ограничение доступа / Работа из дома вашей возможности получить доступ к лицензии Libero в сети вашей организации? Мы предлагаем бесплатную 60-дневную временную локальную работу Libero SoC с домашними лицензиями всем подписчикам уровня Gold и Platinum! Для начала следуйте инструкциям, приведенным в документе «Как подать заявку и установить временную лицензию Libero». Посетите страницу Libero SoC v11.9 или более раннюю, чтобы загрузить Libero SoC v11.9 и его пакет обновления, а также более ранние версии.Сократите время разработки FPGA в 5 раз с помощью высокоуровневого компилятора синтеза Microchip. Чтобы узнать больше, нажмите здесь.
Компания Microchip представила новую схему нумерации версий для Libero SoC Design Suite. Релизы Libero SoC Design Suite теперь разделены на два числовых сегмента, которые указывают информацию о выпуске.Первая цифра соответствует году выпуска программного обеспечения, а вторая цифра — это версия выпуска. Libero SoC Design Suite v2021.1 — первый выпуск с таким форматом. Нет никаких изменений в схеме проектирования между Libero SoC Design Suite v12.x и Libero SoC Design Suite v202x.x.
Программное обеспечение Libero SoC v2021.2 (17.08.21)
Этот выпуск поддерживает только семейства PolarFire SoC, PolarFire, RT PolarFire, SmartFusion2, IGLOO2 и RTG4. Прочтите примечания к выпуску, чтобы узнать о поддерживаемых новых функциях, улучшениях и известных проблемах.
Важное примечание:
Программное обеспечение Libero SoC v2021.1 (14.04.21)
Этот выпуск поддерживает только семейства PolarFireSoC, PolarFire, RT PolarFire, SmartFusion2, IGLOO2 и RTG4. Прочтите примечания к выпуску, чтобы узнать о поддерживаемых новых функциях, улучшениях и известных проблемах.
Важное примечание:
Либеро SoC v12.6 Программное обеспечение (11.12.20)
Этот выпуск поддерживает только семейства PolarFire SoC, PolarFire, RT PolarFire, SmartFusion2, IGLOO2 и RTG4. Прочтите примечания к выпуску, чтобы узнать о поддерживаемых новых функциях, улучшениях и известных проблемах.
Важное примечание:
Libero SoC v12.5 SP1 Программное обеспечение (05.11.20)
Этот выпуск поддерживает только семейства PolarFire SoC, PolarFire, SmartFusion2, IGLOO2 и RTG4.Прочтите примечания к выпуску, чтобы узнать о поддерживаемых новых функциях, улучшениях и известных проблемах.
Важное примечание:
Программное обеспечение Libero SoC v12.5 (08.09.20)
Этот выпуск поддерживает только семейства PolarFire SoC, PolarFire, RT PolarFire, SmartFusion2, IGLOO2 и RTG4. Прочтите примечания к выпуску, чтобы узнать о поддерживаемых новых функциях, улучшениях и известных проблемах.
Важное примечание:
Либеро SoC v12.4 Программное обеспечение (16.04.20)
Этот выпуск поддерживает только семейства PolarFire, SmartFusion2, IGLOO2 и RTG4. Прочтите примечания к выпуску, чтобы узнать о поддерживаемых новых функциях, улучшениях и известных проблемах.
- Примечания к выпуску Libero SoC v12.4
- Загрузите Libero SoC v12.4 для Windows.
- При запуске веб-установщика Libero SoC v12.5 через медленное подключение к Интернету программа установки может занять много времени и зависнуть или зависнуть. Рекомендуем дождаться завершения установки.Для более быстрой установки — Установите «Загрузить установщик Libero SoC v12.5 (Windows) (6,7 ГБ)».
Важное примечание:
Программное обеспечение Libero SoC v12.3 (10.12.19)
Этот выпуск поддерживает только семейства PolarFire, SmartFusion2, IGLOO2 и RTG4. Прочтите примечания к выпуску, чтобы узнать о поддерживаемых новых функциях, улучшениях и известных проблемах.
Либеро SoC v12.2 Программное обеспечение (24.09.19)
Этот выпуск поддерживает только семейства PolarFire, SmartFusion2, IGLOO2 и RTG4. Прочтите примечания к выпуску, чтобы узнать о поддерживаемых новых функциях, улучшениях и известных проблемах.
Программное обеспечение Libero SoC v12.1 (18.04.19)
Этот выпуск поддерживает только семейства PolarFire, SmartFusion2, IGLOO2 и RTG4. Прочтите примечания к выпуску, чтобы узнать о поддерживаемых новых функциях, улучшениях и известных проблемах.
- Для пользователей, работающих в автономном режиме с Libero SoC v12.1, необходимо установить Mega Vault v12.1 для Windows или Mega Vault v12.1 для Linux
- Необходимо обновить серверы с плавающей лицензией: Библиотека FlexLM, установленная с Libero SoC v12.0 (или более поздней версии), обновлена до v11.16.1. На серверах с плавающей лицензией демоны lmgrd и actlmgrd должны быть обновлены до v11.16.1 для Libero SoC v12.0 (или более поздней версии), чтобы можно было получить плавающую лицензию.Обновленные демоны доступны на странице лицензирования. Эти последние демоны обратно совместимы с более ранними версиями Libero SoC .
- Средам Linux требуются дополнительные пакеты. : Libero SoC v12.0 (или более поздняя версия) в Linux требует установки дополнительных пакетов в Linux. Подробности см. В документе «Как настроить среду Linux для Libero SoC v12.0».
Программное обеспечение Libero SoC v12.0 (23.01.19)
Этот выпуск поддерживает только семейства PolarFire, SmartFusion2, IGLOO2 и RTG4.Прочтите примечания к выпуску, чтобы узнать о поддерживаемых новых функциях, улучшениях и известных проблемах.
- Семейство FPGA PolarFire теперь поддерживается Libero SoC Design Suite v12.0
- Для пользователей, работающих в автономном режиме с Libero SoC v12.0, необходимо установить Mega Vault v12.0
- Необходимо обновить серверы с плавающей лицензией: Библиотека FlexLM, установленная с Libero SoC v12.0, обновлена до v11.16.1. На серверах с плавающей лицензией демоны lmgrd и actlmgrd должны быть обновлены до версии 11.16.1, чтобы Libero SoC v12.0 могла получить плавающую лицензию. Обновленные демоны доступны на странице лицензирования. Эти последние демоны обратно совместимы с более ранними версиями Libero SoC .
- Среды Linux требуют дополнительных пакетов : Libero SoC v12.0 в Linux требует установки дополнительных пакетов в Linux. Обратитесь к разделу «Как настроить среду Linux для Libero SoC v12».0 документ для подробностей.
Семейство PolarFire FPGA теперь поддерживается Libero SoC Design Suite v12.5.
Предыдущие версии Libero SoC доступны в версии
История выпускаЗагрузить автономное хранилище
Обратите внимание: Клиент портала Microsemi SoC будет недоступен во время технического обслуживания каждую пятницу с 20:45 по тихоокеанскому стандартному времени до 7:00 субботы по тихоокеанскому стандартному времени.