Трехфазный диодный мост принцип работы
Если для маломощных схем постоянного тока применяют однотактные или мостовые однофазные выпрямители, то для питания более мощных нагрузок необходимы порой выпрямители трехфазные.
Трехфазные выпрямители позволяют получать большие величины постоянных токов с малыми уровнями пульсаций выходного напряжения, что сказывается на снижении требований к характеристикам сглаживающего выходного фильтра. Итак, для начала рассмотрим однотактный трехфазный выпрямитель, изображенный на рисунке ниже:
В приведенной на рисунке однотактной схеме к выводам вторичных обмоток трехфазного трансформатора подключены всего три выпрямительных диода. Нагрузка присоединена к цепи между общей точкой, в которой сходятся катоды диодов, и общим выводом трех вторичных обмоток трансформатора.
Давайте теперь рассмотрим временные диаграммы токов и напряжений, имеющих место во вторичных обмотках трансформатора и на одном из диодов трехфазного однотактного выпрямителя:
Некоторым устройствам постоянного тока требуется большее напряжение питания, чем может дать однотактная схема, приведенная выше. Поэтому в некоторых случаях больше подходит схема трехфазного двухтактного выпрямителя. Принципиальная его схема приведена на рисунке ниже. Как мы уже отмечали, требования к фильтру снижаются, вы сможете увидеть это по диаграммам. Данная схема известна как трехфазный мостовой выпрямитель Ларионова:
Взгляните теперь на диаграммы и сравните их с однотактной схемой. Выходное напряжение в мостовой схеме легко представляется в виде суммы напряжений как бы двух однотактных выпрямителей, работающих в противоположных фазах. Напряжение Ud = Ud1+Ud2. Количество фаз на выходе очевидно больше и частота пульсаций сети больше.
В данном конкретном случае — шесть фаз постоянного напряжения вместо трех, которые были в однотактной схеме. Вот почему требования к сглаживающему фильтру снижаются, и в некоторых случаях без него можно полностью обойтись.
Три фазы обмоток вкупе с двумя полупериодами выпрямления дают основную частоту пульсаций равную шестикратной частоте сети (6*50 = 300). Это видно по диаграммам напряжений и токов.
Мостовое включение можно рассмотреть как объединение двух однотактных трехфазных схем с нулевой точкой, причем диоды 1, 3 и 5 — это катодная группа диодов, а диоды 2, 4 и 6 — анодная группа. Два трансформатора будто бы объединены в один. В каждый момент прохождения тока через диоды — в процессе участвуют одновременно два диода — по одному из каждой группы.
Открывается катодный диод, к которому приложен более высокий потенциал относительно анодов противоположной группы диодов, и в анодной группе открывается именно тот из диодов, потенциал к которому приложен более низкий по отношению к катодам диодов катодной группы.
Переход рабочих промежутков времени между диодами происходит в моменты естественной коммутации, диоды работают по порядку. В итоге потенциал общих катодов и общих анодов может быть измерен по верхней и нижней огибающим графиков фазных напряжений (см. диаграммы).
Мгновенные значения выпрямленных напряжений равны разности потенциалов катодной и анодной групп диодов, то есть сумме ординат на диаграмме между огибающими. Выпрямленный ток вторичных обмоток показан на диаграмме для активной нагрузки.
Таким же образом можно получить от трехфазного трансформатора более шести фаз постоянного напряжения: девять, двенадцать, восемнадцать и даже больше. Чем больше фаз (чем больше пар диодов) в выпрямителе, тем меньше уровень выходных пульсаций напряжения. Вот, взгляните на схему с 12 диодами:
Здесь трехфазный трансформатор содержит две трехфазные вторичные обмотки, причем одна из групп объединена в схему «треугольник», вторая — в «звезду». Количества витков в обмотках групп отличаются в 1,73 раза, что позволяет получить со «звезды» и с «треугольника» одинаковые величины напряжения.
В данном случае сдвиг фаз напряжений в этих двух группах вторичных обмоток относительно друг друга получается равен 30°. Поскольку выпрямители включены последовательно, то выходное напряжение суммируется, и на нагрузке частота пульсаций оказывается теперь в 12 раз большей по отношению к сетевой частоте, при этом уровень пульсаций получается меньшим.
В подавляющем большинстве блоков питания для выпрямления переменного электрического тока используются диодные мосты. Рассмотрим диодный мост, схема включает в себя только 4 диода. На принципиальной схеме, диодный мост обозначают как квадрат повернутый на 45 градусов в центре квадрата на одной из диагоналей чертят диод, катод ближе к положительному выходу моста, анод ближе к отрицательному выходу моста. Оставшиеся две вершины квадрата являются входами переменного напряжения.
Рисуя схему моста достаточно помнить, что от каждого входа приходят к «+» выходу два диода, прием анод подключается на вход, а катод на выход. Тоже и с отрицательным выходом, только к выходу подключаются аноды диодов.
Принцип работы диодного моста
Представим, что на вход диодного моста подается переменное напряжение и в текущий момент на верхнем по рисунку входе присутствует положительный потенциал, то диоды VD2 и VD3 откроются так как к к ним приложено положительное напряжение (на рисунке путь тока показан линией красного цвета), а VD1 и VD4 будут заперты обратным напряжением. При обратной полярности входного напряжения ток потечет от нижнего входа через VD4, нагрузку и VD1 (на рисунке путь тока показан синим цветом), а VD2 и VD3 будут заперты обратным напряжением.
Получается положительный выход будет соединен с тем входом диодного моста, на котором в данный момент присутствует положительный потенциал, а отрицательный выход с тем входом на котором отрицательный потенциал.
Трехфазный диодный мост схема
Рассмотренный нами диодный мост используется для однофазного выпрямления, его и называют однофазным мостом. Для выпрямления переменного электрического тока в трехфазных сетях используют трехфазный диодный мост.
Он состоит из 6 диодов, по паре диодов на каждую фазу. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Оставшаяся фаза ни к чему не подключена. Если в однофазном мосте проводили ток два диода из четырех, то тут тоже проводят ток 2 диода, а 4 при этом заперты.
Диодный мосты выпускаются как законченные компоненты, но если нет в наличии такой детальки, то можно использовать 4 отдельных диода включенных по схеме диодного моста.
Для плат с поверхностным монтажом удобно использовать сдвоенные диоды. Например из двух диодных сборок BAT54S или BAV99 получается полноценный диодный мост.
Зачастую использование двух сборок из двух диодов оказывается дешевле, чем использование диодного моста из четырех диодов в одном корпусе или четырех диодов по отдельности.
8 thoughts on “ Диодный мост схема, принцип работы ”
Как будет выглядеть синусоида, при полключении двух фаз?
Вопрос на засыпку.
Подключение 3-х диодных мостов к трем фазам с общей нейтралью. То есть на каждом диодном мосту есть N и L1, N и L2, N и L3 по 220 вольт. На выходе с мостов делитель на 100 и конденсатор на общей минусовой земле.
Я считал что нет фазы и нет выходного напряжения с диодного моста, но это не так.
Надеюсь правильно представил себе эту схему… Если объединить минусы хотя бы 2-х диодных мостов, то получим межфазное короткое замыкание через диоды.
Если было там КЗ меж фаз, то диоды 1n4007 (1А, 1000 В) испарились бы в пыль. Значит КЗ там скорее всего нет.
Если бы было замыкание был бы бабах, а его не и все работает только криво.
сколько постоянки будет на выходе с моста при условии ровнячка 220 в на фазе?
Если не применять фильтры то после однофазного диодного моста не будет постоянного напряжения, будет однополярное. Если поставить конденсатор сглаживающий пульсации, то можно добиться напряжения : входное напряжение умножить на корень из 2, минус двойное падение на диодах (это около 2 В).
Например для схемы треугольник-Ларионова среднее выходное составить 1,35 от действующего входного. А для звезды-Ларионова коэффициент равен 2,34.
Давайте немного уточним терминологию — тогда после реального конденсатора тоже не будет постоянного напряжения. Во всех случаях (даже после однофазного диодного моста) будет постоянная составляющая и переменная. При этом постоянная составляющая будет в первом случае, вроде, равна половине действующего напряжения минус падение на диоде (в количественной оценке могу ошибаться, лень считать)». А переменная во втором случае будет значительно меньше: тем меньше, чем больше приближение реального конденсатора к идеальному бесконечной емкости (при реальном источнике напряжения).
Определение
Диодный мост – это схемотехническое решение, предназначенное для выпрямления переменного тока. Другое название – двухполупериодный выпрямитель. Строится из полупроводниковых выпрямительных диодов или их разновидности – диодов Шоттки.
Мостовая схема соединения предполагает наличие нескольких (для однофазной цепи – четырёх) полупроводниковых диодов, к которым подключается нагрузка.
Стоит отметить, что несколько совмещенных в одном корпусе вентилей, которые соединены не по мостовой схеме, называют диодными сборками.
В зависимости от сферы применения и схемы подключения диодные мосты бывают:
Обозначение на схеме может быть выполнено в двух вариантах, какое использовать УГО на чертеже зависит от того, собирается мост из отдельных элементов или используется готовый.
Принцип действия
Давайте разбираться, как работает диодный мост. Начнем с того, что диоды пропускают ток в одном направлении. Выпрямление переменного напряжения происходит за счет односторонней проводимости диодов. За счет правильного их подключения отрицательная полуволна переменного напряжения поступает к нагрузке в виде положительной. Простыми словами – он переворачивает отрицательную полуволну.
Для простоты и наглядности рассмотрим его работу на примере однофазного двухполупериодного выпрямителя.
Принцип работы схемы основам на том, что диоды проводят ток в одну сторону и состоит в следующем:
- На вход диодного моста подают переменный синусоидальный сигнал, например 220В из бытовой электросети (на схеме подключения вход диодного моста обозначается как AC или
).
Положительную полуволну пропускают диоды VD1, VD3, а отрицательную — VD2 и VD4. Сигнал на входе и выходе схемы вы видите ниже.
Такой сигнал называется – выпрямленное пульсирующее напряжение. Для того, чтобы его сгладить, в схему добавляется фильтр с конденсатором.
Основные характеристики
Рассмотрим основные характеристики полупроводниковых диодов. Латинскими буквами приведено их обозначение в англоязычной технической документации (т.н. Datasheet):
- Vrpm – пиковое или максимальное обратное напряжение. При превышении этого напряжения pn-переход необратимо разрушается.
- Vr(rms) – среднее обратное напряжение. Нормальное для работы, то же что и Uобр в характеристиках отечественных компонентов.
- Io – средний выпрямленный ток, то же что и Iпр у отечественных.
- Ifsm – пиковый выпрямленный ток.
- Vfm – падение напряжения в прямом смещении (в открытом проводящем состоянии) обычно 0.6-0.7В, и больше у высокотоковых моделей.
При ремонте электронной техники и блоков питания или их проектировании новички спрашивают: как правильно выбрать диодный мост?
В этом случае самыми важными для вас параметрами будут обратное напряжение и ток. Например, чтобы подобрать диодный мост на 220В, нужно смотреть на модели с номинальным напряжением больше 400В и нужный ток, например, KBPC106 (или 108, 110). Его технические характеристики:
- максимальный выпрямленный ток – 3А;
- пиковый ток (кратковременно) – 50А;
- обратное напряжение – 600В (800В, 1000В у KBPC108 и 110 соответственно).
Запомните эти характеристики и вы легко сможете определить, какой выбрать вариант по каталогу.
Схемы выпрямителей
Выпрямление тока в блоках питания – основное назначение, среди других компонентов схемы можно выделить входной фильтр, который подключают после выпрямителя – он предназначен для сглаживания пульсаций. Давайте разберемся в этом вопросе подробнее!
В первую очередь стоит отметить, что диодным мостом называют схему однофазного выпрямителя из 4 диодов или трёхфазного из 6. Но любители часто так называют схему выпрямителя со средней точкой.
У двухполупериодного выпрямителя к нагрузке поступает две полуволны, а у однополупериодного – одна.
Чтобы не было путаницы, давайте разбираться в терминологии.
Ниже вы видите однофазную двухполупериодную схему, её правильное название «Схема Гретца», именно её чаще всего подразумевают под названием «диодный мост».
Схема Ларионова – трёхфазный диодный мост, на выходе сигнал двухполупериодный. Диоды в нём пропускают полуволны, открываясь на линейное напряжение, т.е. поочередно: верхний диод фазы A и нижний диод фазы B, верхний фазы B и нижний фазы C и т.д.
Для полноты картины следует рассказать и о других схемах выпрямителей переменного напряжения.
Однополупериодный выпрямитель из 1 диода, включенного последовательно с нагрузкой. Применяется в балластных блоках питания, маломощных миниатюрных блоках питания, а также в приборах, нетребовательных к коэффициенту пульсаций. К нагрузке поступает только одна полуволна.
Двухполупериодный со средней точкой – это и есть то, что ошибочно называют мостом из 2 диодов. Здесь каждую полуволну проводит только один диод. Её преимуществом является больший КПД, чем у схемы Гретца, за счет меньшего числа полупроводниковых вентилей. Однако её использование осложнено тем, что нужен трансформатор с отводом от средней точки, что отражено на схеме принципиальной. Её нельзя использовать для выпрямления сетевого напряжения 220В.
Выпрямитель из сборок Шоттки. Используется в импульсных блоках питания, потому что у диодов Шоттки меньше время обратного восстановления, малая барьерная ёмкость (быстрее переход из открытого состояния в закрытое) и малое прямое падение напряжения (меньше потерь). Чаще всего Шоттки встречаются в сборках, с общим анодом или катодом, как изображено на рисунке ниже.
Поэтому для сборки схемы моста потребуется несколько сборок. Ниже приведен пример из 3 сборок Шоттки с общим катодом.
Из 4 сборок с общим катодом. Отличается от предыдущей тем, что выдерживает больший ток, при тех же компонентах потому, что Шоттки в ней соединены параллельно.
Из 2 сборок Шоттки – одна с общим анодом и одна с общим катодом. Узнать о том, что такое анод и катод, вы можете в нашей отдельной статье.
Как спаять и подключить
Изучать и знать схемы не сложно, основные трудности возникают, когда новичок решает спаять диодный мост своими руками. Для пайки выпрямителя из 4 советских экземпляров типа кд202 используйте иллюстрацию приведенную ниже.
Для сборки диодного моста из современных дискретных диодов типа маломощных 1n4007 (и других – все выглядят аналогично и отличаются только размерами) внимательно посмотрите на следующую иллюстрацию.
Но если вы не собираете его из отдельных деталей, а используете готовый мост, то смотрите ниже, как правильно подключить его в цепь.
Также новичкам будет интересно посмотреть видео о том, как сделать простейший блок питания на 12В:
Область применения и назначение
Чаще всего диодные мосты используют в блоках питания. В трансформаторных БП они подключаются ко вторичной обмотке трансформатора
В импульсных БП – ко входу сети 220В. При этом электронная схема управления и силовая цепь ИБП питается от выпрямленного и сглаженного (не всегда) сетевого напряжения (достигает порядка 300-310 Вольт).
На выводах вторичной обмотки импульсного блока питания высокочастотное переменное напряжение. Для того, чтобы его выпрямить, устанавливают сборки из сдвоенных диодов Шоттки. В связи с этим часто используют схему выпрямления со средней точкой.
В автомобилях и мотоциклах используются трёхфазные диодные мосты, собранные по схеме Ларионова с тремя дополнительными вентилями, потому что для питания бортовой сети используется трёхфазный генератор. Мост в генераторе выполняется в виде сектора окружности и устанавливается на его задней части.
Исключение составляют некоторые современные автомобили Toyota и прочих марок, в них используют 6 фазный генератор, для реализации двенадцатипульсной схемы выпрямления из 12 вентилей. Это нужно для снижения пульсации и увеличения выходного тока.
Способы проверки
Для проверки диодного моста лучше всего подходит мультиметр в режиме проверки диодов.
Для этого нужно прозвонить на короткое замыкание входную, затем выходную (диодный мост должен быть выпаян).
Не выпаивая прямо на плате, вы можете измерить падение напряжения на переходах диодов. Для этого нужно определить цоколевку моста, обычно она указывается прямо на корпусе, что мы и рассматривали выше.
На экране мультиметра в прямом смещении должно отображаться цифры в пределах 500-800 мВ, а в обратном – выше 1500 и до бесконечности (зависит от конкретного компонента и измерительного прибора). Тоb же самое можно сделать в режиме Омметра, как показано на рисунке ниже.
Более подробно этот процесс описан в статье «как проверить диодный мост», где кроме методики проверки мы рассказали и о признаках неисправности. Также ознакомьтесь с видео о том, как проверить однофазный выпрямитель и диодный мост автомобильного генератора:
На этом мы и заканчиваем наше подробное объяснение. Надеемся, теперь вам стало понятно, для чего нужен диодный мост и что он делает в электрической цепи. Если возникли вопросы, задавайте их в комментариях под статьей!
Схема двухполупериодного (полноволнового) выпрямителя напряжения
Обычное питание от распределительной сети предполагает переменное напряжение. Это напряжение можно легко настроить на желаемый уровень, пользуясь встроенными или внешними трансформаторами. Однако многие электронные компоненты, например, электролитические конденсаторы, светодиоды, диодные элементы и транзисторы не предназначены для работы на переменном токе. Для управления цепями с такими компонентами переменное напряжение необходимо преобразовывать в соответствующее постоянное. Для этого служат выпрямители.
Выпрямитель тока
Полуволновой выпрямитель
Для создания выпрямителей требуются элементы, пропускающие ток в одном направлении и блокирующие в другом. Раньше для этой цели использовались электронные лампы. Сейчас повсеместно применяются полупроводниковые диоды.
Простейший однофазный однополупериодный выпрямитель представляет собой обычный диод, подключенный последовательно с нагрузкой. Когда положительная полуволна синусоидального сигнала проходит через диод, он ее пропускает. Однако при перемене направления тока в другой полупериод диод запирается. В результате отрицательный полупериод токового сигнала блокируется, и остается пульсирующий ток, состоящий из положительных полуволн. Часть энергии будет потеряна. Кроме того, высокая пульсация сигнала часто становится неприемлемой для работы электронных схем.
Однофазный полуволновой выпрямитель
Можно использовать усовершенствованную схему однополупериодного выпрямителя, включив параллельно нагрузке конденсатор. Схема работает следующим образом:
- Если на полюсе источника присутствует положительное напряжение, диод проводит ток. Конденсатор заряжается полностью, а ток проходит через сопротивление нагрузки;
- Когда на полюсе источника появляется отрицательное напряжение, диод блокирует протекание тока. В этот момент конденсатор разряжается, поддерживая на короткий временной промежуток ток через сопротивление нагрузки.
Важно! Если резистор обладает большим сопротивлением, то ток будет маленький. Конденсатор разряжается медленно и поддерживает напряжение в основном до следующей смены полярности.
Полуволновое выпрямление с конденсатором
Такой однофазный однополупериодный выпрямитель с конденсатором имеет меньший уровень пульсации, однако его эффективность все равно оставляет желать лучшего.
Полноволновой выпрямитель
Преимущества двухполупериодного выпрямителя:
- Полуволновой выпрямитель обеспечивает только половину доступной энергии в волне переменного тока. Во время отрицательной части цикла напряжение может падать до нуля. Двухполупериодный выпрямитель сохраняет до 90% энергии;
- Диод работает как односторонний переключатель, позволяя току протекать только в одном направлении. Однако высокое обратное напряжение может разрушить диод. Из-за этого диоды откалиброваны на обратное напряжение. Полноволновой выпрямитель снижает требования по обратному пробою наполовину. Диоды с более низкой калибровкой дешевле, снижается стоимость всей схемы. Это относится к мостовым схемам;
- При применении двухполупериодного выпрямителя сигнал более плавный из-за лучшего сглаживания пульсаций.
Полноволновой выпрямитель с нулевым выводом
Двухполупериодная схема выпрямителя преобразует оба полуцикла переменного сигнала в импульсный сигнал однонаправленного тока.
Для выпрямления сигнала используется трансформатор, вторичная обмотка которого поделена пополам. От средней точки сделан вывод и заземлен, то есть потенциал ее равен нулю. Промежуточный отвод является одним из выходов мощности, а другой выход образуется соединением каждого конца обмотки через соответствующие диоды.
Полноволновой выпрямитель с нулевой точкой
- Во время положительного полупериода входного переменного сигнала на одном конце обмотки появляется «плюс», а на другом – «минус». Диод, подключенный анодным выводом к «плюсу», пропускает токовый сигнал. А другой диод, на анодном выводе которого «минус», оказывается запертым. Ток, протекая по нагрузке, возвращается к центральной точке;
- Когда появляется отрицательная полуволна, полярность концов обмоток меняется. Соответственно, первый диод запирается, а второй – пропускает сигнал.
В результате по нагрузке проходит ток и в положительные полуциклы, и в отрицательные, но результирующий сигнал будет протекать в одном направлении. Величина постоянного напряжения будет составлять 0,9 от входного среднеквадратичного показателя и 0,637 – от максимального. Частота выходного сигнала увеличивается в два раза.
Можно получать другие значения выходного напряжения, если изменять коэффициент трансформации.
Важно! Двухполупериодный выпрямитель со средней точкой позволяет получить выпрямленный ток с низкими потерями мощности и с невысокой пульсацией, но применяемые трансформаторы дороги и имеют большие габариты по сравнению с диодными мостами.
Диодный мост
Схема двухполупериодного выпрямителя, называемая диодный мост, использует четыре диода, соединенных с образованием замкнутого контура, к одной стороне которого подсоединяется источник питания переменного тока, к другой – нагрузка.
Применяемая конфигурация позволяет работать поочередно на пропуск сигнала парам диодов, находящимся в противоположных плечах моста. В каждом случае создается положительная полуволна, а ток через нагрузку остается однонаправленным.
Диодный мост
Коэффициент пульсаций мостового выпрямителя составляет 0,48, аналогично другой схеме, с применением трансформатора.
Мостовая схема выпрямления проста и эффективна. Недостатком ее является падение напряжения на диодных элементах. Один из них обеспечивает падение напряжения в 0,7 В, второй – в 1,4 В. Этот дефект может существенно сказаться только на работе низковольтных схем.
Сглаживание пульсаций
Возможно улучшить сигнал двухполупериодного выпрямителя, применяя конденсаторы, которые повышают средний уровень выходного напряжения и делают его более плавным.
Во время первой полуволны конденсатор заряжается до максимума, а при снижении сигнала напряжение на нем не может быстро упасть. Разряд конденсатора происходит до определенного уровня, на котором поддерживается напряжение до зарядного импульса второй полуволны. При большей емкости конденсатора уровень поддерживаемого напряжения растет.
Трехфазный выпрямитель
Если вместо однофазного трансформатора использовать трехфазный, коэффициент пульсаций может быть уменьшен в значительной степени.
Важно! Существенным преимуществом трехфазной схемы является то, что выпрямленное напряжение не падает до нуля, даже если не используется сглаживающее устройство.
Мостовая схема однофазного двухполупериодного выпрямителя легко преобразуется в трехфазную. Схема выпрямления использует шесть диодов. Каждая фаза включается между парами диодов. Ток, протекающий через один диод, равен 1/3 нагрузочного тока. Выпрямленное напряжение превышает аналогичный показатель для трехфазного полуволнового выпрямителя, использующего три диодных элемента.
Трехфазная выпрямительная схема
Трехфазный тип расположения мостов является предпочтительным в различных применениях, хотя существуют схемы и с использованием разделенных вторичных обмоток трансформатора.
Использование двухполупериодного выпрямителя
Полноволновой выпрямитель широко используется в электронных схемах: радиоприемниках, телевизорах, компьютерах, видеооборудовании и других, где необходим источник питания с минимальным уровнем пульсаций.
Независимо от существования других форм выпрямителей, самый простой и часто применяемый – мостовой выпрямитель с четырьмя диодами и конденсатором. Два из них пропускают положительные половины циклов, другие два – отрицательные, а конденсатор отвечает за поддержание результирующего напряжения до момента изменения полярности ИП.
В схемах выпрямителей диоды могут быть полностью или частично заменены тиристорами, так что можно получить управляемую или полууправляемую систему выпрямления. Эти системы позволяют регулировать среднее значение напряжения на нагрузке. Замена диода на тиристор позволяет задержать открытие элемента, который пропускает ток, при подаче импульса на его управляющий электрод.
Выпрямительные схемы на мощных элементах применяют для установок электролиза, сварочных аппаратов, питания электротранспорта, прокатных станов, систем передачи электрической энергии на постоянном токе.
Видео
Оцените статью:Схема трехфазного диодного моста
Несмотря на то что в бытовых розетках, как известно, присутствует переменное напряжение величиной 220 В, подавляющее большинство электронных приборов требует намного меньших значений. Более того, это питание должно осуществляться не переменным, а постоянным током. Именно поэтому практически каждый бытовой прибор имеет в составе своей схемы выпрямитель — диодный мост.
Постоянный и переменный ток
Из учебного курса физики все знают, что электрический ток подразумевает протекание электрического заряда из одного проводника в другой. В отличие от постоянного тока, который действительно идет в одном направлении (от минуса к плюсу), переменный течет сначала в одну сторону, а затем — в другую. Если подключить к розетке осциллограф, можно получить схематическое изображение такого движения тока.
На рисунке представлена осциллограмма переменного тока, где по оси абсцисс показано время, а по оси ординат — напряжение. Из графика хорошо видно, что напряжение плавно нарастает до величины 220 В, потом уменьшается до нуля и нарастает до той же величины, но с противоположным знаком. Иными словами, напряжение в розетке постоянно меняет знак со скоростью 50 раз в секунду.
Для сравнения можно подключить щупы осциллографа к источнику постоянного тока. В качестве него могут использоваться клеммы батарейки. В этом случае картина будет несколько иная.
Осциллограмма постоянного тока, показанная на изображении, наглядно демонстрирует, как на протяжении всего времени напряжение на клеммах имеет постоянную величину. При замыкании цепи ток будет течь в одну сторону.
Особенности видов напряжения
Возникает закономерный вопрос о том, зачем в розетках используется переменный ток, если подавляющее большинство электронной аппаратуры питается постоянным током. Дело в том, что для питания узлов той или иной аппаратуры требуются напряжения разной величины. Процессор компьютера, например, питается 3 В, а мобильный телефон требует для своей зарядки целых 5 В. Усилителю музыкального центра нужно уже около 25 В.
Постоянное напряжение достаточно сложно трансформировать из одной величины в другую, а вот переменное — запросто. Для этого служат, к примеру, трансформаторы. Некоторые важные силовые узлы, такие как двигатели, все же нуждаются в переменном напряжении. Поэтому промышленные генераторы, питающие бытовые розетки, вырабатывают его до общепринятой величины (например, 220 В), а каждый прибор уже на месте получает из него то, что ему требуется.
Выпрямление электроэнергии
До конца XIX века преобразование переменного напряжения в постоянное было проблемой. С изобретением диода — сначала вакуумного, а позже и полупроводникового — ситуация в корне изменилась. Благодаря своим уникальным свойствам, диод отлично различает полярность и позволяет легко сортировать токи с нужным направлением. Сначала для этих целей использовались отдельные диоды, позже появились диодные мосты, обеспечивающие высокое качество выпрямления.
Выпрямитель на одном диоде
Диод проводит ток только в одном направлении, именно поэтому его и называют полупроводниковым прибором. Если к катоду устройства подключить плюс источника напряжения, а к аноду — минус, диод будет вести себя как обычный проводник. Если полярность изменить, то прибор закроется и превратится в диэлектрик. Для ответа на вопрос о том, что это даёт, придется собрать простейшую схему и снова вооружиться осциллографом.
На схеме изображена работа полупроводникового диода в цепи переменного тока. Осциллограмма слева показывает картину на выходе трансформатора — обычный переменный ток. После диода всё существенно меняется — на графике исчезает отрицательная полуволна переменного напряжения. Ток еще не стал постоянным, но он уже не переменный — движения электрического заряда в обратном направлении нет. Такой род тока принято называть пульсирующим. Им еще нельзя питать электронику, но изменения налицо. Остаётся сгладить пики импульсов. Это делают с помощью конденсаторов.
На схеме представлен однополупериодный выпрямитель со сглаживающим конденсатором. Во время положительного импульса напряжение не только питает нагрузку, но и одновременно заряжает конденсатор. Когда импульс заканчивается, конденсатор отдает накопленную энергию, сглаживая скачки напряжения.
Чем выше емкость конденсатора, тем больше энергии он сможет запасти, и тем больше напряжение будет походить на постоянное.
Двухполупериодный прибор
Несмотря на значительные успехи, достигнутые в преобразовании переменного тока в постоянный предыдущим экспериментом, результат ещё далек от идеала. Дело в том, что частота переменного тока довольно низкая (50 Гц), а навешивание сглаживающих конденсаторов имеет свои ограничения. Для того чтобы существенно улучшить форму выходного сигнала, нужно увеличить частоту.
Однако в розетках она строго фиксирована и не зависит от внешних факторов. Отрицательная полуволна напряжения срезается диодом. Поменять её полярность совсем несложно — достаточно лишь добавить несколько диодов, собрав мостовую схему. На рисунке представлен двухполупериодный выпрямитель на четырёх диодах, объясняющий то, как работает диодный мост:
При появлении положительной полуволны диоды VD2, VD3 окажутся включенными в прямом направлении и будут открыты. VD1, VD2 — закрыты. Полуволна свободно проходит к выходу выпрямителя. Когда напряжение сменит полярность, пары диодов поменяются местами — VD1 и VD4 откроются, VD2 и VD3 закроются. Отрицательная полуволна тоже пройдет к выходу, но поменяет полярность. В результате получится все то же импульсное однополярное напряжение, но частота его увеличится вдвое. Останется добавить сглаживающий конденсатор и посмотреть, что получится.
Двухполупериодный выпрямитель со сглаживающим конденсатором на изображении показывает, что поставленная задача решена: переменное напряжение преобразовано в постоянное. Конечно, постоянство неидеально — имеются пульсации, однако с ними можно бороться с помощью фильтров. К тому же любая электроника допускает ту или иную величину пульсаций.
Такая схема, состоящая из четырех диодов, стала классической и получила название диодного или выпрямительного моста. Существует отдельная категория электронных приборов — выпрямительные мосты. Они состоят из четырех диодов, соединенных между собой соответствующим образом. В качестве примера можно посмотреть на выпрямительный мост КЦ402Г и его электрическую схему.
Выпрямительный мост своими руками
Каждый, кто занимается конструированием электронных устройств, не обходится без выпрямителя. Он присутствует практически в каждом самодельном приборе, питаемом от сети. Для того чтобы собрать выпрямитель, недостаточно взять четыре диода и скрутить им ножки согласно приведенной схеме. Для того чтобы мост работал, придется ближе познакомиться с диодами и их характеристиками перед тем, как браться за паяльник. Основные характеристики, которые понадобятся при построении выпрямителя у полупроводников, следующие:
- Максимально допустимое обратное напряжение. Напряжение, которое способен выдерживать диод в закрытом состоянии.
- Максимально допустимый прямой ток. Ток, который может долговременно выдерживать диод без повреждения.
- Прямое напряжение. Величина падения напряжения на открытом диоде.
- Граничная частота. Частота переменного тока, на которой прибор еще может работать.
При сборке сетевого выпрямителя, способного отдавать в нагрузку ток в 1 А, необходимо сделать диодный мост на 12 вольт. Так выглядит практическая схема мостового выпрямителя.
Прежде всего, необходимо правильно всё рассчитать и подобрать нужный тип полупроводников, исходя из имеющихся диодов. Если в распоряжении есть диоды Д226, КД204А, КД201А и Д247, нужно открыть справочник и ознакомиться с их основными характеристиками (напряжением, током и граничной частотой):
- Д226 — 400 В, 0,3 А, 1 кГц;
- КД204А — 400 В, 0,4 А, 50 кГц;
- КД201А — 100 В, 5 А, 1,1 кГц;
- Д247 — 500 В, 10 А, 1 кГц.
Все четыре типа диодов подходят по напряжению и частоте, но первые два не выдержат ток в 1 А. Остаются КД201А и Д247. Решение взять те или другие зависит от конструкции блока питания. Первые диоды компактнее, вторые имеют хороший запас по току.
Сглаживающий конденсатор С1 нужно выбирать по типу, электрической емкости и напряжению. Понадобится электролитический конденсатор емкостью от 1 000 до 20 000 мкФ с рабочим напряжением не ниже 25 В. Чем выше емкость сглаживающего конденсатора, тем качественнее будет выпрямленное напряжение, но тем больше по габаритам окажется сама конструкция. Всю необходимую информацию, включая емкость, полярность и рабочее напряжение можно увидеть прямо на конденсаторе.
Осталось включить паяльник и спаять схему, не забывая при этом, что электролитические конденсаторы — полярные приборы. Они имеют плюс и минус, путать которые нельзя.
Выбор типа сборки
Использование выпрямительного моста вместо четырех диодов не только существенно упрощает сборку, но и делает конструкцию более компактной. Принцип выбора типа сборки тот же — по напряжению, току и частоте. Чтобы определить, подойдет ли, к примеру, сборка КЦ402Г, фото и схема которого приведены выше, нужно обратиться к справочнику. В нём указаны следующие характеристики моста:
- максимальное обратное напряжение диодов — 300 В;
- прямой ток всей сборки — 1 А;
- граничная частота — 5 кГц.
Мостик подходит, но микросборка будет работать на пределе своих возможностей по току. Для обеспечения надежности схемы лучше использовать более мощный прибор. Например, мост КЦ409А на ток 3 А или КЦ409И на 6 А.
Проверка элементов
Нередко в самодельных устройствах приходится использовать детали, уже бывшие в употреблении. Перед установкой все такие комплектующие должны быть проверены. Поскольку выпрямительная сборка представляет собой четыре диода, подключенных встречно-последовательно, а до выводов всех диодов можно добраться щупом, вопрос от том, как прозвонить диодный мост, решается элементарно.
Для этого достаточно измерить обычным омметром сопротивление каждого диода, ориентируясь на схему выпрямителя и цоколевку моста. В одной полярности щупов прибор должен показывать высокое сопротивление, в другой — низкое. Когда соответствующий диод пробит, в обоих положениях щупов сопротивление будет низким, если сгорел — высоким.
Использование барьера Шоттки
Еще одна основная характеристика, которая не использовалась в предыдущих расчетах, — прямое падение напряжения на открытом диоде. Диод только теоретически проводит ток в одну сторону, а диэлектрик — в другую. На практике в прямом подключении на приборе падает напряжение, которое может достигать 1,5 В и более.
Это значит, что напряжение на выходе однополупериодного выпрямителя будет ниже входного на 1,5 В, а если использовать мостовую схему, то на все 3 В. Кроме того, вольты, помноженные на протекающий через выпрямитель ток, будут бесполезно рассеиваться на диодах в виде тепла, уменьшая КПД схемы.
Избежать подобной неприятности позволяют диоды с барьером Шоттки. Они отличаются низким (десятые вольта) прямым падением напряжения, а значит, собранная на них схема будет обладать более высоким КПД и работать в облегченном режиме. Вид и схема мощной диодной сборки Шоттки представлены на изображении.
Сегодня и отдельные диоды, и диодные мосты Шоттки используются в качестве выпрямительных очень широко и выпускаются как отдельными приборами, так и сборками. Монтаж выпрямителя на диодах Шоттки ничем не отличается от сборки на обычных диодах.
Отзывы и комментарии
Как электроны и позитроны превращаются друг в друга
GIF анимации: http://tverd4.narod.ru/mosty.gif http://tverd4.narod.ru/Animation-1-.gif
Теория этого явления должна начинаться с осознания того, что не существует в металлических проводниках электрического тока, который распространяется от плюса к минусу.
Разность потенциалов, рождающая силу движения зарядов, формируется не между плюсом и минусом, а между плюсом и нулевым потенциалом (позитронный ток) и между минусом и нулевым потенциалом (электронный ток).
То есть электронный ток имеет разность потенциалов – / 0.
Позитронный ток имеет разность потенциалов + / 0.
По нашей гипотезе превращение электронов и позитронов друг в друга происходит посредством замены вектора движения зарядов на противоположный вектор.
Объясняется это тем, что все элементы магнитоэлектрической системы электрона противоположны всем элементам магнитоэлектрической системы позитрона. И эта противоположность определяется вектором их движения в пространстве.
Поэтому, стоит только поменять вектор движения одного из зарядов на противоположный вектор, так сразу же этот заряд превращается в своего антипода.
Анимация показывает, как полупроводниковый мост пропускает позитронный ток, движимый разностью потенциалов + / 0. Но, когда электронная полуволна на мост подаёт разность потенциала – / 0, здесь-то и происходит замена вектора движения электронов на вектор движения позитронов, с превращением электронов в позитроны.
Аналогичным образом происходит превращение позитронов в электроны в мосте, собранным на вакуумных диодах.
Разница лишь в том, что превращение позитронов в электроны, происходит, когда на мост подаётся разность потенциала + / 0.
Диоды работают парами. Пара диодов всегда открыта, другая – всегда закрыта.
Кроме того, генераторы постоянного тока генерируют позитронный ток при правом вращение, и генерируют электронный ток при левом вращении.
Объясняется это явление тем, что заряд, формирующийся первым, задаёт вектор движения, а антипод вынужден следовать принятому вектору движения.
Вектор движения электрона противоположен вектору движения позитрона, как в проводниках, так и в электромагнитных волнах.
Заключение:
1. Любой любознательный восьмиклассник способен осуществить описанные опыты.
2. Комичность ситуации заключается в том, что с широким распространением осциллографов любой любознательный восьмиклассник на экране видит, что ток есть движение, как отрицательных, так и положительных зарядов.
3. Фарадей двести лет назад получил ток с отрицательными и положительными зарядами, который распространяется в прилегающем к проводнику слое эфира.
4. Все современные тепловые, гидравлические и атомные электростанции получают ток Фарадея.
Автор: Гость любитель, 22 декабря 2014 в Песочница (Q&A)
Рекомендованные сообщения
Присоединяйтесь к обсуждению
Вы оставляете комментарий в качестве гостя. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.
Почти вся электронная аппаратура для своей работы требует определённую величину постоянного напряжения. В электрический сети передаётся синусоидальный сигнал с частотой 50 Гц. Для преобразования сигнала используется свойство полупроводниковых элементов пропускать ток только в одном направлении, а в другом блокировать его прохождение. В качестве преобразователя применяется схема диодного моста, позволяющая получать на выходе сигнал постоянной величины.
Физические свойства p-n перехода
Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).
Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.
Примешанные атомы начинают образовывать, в зависимости от своей природы, свободные электроны или дырки. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный.
Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. Электрон, перемещаясь, занимает свободное место, дырку. При этом на его старом месте также образовывается дырка. В результате чего создаётся два потока движения зарядов: один основной, а другой обратный. Материал с отрицательным зарядом в качестве основных носителей использует электроны, его называют полупроводником n-типа, а с положительным зарядом, использующим дырки, p-типа. В полупроводниках обоих типов неосновные заряды образуют ток, обратный движению основных зарядов.
В радиоэлектронике из материалов для создания p-n перехода используется германий и кремний. При легировании кристаллов этих веществ образуется полупроводник с различной проводимостью. Например, введение бора приводит к появлению свободных дырок и образованию p-типа проводимости. Добавление фосфора, наоборот, создаст электроны, и полупроводник станет n-типа.
Принцип работы диода
Диод — это полупроводниковый прибор, имеющий малое сопротивление для тока в одном направлении, и препятствующий его прохождению в обратном. Физически диод состоит из одного p-n перехода. Конструктивно представляет собой элемент, содержащий два вывода. Вывод, подключённый к p-области, называется анодом, а соединённый с n-областью — катодом.
При работе диода существует три его состояния:
- сигнал на выводах отсутствует;
- он находится под действием прямого потенциала;
- он находится под действием обратного потенциала.
Прямым потенциалом называется такой сигнал, когда плюсовой полюс источника питания подключён к области p-типа полупроводника, другими словами, полярность внешнего напряжения совпадает с полярностью основных носителей. При обратном потенциале отрицательный полюс подключён к p-области, а положительный к n.
В области соединения материала n- и p-типа существует потенциальный барьер. Он образуется контактной разностью потенциалов и находится в уравновешенном состоянии. Высота барьера не превышает десятые доли вольта и препятствует продвижению носителей заряда вглубь материала.
Если к прибору подключено прямое напряжение, то величина потенциального барьера уменьшается и он практически не оказывает сопротивление протеканию тока. Его величина возрастает и зависит только сопротивления p- и n- области. При прикладывании обратного потенциала, величина барьера увеличивается, так как из n-области уходят электроны, а из p-области дырки. Слои обедняются и сопротивление барьера прохождению тока возрастает.
Основным показателем элемента является вольт-амперная характеристика. Она показывает зависимость между приложенным к нему потенциалом и током, протекающим через него. Представляется эта характеристика в виде графика, на котором указывается прямой и обратный ток.
Схема простого выпрямителя
Синусоидальное напряжение представляет собой периодический сигнал, изменяющийся во времени. С математической точки зрения он описывается функцией, в которой начало координат соответствует времени равным нулю. Сигнал состоит из двух полуволн. Находящаяся полуволна в верхней части координат относительно нуля называется положительным полупериодом, а в нижней части — отрицательным.
При подаче переменного напряжения на диод через подключённую к его выводам нагрузку, начинает протекать ток. Этот ток обусловлен тем, что в момент поступления положительного полупериода входного сигнала диод открывается. В этом случае к аноду прикладывается положительный потенциал, а к катоду отрицательный. При смене волны на отрицательный полупериод диод запирается, так как меняется полярность сигнала на его выводах.
Таким образом, получается, что диод как бы отрезает отрицательную полуволну, не пропуская её на нагрузку и на ней появляется пульсирующий ток только одной полярности. В зависимости от частоты приложенного напряжения, а для промышленных сетей она составляет 50 Гц, изменяется и расстояние между импульсами. Такого вида ток называется выпрямленным, а сам процесс —однополупериодным выпрямлением.
Выпрямляя сигнал, используя один диод, можно питать нагрузку, не предъявляющую особых требований к качеству напряжения. Например, нить накала. Но если запитать, например, приёмник, то появится низкочастотный гул, источником которого и будет промежуток, возникающий между импульсами. В некоторой мере для избавления от недостатков однополупериодного выпрямления совместно с диодом применяется параллельно включённый нагрузке конденсатор. Этот конденсатор будет заряжаться при поступлении импульсов и разряжаться при их отсутствии на нагрузку. А значит, чем больше значение ёмкости конденсатора, тем ток на нагрузке будет более сглажен.
Но наибольшего качества сигнала возможно достичь, если использовать для выпрямления одновременно две полуволны. Устройство, позволяющее это реализовать, получило название диодный мост, или по-другому — выпрямительный.
Диодный мост
Такое устройство представляет собой электрический прибор, служащий для преобразования переменного тока в постоянный. Словосочетание «диодный мост» образуется из слова «диод», что предполагает использование в нём диодов. Схема диодного моста выпрямителя зависит от сети переменного тока, к которой он подключается. Сеть может быть:
В зависимости от этого и выпрямительный мост называется мостом Гретца или выпрямителем Ларионова. В первом случае используется четыре диода, а во втором прибор собирается уже на шести.
Первая схема выпрямительного прибора собиралась на радиолампах и считалась сложным и дорогим решением. Но с развитием полупроводниковой техники диодный мост полностью вытеснил альтернативные способы выпрямления сигнала. Вместо диодов редко, но ещё применяются селеновые столбы.
Конструкции и характеристики прибора
Конструктивно выпрямительный мост выполняется из набора отдельных диодов или литого корпуса, имеющего четыре вывода. Корпус может быть плоского или цилиндрического вида. По принятому стандарту, значками на корпусе прибора отмечаются выводы подключения переменного напряжения и выходного постоянного сигнала. Выпрямители, имеющие корпус с отверстием, предназначены для крепления на радиатор. Основными характеристиками выпрямительного моста являются:
- Наибольшее прямое напряжение. Это максимальная величина, при которой параметры прибора не выходят за границы допустимых.
- Наибольшее допустимое обратное напряжение. Это максимальное импульсное напряжение, при котором мост длительно и надёжно работает.
- Наибольший рабочий ток выпрямления. Обозначает средний ток, протекающий через мост.
- Максимальная частота. Частота подаваемого на мост напряжения, при которой прибор работает эффективно и не превышает допустимый нагрев.
Превышение значений характеристик выпрямителя приводит к резкому сокращению срока его службы или пробою p-n переходов. Необходимо отметить такой момент, что все параметры диодов указываются для температуры окружающей среды 20 градусов. К недостаткам применения мостовой схемы выпрямления относят большее падение напряжения, по сравнению с однополупериодной схемой, и более низкое значение коэффициента полезного действия. Для уменьшения величины потерь и снижения нагрева мосты часто изготавливают с применением быстрых диодов Шотки.
Схема подключения устройства
На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами. Если выпрямитель собран из отдельных диодов, то рядом с каждым ставится обозначение VD и цифра, обозначающая порядковый номер диода в схеме. Редко используются надписи VDS или BD.
Диодный выпрямитель может подключаться напрямую к сети 220 вольт или после понижающего трансформатора, но схема включения его остаётся неизменной.
При поступлении сигнала в каждом из полупериодов ток сможет протекать только через свою пару диодов, а противоположная пара будет для него заперта. Для положительного полупериода открытыми будут VD2 и VD3, а для отрицательного VD1 и VD4. В итоге на выходе получится постоянный сигнал, но его частота пульсации будет увеличена в два раза. Для того чтобы уменьшить пульсацию выходного сигнала, используется, как и в случае с одним диодом, параллельное включение конденсатора С1. Такой конденсатор ещё называют сглаживающим.
Но случается так, что диодный мост ставится не только в переменную сеть, но и подключается в уже выпрямленную. Для чего нужен диодный мост в такой цепи, станет понятно, если обратить внимание в каких схемах используется такое его включение. Эти схемы связаны с использованием чувствительных радиоэлементов к переполюсовке питания. Использование моста позволяет осуществить простую, но эффективную защиту «от дурака». В случае ошибочного подключения полярности питания радиоэлементы, установленные за мостом, не выйдут из строя.
Проверка на работоспособность
Такой тип электронного прибора можно проверить, не выпаивая из схемы, так как в конструкциях устройств никакое его шунтирование не используется. В случае выпрямителя, собранного из диодов, проверяется каждый диод в отдельности. А в случае с монолитным корпусом измерения проводятся на всех четырёх его выводах.
Суть проверки сводится к прозвонке мультиметром диодов на короткое замыкание. Для этого выполняются следующие действия:
- Мультиметр переключается в режим позвонки диодов или сопротивления.
- Штекер одного провода (чёрного) вставляется в общее гнездо тестера, а второго (красного) в гнездо проверки сопротивления.
- Щупом, подключённым чёрным проводом, дотроньтесь до первой ножки, а щупом красного провода до третьего вывода. Тестер должен показать бесконечность, а если поменять полярность проводов, то мультиметр покажет сопротивление перехода.
- Минус тестера подается на четвёртую ногу, а плюс на третью. Мультиметр покажет сопротивление, при смене полярности бесконечность.
- Минус на первую ногу, плюс на вторую. Тестер покажет открытый переход, при смене – закрытый.
Такие показания тестера говорят об исправности выпрямителя. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром. Но при этом придётся подать питание на схему и замерить напряжение на сглаживающем конденсаторе. Его величина должна превышать входное в 1,4 раза.
назначение и изготовление своими руками. Особенности диодных мостов и их применение
Диодный мост — простейшая схема, которая преобразует переменный ток в постоянный. Она используется практически во всей современной электронике, поэтому грамотный мастер должен понимать и уметь его ремонтировать. В российских розетках частота тока 50 Герц, и чтобы выровнять его для работы оборудования и применяют это нехитрое устройство.
Давайте разберем, как работает данное устройство. Оно собирается из диодов — элементов, пропускающих ток в одну сторону. Современные диоды являются полупроводниковыми устройствами небольшого размера — в этой статье мы не будем разбирать их особенности и маркировку, а поговорим только о том, как работает диодный мост.
Состав и принцип работы диода
У диода имеется два контакта — анод и катод. Ток течет от анода к катоду практически с нулевым сопротивлением. Но если ситуация меняется и ток подается на катод, то противоположное сопротивление не дает ему пробиться через элемент (ток практически равен нулю и в большинстве случаев им можно пренебречь). Схему работы вы можете увидеть на приведенном выше рисунке.
Упрощенная схема
Вы уже знаете, что такое диодный мост, поэтому рассмотрим простейший принцип его работы. Когда переменный ток попадает на анод Uвх, оно проходит через положительные полупериоды, тогда как отрицательные полностью удаляются. При этом выходное напряжение, обозначенное с правой стороны под аббревиатурой Uвых, не является выпрямленным, хоть и проходит в одном направлении. Его частота равна тем же 50 Герц, или 50 пикам в секунду.
Чтобы сгладить эти пики к схеме подключается конденсатор высокой емкости. Получается выпрямительный диодный мост —на пике конденсатор заряжается, а на падении отдает заряд в сеть. Это позволяет частично сгладить график частоты и выровнять его, выведя на постоянное значение.
Подобная схема соединения диода и конденсатора носит название однополупериодной и не является достаточной для выравнивания тока в современных устройствах. У нее есть серьезные недостатки:
- Нормально выровнять пульсации до настоящей прямой невозможно.
- У схемы довольно малый коэффициент полезного действия.
- Нерациональное использование трансформатора, чересчур большой вес устройства.
Эти системы сегодня практически не используют или применяют их для маломощных устройств. Более логичные и надежные схемы называются двухполупериодными. Их основное достоинство — возможность инвертировать нижние волны в верхние. Именно подобные системы и называют диодным мостом.
Классический диодный мост
Стандартная содержит в себе вместо одного диода и конденсатора четыре диода, объединенных изображенным на рисунке способом. Его можно условно разбить на два полупериода. В каждом полупериоде находится два диода, работающих в одном направлении, и два — запрещающих проход тока. Положительное напряжение приходит на анод VD1, отрицательное на катод VD3. Данные диоды открываются, а VD2 и VD4 — закрываются.
Когда положительный полупериод заменяется на отрицательный, происходит смена работоспособности. Положительное напряжение приходит на анод VD2, отрицательное — на катодный выход VD4. Происходит смена направлений, но ток идет в нужном направлении. Получается, что в подобной схеме частота возрастает в два раза, за счет чего удается добиться лучшего сглаживания, используя идентичный с первой схемой конденсатор. Благодаря этому возрастает коэффициент полезного действия устройства и падают возможные потери.
Принцип работы классического моста
Изучая, не забывайте о том, что не обязательно спаивать его из четырех микроэлементов и подбирать соответствующий конденсатор. В большинстве случаев можно приобрести готовое решение в магазине, с подобранными параметрами и известными характеристиками. Достоинства подобной сборки в маленьких размерах, единых тепловых режимах и небольшом весе. Основной недостаток в том, что если выходит из строя один элемент, то приходится менять весь узел .
Трехфазный мост
Теперь, когда вы знаете, для чего нужен диодный мост и что он собой представляет, рассмотрим более сложную трехфазную схему, выдающую пульсирующий ток. Он максимально близок к постоянному и подходит для использования в приборах, требующих стабильную подачу. Вход этой системы присоединяется к источнику, подающему трехфазное питание (разумеется речь идет о переменном токе). Это может быть трансформатор или генератор. На выходе системы оказывается практически идеальный постоянный ток, который можно легко сгладить.
Схема выпрямителя
Чтобы сделать качественный двухполупериодный выпрямитель из схемы подключения диодного моста с конденсатором, изучите наш рисунок. В данном случае выпрямляется ток, который снимается с понижающей трансформаторной обмотки. Выравнивание происходит за счет электролитического конденсатора на 5-10 тысяч микрофарад, заряжающегося и отдающего заряд в сеть. В схему также введен дополнительный резистор, который выпрямляет ток при холостой работе. Чем выше нагрузка, тем меньше напряжение на выходе, поэтому к нему подсоединяют стабилизатор на классических транзистора х.
Диодный мост — электрическая схема, предназначенная для преобразования переменного тока в постоянный импульсный. Изобретение схемы в 1897 году приписывается немецкому физику Лео Гретцу, хотя англоязычные источники утверждают, что ещё в 1895 году диодный мост создал «польский Эдисон» — электротехник Карол Поллак. Наибольшее распространение схема получила после широкого внедрения полупроводниковых диодов.
Принцип действия этого типа выпрямительного устройства основан на свойстве полупроводникового диода пропускать электроток в одном направлении и не пропускать в другом. Так, если мы правильно подключим плюс и минус, через устройство пойдёт ток. Поменяем плюс и минус местами — движения не будет.
Переменный ток отличается тем, что в течение одного полупериода он движется в одном направлении, а в течение второго — в противоположном. И если просто включить в цепь один диод, то он будет работать «с пользой» только в течение одного полупериода. А если соединить диоды так, чтобы использовать оба полупериода? Благодаря этой идее и появились мостовые выпрямители.
Схема диодного моста—выпрямителя довольно проста и может быть собрана своими руками. Он состоит из четырёх диодов, соединённых в виде квадрата. На два противолежащих угла подаётся переменный ток от генератора. С двух других противолежащих углов снимается постоянный. В первый полупериод открываются два диода, выпрямляя полуволну переменного тока. Во второй полупериод открываются два других диода, преобразуя вторую полуволну. В итоге на выходе получается постоянный ток с частотой импульсов в два раза выше, чем частота переменного тока.
Преимущества и недостатки схемы
- Для использования выпрямленного тока импульсная составляющая должна быть сглажена с помощью фильтра—конденсатора. Чем выше частота, тем лучше проходит процесс сглаживания. Поэтому удвоение частоты в мостовой схеме является преимуществом.
- Двухполупериодное выпрямление позволяет лучше использовать мощность питающего трансформатора и за счёт этого уменьшить его размеры.
Недостатки .
- Удвоенное падение напряжения по сравнению с однополупериодным выпрямителем.
- Удваиваются потери мощности на рассеяние тепла. Для снижения потерь в мощных низковольтных схемах используются диоды Шоттки с малым падением напряжения.
- При выходе из строя одного из диодов моста выпрямительное устройство будет работать, однако его параметры будут отличаться от нормальных. Это, в свою очередь, может негативно сказаться на работе систем, запитанных от выпрямителя.
Использование и применение
Сегодня мосты широко применяются во всех случаях, когда используется постоянный ток — от мобильных телефонов, до автомобилей. Промышленность выпускает большое количество выпрямительных устройств, выполненных по мостовой схеме. Поэтому подобрать нужный мостик не составляет труда при условии ясного понимания, зачем он приобретается и какие функции будет выполнять.
Конструктивно выпрямители могут быть выполнены на отдельных диодах либо в виде единого блока. В первом случае при повреждении одного из диодов можно произвести замену. Для этого надо знать, как прозвонить диодный мост. Проверка проводится в виде последовательного перебора всех диодов на пропускание тока в прямом и обратном направлении. В качестве индикатора можно использовать как обычную лампочку, так и прибор, измеряющий силу тока или сопротивление.
Несмотря на доступность фабричных выпрямителей, многих интересует, как сделать диодный мост на 12 вольт самостоятельно. Дело в том, что 12 вольт — наиболее распространённое напряжение для питания многих устройств, например, персональных компьютеров. А стремление собрать выпрямитель самостоятельно зачастую вполне оправданно. Ведь большинство недорогих блоков питания, которые можно приобрести, не соответствуют заявленным параметрам по току и мощности.
Конечно, самодельный блок вряд ли будет выглядеть как фабричный, зато позволит произвести подключение устройств в полном соответствии с нужными параметрами.
Несмотря на то что выпрямительный мостик не является сложной схемой, его сборка требует не только умения спаять детали, но и правильно рассчитать их параметры. Прежде всего потребуется силовой трансформатор, понижающий напряжение до 10 вольт. Дело в том, что выходное напряжение моста выше входного примерно на 18 процентов. Поэтому если подать на выпрямитель 12 вольт переменного тока, то получим 14−15 вольт постоянного тока, а это может быть опасным для устройств, рассчитанных на 12 вольт.
Далее, нужно подобрать диоды, рассчитанные на двукратный запас по току. Так, если предполагается, что выпрямитель должен обеспечить ток силой в 5 ампер, то диоды должны выдерживать не менее 10 ампер. Двукратный запас должен иметь и конденсатор, но по напряжению. А для того чтобы лучше сглаживать выпрямленный ток, он должен иметь большую ёмкость. Поэтому оптимальным является электролитический конденсатор, рассчитанный на напряжение 25 вольт, ёмкостью от 2000 микрофарад. Все эти детали остаётся правильно соединить и проверить выходные параметры с помощью приборов.
Мост бывает через реку, через овраг, а также через дорогу. Но приходилось ли Вам слышать словосочетание «диодный мост»? Что за такой мост? А вот на этот вопрос мы с вами попробуем найти ответ.
Словосочетание «диодный мост» образуется от слова «диод». Получается, диодный мост должен состоять из диодов. Но если в диодном мосту есть диоды, значит, в одном направлении диод будет пропускать , а в другом нет. Это свойство диодов мы использовали, чтобы определить их работоспособность. Кто не помнит, как мы это делали, тогда вам сюда. Поэтому мост из диодов используется, чтобы из переменного напряжение получать постоянное напряжение .
А вот и схема диодного моста:
Иногда в схемах его обозначают и так:
Как мы с вами видим, схема состоит из четырех диодов. Но чтобы схемка диодного моста заработала, мы должны правильно соединить диоды, и правильно подать на них переменное напряжение. Слева мы видим два значка «~». На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов: с плюса и минуса.
Для того, чтобы превратить переменное напряжение в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим рисунок:
Переменное напряжение изменяется со временем. Диод пропускает через себя напряжение только тогда, когда напряжение выше нуля, когда же оно становится ниже нуля, диод запирается. Думаю все элементарно и просто. Диод срезает отрицательную полуволну, оставляя только положительную полуволну, что мы и видим на рисунке выше. А вся прелесть этой немудреной схемки состоит в том, что мы получаем постоянное напряжение из переменного. Вся проблема в том, что мы теряем половину мощности переменного напряжения . Ее тупо срезает диод.
Чтобы исправить эту ситуацию, была разработана схемка диодного моста. Диодный мост «переворачивает» отрицательную полуволну, превращая ее в положительную полуволну. Тем самым мощность у нас сохраняется. Прекрасно не правда ли?
На выходе диодного моста у нас появляется постоянное пульсирующее напряжение с частой в два раза больше, чем частота сети: 100 Гц.
Думаю, не надо писать, как работает схема, Вам все равно это не пригодится, главное запомнить, куда цепляется переменное напряжение, а откуда выходит постоянное пульсирующее напряжение.
Давайте же на практике рассмотрим, как работает диод и диодный мост.
Для начала возьмем диод.
Я его выпаял из блока питания компа. Катод можно легко узнать по полоске. Почти все производители показывают катод полоской или точкой.
Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220 Вольт трансформирует 12 Вольт. Кто не знает как он это делает, можете прочитать статью устройство трансформатора.
На первичную обмотку цепляем 220 Вольт, со вторичной снимаем 12 Вольт. Мультик показывает чуть больше, так как ко вторичной обмотке не подцеплена никакая нагрузка. Трансформатор работает на так называемом «холостом ходу».
Давайте же расмотрим осциллограмму, которая идет со вторичной обмотки транса. Максимальную амплитуду напряжение нетрудно посчитать. Если не помните как расчитать, можно глянуть статейку Осциллограф. Основы эксплуатации. 3,3х5= 16.5В — это максимальное значение напряжения. А если разделить максимальное значение амплитуда на корень из двух, то получим где то 11.8 Вольт. Это и есть действующее значение напряжения. Осцилл не врет, все ОК.
Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт — это не шутки, поэтому я и понизил переменное напряжение.
Припаяем к одному концу вторичной обмотки транса наш диод.
Цепляемся снова щупами осцилла
Смотрим на осцилл
А где же нижняя часть изображения? Ее срезал диод. Диод оставил только верхнюю часть, то есть та, которая положительная. А раз он срезал нижнюю часть, то он следовательно срезал и мощность.
Находим еще три таких диода и спаиваем диодный мост.
Цепляемся ко вторичной обмотке транса по схеме диодного моста.
С двух других концов снимаем постоянное пульсирующее напряжение щупами осцилла и смотрим на осцилл.
Вот, теперь порядок, и мощность у нас никуда не пропала:-).
Чтобы не замарачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате получился очень компактный и удобный диодный мост. Думаю, вы догадаетесь, где импортный, а где советский))).
А вот и советский:
А как Вы догадались? 🙂 Например, на советском диодном мосте, показаны контакты, на которые надо подавать переменное напряжение (значком » ~ «), и показаны контакты, с которых надо снимать постоянное пульсирующее напряжение («+» и «-«).
Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменке, а с двух других контактов снимаем показания на осцилл.
А вот и осциллограмма:
Значит импортный диодный мостик работает чики-пуки.
В заключении хотелось бы добавить, что диодный мост используется почти во всей радиоаппаратуре, которая кушает напряжение из сети, будь то простой телевизор или даже зарядка для сотового телефона. Проверяются диодный мост исправностью всех его диодов.
Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему счастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пожалуйста.
Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,
Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.
а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).
Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:
Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.
Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.
Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.
Ну а теперь к делу.
1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.
2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, намного большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.
3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.
4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.
5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.
6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.
7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.
Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:
Для однополупериодного выпрямителя формула несколько отличается:
Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.
Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В
Для справки — допустимые пульсации:
Микрофонные усилители — 0,001…0,01%
Цифровая техника — пульсации 0,1…1%
Усилители мощности — пульсации нагруженного блока питания 1…10% в зависимости от качества усилителя.
Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.
Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока . Это связано с тем, что для работы большинства приборов используется постоянный ток.
Как работает диодный мост
Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход.
Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические с большой емкостью.
Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе.
Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения.
Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями.
Применение диодных мостов
В любых приборах и электронике, для питания которых используется переменный электрический ток, присутствует схема диодного моста на 12 вольт. Ее используют не только в трансформаторных, но и в импульсных выпрямителях. Наиболее характерным импульсным блоком является блок питания компьютера.
Кроме того диодные мосты применяются в люминесцентных компактных лампах или в энергосберегающих лампах . Они дают очень хороший эффект при использовании их в пускорегулирующих электронных аппаратах . Широко применяются и во всех моделях современных аппаратов.
Как сделать диодный мост
Преобразовать переменный ток в постоянный поможет диодный мост — схема и принцип действия этого устройства приводятся ниже. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление. Его превращение в постоянный — достаточно часто встречающаяся необходимость.
Принцип действия полупроводникового диода
Рис. 1Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов — полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении — от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.
Поэтому при подаче на цепочку, содержащую диод, переменного напряжения U вх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.
Строго говоря, выходное напряжение U вых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.
Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:
- повышенная степень пульсаций выпрямленного напряжения;
- низкий КПД;
- большой вес трансформатора и его нерациональное использование.
Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ — использование диодного моста.
Рис. 2
Диодный мост — схема двухполупериодного выпрямления, содержащая 4 диода вместо одного (рис. 2в). В каждом полупериоде два из них открыты и пропускают электричество в прямом направлении, а два других закрыты, и ток через них не течет. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное — к катоду VD3. В результате оба этих диода открыты, а VD2 и VD4 — закрыты.
Во время отрицательного полупериода положительное напряжение приложено к аноду VD2, а отрицательное — к катоду VD4. Эти два диода открываются, а открытые во время предыдущего полупериода закрываются. Ток через сопротивление нагрузки течет в том же направлении. В сравнении с однополупериодным выпрямителем количество пульсаций возрастает вдвое. Результат — более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора.
Диодный мост может быть не только собран из отдельных элементов, но и изготовлен как монолитная конструкция (диодная сборка). Ее легче монтировать, а диоды обычно подобраны по параметрам. Немаловажно и то, что они работают в одинаковых тепловых режимах. Недостаток диодного моста — необходимость замены всей сборки при выходе из строя даже одного диода.
Еще ближе к постоянному будет пульсирующий выпрямленный ток, который позволяет получить трехфазный диодный мост. Его вход подключается к источнику трехфазного переменного тока (генератору или трансформатору), а напряжение на выходе почти не отличается от постоянного, и сгладить его еще проще, чем после двухполупериодного выпрямления.
Выпрямитель на основе диодного моста
Схема двухполупериодного выпрямителя на основе диодного моста, пригодная для сборки своими руками, изображена на рис. 3а. Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. Для этого нужно подключить диодный мост к трансформатору.
Пульсирующее выпрямленное напряжение сглаживается электролитическим конденсатором С, имеющим достаточно большую емкость — обычно порядка нескольких тысяч мкФ. Резистор R играет роль нагрузки выпрямителя на холостом ходу. В таком режиме конденсатор С заряжается до амплитудного значения, которое в 1,4 (корень из двух) раза выше действующего значения напряжения, снимаемого со вторичной обмотки трансформатора.
С ростом нагрузки выходное напряжение уменьшается. Избавиться от этого недостатка можно, подключив к выходу выпрямителя простейший транзисторный стабилизатор. На принципиальных схемах изображение диодного моста часто упрощают. На рис. 3б показано, как еще может быть изображен соответствующий фрагмент на рис. 3а.
Следует заметить, что, хотя прямое сопротивление диодов невелико, тем не менее, оно отлично от нуля. По этой причине они нагреваются в соответствии с законом Джоуля-Ленца тем сильнее, чем больше величина тока, протекающего по цепи. Для предотвращения перегрева мощные диоды часто устанавливаются на теплоотводах (радиаторах).
Диодный мост — это практически обязательный элемент любого электронного устройства , питающегося от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона.
Большинство электростанций вырабатывает переменный ток. Это связано с особенностью конструкции генераторов. Исключение составляют лишь солнечные панели, с которых снимается постоянный ток.
Вообще, выбор между постоянным и переменным током с точки зрения производства, транспортировки и потребления – это борьба противоречий.
Производить (вырабатывать на электростанциях) удобнее и проще переменный ток.
Транспортировать экономически выгодно постоянный ток. Смена полупериодов переменного напряжения приводит к потерям.
С точки зрения трансформации (уменьшение величины напряжения) удобнее работать с переменным током. Принцип работы трансформаторы построен на пульсирующем или переменном напряжении.
Большинство потребителей электроэнергии (речь идет об устройствах) работают на постоянном токе. Электросхемы не могут работать с переменным напряжением.
В результате мы имеем следующую картину:
До розетки доходит переменный ток с напряжением 220 вольт. А все домашние электроприборы (за исключением тех, которые содержат мощные электродвигатели и нагревательные элементы) питаются постоянным током.
Внутри большинства домашнего оборудования есть блоки питания. После понижения (трансформации) величины напряжения, необходимо преобразовать ток из переменного в постоянный. Основой такой схемы является диодный мост.
Для чего нужен диодный мост?
Исходя из определения, переменный ток с определенной частотой (в бытовой электросети 50Гц) меняет свое направление, при неизменной величине.
Важно! Поскольку мы знаем, что для питания большинства электросхем нужно полярное напряжение – в блоках питания приборов происходит замена переменного тока на постоянный.
Происходит это в два или три этапа:
С помощью диодной сборки переменный ток превращается в пульсирующий. Это уже выпрямленный график, однако, для нормального функционирования схемы такого качества питания недостаточно.
Для сглаживания пульсаций, после моста устанавливается фильтр. В простейшем случае – это обычный полярный конденсатор. При необходимости увеличить качество – добавляется дроссель.
После преобразования и сглаживания, необходимо обеспечить постоянную величину рабочего напряжения.
Для этого, на третьем этапе устанавливаются стабилизаторы напряжения.
И все же, первым элементом любого блока питания является диодный мост.
Он может быть выполнен как из отдельных деталей, так и в моно корпусе.
Первый вариант занимает много места и сложнее в монтаже.
Есть и преимущества:
такая конструкция стоит недорого, легче диагностируется, и в случае выхода из строя одного элемента – меняется только он.
Вторая конструкция компактна, исключены ошибки в монтаже. Однако стоимость несколько выше, чем у отдельных диодов и невозможно отремонтировать один элемент, приходится менять весь модуль.
Принцип работы диодного моста
Вспомним характеристики и назначение диода. Если не вдаваться в технические детали – он пропускает электрический ток в одном направлении, и закрывает ему путь в противоположном.
Этого свойства уже достаточно для того, чтобы собрать простейший выпрямитель на одном диоде.
Элемент просто включается в цепь последовательно, и каждый второй импульс тока, идущий в противоположном направлении – отрезается.
Такой способ называется однополупериодным, и у него есть множество недостатков:
Очень сильная пульсация, между полупериодами возникает пауза в подаче тока, равная длине половины синусоиды.
В результате отрезания нижних волн синусоиды, напряжение уменьшается вдвое. При точном измерении уменьшение оказывается больше, поскольку потери есть и в диодах.
Способность снижать напряжение вдвое при его выпрямлении, нашла применение в ЖКХ.
Жильцы многоквартирных подъездов, устав менять постоянно перегорающие лампочки – оснащают их диодами.
При включении последовательно, снижается яркость свечения и лампа «живет» гораздо дольше.
Правда сильное мерцание утомляет глаза, и такой светильник годится лишь для дежурного освещения.
Для уменьшения потерь, применяется соединение четырех элементов.
Двухполупериодный диодный мост, схема работы:
В каком бы направлении не протекал переменный ток на вводных контактах, выход диодного моста обеспечивает неизменную полярность на его выходных контактах.
Частота пульсаций такого соединения ровно в два раза выше частоты переменного тока на входе.
Поскольку плечи моста не могут одновременно пропускать ток в обоих направлениях – обеспечивается стабильная защита схемы.
Даже если у вас в устройстве перегорел диодный мост – короткого замыкания или скачка напряжения не будет.
Надежность мостовой схемы проверена десятилетиями. Защита от перенапряжения на входе гарантируется трансформатором.
От перегрузки спасает стабилизатор на выходе. Пробивает диодный мост лишь в случае использования бракованных деталей, или в автомобиле, где схема подвергается постоянным нагрузкам.
Как работает диодный мост при минимальном напряжении?
Падение напряжения в диодном мосту составляет до 0,7 вольт. При использовании обычной элементной базы в низковольтных схемах, иногда падение напряжения составляет до 50% от номинала блока питания. Такая погрешность недопустима .
Для обеспечения работы блоков питания с напряжением от 1,5 вольт до 12 вольт – используются диоды Шоттки.
При прямом протекании тока, падение напряжения на одном кристалле составляет не более 0,3 вольта. Умножаем на четыре элемента в мосту – получается вполне приемлемое значение потерь.
Кроме того, если диодный мост Шоттки на уровень помех – вы получите значение, недостижимое для кремниевых p-n диодов.
Еще одно достоинство, обусловленное отсутствием p-n перехода – способность работать на высокой частоте.
Поэтому выпрямители сверх высокочастотного напряжения делают исключительно на диодах этого типа.
Однако у диодов Шоттки есть и недостатки . При воздействии обратного напряжения, пусть даже кратковременном – элемент выходит из строя.
Проверка диодного моста мультиметром показывает, что именно эта причина имеет необратимые последствия.
Обычный германиевый или кремниевый элемент с p-n переходом самостоятельно восстанавливаются после переполюсовки.
Поэтому мосты на диодах Шоттки применяются только в низковольтных блоках питания и при наличии защиты от обратного напряжения.
Что делать, если есть подозрения на поломку моста?
Выпрямитель собран на обычной элементной базе, поэтому мы расскажем, как в домашних условиях проверить диодный мост мультиметром.
На иллюстрации видно, как протекает ток по мосту. Принцип тестирования такой же, как при проверке одиночных диодов.
Смотрим по справочнику, какие выводы модуля соответствуют переменному входу или полярному выходу – и выполняем прозвонку.
Как прозвонить диодный мост без выпаивания из схемы?
Поскольку ток в обратном направлении через диод не течет, неправильные результаты проверки говорят о пробое моста.
Извлекать мост нет необходимости, остальные элементы блока питания не оказывают влияния на измерение.
Итог: Любой из вас сможет как самостоятельно собрать диодный мост, так и отремонтировать его в случае поломки. Достаточно иметь элементарные навыки в электротехнике.
Смотрите видео: как мультиметром проверить диодный мост генератора вашего автомобиля.
Подробный рассказ о том как проверить диодный мост мультиметром в этом видео сюжете
Одной из важнейших частей электронных приборов питающихся от сети переменного тока 220 вольт является так называемый диодный мост. Диодный мост – это одно из схемотехнических решений, на основе которого выполняется функция выпрямления переменного тока.
Как известно, для работы большинства приборов требуется не переменный ток, а постоянный. Поэтому возникает необходимость в выпрямлении переменного тока.
Думаю понятно, что в случае отдельных диодов нужно просто заменить один неисправный диод, что, соответственно, обойдётся дешевле.
В реальности сборка диодного моста может выглядеть вот так.
Диодная сборка KBL02 на печатной плате
Или вот так.
Диодная сборка RS607 на плате компьютерного блока питания
А вот так выглядит диодная сборка DB107S для поверхностного (SMD) монтажа. Несмотря на свои малые размеры, сборка DB107S выдерживает прямой ток 1 A и обратное напряжение в 1000 V.
Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Поэтому их корпус конструктивно выполнен с возможностью крепления на радиатор. На фото – диодный мост KBPC2504 , рассчитанный на прямой ток 25 ампер.
Естественно, любую мостовую сборку можно заменить 4-мя отдельными диодами, которые соответствуют нужным параметрам. Это бывает необходимо, когда нужной сборки нет под рукой.
Иногда это вводит новичков в замешательство. Как же правильно соединить диоды, если предполагается изготовление диодного моста из отдельных диодов? Ответ изображён на следующем рисунке.
Условное изображение диодного моста и диодной сборки
Как видим всё довольно просто. Чтобы понять, как нужно соединить диоды, нужно вписать в стороны ромба изображение диода.
На принципиальных схемах и печатных платах диодный мост могут обозначать по-разному. Если используются отдельные диоды, то рядом с ними просто указывается сокращённое обозначение – VD , а рядом ставиться его порядковый номер в схеме. Например, вот так: VD1 – VD4 . Иногда применяется обозначение VDS . Данное обозначение указывается обычно рядом с условным обозначением выпрямительного моста. Буква S в данном случае подразумевает, что это сборка. Также можно встретить обозначение BD .
Где применяется схема диодного моста?
Мостовая схема активно применяется практически в любой электронике, которая питается от однофазной электросети переменного тока (220 V): музыкальных центрах, DVD-проигрывателях, кинескопных и ЖК-телевизорах… . Да где его только нет! Кроме этого, он нашёл применение не только в трансформаторных блоках питания , но и в импульсных. Примером импульсного блока питания, в котором применяется данная схема, может служить рядовой компьютерный блок питания. На его плате легко обнаружить либо выпрямительный мост из отдельных мощных диодов, либо одну диодную сборку.
В сварочных аппаратах можно обнаружить очень мощные диодные мосты, которые крепятся к теплоотводу. Это лишь несколько примеров того, где может применяться данное схемотехническое решение.
Трехфазный выпрямитель — Большая Энциклопедия Нефти и Газа, статья, страница 4
Трехфазный выпрямитель
Cтраница 4
В чем заключаются преимущества трехфазного выпрямителя по сравнению с однофазным. [46]
Переменный ток генератора выпрямляется двухполупериодным трехфазным выпрямителем с полупроводниковыми диодами. [47]
В роторную цепь двигателя включен неуправляемый трехфазный выпрямитель В, к выходу которого подключен резистор R &. Параллельно резистору включен управляемый ключ, выполняемый, как правило, на основе полупроводниковых приборов. [48]
Уменьшения пульсации достигают применением или трехфазного выпрямителя, или включением после диодной схемы элементов, ток ( напряжение) в которых не может исчезнуть мгновенно. Эти элементы входят в фильтр, сглаживающий пульсации. Фильтр изменяет режим работы вентилей, входящих в диодную схему. Характер этих изменений зависит от того, каким является первый элемент фильтра, индуктивным или емкостным. [49]
Включение обратного диода в схему трехфазного выпрямителя ( рис. 6 — 22, в) делает регулировочную характеристику выпрямителя ( рис. 6 — 23, кривая б) более плавной и линейной. [51]
Тиристорный преобразователь выполнен по схеме трехфазного выпрямителя и состоит из трех или шести тиристоров типа Т-500, защищенных RC-цепочками. Питание преобразователя осуществляется от сети переменного тока напряжением 380 В, 50 Гц через согласующий трансформатор. [52]
Следует отметить, что в трехфазном выпрямителе с нейтральным выводом ток во вторичной обмотке трансформатора в любой момент времени протекает только в цепи одной фазы, в то время как в первичной цепи трансформатора токи протекают по всем трем фазам. [53]
С трехфазных трансформаторов снимается напряжение на трехфазные выпрямители. [55]
Поэтому следует использовать по крайней мере трехфазные выпрямители и принимать меры предосторожности против временного отключения тока во время регулирования напряжения. Последние исследования показали, что пульсации тока, обусловленные работой тиристорных регуляторов в выпрямителях, оказывают вредное влияние на процесс электроосаждения хрома. [56]
Влияние асимметрии углов регулирования на работу трехфазных выпрямителей. [57]
Помимо этого, в схеме РУВ-3 применен трехфазный выпрямитель, собранный по мостовой схеме Ларионова. [59]
Страницы: 1 2 3 4 5
Трехфазный диодный мост принцип работы
Почти вся электронная аппаратура для своей работы требует определённую величину постоянного напряжения. В электрический сети передаётся синусоидальный сигнал с частотой 50 Гц. Для преобразования сигнала используется свойство полупроводниковых элементов пропускать ток только в одном направлении, а в другом блокировать его прохождение. В качестве преобразователя применяется схема диодного моста, позволяющая получать на выходе сигнал постоянной величины.
Физические свойства p-n перехода
Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).
Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.
Примешанные атомы начинают образовывать, в зависимости от своей природы, свободные электроны или дырки. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный.
Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. Электрон, перемещаясь, занимает свободное место, дырку. При этом на его старом месте также образовывается дырка. В результате чего создаётся два потока движения зарядов: один основной, а другой обратный. Материал с отрицательным зарядом в качестве основных носителей использует электроны, его называют полупроводником n-типа, а с положительным зарядом, использующим дырки, p-типа. В полупроводниках обоих типов неосновные заряды образуют ток, обратный движению основных зарядов.
В радиоэлектронике из материалов для создания p-n перехода используется германий и кремний. При легировании кристаллов этих веществ образуется полупроводник с различной проводимостью. Например, введение бора приводит к появлению свободных дырок и образованию p-типа проводимости. Добавление фосфора, наоборот, создаст электроны, и полупроводник станет n-типа.
Принцип работы диода
Диод — это полупроводниковый прибор, имеющий малое сопротивление для тока в одном направлении, и препятствующий его прохождению в обратном. Физически диод состоит из одного p-n перехода. Конструктивно представляет собой элемент, содержащий два вывода. Вывод, подключённый к p-области, называется анодом, а соединённый с n-областью — катодом.
При работе диода существует три его состояния:
- сигнал на выводах отсутствует;
- он находится под действием прямого потенциала;
- он находится под действием обратного потенциала.
Прямым потенциалом называется такой сигнал, когда плюсовой полюс источника питания подключён к области p-типа полупроводника, другими словами, полярность внешнего напряжения совпадает с полярностью основных носителей. При обратном потенциале отрицательный полюс подключён к p-области, а положительный к n.
В области соединения материала n- и p-типа существует потенциальный барьер. Он образуется контактной разностью потенциалов и находится в уравновешенном состоянии. Высота барьера не превышает десятые доли вольта и препятствует продвижению носителей заряда вглубь материала.
Если к прибору подключено прямое напряжение, то величина потенциального барьера уменьшается и он практически не оказывает сопротивление протеканию тока. Его величина возрастает и зависит только сопротивления p- и n- области. При прикладывании обратного потенциала, величина барьера увеличивается, так как из n-области уходят электроны, а из p-области дырки. Слои обедняются и сопротивление барьера прохождению тока возрастает.
Основным показателем элемента является вольт-амперная характеристика. Она показывает зависимость между приложенным к нему потенциалом и током, протекающим через него. Представляется эта характеристика в виде графика, на котором указывается прямой и обратный ток.
Схема простого выпрямителя
Синусоидальное напряжение представляет собой периодический сигнал, изменяющийся во времени. С математической точки зрения он описывается функцией, в которой начало координат соответствует времени равным нулю. Сигнал состоит из двух полуволн. Находящаяся полуволна в верхней части координат относительно нуля называется положительным полупериодом, а в нижней части — отрицательным.
При подаче переменного напряжения на диод через подключённую к его выводам нагрузку, начинает протекать ток. Этот ток обусловлен тем, что в момент поступления положительного полупериода входного сигнала диод открывается. В этом случае к аноду прикладывается положительный потенциал, а к катоду отрицательный. При смене волны на отрицательный полупериод диод запирается, так как меняется полярность сигнала на его выводах.
Таким образом, получается, что диод как бы отрезает отрицательную полуволну, не пропуская её на нагрузку и на ней появляется пульсирующий ток только одной полярности. В зависимости от частоты приложенного напряжения, а для промышленных сетей она составляет 50 Гц, изменяется и расстояние между импульсами. Такого вида ток называется выпрямленным, а сам процесс —однополупериодным выпрямлением.
Выпрямляя сигнал, используя один диод, можно питать нагрузку, не предъявляющую особых требований к качеству напряжения. Например, нить накала. Но если запитать, например, приёмник, то появится низкочастотный гул, источником которого и будет промежуток, возникающий между импульсами. В некоторой мере для избавления от недостатков однополупериодного выпрямления совместно с диодом применяется параллельно включённый нагрузке конденсатор. Этот конденсатор будет заряжаться при поступлении импульсов и разряжаться при их отсутствии на нагрузку. А значит, чем больше значение ёмкости конденсатора, тем ток на нагрузке будет более сглажен.
Но наибольшего качества сигнала возможно достичь, если использовать для выпрямления одновременно две полуволны. Устройство, позволяющее это реализовать, получило название диодный мост, или по-другому — выпрямительный.
Диодный мост
Такое устройство представляет собой электрический прибор, служащий для преобразования переменного тока в постоянный. Словосочетание «диодный мост» образуется из слова «диод», что предполагает использование в нём диодов. Схема диодного моста выпрямителя зависит от сети переменного тока, к которой он подключается. Сеть может быть:
В зависимости от этого и выпрямительный мост называется мостом Гретца или выпрямителем Ларионова. В первом случае используется четыре диода, а во втором прибор собирается уже на шести.
Первая схема выпрямительного прибора собиралась на радиолампах и считалась сложным и дорогим решением. Но с развитием полупроводниковой техники диодный мост полностью вытеснил альтернативные способы выпрямления сигнала. Вместо диодов редко, но ещё применяются селеновые столбы.
Конструкции и характеристики прибора
Конструктивно выпрямительный мост выполняется из набора отдельных диодов или литого корпуса, имеющего четыре вывода. Корпус может быть плоского или цилиндрического вида. По принятому стандарту, значками на корпусе прибора отмечаются выводы подключения переменного напряжения и выходного постоянного сигнала. Выпрямители, имеющие корпус с отверстием, предназначены для крепления на радиатор. Основными характеристиками выпрямительного моста являются:
- Наибольшее прямое напряжение. Это максимальная величина, при которой параметры прибора не выходят за границы допустимых.
- Наибольшее допустимое обратное напряжение. Это максимальное импульсное напряжение, при котором мост длительно и надёжно работает.
- Наибольший рабочий ток выпрямления. Обозначает средний ток, протекающий через мост.
- Максимальная частота. Частота подаваемого на мост напряжения, при которой прибор работает эффективно и не превышает допустимый нагрев.
Превышение значений характеристик выпрямителя приводит к резкому сокращению срока его службы или пробою p-n переходов. Необходимо отметить такой момент, что все параметры диодов указываются для температуры окружающей среды 20 градусов. К недостаткам применения мостовой схемы выпрямления относят большее падение напряжения, по сравнению с однополупериодной схемой, и более низкое значение коэффициента полезного действия. Для уменьшения величины потерь и снижения нагрева мосты часто изготавливают с применением быстрых диодов Шотки.
Схема подключения устройства
На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами. Если выпрямитель собран из отдельных диодов, то рядом с каждым ставится обозначение VD и цифра, обозначающая порядковый номер диода в схеме. Редко используются надписи VDS или BD.
Диодный выпрямитель может подключаться напрямую к сети 220 вольт или после понижающего трансформатора, но схема включения его остаётся неизменной.
При поступлении сигнала в каждом из полупериодов ток сможет протекать только через свою пару диодов, а противоположная пара будет для него заперта. Для положительного полупериода открытыми будут VD2 и VD3, а для отрицательного VD1 и VD4. В итоге на выходе получится постоянный сигнал, но его частота пульсации будет увеличена в два раза. Для того чтобы уменьшить пульсацию выходного сигнала, используется, как и в случае с одним диодом, параллельное включение конденсатора С1. Такой конденсатор ещё называют сглаживающим.
Но случается так, что диодный мост ставится не только в переменную сеть, но и подключается в уже выпрямленную. Для чего нужен диодный мост в такой цепи, станет понятно, если обратить внимание в каких схемах используется такое его включение. Эти схемы связаны с использованием чувствительных радиоэлементов к переполюсовке питания. Использование моста позволяет осуществить простую, но эффективную защиту «от дурака». В случае ошибочного подключения полярности питания радиоэлементы, установленные за мостом, не выйдут из строя.
Проверка на работоспособность
Такой тип электронного прибора можно проверить, не выпаивая из схемы, так как в конструкциях устройств никакое его шунтирование не используется. В случае выпрямителя, собранного из диодов, проверяется каждый диод в отдельности. А в случае с монолитным корпусом измерения проводятся на всех четырёх его выводах.
Суть проверки сводится к прозвонке мультиметром диодов на короткое замыкание. Для этого выполняются следующие действия:
- Мультиметр переключается в режим позвонки диодов или сопротивления.
- Штекер одного провода (чёрного) вставляется в общее гнездо тестера, а второго (красного) в гнездо проверки сопротивления.
- Щупом, подключённым чёрным проводом, дотроньтесь до первой ножки, а щупом красного провода до третьего вывода. Тестер должен показать бесконечность, а если поменять полярность проводов, то мультиметр покажет сопротивление перехода.
- Минус тестера подается на четвёртую ногу, а плюс на третью. Мультиметр покажет сопротивление, при смене полярности бесконечность.
- Минус на первую ногу, плюс на вторую. Тестер покажет открытый переход, при смене – закрытый.
Такие показания тестера говорят об исправности выпрямителя. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром. Но при этом придётся подать питание на схему и замерить напряжение на сглаживающем конденсаторе. Его величина должна превышать входное в 1,4 раза.
Диодный мост? Это совсем не то, что Крымский. Это такой маленький диодный мостик, схема которого строится из небольших совсем электронных устройств — диодов. Их мы собираем даже своими руками. Да, соберите своими руками и увидите, что это легко и быстро, надо только знать, из чего и для чего. Он состоит из диодов.
Что такое диоды
Диоды — это электронные устройства с двумя электродами («ди» — два). Анод и катод.
Раньше, в эпоху стеклянных электронных вакуумных ламп, это была самая простая из ламп. В ней непосредственно около катода располагалась нить накаливания, как в лампочке. Катод от этого разогревался, и из него начинали выпрыгивать электроны все быстрее и быстрее. А кроме напряжения накала к электродам было приложено рабочее напряжение. И если на катод подать минус, а на анод плюс, то электроны от катода начинают отталкиваться, а к аноду притягиваться. Так как этому процессу в вакууме ничто не мешает, через вакуум и побежит ток, пропорциональный приложенному напряжению. А если поменять полюса — подать на анод минус, а на катод плюс, ток остановится. Потому что анод холодный, а к катоду теперь приложен положительный потенциал, который возвращает выброшенные накалом катода электроны обратно. Вот так и получился самый первый и самый простой нелинейный электрический элемент. В одну сторону ток он пропускает, а в другую — нет.
Почти такая же картина и в полупроводниковых диодах. Только там нет вакуума, а твердая пластинка полупроводника имеет свойство не препятствовать движению электронов в одну сторону и запрещать их движение в противоположную.
Весь секрет в N-P-переходе полупроводника.
Полупроводниковый диод представляет собой пластинку, похожую на плоский кружочек (или квадратик) металла. Но это не металл, а две его стороны имеют чуть разные свойства. Металлы характеризуется тем, что электроны в их кристаллической решетке почти не держатся, вылетают и болтаются между атомами кристалла по любому поводу, самая небольшая температура, заставляющая ядра атомов на своих местах слегка вибрировать, вышибает электроны напрочь и массово. А на этом месте что образуется? Знамо дело, дырка. Так называется атом, потерявший электрон. И получается, что электроны хаотично мечутся по межатомному пространству металла, а дырки тоже мечутся — только уже по самой кристаллической решетке. Потому что если соседний атом «заметит» дырку, он очень просто легким толчком закинет в нее свой электрон. И это можно понять в обратном смысле: получилось, это дырка перескочила из того атома в этот. И так дырки начинают жить тоже своей самостоятельной жизнью и блуждать как им взбредется. А встретится им электрон — может произойти рекомбинация, когда электрон запрыгнет в эту самую дырку. Ну и все, нашел свою судьбу. Только свободных электронов в металле видимо-невидимо, и поэтому стоит приложить к проводнику напряжение — как тут же начнется уже более-менее упорядоченное движение электронов от минуса к плюсу, то есть электрический ток. Соответственно, и дырки побегут, наоборот, от плюса к минусу, то есть как раз так, как люди определили когда-то НАСТОЯЩИМ направлением тока. Определили, еще ничего не зная ни о свободных электронах, ни о дырках.
В полупроводниках картина очень тонкая. Он сам плохой проводник и никудышный изолятор. Потому они так и названы — полупроводники. В них тоже есть свободные электроны и дырки. Только их не так много, как в металлах, а равновесие электронов и дырок нарушают примеси в полупроводнике. Атомы примесей становятся дополнительными источниками в одних случаях свободных электронов, в других — «свободных» дырок. Есть такие атомы, которые в одном случае прихватывают себе лишний электрон и не отпускают его (акцепторная примесь). А на его месте в атоме полупроводника получается дырка и начинает бродить неприкаянно по кристаллической решетке.
А в другом случае атом примеси имеет свойство отдавать свой электрон (донорная примесь), ничего не прося взамен. И пойдет электрон лишний куда глаза глядят.
Первая проводимость названа дырочной — P (positive, положительная), вторая электронной — N (negative, отрицательная).
Но самое интересное, что два типа проводимости могут существовать в одном куске полупроводника. Вот той самой тонкой пластинки, похожей на металл. С одной стороны в нее внедряют донорную примесь, а с другой — акцепторную.
Очень просто: можно на основу из полупроводника — германия или кремния — с одной стороны нанести материал-акцептор, фосфор, мышьяк или сурьму. Температура плавления сурьмы чуть выше 980 ⁰С, а у полупроводников еще выше, около 1200–1400 ⁰С. Атомы акцептора (чаще всего сурьмы, более остальных практичной в обращении) внедряются в кристаллическую решетку полупроводника, делая его полупроводником типа P. Другую сторону обрабатывают алюминием или индием — легкими и плавкими металлами. Достаточно поместить капельку индия, просто капнуть с одной стороны при температуре плавления 430 ⁰С.
Вот и получился у нас знаменитый N-P переход, который ток пропускает в одну и другую стороны по-разному.
И правда, если представить ток как движение заряженных частиц, то в полупроводнике N-типа движутся электроны (их подавляюще больше). А в P-типа — дырки. Причем направление их движений противоположное. Только если в металле они движутся одновременно и независимо — одни туда, другие сюда, то в полупроводнике все не так. В полупроводнике N-типа движутся, в основном, электроны, по полупроводнику P-типа ток создает движение дырок. А вот в N-P переходе эти два вида токов встречаются.
На границе этих двух типов (границе между полупроводником с примесями одного типа и проводником с примесями другого) электроны вместо дальнейшего движения будут «находить свою судьбу», то есть встречаться с дырками и с ними производить рекомбинацию. Такую зону счастливых электронных пар мы называем «зоной запрета», потому что при рекомбинации атомы примесей становятся ионами (в N-зоне положительные, а в P-зоне отрицательные), и они создают электрическую разность потенциалов, всегда направленную от N проводимости к P проводимости. И вот теперь, если прикладывать напряжение к внешним контактам диода, и если полярность его совпадает с направлением этой разности потенциалов, то ток потечет через диод, а если противоположно ей, то нет. Первое направление (когда к P приложен плюс, а к N минус) называется прямым, второе (когда на P подан минус, а на N плюс) — обратным.
Прямое направление диода делает его по работе похожим на обычное сопротивление, работающим по закону Ома.
А обратное дает нечто вроде разрыва в цепи, хотя при этом всегда сохраняется некоторый обратный ток, зависящий от других вещей — температуры, радиации.
Вот на таких приборах и строятся выпрямительные мосты.
Выпрямительные мосты
Если подавать на диод переменное электрическое напряжение, которое непрерывно изменяется от некоторого напряжения U+ > 0 до напряжения U–
В случае обычного для наших сетей синусоидального сигнала в результате работы диода получается «полусинусоида» тока (или напряжения в нагрузке).
Весь ток и напряжение в сети нагрузки будет иметь положительное направление, но половина электроэнергии не будет «доходить» до адресата.
Чтобы использовать и вторую половину синусоиды, нужно, чтобы она не срезалась, а меняла знак на противоположный. Вот и получилась схема диодного моста.
Уже лучше, но мост не является выпрямителем в полном смысле. Напряжение в нагрузку он дает не постоянное, а пульсирующее с двойной частотой.
Если нагрузкой сделаем лампу накаливания, то никаких пульсаций света можем и не заметить.
Лампа накаливания является прибором инерционным, в плане преобразования электричества в тепло и свет. То есть за 1/50 (при переменном напряжении) или за 1/100 (при пульсирующим напряжении от диодного моста) доли секунды ее нить накала не успевает остыть, как уже приходит очередной импульс. В этом случае диодный мостик такой схемы вполне подойдет.
В результате этого температура спирали во времени представляет собой кривую, сглаживающую кривую напряжения, выходящего из диодного моста. И чем спираль массивнее, тем более сглажена кривая ее температуры. В выпрямительных мостах сглаживание делается конденсатором, которые способны, подобно спирали лампы, накапливать энергию, а потом медленно ее отдавать.
Выпрямительный мост — это настолько отработанная, привычная и полезная схема, что для нее имеется общепринятое сокращенное графическое обозначение. А как сделать диодный мост — тут вообще все просто. Следует только разобраться с концами диодов — какие плюс и какие минус. На входные два узелка подается переменное напряжение, поэтому к ним подходят как плюс диодов, так и минус: VD1 плюс, VD2 минус —на верхний, VD3 + и VD4 — на нижний. А выходные клеммы от моста получают уже знакопостоянное напряжение, поэтому их плюсы и минусы совпадают с +/- диодов. VD2, VD4 припаяем плюсами на плюсовой выход, VD1, VD3 — минусами на минусовой. Вот и получился выпрямительный диодный мост.
Такие диодные мосты присоединяют часто к обычному трансформатору от блоков питания, понижающему к 12 вольтам. Диоды в этом случае подойдут любые, лишь бы рабочий диапазон напряжений был немного больше, чем на 12 вольт. Скажем, вольт на 20–35. Особых требований нет, соединения низковольтные, для подключения достаточно обычной спайки.
Трехфазный диодный мост
Однако делают диодные мосты и высоковольтные. Там все то же самое, только все элементы схемы рассчитываются на те номиналы напряжений, с которыми будет иметь дело диодный мост — с запасом, разумеется. Кроме того, можно сделать его и для трехфазного напряжения. И он оказывается сложнее однофазного не в три раза, а только в полтора.
Подключить диодный мост к трансформатору здесь нужно в трех точках, по одной на каждую фазу. Принципиальной разницы между спайкой диодного моста на три фазы и собранного под одну фазу нет. Разобраться с концами здесь почти так же просто. Здесь плюсы одних трех диодов и минусы других подключаются к выходам, после этого попарно спаиваются плюсы с минусами верхней и нижней тройки диодов, и в эти же три точки подаются фазы. Все, вы его собрали.
Преобразовать переменный ток в постоянный поможет диодный мост – схема и принцип действия этого устройства приводятся ниже. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление. Его превращение в постоянный – достаточно часто встречающаяся необходимость.
Принцип действия полупроводникового диода
Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов – полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении – от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.
Поэтому при подаче на цепочку, содержащую диод, переменного напряжения Uвх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.
Строго говоря, выходное напряжение Uвых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.
Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:
- повышенная степень пульсаций выпрямленного напряжения;
- низкий КПД;
- большой вес трансформатора и его нерациональное использование.
Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ – использование диодного моста.
Схема диодного моста
Диодный мост – схема двухполупериодного выпрямления, содержащая 4 диода вместо одного (рис. 2в). В каждом полупериоде два из них открыты и пропускают электричество в прямом направлении, а два других закрыты, и ток через них не течет. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное – к катоду VD3. В результате оба этих диода открыты, а VD2 и VD4 – закрыты.
Во время отрицательного полупериода положительное напряжение приложено к аноду VD2, а отрицательное – к катоду VD4. Эти два диода открываются, а открытые во время предыдущего полупериода закрываются. Ток через сопротивление нагрузки течет в том же направлении. В сравнении с однополупериодным выпрямителем количество пульсаций возрастает вдвое. Результат – более высокая степень сглаживания при той же емкости конденсатора фильтра, увеличение КПД используемого в выпрямителе трансформатора.
Диодный мост может быть не только собран из отдельных элементов, но и изготовлен как монолитная конструкция (диодная сборка). Ее легче монтировать, а диоды обычно подобраны по параметрам. Немаловажно и то, что они работают в одинаковых тепловых режимах. Недостаток диодного моста – необходимость замены всей сборки при выходе из строя даже одного диода.
Еще ближе к постоянному будет пульсирующий выпрямленный ток, который позволяет получить трехфазный диодный мост. Его вход подключается к источнику трехфазного переменного тока (генератору или трансформатору), а напряжение на выходе почти не отличается от постоянного, и сгладить его еще проще, чем после двухполупериодного выпрямления.
Выпрямитель на основе диодного моста
Схема двухполупериодного выпрямителя на основе диодного моста, пригодная для сборки своими руками, изображена на рис. 3а. Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. Для этого нужно подключить диодный мост к трансформатору.
Пульсирующее выпрямленное напряжение сглаживается электролитическим конденсатором С, имеющим достаточно большую емкость – обычно порядка нескольких тысяч мкФ. Резистор R играет роль нагрузки выпрямителя на холостом ходу. В таком режиме конденсатор С заряжается до амплитудного значения, которое в 1,4 (корень из двух) раза выше действующего значения напряжения, снимаемого со вторичной обмотки трансформатора.
С ростом нагрузки выходное напряжение уменьшается. Избавиться от этого недостатка можно, подключив к выходу выпрямителя простейший транзисторный стабилизатор. На принципиальных схемах изображение диодного моста часто упрощают. На рис. 3б показано, как еще может быть изображен соответствующий фрагмент на рис. 3а.
Следует заметить, что, хотя прямое сопротивление диодов невелико, тем не менее, оно отлично от нуля. По этой причине они нагреваются в соответствии с законом Джоуля-Ленца тем сильнее, чем больше величина тока, протекающего по цепи. Для предотвращения перегрева мощные диоды часто устанавливаются на теплоотводах (радиаторах).
Диодный мост – это практически обязательный элемент любого электронного устройства, питающегося от сети, будь то компьютер или выпрямитель для зарядки мобильного телефона.
Диодный мост, как его проверить
Диодный мост — электрическое устройство, предназначенное для преобразования («выпрямления») переменного тока в пульсирующий (постоянный).
Диодный мост или, как его ещё называют, выпрямитель нужен для преобразования переменного тока в постоянный. Его используют везде, где нужно получить питание постоянным напряжением независимо от мощности прибора, потребляемого тока или величины напряжения.
Устройство
Для выпрямления однофазного напряжения используют схему Гретца из четырёх диодов. Если в схеме стоит трансформатор с отводом от средней точки используют схему из двух диодов.
Мостом называется именно включение четырёх диодов.
Диодный мост может быть выполнен в одном корпусе, а может быть из дискретных диодов, то есть отдельных. Входом диодного моста называют точки подключения переменного напряжения, а выходом — точки с которых снимают постоянное.
Переменное напряжение подают в точки, в которых соединены анод с катодом диодов. На выходе получают плюс и минус, при этом с точки соединения катодов снимают положительный полюс, т.е. плюс питания, а точка соединения анодов является минусом.
На приведенном рисунке изображена схема диодного моста, где мест подключения переменного напряжения обозначены «AC ~», а выход постоянного «+» и «-«.
Некоторые новички наивно предполагают, исходя из принципа обратимости электрических машин, что подав постоянку на мост на оставшихся контактах они получат переменку. Это не так, это не электрическая машина и здесь нужен преобразователь.
На современных диодных мостах контакты помечены также: вход переменки «AC» или «~», а выход по стоянки «+» и «-«. Совместим схему с изображением реального моста, чтобы разобраться, как это выглядит на практике.
Где устанавливают
Диодный мост обычно установлен на входе цепи питания, если выпрямляется сетевое напряжение 220В, такое решение применяется в импульсных блоках питания, в том числе компьютерного блока питания, устройство которого было рассмотрено в одной, из ранее выложенных на сайте . Либо во вторичной обмотке трансформатора, такое включение применяется в обычных блоках питания, например маломощной магнитолы для дома или старого телевизора.
В современных блоках питания чаще используются импульсные схемы, в них диодный мост выпрямляет именно сетевое напряжение, а трансформатором управляют полупроводниковые ключи (транзисторы).
Будьте осторожны:
Если диодный мост стоит на входе по линии 220В, то на его выходе пульсирующее или сглаженное (если есть фильтрующий конденсатор) постоянное по знаку напряжение амплитудой в 310В. В любом случае выпрямленное напряжение увеличивается, относительно переменного.
Тоже касается и остаточного заряда фильтрующих электролитических конденсаторов, они могут биться током, даже когда питание на плату блока питания не подаётся. Их нужно предварительно разряжать лампой накаливания или резистором.
Не стоит разряжать емкость закорачиванием железным инструментом: вас может ударить током, вы можете повредить конденсаторы или дорожки платы.
Приступим к проверке диодного моста
Я буду рассуждать на примере типовой ситуации. Есть нерабочее устройство и его нужно отремонтировать.
Вы решили отремонтировать устройство, при разборке увидели на плате перегоревший предохранитель, защитный резистор или дорожку на печатной плате.
После замены сгоревшего элемента и восстановления дорожки не спешите включать. Начинающие электронщики любят делать «жучки» вместо предохранителя, тогда, тем более, нельзя включать плату.
Если предохранитель вышел из строя не случайно, а из-за проблем на плате блока питания вы получите повторное перегорание предохранителя. А если вместо него поставили жучек, то это включение сопроводить зрелищный фейерверк, возможное повреждение провода или розетки, выбитые пробки и автоматы.
Если пробит диодный мост, то после предохранителя на плате будет КЗ. Чтобы проверить диодный мост на пробой без мультиметра пользуйтесь проверенным способом: подключайте сомнительные блоки пиатния, через лампу накаливания на 40-100 Вт 220В. Она выполнит роль ограничителя тока и плата не повредится, и предохранитель не перегорит. Лампу подключают в разрыв одного из питающих кабелей 220В.
сли диодный мост пробит — лампа засветится в полный накал.
Это достаточно приблизительный способ диагностики диодного моста без мультиметра. Лампа может засветиться и при исправном мосте, если КЗ находится в схеме после него. Проверить диодный мост на обрыв без мультиметра можно и с помощью индикаторной отвёртки, на его выходе, как уже было сказано, должно быть высокое напряжение, если он установлен на линии 220В, неоновый индикатор в отвёртке должен засветиться.
Проверка диодного моста мультиметром
Любую деталь в электрической схеме нужно выпаивать перед её проверкой и прозвонкой. Можно, конечно, проверить и на плате, но есть вероятность получить ложные результаты измерений.
Также если вы будете прозванивать мост со стороны дорожек и контактных площадок на плате, есть вероятность отсутствия электрического контакта при визуально нормальной пайке. В тоже время, если диодный мост собран на плате из отдельных диодов, его зачастую удобно проверять, не выпаивая из плат, с её лицевой стороны. В таком случае вы получаете удобный доступ к металлическим ножкам диода.
Вам понадобится любой цифровой мультиметр, например самый дешёвый и распространенный типа dt-830. Включите режим прозвонки диодов, вы его можете найти по пиктограмме с условным его обозначением.
Часто этот режим совмещён с режимом звуковой прозвонки. Любая прозвонка и большинство омметров состоит из пары щупов, один из которых является плюсом, а второй — минусом. На мультиметра чаще всего красный щуп принимается за плюс, а чёрный за минус.
Как известно — диод проводит ток в одну сторону. При этом протекание тока возможно только при подключении положительного щупа (плюса) к аноду, а отрицательного к катоду. Тогда при проверке мультиметром в этом режиме силового кремниевого диода на дисплее отображаются цифры в диапазоне 500…700.
Это количество милливольт, которое падает на pn-переходе. Если вы увидели эти значения — диод уже наполовину исправен. Если цифры большие или у левой стороны экрана появилась единица и больше ничего — диод в обрыве. Если сработала звуковая прозвонка или на экране около 0 — диод пробит.
Теперь нужно определить, не проходит ли ток в обратном направлении. Для этого меняем щупы местами, на экране либо должно быть значение много больше 1000, порядка 1500, либо единица у левой стороны экрана — так обозначается большое значение, выходящее за пределы измерений. Если значения маленькие — диод неисправен, он пробит.
Если оба замера совпали с описанными — с диодом все в порядке.
Таким образом проверяют диодный мост из отдельных диодов.
У диодов Шоттки падение напряжения от 0.3В, то есть при проверке на экране мультиметра высветится цифра порядка 300-500.
Если поменять щупы местами – красный на катод, а черный на анод, на экране будет либо единица, либо значение более 1000 (порядка 1500). Такие измерения говорят о том, что диод исправен, если в одном из направлений измерения отличаются, значит, диод неисправен. Например, сработала прозвонка – диод пробит, в обоих направлениях высокие значения (как при обратном включении) – диод оборван.
Проверка диодного моста в корпусе мультиметром
Я начал статью с описания точек, куда подключается переменка и откуда снимается постоянка неспроста. Это поможет при его проверке, давайте разберемся!
Сразу оговорюсь, что черный щуп вставлен в разъём «COM» на мультиметре.
Ставим черный щуп мультиметра на контакт, помеченный как «+», а красным попеременно касаемся контактов «~» к которым подключают переменное напряжение по очереди. В обоих случаях на экране вы должны увидеть падение напряжения на прямовключенном pn-переходе, т.е. цифры около 600, если диод исправен. Поменяв щупы местами, если выпрямитель исправен, вы увидите большие значения или единицу.
На некоторых мультиметрах вместо единицы используют символы 0L.
Проверяем вторую пару диодов. Для этого красный щуп ставим на вывод «-» диодного моста, а красным по очереди касаемся выводов «~», вы должны увидеть на экране мультиметра значения прямого падения — около 600 при касании любого из контактов со знаком «~» (AC). Меняем щупы местами — на экране больше значения или бесконечность. Если что-то отличается, то диодный мост нужно заменить.
Быстрая проверка диодного моста
Иногда возникает необходимость экспресс проверки диодного моста, это можно сделать тремя касаниями щупов мультиметра к мосту. Можно проводить её не выпаивая мост из платы.
Первое положение щупов: ставим оба щупа между выводами для подключения переменного напряжения (на вход) «~». Если диодный мост пробит — сработает прозвонка, а если её нет, то на экране мультиметра значения устремятся к нулю.
Второе положение щупов: красный щуп ставим на вывод со знаком «-«, а черный на вывод со знаком «+», если диоды исправны — на экране мультиметра будут цифры в двое больше прямого падения на диоде, то есть 1200-1400 мВ. Если на экране около 600 — значит один диод пробит, и вы видите падение напряжения на одном оставшемся.
На рисунке ниже вы видите, как течет ток при такой проверке подумайте, почему получаются такие результаты.
Однако если один из диодов в обрыве ток потечет по уцелевшей ветви и на экране будут условно-исправные значения.
Третье положение щупов — красный щуп на вывод со знаком «-«, а черный на вывод со знаком «+», тогда на экране мультиметра будут такие же результаты как при проверке диода подключенного в обратном направлении (бесконечность). Если сработала прозвонка или на экране маленькие значения (от нуля до сотен) – значит, мост пробит.
Такая проверка эффективна, но не даст такой достоверности как описанная в предыдущем пункте статьи. Если устройство все равно не работает и на выходе диодного моста отсутствует напряжение, то выпаяйте мост и повторно проверьте его.
Проверка другими средствами
Если у вас нет мультиметра, но у вас есть советский тестер или, как его еще называют «цешка» или какой-нибудь Омметр с пределом измерения до десятка кОм можно использовать и эти стрелочные приборы.
Логика проверки такая же самая, только в прямом включении стрелка будет указывать низкие сопротивления, а в обратном включении диода — высокое.
Если у вас и этого нет — вам поможет любая батарейка или несколько батареек с выходным напряжением больше пары вольт и лампочка накаливания (можно и светодиодом и кроной, батарейкой на 9В). Взгляните на картинку, и вам все станет ясно.
Заключение
Проверка диодного моста — базовый навык для тех, кто занимается ремонтом радиоэлектронной аппаратуры и электроприборов и для тех, кто хочет этому научиться. Для этого нужен минимальный набор инструментов, но хорошие понимание не только способа проверки, а и самой логики работы моста.
Использование мультиметра, цешки или прозвонки не меняет конечного результата при правильном проведении измерений. Однако на моей практике случалось так, что прибор показывал исправность диодного моста, а в реальности он не работал.
Возможно он «пробивался» под большим напряжением, чем на клеммах прибора, которым я проводил проверку. Поэтому самым точным способом «посмотреть» процессы, происходящие в схеме — это осциллограф.
В автоэлектрике, например по одной только осциллограмме напряжения в линии можно определить исправность диодного моста генератора, причем специалист может даже определить, что конкретно произошло — пробой или обрыв.
Ранее ЭлектроВести писали, что команда ученых из Херсона построила уникальный плавучий ветрогенератор мощностью 10 кВт-ч.
По материалам: electrik.info.
с малыми потерями снижает нагрев и снижает тепловую нагрузку
Семейство микросхем InnoSwitch4-Pro, представленное Power Integrations на APEC 2018 на этой неделе, упрощает разработку и производство полностью программируемых источников питания. Базовый интерфейс I 2 C используется для настройки, управления и контроля работы подсистемы питания, обеспечивая динамическое регулируемое управление выходным напряжением (с шагом 10 мВ) и током (с шагом 50 мА) в паре с микроконтроллер или с входами от системного ЦП.
По заявлению Power Integrations, они способны выдавать до 65 Вт и достигать КПД до 94% в условиях сети и нагрузки, устройства InnoSwitch4-Pro хорошо подходят для источников питания переменного / постоянного тока, где желательна точная регулировка выходного напряжения и тока. .
Сюда входят практически любые протоколы быстрой зарядки, включая USB Power Delivery (PD) 3.0 + PPS, Quick Charge 4/4 + и другие промышленные и потребительские зарядные устройства, а также регулируемые драйверы балласта для светодиодов и промышленные блоки питания с возможностью настройки на месте.При таком использовании эффективность системы повышается, поскольку InnoSwitch4-Pro устраняет необходимость в пострегуляторах постоянного и переменного тока (что также снижает количество BOM).
ИС преобразования мощности включают в себя источник питания микропроцессора V CC , что устраняет необходимость во внешнем LDO для питания микроконтроллера. Также включен n-канальный драйвер полевого транзистора, который можно использовать для включения или отключения основного выхода питания. Кроме того, серия предлагает встроенную телеметрию по напряжению, току и неисправностям шины, а также динамически настраиваемые функции защиты, такие как OTP, линия OV / UV, выход OV / UV и короткое замыкание.
В ИСInnoSwitch4-Pro используется высокоскоростная цифровая коммуникационная технология FluxLink компании Power Integrations, а также синхронное выпрямление, квазирезонансное переключение и точный датчик обратной связи вторичной стороны и схема управления обратной связью. Устройства сертифицированы CQC, признаны UL и одобрены TUV (EN60950) для преодоления изоляционного барьера
Во время представления продукта Шьям Дуджари, директор по маркетингу продуктов Power Integrations, отметил: «Возможность точного управления выходным напряжением и током источника питания в широком диапазоне также полезна для разработчиков специализированных приложений с небольшими производственными партиями, так как они могут легко настроить дизайн одной платы для нескольких артикулов продукта с помощью программного обеспечения либо при производстве, либо во время установки.”
Образцы доступны уже сейчас.
VS-36MT60 | 09 | Мостовой выпрямитель, трехфазный, 600 В, 35 А, модуль, 1,19 В, 5 контактов ВИШАЙ | Каждый | Запрещенный товар Этот товар был ограничен для покупки администратором вашей компании. Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 600 В | 35A | Модуль | 1.19В | 5 контактов | 150 ° С | Серия VS-36 | ||||
VS-26MT60 | 85 | Мостовой выпрямитель, трехфазный, 600 В, 25 А, модуль, 1,26 В, 5 контактов ВИШАЙ | Каждый | Запрещенный товар Этот товар был ограничен для покупки администратором вашей компании. Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 600 В | 25А | Модуль | 1.26В | 5 контактов | 150 ° С | Серия VS-26 | ||||
SBR3506 | 2751001 | Мостовой выпрямитель, трехфазный, 600 В, 35 А, модуль, 1,2 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Этот товар был ограничен для покупки администратором вашей компании. Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 600 В | 35A | Модуль | 1.2В | 5 контактов | 150 ° С | SBR35A серии | ||||
SBR2506 | 2750988 | Мостовой выпрямитель, трехфазный, 600 В, 25 А, модуль, 1,1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Этот товар был ограничен для покупки администратором вашей компании. Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 600 В | 25А | Модуль | 1.1В | 5 контактов | 150 ° С | SBR25 серии | ||||
MP001018 | 3232332 | Мостовой выпрямитель, трехфазный, 600 В, 25 А, модуль, 1,1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Этот товар был ограничен для покупки администратором вашей компании. Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 600 В | 25А | Модуль | 1.1В | 5 контактов | 150 ° С | — |
Трехфазная полууправляемая мостовая схема | Общие характеристики
Трехфазная полууправляемая мостовая схема:Это достигается последовательным соединением преобразователя с 3-х импульсным управлением и неуправляемого преобразователя с 3 импульсами. Три плеча первого состоят из тиристоров, а три плеча второго — диодов.Типичная трехфазная полууправляемая мостовая схема показана на рис. 3.51. Здесь показан управляемый преобразователь с общим катодным подключением и образующий положительную группу. Неконтролируемый имеет общее анодное соединение и образует отрицательную группу. Также возможно установить преобразователь с подключениями наоборот. Тиристоры коммутируют под тем углом, при котором они срабатывают. Диоды коммутируют в момент естественного зажигания α = 0. Тиристоры проводят на 120 ° и срабатывают с интервалом 120 °.Выходные напряжения двух преобразователей складываются, чтобы получить чистое выходное напряжение на клеммах постоянного тока. Угол включения управляемого преобразователя составляет от 0 до 180 ° (в идеальных условиях). Выходное напряжение изменяется от положительного максимума до отрицательного максимума. Среднее значение напряжения для неуправляемого преобразователя фиксируется на максимальном значении регулируемого. Сетевое напряжение на клемме постоянного тока изменяется от положительного максимума до нуля. На практике из-за инверторного ограничения управляемого преобразователя напряжение не может упасть до нуля.
Тиристор и диод проводят в любой момент времени, диод смещен в прямом направлении в момент естественного зажигания. Тиристор ведет себя, даже если он смещен в обратном направлении, пока не сработает следующий тиристор в последовательности. Таким образом, происходит естественный свободный ход тока нагрузки через входящий диод и выходной тиристор. Напряжение нагрузки равно нулю в период свободного хода. Свободный ход из-за проводимости диода не допускает отрицательных отклонений напряжения нагрузки. Это снижает содержание пульсаций в выходном напряжении.Частота пульсаций выходного напряжения при α = 0 равна 6f. При α <60 ° свободного хода не происходит, так как напряжение на стороне постоянного тока всегда положительно. Отрицательное мгновенное значение не возникает. Свободный ход возможен только при α ≥ 60 °. Частота пульсаций уменьшается до 3f при этих углах включения (α ≥ 60 °). Напряжение пульсаций меньше при a = 60 ° и увеличивается при α> 60 °. По сравнению с полностью управляемым преобразователем, требуемая сглаживающая индуктивность велика при α = 90 °, даже несмотря на естественный свободный ход.
Средние значения постоянного напряжения можно получить как (рис. 3.52)
С учетом падений напряжения из-за реактивных сопротивлений (перекрытия), сопротивлений и падений устройства, постоянное напряжение в рабочей области
Осциллограммы напряжения и тока преобразователя при разных углах зажигания показаны на рис. 3.52. Осциллограммы тока в линии показывают, что период импульса тока в линии уменьшается с увеличением угла зажигания.Эффективные значения основной гармоники, а также гармоник зависят от угла включения. Величина g зависит от угла стрельбы; он не постоянный, как в случае полностью управляемого преобразователя. Все гармоники можно отнести к среднему значению постоянного тока. Следовательно, при больших углах задержки эффективное значение линейного тока намного меньше, чем при α = 0. Однако действующее значение гармоник намного больше при больших углах задержки и составляет большую часть входного тока.
Коэффициент основного смещения — cos (α / 2). Общий коэффициент мощности равен g cos (α / 2). Где g — отношение основного среднеквадратичного тока к общему действующему току. Из текущих осциллограмм получаем
Действующее значение тока
Имеется экономия управляющей реактивной мощности, но не коммутируемой реактивной мощности. Индикатор мощности в зависимости от V diα / V dio показан на рис. 3.53. Улучшение коэффициента мощности можно увидеть в диапазоне 0 ° <α <180 °.Значение g такое же, как для полностью управляемого преобразователя в диапазоне 0 <α <60 ° .
Пиковое прямое и обратное напряжение тиристоров и диодов составляет √2V L , где V L — среднеквадратичное значение линейного напряжения. Ток тиристора составляет 0,45 В L / R. Действующее значение токов тиристора и диода
Для высокоиндуктивных нагрузок и малых углов зажигания преобразователь показывает явление полуволны.Этого можно избежать с помощью FWD через нагрузку.
Общие характеристики трехфазной полууправляемой мостовой схемы:Когда задействованы только однонаправленные приложения, выгодно использовать трехфазную мостовую схему с половинным управлением, поскольку они обеспечивают следующие особенности над двухквадрантными преобразователями:
1. Конвертеры экономичные, так как половину позиций занимает
2. Схема запуска подает сигналы только на половину числа тиристоров, поэтому она проста и менее затратна.
3. Производительность преобразователя на линии улучшается по мере увеличения коэффициента мощности. Реактивная мощность управления меньше. Это связано с тем, что период проведения импульса входного тока уменьшается, поскольку входной ток равен нулю, когда напряжение равно нулю. Таким образом, потребность в реактивной мощности становится меньше. Нет экономии на коммутационной реактивной мощности.
4. Изменение напряжения находится между максимальным значением и (около) нулем, когда угол зажигания изменяется от 0 до 180 °.Однако ограничение инвертора не позволяет a равняться 180 °, и, следовательно, напряжение не может перейти к нулю. Нулевое выходное напряжение может быть получено путем подачи на преобразователь компонентов различных напряжений. Преобразовательный трансформатор, имеющий две вторичные обмотки соответствующих витков, питает преобразователи. Напряжение, подаваемое на контролируемую часть, на 10% больше, чем на неуправляемую.
5. Амплитуда пульсаций уменьшается, и, следовательно, требуется меньшая сглаживающая индуктивность.Это связано с тем, что естественный свободный ход не допускает отрицательных скачков напряжения.
6. Частота пульсаций вдвое меньше, чем у полностью управляемого преобразователя (3-фазные преобразователи).
3-фазный диодный мостовой выпрямитель
Опубликовать ваши комментарии?
Трехфазный мостовой выпрямитель обзор ScienceDirect
7 часов назад Последовательность проводимости для диодов составляет 12, 23, 34, 45, 56 и 61. Формы напряжения и тока трехфазного мостового выпрямителя показаны на рис.7.13 Линейное напряжение в 1,73 раза больше напряжения фазы источника трех — фазы , соединенных звездой.
Веб-сайт: Sciencedirect.com
Категория : Используйте слова в предложении
Трехфазный полноволновой диодный выпрямитель(Equations & Circuit
4 часа назад Трехфазный двухполупериодный диодный выпрямитель с чисто резистивной нагрузкой ниже показан ниже. частота.Форма волны напряжения на нагрузке показана черным цветом на рисунке ниже. V m- phase — максимальное напряжение фазы . Минимальное напряжение на нагрузке составляет 1,5 В м- фаза .
Расчетное время чтения: 2 минуты
Веб-сайт: Electrical4u.com
Категория : Используйте слова в предложении
High Power 100A 1600V Трехфазный диодный мостовой выпрямитель
High1 час назад Power 100A 1600V Трехфазный диодный мостовой выпрямитель MDS100A Черный Трехфазный диодный мостовой выпрямитель Бренд: Hilitand.4,8 из 5 звезд 13 оценок. Цена: 18,99 долларов США БЕСПЛАТНАЯ доставка Получите бесплатную доставку Бесплатная доставка в течение 5–8 дней в пределах США при заказе на 25 долларов США соответствующих критериям товаров, проданных или выполненных на Amazon. Или получите доставку в течение 4-5 рабочих дней по номеру
Рейтинг : 4,8 / 5 (13)Ean: 0798382577837
Текущий рейтинг: 100,0 ампер
Вес товара: 4,6 унции
Веб-сайт: Amazon.com
Категория : Используйте слова в предложении
Трехфазный диодный мостовой выпрямитель с малыми потерями снижает теплоотдачу
1 час назад Linear Technology Corporation объявляет о доступности фазы с низкими потерями 3 — идеальный диодный мостовой выпрямитель Эталонная конструкция , продемонстрированная на оценочной плате DC2465.Обычные фазные выпрямители 3 — используют шесть диодов , но диоды понижают напряжение и рассеивают значительную мощность всего за…
Веб-сайт: Analog.com
Категория : Используйте слова в предложении
Трехфазные диодные мостовые выпрямители
6 часов назад Новые трехфазные диодные мостовые выпрямители Vishay VS-300MT160C — это устройства на 1600 В, 300 А, которые обеспечивают эффективную и надежную работу.В пакете MTC Vishay VS-300MT160C предназначен для использования в общих и измерительных приложениях. …
Веб-сайт: Chtechnology.com
Категория : Используйте слова в предложении
Трехфазные мостовые мостовые выпрямители — Mouser
7 часов назад Трехфазные мостовые мостовые выпрямители доступны по адресу Mouser Электроника . Mouser предлагает инвентарь, цены и спецификации для трехфазных мостовых мостовых выпрямителей .
Веб-сайт: Mouser.com
Категория : Используйте слова в предложении
3-фазный выпрямитель на продажу eBay
1 час назад 3-фазный мостовой выпрямительный диод 50A 1000V AC to DC Power Current Converter. 7,26 доллара США. Было: 7,89 $. Бесплатная доставка. Или лучшее предложение.
Веб-сайт: Ebay.com
Категория : Используйте в предложении
Трехфазный диодный мостовой выпрямительный диод Мостовой выпрямительный диод
4 часа назад Этот мощный мостовой выпрямитель может широко использоваться для питания питание Предназначен для трехфазного выпрямления , максимальный средний прямой выпрямленный ток составляет 100А. Высококачественные мостовые выпрямители используются для преобразования входа переменного тока в выход постоянного тока
Веб-сайт: Lauraslanenursery.com
Категория : Используйте слова в предложении
Трехфазный диодный мостовой выпрямитель, трехфазный диодный мост
8 часов назад 3,720 Трехфазный диодный мостовой выпрямитель Продукты предлагаются для продажи поставщиками на Alibaba. com, из которых на выпрямителей приходится 7%, на диодов приходится 3 %, а на импульсный источник питания приходится 1%. Вам доступен широкий выбор трехфазных диодных мостовых выпрямителей , например, других.Вы также можете выбрать другой трехфазный диодный мост
Веб-сайт: Alibaba.com
Категория : Используйте слова в предложении
High Power 100A 1600V Трехфазный диодный мостовой выпрямитель
2 часа назад Предназначен для трехфазного выпрямителя , максимальный средний прямой выпрямленный ток составляет 100 А. Он имеет большую перегрузочную способность, хорошее рассеивание тепла и низкое падение напряжения. Этот высокомощный мостовой выпрямитель может широко использоваться в качестве источника питания.
Веб-сайт: Amazon.com.au
Категория : Используйте слова в предложении
3-фазный диодный мостовой выпрямитель 200a, 3-фазный диодный мост
3 часа назад 1,342 3-фазный диодный мостовой выпрямитель продуктов 200a выставлены на продажу поставщиками на Alibaba.com, из них выпрямителей, составляют 1%, диодов, — 1%. Вам доступен широкий выбор трехфазных диодных мостовых выпрямителей 200a, например, других.
Веб-сайт: Alibaba.com
Категория : Используйте слова в предложении
Словарь
Часто задаваемые вопросы
Что такое трехфазный выпрямитель?
3-х фазный выпрямитель. Определение: Трехфазный выпрямитель — это устройство, которое выпрямляет входное переменное напряжение с использованием трехфазного трансформатора и трех диодов, подключенных к каждой из трех фаз вторичной обмотки трансформатора.
Как выпрямительные схемы работают в электронике?
Одно из наиболее распространенных применений выпрямительных диодов в электронике — это преобразование домашнего переменного тока в постоянный ток , который можно использовать в качестве альтернативы батареям.Схема выпрямителя, которая обычно состоит из набора диодов с умной блокировкой, преобразует переменный ток в постоянный ток .
Что такое диодная схема?
Схема диода — это любая из множества электрических схем, в которых используются отличительные характеристики диодов . Класс кристаллических полупроводников с двумя выводами, диоды демонстрируют сильное смещение в сторону переноса электрического заряда «вперед» в одном направлении и почти полного его подавления в другом.
50a Трехфазный трехфазный мостовой выпрямитель, напряжение: 1200 В,
Год основания 2014
Юридический статус Фирмы Физическое лицо — Собственник
Характер бизнеса Оптовик
Количество сотрудников До 10 человек
Годовой оборотR. 1-2 крор
Участник IndiaMART с марта 2014 г.
GST27BHNPK1201L1ZD
Мы Radhe Krishna Components под наставничеством г-наHarshal D. Karvat, быстро растут на рынке с 2014 . Мы являемся известным торговцем и оптовиком биполярного транзистора с изолированным затвором, интегральной схемы, МОП-транзистора, мостового выпрямителя, преобразователя постоянного тока в постоянный, выпрямительного диода, электронного реле, импульсного источника питания, промышленного вентилятора, тиристорного диска и выпрямителя с кремниевым управлением. Наш диапазон включает Выпрямитель SCR и многие другие продукты. Эти продукты превосходны в работе и обеспечивают более длительный срок службы всех электронных устройств.Эти продукты проверены профессионалами на качество, чтобы удовлетворить запросы клиентов. Эти продукты очень маленькие по размеру и их лучше всего устанавливать с различными печатными платами и другими устройствами. Мы поставляем эти продукты в полностью безопасной упаковке. Также мы обеспечиваем быструю доставку этих электронных товаров. Мы сохраняем весь спектр компонентов промышленной электроники, чтобы удовлетворить требования наших клиентов в данный момент времени. По конкурентоспособным ценам мы предоставляем товары совместимого качества.При хорошем исходнике для сложно найти предметы . Мы максимально удовлетворяем наших клиентов. Эти компоненты тщательно закупаются и хранятся только у самых надежных дистрибьюторов по всему миру.Мы импортируем, храним и поставляем компоненты для различных отраслей промышленности-
- ИБП
- Сварочные машины
- Индукционная машина
- Текстильная промышленность
- Телекоммуникации
- Электроэнергетика
- Приводы переменного тока
- Приводы постоянного тока Стальные установки Промышленное печатное оборудование
- PLC
- Лифты
- Ветряная мельница
- Государственные учреждения
Входное исправление Входной выпрямительный мост предназначен для двухполупериодного выпрямления переменного тока для однофазных или трехфазных приложений. Однофазные мосты используются при первичном выпрямлении в большинстве электронного оборудования. Трехфазные мосты, часто называемые модулями, обычно используются в инверторах, сварочных аппаратах и других промышленных приложениях. Диоды, используемые для входного выпрямительного моста, должны выдерживать импульсные токи, но поскольку линия переменного тока переключается на частоте около 60 Гц, они обычно являются стандартными восстанавливающими диодами.International Rectifier имеет линейку входных диодов SafeIR ™. Эти диоды имеют номинальное напряжение 800 В для сети 120/220 В, 1200 для сети 380 В и 1600 для сети 440/525 В. Эти устройства также поставляются в корпусах для поверхностного монтажа. Устройства SafeIR были разработаны для работы в тяжелых промышленных условиях. и были протестированы в соответствии с международными стандартами защиты от скачков напряжения. Действующие стандарты требуют, чтобы устройства выдерживали скачки напряжения до 4000 вольт между фазами.Типичное решение — использовать ограничитель напряжения перед входным фильтром и диодами. Использование линейки продуктов SafeIR во входном мосту может устранить ограничители напряжения фильтра. Таблица 1. Устройства SafeIR для выпрямления входов
Кроме того, IR имеет мосты, которые экономят время производства, устраняя необходимость в сборке отдельных выпрямителей в мостовую конфигурацию.Заключенные в прочный корпус с высокой теплопроводностью, модули проходят испытания на напряжение, ток, температуру и влажность, чтобы гарантировать надежную работу в приложениях, работающих в экстремальных условиях. Эти модули имеют стандартные распиновки и универсальные трехполюсные клеммы. Для получения дополнительной информации см. Соответствующие выпуски новостей. |
VS-36MT160 | 79 | Мостовой выпрямитель, трехфазный, 1.6 кВ, 35 А, модуль, 1,19 В, 5 выводов ВИШАЙ | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.6кВ | 35A | Модуль | 1,19 В | 5 контактов | 150 ° С | Серия VS-36 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ВУО110-12НО7 | 9359605 | Мостовой выпрямитель, трехфазный, 1.2 кВ, 127 А, модуль, 1,9 В, 5 выводов IXYS ПОЛУПРОВОДНИК | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.2кВ | 127A | Модуль | 1,9 В | 5 контактов | 150 ° С | Серия VUO11 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SBR2508 | 2750989 | Мостовой выпрямитель, трехфазный, 800 В, 25 А, модуль, 1.1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 800 В | 25А | Модуль | 1.1В | 5 контактов | 150 ° С | SBR25 серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ВУО80-16НО1 | 2782996 | Мостовой выпрямитель, трехфазный, 1,6 кВ, 80 А, V1-A-Pack, 1,14 В, 7 контактов IXYS ПОЛУПРОВОДНИК | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.6кВ | 80А | V1-A-Pack | 1,14 В | 7 контактов | 125 ° С | Серия VUO80 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ВУО50-12НО3 | 3438495 | Мостовой выпрямитель, трехфазный, 1.2 кВ, 60 А, модуль, 1,32 В, 7 выводов IXYS ПОЛУПРОВОДНИК | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.2кВ | 60А | Модуль | 1,32 В | 7 контактов | 125 ° С | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SGBJ3508 | 2750956 | Мостовой выпрямитель, трехфазный, 800 В, 35 А, SIP, 1.1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 800 В | 35A | ГЛОТОК | 1.1В | 5 контактов | 150 ° С | SGBJ35 серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SGBJ5008 | 2750960 | Мостовой выпрямитель, трехфазный, 800 В, 50 А, SIP, 1,1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 800 В | 50А | ГЛОТОК | 1.1В | 5 контактов | 150 ° С | SGBJ50 серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SBR2512W | 2750994 | Мостовой выпрямитель, трехфазный, 1,2 кВ, 25 А, модуль, 1,1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.2кВ | 25А | Модуль | 1,1 В | 5 контактов | 150 ° С | SBR25W серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SBR2500 | 2750984 | Мостовой выпрямитель, трехфазный, 50 В, 25 А, модуль, 1.1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 50 В | 25А | Модуль | 1.1В | 5 контактов | 150 ° С | SBR25 серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SMT2508GW | 2750964 | Мостовой выпрямитель, трехфазный, 800 В, 25 А, модуль, 1,1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 800 В | 25А | Модуль | 1.1В | 5 контактов | 150 ° С | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HGBJ2510 | 2750928 | Мостовой выпрямитель, трехфазный, 1 кВ, 25 А, SIP, 1,1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1кВ | 25А | ГЛОТОК | 1.1В | 5 контактов | 150 ° С | HGBJ25 серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HGBJ2508 | 2750927 | Мостовой выпрямитель, трехфазный, 800 В, 25 А, SIP, 1,1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 800 В | 25А | ГЛОТОК | 1.1В | 5 контактов | 150 ° С | HGBJ25 серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
MP001015 | 3232329 | Мостовой выпрямитель, трехфазный, 100 В, 25 А, модуль, 1,1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 100 В | 25А | Модуль | 1.1В | 5 контактов | 150 ° С | — | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SBR3500 | 2750997 | Мостовой выпрямитель, трехфазный, 50 В, 35 А, модуль, 1,2 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 50 В | 35A | Модуль | 1.2В | 5 контактов | 150 ° С | SBR35A серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SBR2512 | 2750993 | Мостовой выпрямитель, трехфазный, 1,2 кВ, 25 А, модуль, 1,1 В, 5 контактов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.2кВ | 25А | Модуль | 1,1 В | 5 контактов | 150 ° С | SBR25 серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SBR2516 | 2750996 | Мостовой выпрямитель, трехфазный, 1.6 кВ, 25 А, модуль, 1,1 В, 5 выводов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.6кВ | 25А | Модуль | 1,1 В | 5 контактов | 150 ° С | SBR25 серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SKD30 / 12A1 | 9401989 | Мостовой выпрямитель, трехфазный, 1.2 кВ, 30 А, модуль, 2,2 В, 5 выводов SEMIKRON | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.2кВ | 30А | Модуль | 2,2 В | 5 контактов | 150 ° С | SKD серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SKD62 / 16 | 2301717 | Мостовой выпрямитель, трехфазный, 1.6 кВ, 86 А, модуль, 1,8 В, 5 выводов SEMIKRON | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.6кВ | 86A | Модуль | 1,8 В | 5 контактов | 150 ° С | SKD серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SKD 25/12 | 1761336 | Мостовой выпрямитель, трехфазный, 1.2 кВ, 25 А, 2,2 В, 5 контактов SEMIKRON | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.2кВ | 25А | — | 2,2 В | 5 контактов | 150 ° С | SKD серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SBR3514 | 2751008 | Мостовой выпрямитель, трехфазный, 1.4 кВ, 35 А, модуль, 1,2 В, 5 выводов MULTICOMP PRO | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.4кВ | 35A | Модуль | 1,2 В | 5 контактов | 150 ° С | SBR35A серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SKD82 / 12 | 2301716 | Мостовой выпрямитель, трехфазный, 1.2 кВ, 80 А, модуль, 1,6 В, 5 выводов SEMIKRON | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.2кВ | 80А | Модуль | 1,6 В | 5 контактов | 150 ° С | SKD серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SKD53 / 16 | 1467133 | Мостовой выпрямитель, трехфазный, 1.6 кВ, 53 А, модуль, 1,5 В, 7 выводов SEMIKRON | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.6кВ | 53A | Модуль | 1,5 В | 7 контактов | 150 ° С | SKD серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SKD 160/12 | 2423622 | Мостовой выпрямитель, трехфазный, 1.2 кВ, 205 А, модуль, 1,65 В, 5 выводов SEMIKRON | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.2кВ | 205A | Модуль | 1,65 В | 5 контактов | 150 ° С | SKD серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SKD 83/16 | 1761332 | Мостовой выпрямитель, трехфазный, 1.6 кВ, 83 А, модуль, 1,45 В, 7 выводов SEMIKRON | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 1.6кВ | 83A | Модуль | 1,45 В | 7 контактов | 150 ° С | SKD серии | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SKD31 / 08 | 9401890 | Мостовой выпрямитель, трехфазный, 800 В, 31 А, модуль, 1.75 В, 5 контактов SEMIKRON | Каждый | Запрещенный товар Минимальный заказ от 1 шт. Только кратное 1 Пожалуйста, введите действительное количество ДобавлятьМин .: 1 Mult: 1 | Трехфазный | 800 В | 31A | Модуль | 1. |