Site Loader

Содержание

схема подключения, характеристики, принцип работы, для чего нужен

Основные характеристики

И отдельные диоды, и промышленные диодные сборки описываются стандартным набором технических характеристик:

  • это напряжение обратной полярности, которое можно, не опасаясь пробоя, приложить к устройству;
  • величина тока обратной полярности, который безопасно можно пропустить по устройству;
  • длительность протекания тока по устройству без его перегрева;
  • максимальная температура устройства, при которой оно сохраняет свою работоспособность;
  • максимальная допустимая частота проходящего тока.

ФОТО: go-radio.ruВариант изображения моста на принципиальной электрической схемеФОТО: go-radio.ruСборка «Диодный мост» на печатной плате

Схема диодного моста

И самодельный мост, и промышленная диодная сборка изготавливаются по одной и той же схеме. Два диода последовательно спаиваются разноимёнными полюсами. Потом две пары спаивают одноимёнными полюсами на концах этих пар. К точкам соединения разноимённых полюсов подключается источник переменного напряжения, к точкам соединения одноимённых полюсов подключают нагрузку.

Диодные мосты применяются для выпрямления однофазного и трёхфазного тока.

Однофазный выпрямитель

Этот выпрямитель применяется в бытовой электронной технике чаще всего, так как бытовая электросеть однофазная. Как правило, пульсации выпрямленного тока с частотой 100 Гц не годятся для нормальной работы аппаратуры, появится неприятный звуковой фон – гудение. После выпрямителя следует ставить качественный сглаживающий фильтр из катушки индуктивности (последовательно) и конденсатора достаточной ёмкости (параллельно выходу выпрямителя).

ФОТО: electroinfo.netСхема однофазного моста

Трёхфазный выпрямитель

Трёхфазные выпрямители на выходе дают меньшую частоту пульсаций, чем однофазные. Понижаются требования к сглаживающим фильтрам.

Схемы выпрямителей для трёхфазных цепей бывают однотактные и двухтактные. В однотактной схеме к каждой обмотке трёхфазного трансформатора подключается минус диода. Свободные концы каждой из трёх катушек соединяются в общую точку.  Плюсы диодов тоже соединяются в одну точку. Нагрузка подключается между этими двумя общими точками.

ФОТО: electricalschool.infoПринципиальная схема однотактного трёхфазного моста-выпрямителя

Если требуется выходное напряжение более высокого значения, а пульсации поменьше, то собирается двухтактна схема. Собираются три пары диодов, в каждой паре плюсовой вывод одного подключается к минусу другого.  Плюсовые выводы трёх пар тоже собираются в одну точку, так же объединяются минусы диодов, а общие точки в каждой паре диодов подключаются к свободным концам трёх обмоток вторичной обмотки трансформатора. Нагрузка подключается между общим минусом и плюсом сборки. В такой схеме выходное напряжение несколько выше, а пульсации намного меньше. Иногда можно обойтись без сглаживающего фильтра. Такая схема имеет название «Мостовой трёхфазный выпрямитель Ларионова».

ФОТО: electricalschool.infoПринципиальная схема двухтактного трёхфазного моста-выпрямителяФОТО: electricalschool. infoСборка «Трёхфазный диодный мост»

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Рис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Рис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен  для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга

Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Рис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Выпрямление электроэнергии

До конца XIX века преобразование переменного напряжения в постоянное было проблемой. С изобретением диода — сначала вакуумного, а позже и полупроводникового — ситуация в корне изменилась. Благодаря своим уникальным свойствам, диод отлично различает полярность и позволяет легко сортировать токи с нужным направлением. Сначала для этих целей использовались отдельные диоды, позже появились диодные мосты, обеспечивающие высокое качество выпрямления.

https://youtube.com/watch?v=XamfUIu4wDI

Выпрямитель на одном диоде

Диод проводит ток только в одном направлении, именно поэтому его и называют полупроводниковым прибором. Если к катоду устройства подключить плюс источника напряжения, а к аноду — минус, диод будет вести себя как обычный проводник. Если полярность изменить, то прибор закроется и превратится в диэлектрик. Для ответа на вопрос о том, что это даёт, придется собрать простейшую схему и снова вооружиться осциллографом.

На схеме изображена работа полупроводникового диода в цепи переменного тока. Осциллограмма слева показывает картину на выходе трансформатора — обычный переменный ток. После диода всё существенно меняется — на графике исчезает отрицательная полуволна переменного напряжения. Ток еще не стал постоянным, но он уже не переменный — движения электрического заряда в обратном направлении нет. Такой род тока принято называть пульсирующим. Им еще нельзя питать электронику, но изменения налицо. Остаётся сгладить пики импульсов. Это делают с помощью конденсаторов.

На схеме представлен однополупериодный выпрямитель со сглаживающим конденсатором. Во время положительного импульса напряжение не только питает нагрузку, но и одновременно заряжает конденсатор. Когда импульс заканчивается, конденсатор отдает накопленную энергию, сглаживая скачки напряжения.

Двухполупериодный прибор

Несмотря на значительные успехи, достигнутые в преобразовании переменного тока в постоянный предыдущим экспериментом, результат ещё далек от идеала. Дело в том, что частота переменного тока довольно низкая (50 Гц), а навешивание сглаживающих конденсаторов имеет свои ограничения. Для того чтобы существенно улучшить форму выходного сигнала, нужно увеличить частоту.

Однако в розетках она строго фиксирована и не зависит от внешних факторов. Отрицательная полуволна напряжения срезается диодом. Поменять её полярность совсем несложно — достаточно лишь добавить несколько диодов, собрав мостовую схему. На рисунке представлен двухполупериодный выпрямитель на четырёх диодах, объясняющий то, как работает диодный мост:

При появлении положительной полуволны диоды VD2, VD3 окажутся включенными в прямом направлении и будут открыты. VD1, VD2 — закрыты. Полуволна свободно проходит к выходу выпрямителя. Когда напряжение сменит полярность, пары диодов поменяются местами — VD1 и VD4 откроются, VD2 и VD3 закроются. Отрицательная полуволна тоже пройдет к выходу, но поменяет полярность. В результате получится все то же импульсное однополярное напряжение, но частота его увеличится вдвое. Останется добавить сглаживающий конденсатор и посмотреть, что получится.

Двухполупериодный выпрямитель со сглаживающим конденсатором на изображении показывает, что поставленная задача решена: переменное напряжение преобразовано в постоянное. Конечно, постоянство неидеально — имеются пульсации, однако с ними можно бороться с помощью фильтров. К тому же любая электроника допускает ту или иную величину пульсаций.

Такая схема, состоящая из четырех диодов, стала классической и получила название диодного или выпрямительного моста. Существует отдельная категория электронных приборов — выпрямительные мосты. Они состоят из четырех диодов, соединенных между собой соответствующим образом. В качестве примера можно посмотреть на выпрямительный мост КЦ402Г и его электрическую схему.

Как работает генератор авто

Схема работы генератора следующая: при повороте ключа в замке зажигания включается электросеть. Напряжение с аккумулятора поступает на регулятор, который в свою очередь, передает его на медные токосъемные кольца, конечный потребитель — обмотка возбуждения ротора. С момента вращения коленвала двигателя, через ременную передачу начинает вращаться вал ротора, создается электромагнитное поле. Ротор образует переменный ток, при достижении определенных оборотов обмотка возбуждения питается с самого генератора а не с АКБ.

Далее переменный ток поступает на диодный мост, где происходит процесс “выравнивания”. Регулятор напряжения следит за режимом работы ротора, при необходимости меняет напряжение обмотки возбуждения. Таким образом, при условии исправных деталей, на аккумулятор поступает стабильный ток, обеспечивающий бортовую сеть необходимым напряжением.

На панель приборов более современных авто выведен индикатор АКБ, который указывает на состояние генератора также (загорается при обрыве ремня или перезарядке). Такие автомобили как ВАЗ 2101-07, АЗЛК-2140, и другая советская “техника”, имеют стрелочный индикатор, амперметр или вольтметр, благодаря чему можно следить за состоянием генератора всегда.

Литература

М. Салато (M. Salato), А. Локхандвала (A. Lokhandwala), М. Солдано (M. Soldano). International Rectifier. AN-1087 Построение выпрямителя вторичного плеча при помощи ИС управления IR1167 SmartRectifierTM

International Rectifier. Техническое описание ИС управления интеллектуальным выпрямителем IR1167S

Аднаан Локхандвала (Adnaan Lokhandwala), Маурицио Салато (Maurizio Salato), Марко Солдано (Marko Soldano). Конференция разработчиков портативных источников питания 2006. Новая ИС управления выпрямлением выходного сигнала повышает эффективность и тепловые характеристики внешних AC-DC преобразователей питания

Заявка на получение патента США №2005/0122753 A1 от 9 июня 2005 г.

ВНИМАНИЮ ЧИТАТЕЛЕЙ!

В 11 номере журнала за 2009 год на стр. 29 допущена опечатка.

Название табл. 2 следует читать: «Характеристики переключателей».

Первый абзац на странице следует читать:

«Texas Instruments предлагает достаточно сбалансированные решения для применения в видеосистемах. Баланс заключается в оптимальных, часто — взаимозависящих, технических характеристиках ключей. Например, при достаточно низком сопротивлении во включенном состоянии также обеспечивается очень высокая скорость переключения.»

•••

Что такое диоды

Схема диодной сборки Из приведенного выше рисунка видно, что в мостовую схему входят четыре полупроводниковых элемента диода , порядок соединения которых соответствует встречно-параллельному принципу. Любое преобразование напряжения требует применения диодных мостов.

Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. В электронике данная схема применяется в настоящее время повсеместно.

Более мощные выпрямительные диодные мосты требуют охлаждения, так как при работе они сильно нагреваются. Во время положительного полупериода положительное напряжение приложено к аноду VD1, а отрицательное — к катоду VD3. В обычной осветительной цепи течет переменный ток, который 50 раз в течение одной секунды меняет свою величину и направление.

Схема диодного моста Это так называемый однофазный выпрямительный мост, один из нескольких типов выпрямителей , которые активно применяются в электронике. Его превращение в постоянный — достаточно часто встречающаяся необходимость. В области соединения материала n- и p-типа существует потенциальный барьер.

Статья по теме: Объем испытаний

Физические свойства p-n перехода

Также в нем будет рассмотрен вопрос, касающийся того, как сделать диодный мост своими руками. Образованный избыток электронов формирует отрицательный заряд, а дырок — положительный. Но самое интересное, что два типа проводимости могут существовать в одном куске полупроводника. Пару слов о том, как работает диодный мост.

Схема и принцип работы диодного моста На данной схеме 4 диода соединенных по мостовой схеме подключены к источнику переменного напряжения В. Диод Раньше, в эпоху стеклянных электронных вакуумных ламп, это была самая простая из ламп.

Если взглянуть на принципиальные схемы блоков питания, как трансформаторных, так и импульсных, то после выпрямителя всегда стоит электролитический конденсатор, который сглаживает пульсации тока

Важно отметить, что ток Iн протекающий через нагрузку Rн, не изменяется по направлению, то есть является постоянным

Выпрямлению подвергается напряжение, снимаемое со вторичной понижающей обмотки трансформатора Т. При загорании включенного через ограничивающий резистор светодиода можно быть уверенным в том, что на выходе появился постоянный потенциал. В данной схеме, ток протекает от фазы с наибольшим потенциалом, через нагрузку к фазе с наименьшем потенциалом. Потому что анод холодный, а к катоду теперь приложен положительный потенциал, который возвращает выброшенные накалом катода электроны обратно. Однако отдельные образцы современных электронных устройств ваш мобильный, например нуждаются в постоянном или выпрямленном напряжении.
Способы соединения диодных мостов, выпрямителей для увеличения их максимального тока и напряжения

Постоянный и переменный ток

Из учебного курса физики все знают, что электрический ток подразумевает протекание электрического заряда из одного проводника в другой. В отличие от постоянного тока, который действительно идет в одном направлении (от минуса к плюсу), переменный течет сначала в одну сторону, а затем — в другую. Если подключить к розетке осциллограф, можно получить схематическое изображение такого движения тока.

На рисунке представлена осциллограмма переменного тока, где по оси абсцисс показано время, а по оси ординат — напряжение. Из графика хорошо видно, что напряжение плавно нарастает до величины 220 В, потом уменьшается до нуля и нарастает до той же величины, но с противоположным знаком. Иными словами, напряжение в розетке постоянно меняет знак со скоростью 50 раз в секунду.

Осциллограмма постоянного тока, показанная на изображении, наглядно демонстрирует, как на протяжении всего времени напряжение на клеммах имеет постоянную величину. При замыкании цепи ток будет течь в одну сторону.

Физические свойства p-n перехода

Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход (p-n).

Общепринятое определение гласит: p-n переход — это область пространства, находящаяся на границе соединения двух полупроводников разного типа. В этом пространстве образуется переход n-типа в p-тип. Значение проводимости зависит от атомного строения материала, а именно от того, насколько прочно атомы удерживают электроны. Атомы в полупроводниках располагаются в виде решётки, а электроны привязаны к ним электрохимическими силами. Сам по себе такой материал является диэлектриком. Он или плохо проводит ток, или не проводит его совсем. Но если в решётку добавить атомы определённых элементов (легирование), физические свойства такого материала кардинально изменяются.

Избыток заряда одного знака заставляет носителей отталкиваться друг от друга, в то время как область с противоположным зарядом стремится притянуть их к себе. Электрон, перемещаясь, занимает свободное место, дырку. При этом на его старом месте также образовывается дырка. В результате чего создаётся два потока движения зарядов: один основной, а другой обратный. Материал с отрицательным зарядом в качестве основных носителей использует электроны, его называют полупроводником n-типа, а с положительным зарядом, использующим дырки, p-типа. В полупроводниках обоих типов неосновные заряды образуют ток, обратный движению основных зарядов.

В радиоэлектронике из материалов для создания p-n перехода используется германий и кремний. При легировании кристаллов этих веществ образуется полупроводник с различной проводимостью. Например, введение бора приводит к появлению свободных дырок и образованию p-типа проводимости. Добавление фосфора, наоборот, создаст электроны, и полупроводник станет n-типа.

Схема диодного моста

Наиболее характерным импульсным блоком является блок питания компьютера. Нижний предел измерения сопротивлений зависит от импеданса соединений проводов и контактов. Для питания используется переменный ток, при этом две составляющие моста должны быть регулируемые, чтобы обеспечить уравновешивание, как по модулю, так и по фазе.

Теперь только два паразитных падения напряжения Eпров. Мост для измерения индуктивности методом сравнения с мерой.

Схема управления электроприводом дистанционным способом. Иногда это вводит новичков в замешательство. Она обладает несколько большим дрейфом напряжения сдвига и более низким уровнем шумов.

Обычно, такое изображение либо служить для того, чтобы упростить вид принципиальной схемы, либо для того, чтобы показать, что в данном случае применена диодная выпрямительная сборка.

Коэффициент усиления A2 устанавливается в соответствии с используемой измерительной шкалой. Участки цепи, соединяющие точки а и с, а также b и d, называются диагоналями моста. Как работает простейший блок питания

Однофазный и трёхфазный диодный мост

Схема подключения датчика движения к прожектору

Существует две основные разновидности выпрямляющих сборок:

  • Однофазный мост. Чаще используется в бытовых электроприборах. Имеет 4 вывода. На два их них подаётся переменное напряжение, т. е. фаза (L) и ноль (N). С двух оставшихся снимается постоянное, т.е. плюс (+) и минус (-).
  • Трёхфазный мост. Встречается в мощных промышленных установках и оборудовании, питающимся от сети 380 вольт. На его вход подаются три фазы (L1, L2, L3). С выхода так же снимается постоянное напряжение. Такие мосты отличаются большими размерами и внушительными токами, которые они способны через себя пропустить.


Трёхфазный выпрямитель

Назначение и практическое использование

Область использования моста, набранного из диодов, довольно широка. Это могут быть блоки питания и узлы управления. Он стоит во всех устройствах, питающихся от промышленной сети 220 вольт. Например, телевизоры, приёмники, зарядки, посудомоечные машины, светодиодные лампы. Не обходятся без него и автомобили. После запуска двигателя начинает работать генератор, вырабатывающий переменный ток. Так как бортовая сеть вся питается от постоянного напряжения, ставится выпрямительный мост, через который происходит подача выпрямленного напряжения. Этим же постоянным сигналом происходит и подзарядка аккумуляторной батареи.

Выпрямительное устройство используется для работы сварочного аппарата. Правда, для него применяются мощные устройства, способные выдерживать ток более 200 ампер. Использование в устройствах диодной сборки даёт ряд преимуществ по сравнению с простым диодом. Такое выпрямление позволяет:

  • увеличить частоту пульсаций, которую затем просто сгладить, используя электролитический конденсатор;
  • при совместной работе с трансформатором избавиться от тока подмагничивания, что даёт возможность эффективнее использовать габаритную мощность преобразователя;
  • пропустить большую мощность с меньшим нагревом, тем самым увеличивая коэффициент полезного действия.

Но также стоит отметить и недостаток, из-за которого в некоторых случаях мост не используют. Прежде всего, это двойное падение напряжения, что особенно чувствительно в низковольтных схемах. А также при перегорании части диодов устройство начинает работать в однополупериодном режиме, из-за чего в схему проникают паразитные гармоники, способные вывести из строя чувствительные радиоэлементы.

Блок питания

Ни один современный блок питания не обходится без выпрямительного устройства. Качественные источники изготавливаются с использованием мостовых выпрямителей. Классическая схема состоит всего из трёх частей:

  1. Понижающий трансформатор.
  2. Выпрямительный мост.
  3. Фильтр.

Синусоидальный сигнал с амплитудой 220 вольт подаётся на первичную обмотку трансформатора. Из-за явления электромагнитной индукции во вторичной его обмотке наводится электродвижущая сила, начинает течь ток. В зависимости от вида трансформатора величина напряжения за счёт коэффициента трансформации снижается на определённое значение. Между выводами вторичной обмотки возникает переменный сигнал с пониженной амплитудой. В соответствии со схемой подключения диодного моста это напряжение подаётся на его вход. Проходя через диодную сборку, переменный сигнал преобразуется в пульсирующий.

Такая форма часто считается неприемлемой, например, для звукотехнической аппаратуры или источников освещения. Поэтому для сглаживания используется конденсатор, подключённый параллельно выходу выпрямителя.

Трёхфазный выпрямитель

На производствах и в местах, где используется трёхфазная сеть, применяют трёхфазный выпрямитель. Состоит он из шести диодов, по одной паре на каждую фазу. Использование такого рода устройства позволяет получить большее значение тока с малой пульсацией. А это, в свою очередь, снижает требования к выходному фильтру. Наиболее популярными вариантами включения трёхфазных выпрямителей являются схемы Миткевича и Ларионова. При этом одновременно могут использоваться не только шесть диодов, но и 12 или даже 24. Трёхфазные мосты используются в тепловозах, электротранспорте, на буровых вышках, в промышленных установках очистки газов и воды.

Присутствует диодный мост генератора исключительно в «бортовых электростанциях» переменного тока. Поскольку большинство легковых авто комплектуются генераторами переменного тока, выпрямитель с диодами и стабилитроном присутствует в каждом из них. Обычно этот узел встраивается в генератор, но существуют выносные диодные мостики для удобного сервисного обслуживания, ремонта и замены диодов.

Как проверить трехфазный диодный мост

В состав любого автомобиля входит электромеханическое устройство под названием генератор. В случае неполадок с ним автовладельцы приобретают новый прибор. В то же время существует возможность отремонтировать устройство самостоятельно, что позволит сэкономить средства. Важной частью генератора является его выпрямительный мост. Для проведения ремонта или его диагностики понадобится извлечь генератор из автомобиля.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Как прозванивать диодный мост
  • Как проверить диод мультиметром не выпаивая
  • Как проверить мультиметром диод
  • Выпрямитель, схема диодного моста
  • Мост диодный: постоянный ток в автомобиле
  • Простой способ проверки светодиода без выпаивания из схемы. Проверка диода мультиметром на плате
  • Диодный мост
  • Диод на генератор ваз 2110
  • Диодные мосты

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Диодный мост Несколько способов проверки

Как прозванивать диодный мост


Обычно выходят из строя силовые, выпрямительные диоды, т. Причиной неисправностей диодов может быть их перегрев, нарушение теплового контакта с радиатором или увеличение температуры окружающей среды, выход из строя других элементов схемы которые вызвали увеличение допустимого напряжение на диоде, низкое качество их исполнения.

Неисправность выпрямительных диодов может быть причиной повышения напряжения питания на компонентах схемы и возникновения дополнительных неисправностей.

Отказ диода может выражаться в коротком замыкании между разными полупроводниками p-n слоя, отсутствию контакта между ними обрыв и появлению тока утечки.

Диод является полупроводником, работа которого основана на свойствах p-n перехода. Используя это свойство p-n полупроводников не трудно проверить работоспособность диода мультиметром. На некоторых мультиметрах есть режим проверки диодов, отмечается он символом диода. При касании красным щупом прибора анода полупроводника, а отрицательного катода другим щупом, то на экране измерительного прибора, при исправном элементе, отобразится напряжение на переходе, в случае германиевых диодов от 0,3 до 0,7 В, и от 0,7 до 1 В для кремниевых полупроводников.

Различие величины прямого падения напряжения этих полупроводников зависят от различных сопротивлений переходов. Если перевернуть щупы, к положительному аноду прикоснуться чёрным щупом, а к отрицательному катоду красным, то дисплей отобразит падение напряжения близкое к нулю, в случае рабочего элемента.

Если у мультиметра отсутствует такой режим проверки, тогда работоспособность элемента проверяется в режиме сопротивления. Ставят переключатель мультиметра в положении измерения сопротивлений 1 Ком, и далее красный щуп прикладывают к аноду элемента, а чёрный к катоду.

Экран прибора должен отобразить значение сопротивления прямого перехода для исправного диода от десятков до сотен Ом, что зависит от типа полупроводника.

Если материал полупроводника германий, то сопротивление прямого перехода меньше, чем у кремниевых элементов. Если щупы перевернуть, то сопротивление p-n перехода будет велико при исправном полупроводнике от нескольких сотен Ком до Мом. Когда сопротивление обратного перехода заметно ниже, тогда можно говорить о недопустимом токе утечки и неисправном элементе.

Светодиоды проверяются таким же образом, как и силовые диоды — на сопротивление. При прямом подключении щупов прибора к светодиоду дисплей покажет небольшое сопротивление.

При этом светодиод может иметь тусклое свечение. Если поменять щупы, то сопротивление перехода будет велико. Диод Шоттки проверяется способом проверки обычного диода. Стабилитрон тоже проверяется в разных положениях электродов.

Но этого для проверки стабилитронов недостаточно. Мультиметр может показать допустимые значения сопротивлений в обоих направлениях перехода, а напряжение стабилизации будет отличаться от необходимого значения. Для проверки напряжения стабилизации нужно собрать простейшую схему с токогасящим сопротивлением. Напряжение источника питания обычно берется на 2 — 3 В выше напряжения стабилизации стабилитрона.

В качестве примера возьмем стабилитрон ДБ с напряжением стабилизации 9 В и током стабилизации 5 ма. Ограничительный резистор можно приблизительно рассчитать по формуле:. Простой диодный мост состоит из четырех диодов, собранных по мостовой схеме и предназначен для первичного выпрямления переменного напряжения. В случае грубой проверке диодного моста можно измерить сопротивление переходов отдельных диодов как обычно.

Но тогда ток утечки нельзя будет проверить. Для проверки этого важного параметра нужно отсоединить любой электрод полупроводника от электрической схемы. Проверить наличие тока утечки отдельных силовых диодов, не отключая их от схемы, возможно по разнице температуры корпусов полупроводников. У неисправного полупроводника температура корпуса будет выше, чем у исправных элементов.

Для такого метода проверки диодов на ток утечки важно чтобы они были отдельно стоящими и без радиаторов. Руками при выключенном источнике питания проверить разницу температуры не всегда получается. Поэтому температуру лучше измерять датчиком мультиметра, который имеет такой режим.

Грубо проверить диод мультиметром, не выпаивая из платы можно обычным способом, и в большинстве случаев этого вполне достаточно. Ваш e-mail не будет опубликован. Как проверить диод мультиметром Обычно выходят из строя силовые, выпрямительные диоды, т. Режим проверки диодов на мультиметре. Простая схема проверки стабилитрона.

Тоже интересные статьи Как проверить резистор мультиметром. Как проверить емкость аккумулятора мультиметром.

Как проверить тиристор и симистор мультиметром. Как проверить конденсатор мультиметром не выпаивая. Добавить комментарий Отменить ответ Ваш e-mail не будет опубликован. Поиск Найти:. Калькуляторы Калькулятор расчета сопротивления проводника Калькулятор расчета сечения кабеля по мощности и току Калькулятор расчета сечения провода по мощности и току Закон Ома для участка цепи Параллельное соединение резисторов, онлайн расчет Калькулятор расчета делителя напряжения Последовательное соединение конденсаторов, онлайн расчет Калькулятор расчета тока в однофазных и трехфазных сетях Ток нагрузки, онлайн расчет Расчет трансформатора, онлайн калькулятор Мощность электрического тока, онлайн калькулятор Расчет тока по мощности, онлайн калькулятор Мощность насоса для скважин на воду Калькулятор расчета количества светильников Калькулятор расчета количества ламп Калькулятор расчета освещенности рабочего места Калькулятор расчета освещенности помещения Калькулятор расчета потери напряжения в кабеле Калькулятор расчета потери напряжения в проводе Мощность кондиционера, онлайн расчет.


Как проверить диод мультиметром не выпаивая

Диодный мост есть практически в любой аппаратуре, и выход его из строя — очень распространенная причина поломки электронного прибора. Проверка же и замена диодного моста в мастерской стоят неоправданно дорого. Тем не менее самостоятельно выявить неисправность выпрямительного блока и при необходимости починить или заменить мост можно самостоятельно с минимальными затратами. Для этого нужно знать, как проверить диодный мост.

Как правильно проверить диодный мост мультиметром . Перед тобой такой же диодный мост, только трехфазный, с шестью, а не с.

Как проверить мультиметром диод

На современных автомобилях используются трехфазные генераторы переменного тока, однако все автомобильные электроприборы работают от постоянного тока. Диодный мост — узел электрического генератора транспортного средства; сборка из полупроводниковых выпрямительных диодов, обеспечивающая выпрямление вырабатываемого генератором переменного тока. В электросистеме автомобилей, тракторов и иных транспортных средств используются, в основном, трехфазные генераторы переменного тока. Такие генераторы просты конструктивно, надежны и эффективны, однако они вырабатывают трехфазный переменный ток, которым невозможно питать установленные на автомобиле электроприборы. Чтобы получить постоянный ток из переменного в генераторах используется диодный мост или выпрямительный модуль. Диодный мост подключается к обмоткам статора генератора и обеспечивает преобразование трехфазного переменного тока в постоянный. С выхода диодного моста ток поступает на АКБ и ко всем присутствующим в автомобильной электросистеме потребителям. Неисправность данного модуля зачастую делает эксплуатацию автомобиля невозможной.

Выпрямитель, схема диодного моста

Широкое распространение в радиотехнике получил диодный мост. Он используется в блоках питания и выполняет функцию выпрямления переменного напряжения. Таким образом, с помощью выпрямителя входной переменный электрический ток преобразуется на выходе в постоянный ток. Ведущую роль в этом процессе играет схема диодного моста выпрямителя. В результате на выходе происходит образование пульсирующего напряжения.

Генератор достаточно стабилен в работе. Выход его из строя, как правило, происходит по причинам воздействия окружающей среды, например, в виде конденсирующейся влаги на контактах и металле, вызывающей коррозию и пробои, а также в результате механического износа вращающихся деталей.

Мост диодный: постоянный ток в автомобиле

Полезные советы. Диодный мост генератора, что это и как проверить его работоспособность. Проверка работоспособности генератора — Лада Калина Блог. Как заменить диодный мост своими силами? Подробная инструкция

Простой способ проверки светодиода без выпаивания из схемы. Проверка диода мультиметром на плате

Печально, но начинать нужно с теории. Придётся изучить виды диодов, область и цели применения. Не углубляясь в физические основы электроники, пробежимся по поисковым запросам. Важно понимать, что все диоды объединяет способность пропускать ток в одном направлении, блокируя движение частиц противоположном, образуя своеобразные вентили. Затем обсудим, как проверить мультиметром диод.

Проверку диодного моста генератора или выявление другой статор, то можно увидеть пазы, в которых расположена трехфазная обмотка.

Диодный мост

Обычно выходят из строя силовые, выпрямительные диоды, т. Причиной неисправностей диодов может быть их перегрев, нарушение теплового контакта с радиатором или увеличение температуры окружающей среды, выход из строя других элементов схемы которые вызвали увеличение допустимого напряжение на диоде, низкое качество их исполнения. Неисправность выпрямительных диодов может быть причиной повышения напряжения питания на компонентах схемы и возникновения дополнительных неисправностей. Отказ диода может выражаться в коротком замыкании между разными полупроводниками p-n слоя, отсутствию контакта между ними обрыв и появлению тока утечки.

Диод на генератор ваз 2110

ВИДЕО ПО ТЕМЕ: Как проверить диодный мост генератора

Почти вся электронная аппаратура для своей работы требует определённую величину постоянного напряжения. В электрический сети передаётся синусоидальный сигнал с частотой 50 Гц. Для преобразования сигнала используется свойство полупроводниковых элементов пропускать ток только в одном направлении, а в другом блокировать его прохождение. В качестве преобразователя применяется схема диодного моста, позволяющая получать на выходе сигнал постоянной величины. Главным элементом, использующимся при создании выпрямительного узла, является диод. В основе его работы лежит электронно-дырочный переход p-n.

Забыли пароль?

Диодные мосты

Почему это имеет важное значение мы как раз и поговорим в этой статье. Диодный мост на схемах выглядит подобным образом:. Как мы с вами видим, схема состоит из четырех диодов. Для того, чтобы она работала корректно, мы должны правильно соединить диоды и правильно подать на них переменное напряжение. Диодный мост также называют диодным выпрямителем. Для выпрямления переменного напряжения в постоянное можно использовать один диод для выпрямления, но не желательно.

С развитием электроники в современном мире, в различной аппаратуре применяется такой узел как диодный мост. В случае не нормальных режимов работы и коротких замыканий, он первый кто принимает удар на себя. Научиться проверять диодный мост самостоятельно — это полезный навык, который пригодиться всем тем, кто хоть как-то занимается самостоятельным ремонтом поломанного оборудования.


Диодный мост – энциклопедия VashTehnik.ru


Диод, мосты и трудности выпрямления тока

Первоначально диодами называли электронные лампы с двумя электродами. Нагретый катод испускал электроны, способные лететь в единственном направлении – на анод. А в обратном направлении ток не тек. Это позволяло отсечь часть периода переменного напряжения. В результате ток становился выпрямленным.

Недостаток конструкции очевиден – часть времени, половину интервала, схема бездействует. По указанной причине создать высокую эффективность сложно. Говорим не о КПД, скорее, затрагиваем общую мощность. Напряжение в сети ограничено по номиналу, требуется действенно использовать имеющееся. Если повышать потребление через единственный диод, он перегреется и сгорит. Здесь на помощь приходит диодный мост.

Конструкция моста на схеме

Конструкции, рассмотренные в статье, как раз направлены на улучшение определённых свойств. Иначе давно применялся бы диодный мост единственной конфигурации. Известный диодный мост на четырёх вентилях далеко не единственный по простой причине – предназначен для работы с одной фазой напряжения. Это ущербный вариант, поставляемый в наши дома из целей экономии проводов, и в промышленности не применяется.

Начнём с Николы Тесла. Этот человек первым придумал вращающееся магнитное поле. Прежде переменный ток использовался, но при помощи единственной фазы озвученное явление создать нельзя. Внутри двигателя нужно, чтобы поле вращалось. Единственная фаза физически обеспечить это не в силах. Никола Тесла изобрёл асинхронный двигатель, со множеством полюсов. Отметим, что коллекторные разновидности моторов способны работать от переменного и постоянного тока, но рекомендуется избегать конструкций с постоянными магнитами. Ротор и статор собираются из медных обмоток. Полагаем, что в 19 веке подобных разновидностей двигателей не было.

Вернёмся к фазам. Изобретя асинхронный (индукционный) двигатель переменного тока, Никола Тесла попутно отметил в патенте возможность дальнейшего увеличения фаз, но дальше не пошёл. Позднее Доливо-Добровольский доказал, что гораздо результативнее использовать три фазы. Сегодня промышленные конструкции используют этот вариант. Заметим, любой двигатель может работать на потребление и генерацию тока, читатели поймут, что однофазный диодный мост не станет идеальным решением. Это ущербный, урезанный вариант для бытовой техники. Не более.

Бортовые системы несут в составе генератор на три фазы, это самая результативная конструкция сегодня из возможных. Используется уже схема Ларионова. Так достигается наилучшее соотношение экономии и эффективности. Неплохими характеристиками обладают выпрямительные схемы Миткевича. Школьные и ВУЗовские курсы физики имеют упрощённую структуру ввиду слишком сильного развития науки: невозможно за семестр вместить в головы учащихся всю информацию.

Диодный мост Гретца для бытовой техники не считается единственно возможным. Известны варианты на три фазы, гораздо более распространенные, чем кажется изначально. Диоды по конструкции и характеристикам сильно отличаются друг от друга. Это обусловливает специфику применения. Допустим, силовые разновидности мощные, но несут большие потери. Потому в выходных цепях импульсных блоков питания применяются диоды Шоттки с малым падением напряжения на p-n-переходе.

Источники вторичного питания и стабилизаторы

Для получения электрической энергии нужного вида приходится преобразовывать электрическую энергию переменного тока в энергию постоянного тока (выпрямление) либо энергию постоянного тока – в энергию переменного тока (инвертирование). Выпрямление осуществляется с помощью устройств, называемых выпрямителями, а инвертирование производится инверторами. Выпрямители и инверторы являются вторичными источниками электропитания. Они состоят из функциональных узлов, выполняющих одну или несколько функций: выпрямление, инвертирование, стабилизацию, регулирование значений электрических характеристик.

Современные микроэлектронные устройства предъявляют следующие требования к качеству потребляемой электрической энергии:

— высокая стабильность питающего (первичного) напряжения;

— требуемая форма (обычно синусоидальная) переменного напряжения;

— высокая стабильность частоты и угла сдвига фаз переменного питающего напряжения;

— минимально возможный уровень пульсации питающего постоянного напряжения.

Самым распространенными источниками вторичного электропитания (ИВЭ) являются источники, которые преобразуют электрическую энергию сети переменного тока частотой 50 Гц. Такие ИВЭ включают в себя выпрямитель и стабилизатор.

Выпрямители бывают неуправляемыми и управляемыми. С помощью неуправляемых выпрямителей на выходе ИВЭ получают постоянное напряжение неизменного значения. Управляемые выпрямители применяют тогда, когда необходимо изменять значение выпрямленного тока или напряжения.

В зависимости от числа фаз первичного источника питания (сети переменного тока) различают однофазные и трехфазные выпрямители. Выпрямители малой и средней мощности, как правило, являются однофазными, а выпрямители большой мощности – трехфазными.

По форме выпрямления напряжения выпрямители разделяют на однополупериодные и двухполупериодные. У выпрямителя бывают четыре основных вида нагрузки: активная, активно – индуктивная, активно – ёмкостная, и с противо – Э.Д.С. (когда он питает двигатель постоянного тока или зарядное устройство).

Конструкции диодных мостов

Единственная конструкция диодного моста не в силах обеспечить всех потребностей. Поэтому в автомобилях применяются схемы Ларионова. Сейчас обсудим конструкции, вначале проясним, почему диодный мост так называется. В 1833 году предложена схема для измерения сопротивления, основанная на выравнивание потенциала средних выводов двух ветвей:

  1. Четыре сопротивления соединяются в квадрат (по одному на сторону геометрической фигуры).
  2. К двум углам подаётся питающее напряжение от аккумулятора или другого источника.
  3. С двух других углом снимаются показания любым регистратором напряжения или тока.

Смысл работы заключается в том, чтобы при помощи потенциометра показания индикатора обратить в нуль. Тогда говорят – наступило равновесие моста. В то время (до публикации законов Кирхгофа) уже знали, что падение напряжение на двух резисторах пропорционально их величине, значит, справедливо, что: R1/R2 = R3/Rx, где R2 – потенциометр, R1 и R3 – постоянные сопротивления известного номинала, Rx – исследуемый элемент. Потом из простой пропорции находится искомая величина.

Мостовой схему в англоязычной литературе называют по причине, что между двумя ветвями электрической цепи, состоящих из сопротивлений R1, R2 и R3, Rx, соответственно, перекинуты перемычка – измерительный прибор. Людям это напомнило мост, схему назвали соответственно.

Диодный мост Гретца

В 1897 году журнал Elektronische Zeitung (часть 25) опубликовал заметку Лео Гретца об исследовании диодного моста. Отдельные читатели решили, что указанный человек стал изобретателем устройства. Поныне (на 2021 год) русский домен Википедии продолжает утверждать неоспоримый факт. В действительности изобретателем диодного моста Гретца стал польский электротехник Карол Поллак. Авторам обзора не удалось найти биографии учёного мужа на русском языке. Неудивительно, что о патенте под номером 96564 от 14 января 1896 года мало известно.

Схема диодного моста

Из рисунка видно объяснение названия схемы – диодный мост, налицо все признаки:

  1. Две ветки из диодов по центру закорочены цепью нагрузки.
  2. Питание переменным током подаётся к двум сторонам квадрата.
  3. На выходе присутствует постоянное напряжение.

К недостаткам схемы относится факт: падение напряжение на p-n-переходе удваивается. В любой момент времени ток проходит через пару диодов, а не один, как в случае однополупериодного выпрямителя. При большом вольтаже потерями возможно пренебречь, чтобы схема не сгорела, её снабжают большими изрезанными металлическими радиаторами. Автомобилисты уже поняли, о чем речь, простым смертным заметим, что для бытовой техники это не всегда справедливо (радиатор отсутствует). Причина не в мощности в цепи легковой машины. Скорее, при постоянном напряжении 12 В бортовой сети высоким оказывается ток, указанный факт приводит к столь сильному выделению тепла.

Поясним. По закону Джоуля-Ленца теплота от протекания электрического тока пропорциональна квадрату величины тока. В низковольтных цепях по этой причине приходится медные провода делать толстыми. Это причина, почему промышленное напряжение выше 12 В. В силовых линиях идут киловольты, что помогает снизить сечение кабелей и сэкономить на материалах. Для преобразования между линиями служит трансформатор, он, как правило, стоит на входе любого бытового прибора.

Это нужно, чтобы быстро создать номиналы напряжений, близкие к требуемым. Особенно ярко утверждение прослеживается на примере телевизоров с электронно-лучевой трубкой. Трансформатор на входе несёт множество выходных обмоток по числу цепей. Остаётся только выпрямить ток при необходимости, что позволяет снизить сложность аппаратуры. Для этого после выходной обмотки трансформатора ставится диодный мост Гретца (речь идёт об однофазных сетях 220 В).

В современных импульсных блоках питания по-другому. Диодный мост ставится прямо после входного фильтра, потом выпрямленное напряжение нарезается на тиристорном (транзисторном) ключе на высокочастотные импульсы, подаваемые на трансформатор. Это позволяет многократно уменьшить размеры сердечника и обмоток. Посмотрите на адаптер для сотового телефона: внутри стоит импульсный трансформатор. По размеру не сравнить с блоком питания телевизора. Порекомендуем обратить внимание на системный блок персонального компьютера, где источник выдаёт не менее 350 Вт. Этого хватит для телевизора с электронно-лучевой трубкой.

Схема моста Гретца

После импульсного трансформатора снова стоит выпрямитель. Иногда это диодный мост на базе диодов Шоттки с низким падением напряжения на p-n-переходе. Вспомним о перечисленных ранее недостатках. Для низких выходных напряжений импульсного блока питания применение диодных мостов невыгодно, удваивается количество вентилей. В результате потери выше, что закономерно снижает КПД. Дополнительным фактором считается выделение тепла: при низких напряжениях приходится использовать радиаторы при большом сопротивлении p-n-перехода.

Сопротивление p-n-перехода

Диодные мосты Гретца де-факто являются доминирующими сегодня в бытовых приборах. Сделаем маленькое отступление по поводу сопротивления p-n-перехода.

Как известно, характеристика диода напоминает в положительной части оси абсцисс параболу. Неважна форма, важен факт, что в любой точке графика становится возможным найти сопротивление. Потребуется просто поделить напряжение на ток. Получается, сопротивление диода зависит от приложенного вольтажа и в типичном случае постоянно меняется. Найдём аналогично действующему значению напряжения (220 В) среднюю цифру и для этого параметра. От неё зависят потери. Чем сопротивление p-n-перехода ниже, тем лучше. Поэтому выгодно использовать диоды Шоттки.

Однофазные выпрямители по схеме Миткевича

Схема не смотрится мостом, за исключением отдельных черт сходства. Из рисунка видно, что нагрузка словно закорачивает ветви обмотки трансформатора и диодов. Это уже натяжка. Так любую цепь можно назвать мостом. В любой момент времени у схемы Миткевича работает половина конструкции. Вторая заперта.

Аналогичное говорится про диодный мост Гретца, но здесь утверждение распространяется на обмотку трансформатора, чего нельзя отметить в предыдущем случае.

См. также

  • однополупериодный выпрямитель ,
  • двухполупериодный мостовой выпрямитель , мостовой выпрямитель ,
  • двухполупериодный мостовой выпрямитель с фильтром ,
  • полупроводниковый диод , вах диодов , классификация диодов , уго диодов ,

А как ты думаешь, при улучшении трехфазные выпрямители, будет лучше нам? Надеюсь, что теперь ты понял что такое трехфазные выпрямители,трехфазный выпрямитель и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база

Диодный мост принцип действия – Tokzamer

Что такое диодный мост и как он работает?

Наряду с линейными устройствами в электрической цепи можно встретить и нелинейные полупроводниковые элементы, имеющие самый разнообразный функционал в составе электронной схемы. Среди полупроводниковых приборов особое место занимает диодный мост, выполняющий роль преобразователя переменного напряжения в постоянное. Хоть для этих целей с тем же успехом может применяться и обычный диод, но сфера их применения существенно ограничивается рабочими параметрами одного элемента. Решить недостатки единичной детали помогла диодная сборка из нескольких, существенно отличающихся характеристиками и принципом работы.

Устройство и принцип работы

Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный.

Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

Рис. 1. Принцип работы диодного моста

Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

Поэтому работа выпрямительного устройства будет иметь такие этапы:

  • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
  • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
  • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
  • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

Обозначение на схеме и маркировка

На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

Рис. 2. Обозначение на схеме

Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

Второй вариант наиболее распространен для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

Разновидности диодных мостов

В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

Рис. 3. Схема трехфазного диодного моста

Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга. Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

Рис. 4. Напряжение выпрямленное трехфазным мостом

Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

Технические характеристики

При выборе конкретного диодного моста для замены в выпрямительном блоке или для любой другой схемы важно хорошо ориентироваться в основных технических параметрах.

Среди таких характеристик наиболее значимыми для диодного моста являются:

  • Амплитудное максимальное напряжение обратной полярности – это пороговое значение более которого уже произойдет необратимый процесс и полупроводник выйдет со строя. Обозначается как UАобр в отечественных моделях или V­rpm для зарубежных.
  • Среднее обратное напряжение – представляет собой номинальное значение электрической величины, которое может прикладываться в процессе эксплуатации. Имеет обозначение Uобр в отечественных образцах или V­r(rms) для зарубежных диодных мостов.
  • Средний выпрямленный ток – обозначает действующую величину электрического тока на выходе диодного моста. На устройствах указывается как Iпр или Io для моделей отечественного или зарубежного производства соответственно.
  • Амплитудный выпрямленный ток – это максимальный ток на выходе выпрямителя, определяемый пиком полуволны на кривой, обозначается как Ifsm для пульсирующего тока на положительном и отрицательном выводе.
  • Падение напряжения в прямой полярности – определяет потерю напряжения от собственного сопротивления диодного моста. На устройстве обозначается как V­fm.

Если вы хотите выбрать модель на замену, допустим в сети 220 В, то главный параметр для диодного моста обратный ток и напряжение. Рабочие характеристики должны значительно превышать номинал сети, к примеру, при напряжении 220 В – диодный мост должен выдерживать около 400 В. По току подойдет и меньший запас, но его также следует предусмотреть.

Преимущества и недостатки

Кроме диодного моста существуют и другие способы преобразования переменного в постоянный ток. В сравнении с однополупериодным, двухполупериодное выпрямление обладает рядом преимуществ:

  • И отрицательная, и положительная полуволна синусоиды преобразуются в выходное напряжение, поэтому вся мощность трансформатора используется в наиболее оптимальной степени.
  • За счет большей частоты пульсации получаемое от диодного выпрямителя напряжение куда проще сглаживать при помощи фильтров.
  • Использование электроэнергии под нагрузкой уменьшает потери мощности на перемагничивание сердечника, возникающее из-за процессов взаимоиндукции в обмотках питающего трансформатора.
  • Гармоничное перераспределение кривой электротока и напряжения на выходе – за счет передачи каждого полупериода сразу двумя диодами в мосте, выходной параметр получается куда более равномерным.

К недостаткам диодного моста следует отнести и большее падение напряжения, в сравнении с однополупериодной схемой или выпрямителем с отводом из средней точки. Это обусловлено тем, что ток протекает сразу черед два полупроводниковых элемента и встречает омическое сопротивление от каждого из них. Такой недостаток может оказывать существенное влияние в слаботочных цепях, где доли ампера могут решать значение сигналов, режимы работы агрегатов и т.д. В качестве решения могут применяться диодные мосты с диодами Шотки, у которых падение прямого напряжения относительно ниже.

Еще одним недостатком является сложность определения перегоревшего звена, так как при выходе со строя хотя бы одного диода вся схема будет продолжать работать. Понять, что один из полупроводниковых элементов выпал из цепи можно лишь с помощью измерений, далеко не всегда прибор или схема отреагируют при сбое видимой неисправностью.

Практическое применение

На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения. Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому. Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.

Примеры схем с диодным мостом и их описание

Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере

Рис. 5. Схема зарядного устройства

Как видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.

Рис. 6. Схема карманного фонаря

На рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.

Пример схемы сварочного агрегата

Здесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.

Что такое диодный мост

Диодный мост – электрическое устройство, предназначенное выпрямления тока, то есть для преобразования переменного тока в постоянный.

Содержание статьи

  • Из каких элементов состоит диодная сборка
  • Как работает диодный мост
  • Чем можно заменить диодный мост
  • Для чего нужен диодный мост в генераторе автотехники
  • Видео: принцип работы диодного моста

Диодные мосты – важная часть электронных приборов, питающихся от бытовой электросети напряжением 220 В и частотой 50 (60) Гц. Его второе название – двухполупериодный выпрямитель. Диодный мост состоит из полупроводниковых выпрямительных диодов или из диодов Шоттки. Элементы могут отдельно распаиваться на плате. Однако современный вариант – объединение диодов в одном корпусе, который носит название «диодная сборка». Диодные мосты активно используются в электронике, трансформаторных и импульсных блоках питания, люминесцентных лампах. В сварочные аппараты устанавливают мощные полупроводниковые сборки, которые крепятся к теплоотводящему устройству.

Схема диодного моста из 4 диодов

Что такое диодный мост и из каких элементов он состоит

Диодный мост в схемах, применяемых в сетях с однофазным напряжением, состоит из четырех диодов, представляющих собой полупроводниковый элемент с одним p-n переходом. Ток в таком полупроводнике проходит только в одном направлении при подключении анода к плюсу источника, а катода – к минусу. Если подключение будет обратным, ток закрывается. Диодный мост для трехфазного электрического тока отличается наличием шести диодов, а не четырех. Существенные различия в принципе работы между мостовыми схемами для однофазных и трехфазных сетей отсутствуют.

Диод Шоттки – еще один вид полупроводниковых элементов, используемых в диодных мостах. Его основным отличием является переход металл-полупроводник, называемый «барьером Шоттки». Как и переход p-n, он обеспечивает проводимость в одну сторону. Для изготовления устройств Шоттки применяют арсенид галлия, кремний и металлы: золото, платину, вольфрам, палладий. При приложении небольших напряжений – до 60 В – диод Шоттки отличается малым падением напряжения на переходе (не более 0,4 В) и быстродействием. При бытовом напряжении 220 В он ведет себя как обычный кремниевый выпрямительный полупроводник. Сборки из таких полупроводниковых устройств часто устанавливаются в импульсных блоках питания.

Как работает диодный мост: для чайников, просто и коротко

На вход диодного моста подается переменный ток, полярность которого в бытовой электросети меняется с частотой 50 Гц. Диодная сборка «срезает» часть синусоиды, которая для прибора «является» обратной, и меняет ее знак на противоположный. В результате на выходе к нагрузке подается пульсирующий ток одной полярности.

Обозначение диодного моста на схеме

Частота этих пульсаций в 2 раза превышает частоту колебаний переменного тока и равна в данном случае 100 Гц.

Работа диодного моста

На рисунке а) изображена обычная синусоида напряжения переменного тока. На рисунке б) – срезанные положительные полуволны, полученные при использовании выпрямительного диода, который пропускает через себя положительную полуволну и запирается при прохождении отрицательной полуволны. Как видно из схемы, одного диода для эффективной работы недостаточно, поскольку «срезанная» отрицательная часть полуволн теряется и мощность переменного тока снижается в 2 раза. Диодный мост нужен для того, чтобы не просто срезать отрицательную полуволну, а поменять ее знак на противоположный. Благодаря такому схемотехническому решению, переменный ток полностью сохраняет мощность. На рисунке в) – пульсирующее напряжение после прохождения тока через диодную сборку.

Пульсирующий ток строго назвать постоянным нельзя. Пульсации мешают работе электроники, поэтому для их сглаживания после прохождения диодного моста в схему нужно включить фильтры. Простейший тип фильтра – электролитические конденсаторы значительной емкости.

На печатных платах и принципиальных схемах диодный мост, в зависимости от того, как он устроен (отдельные элементы или сборка), может обозначаться по-разному. Если он состоит из отдельно впаянных диодов, то их обозначают буквами VD, рядом с которыми указывают порядковый номер – 1-4. Буквами VDS обозначают сборки, иначе –VD.

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

  • меньшей площади, занимаемой сборкой на схеме;
  • упрощению работы сборщика схемы;
  • единому тепловому режиму для всех четырех полупроводниковых устройств.

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Для чего нужен диодный мост в генераторе автотехники

Диодный мост в генераторе

Это схемотехническое решение используется в электрических схемах автомобилей и мотоциклов. Диодный мост, устанавливаемый на генераторе переменного тока, нужен для преобразования вырабатываемого им переменного напряжения в постоянное. Постоянный ток служит для подзарядки АКБ и питания всех электропотребителей, имеющихся в современном транспорте. Требуемая мощность полупроводников в мостовой схеме определяется номинальным током, вырабатываемым генератором. В зависимости от этого показателя, полупроводниковые приборы разделяют на следующие группы по мощности:

  • маломощные – до 300 мА;
  • средней мощности – от 300 мА до 10 А;
  • высокомощные – выше 10 А.

Для автотехники обычно применяют мосты из кремниевых диодов, способных отвечать эксплуатационным требованиям в широком температурном диапазоне – от -60°C до +150°C.

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

  • на плату попала жидкость;
  • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
  • изменение положения полюсов контактов на АКБ.

Видео: принцип работы диодного моста

Что такое диодный мост, принцип его работы и схема подключения

От энергоснабжающей организации до потребителей доставляется переменное напряжение. Это связано с особенностями транспортировки электроэнергии. Но большая часть бытовых (и, частично, производственных) электроприемников требует питания постоянным напряжением. Для его получения требуются преобразователи. Во многих случаях их строят по схеме «понижающий трансформатор – выпрямитель – сглаживающий фильтр» (за исключением импульсных блоков питания). В качестве выпрямителя используются диоды, включенные по мостовой схеме.

Для чего нужен диодный мост и как он работает

Диодный мост используется в качестве схемы выпрямления, преобразующей переменное напряжение в постоянное. Принцип его действия основан на односторонней проводимости — свойстве полупроводникового диода пропускать ток только в одном направлении. Простейшим выпрямителем может служить и одиночный диод.

При подобном включении нижняя (отрицательная) часть синусоиды «срезается». Такой способ имеет недостатки:

  • форма выходного напряжения далека от постоянной, требуется большой и громоздкий конденсатор в качестве сглаживающего фильтра;
  • мощность источника переменного тока используется максимум наполовину.

Ток через нагрузку повторяет форму выходного напряжения. Поэтому лучше использовать двухполупериодный выпрямитель в виде диодного моста. Если включить четыре диода по указанной схеме и подключить нагрузку, то при подаче на вход переменного напряжения блок будет работать так:

При положительном напряжении (верхняя часть синусоиды, красная стрелка) ток пойдет через диод VD2, нагрузку, VD3. При отрицательном (нижняя часть синусоиды, зеленая стрелка) через диод VD4, нагрузку, VD1. В итоге за один период ток дважды проходит через нагрузку в одном направлении.

Форма выходного напряжения гораздо ближе к прямой, хотя уровень пульсаций довольно высок. Мощность источника используется полностью.

Если имеется источник трехфазного напряжения необходимой амплитуды, можно сделать мост по такой схеме:

В нём на нагрузке будут складываться три тока, повторяющие форму выходного напряжения, со сдвигом фаз в 120 градусов:

Выходное напряжение будет огибать верхушки синусоид. Видно, что напряжение пульсирует гораздо меньше, чем в однофазной схеме, его форма более близка к прямой. В этом случае ёмкость сглаживающего фильтра будет минимальной.

И еще один вариант моста – управляемый. В нём два диода заменены тиристорами – электронными приборами, которые открываются при подаче сигнала на управляющий электрод. В открытом виде тиристоры ведут себя практически как обычные диоды. Схема принимает такой вид:

Сигналы включения подаются от схемы управления в согласованные моменты времени, отключение происходит в момент перехода напряжения через ноль. Потом напряжение усредняется на конденсаторе, и этим средним уровнем можно управлять.

Обозначение диодного моста и схема подключения

Так как мост из диодов может быть построен по различным схемам, а элементов в нём содержится немного, то в большинстве случаев обозначение выпрямительного узла производят, просто рисуя его принципиальную схему. Если это неприемлемо – например, в случае построения блок-схемы – то мост указывается в виде символа, которым указывают любой преобразователь переменного напряжения в постоянное:

» означает цепи переменного тока, символ «=» – цепи постоянного тока, а «+» и «-» – выходную полярность.

Если выпрямитель построен по классической мостовой схеме из 4 диодов, то допускается немного упрощенное изображение:

Подключается вход выпрямительного блока к выходным терминалам источника переменного тока (в большинстве случаев им служит понижающий трансформатор) без соблюдения полярности – любой выходной вывод подключается к любому входному. Выход моста подключается к нагрузке. Она может требовать соблюдения полюсности (включая стабилизатор, сглаживающий фильтр), а может и не требовать.

Диодный мост может быть подключен к источнику постоянного напряжения. В этом случае получается схема защиты от непреднамеренной переполюсовки – при любом подключении входов моста к выходу блока питания, полярность напряжения на его выходе не изменится.

Основные технические характеристики

При выборе диодов или готового моста в первую очередь надо смотреть на наибольший рабочий прямой ток. Он должен с запасом превышать ток нагрузки. Если эта величина неизвестна, а известна мощность, её надо пересчитать в ток по формуле Iнагр=Pнагр/Uвых. Для увеличения допустимого тока полупроводниковые приборы можно соединять параллельно – наибольший ток нагрузки делится на количество диодов. Диоды в одной ветви моста в этом случае лучше подобрать по близкому значению падения напряжения в открытом состоянии.

Второй важный параметр – прямое напряжение, на которое рассчитан мост или его элементы. Оно не должно быть ниже выходного напряжения источника переменного тока (амплитудного значения!). Для надежной работы устройства надо взять запас в 20-30%. Для увеличения допустимого напряжения диоды можно включать последовательно – в каждое плечо моста.

Этих двух параметров достаточно для предварительного решения об использовании диодов в выпрямительном устройстве, но надо обратить внимание и на некоторые другие характеристики:

  • максимальная рабочая частота – обычно несколько килогерц и для работы на промышленных частотах 50 или 100 Гц значения не имеет, а если диод будет работать в импульсной схеме, этот параметр может стать определяющим;
  • падение напряжения в открытом состоянии у кремниевых диодов составляет около 0,6 В, что неважно для выходного напряжения, например, в 36 В, но может быть критичным при работе ниже 5 В – в этом случае надо выбирать диоды Шоттки, которые характеризуются низким значением этого параметра.

Разновидности диодных мостов и их маркировка

Диодный мост можно собрать на дискретных диодах. Чтобы соблюсти полярность, надо обратить внимание на маркировку. В некоторых случаях метка в виде рисунка нанесена прямо на корпус полупроводникового прибора. Это характерно для изделий отечественного производства.

Зарубежные (и многие современные российские) приборы маркируются точкой или кольцом. В большинстве случаев так обозначается анод, но гарантии нет. Лучше посмотреть справочник или воспользоваться тестером.

Можно сделать мост из сборки – четыре диода объединены в одном корпусе, а соединение выводов можно выполнить внешними проводниками (например, на печатной плате). Схемы сборок могут быть разнообразными, поэтому для правильного соединения надо смотреть даташиты.

Например, у диодной сборки BAV99S, содержащей 4 диода, но имеющей только 6 выводов, внутри имеется два полумоста, соединенных следующим образом (на корпусе около вывода 1 имеется точка):

Чтобы получить полноценный мост, надо соединить внешними проводниками соответствующие выводы (красным показана трассировка дорожек в случае использования печатного монтажа):

В этом случае переменное напряжение подводится к выводам 3 и 6. Положительный полюс постоянного снимается с вывода 5 или 2, а отрицательный – 4 или 1.

И самый простой вариант – это сборка с готовым мостом внутри. Из отечественных изделий это могут быть КЦ402, КЦ405, существуют мосты-сборки зарубежного производства. Маркировка выводов во многих случаях нанесена прямо на корпус, и задача сводится только к корректному выбору по характеристикам и к безошибочному подключению. Если наружного обозначения выводов нет, придется обратиться к справочнику.

Преимущества и недостатки

Преимущества диодного моста общеизвестны:

  • отработанные десятилетиями схемы;
  • простота сборки и подключения;
  • несложная диагностика неисправности и простота ремонта.

В качестве недостатков надо упомянуть рост габаритов и веса схемы при увеличении мощности, а также необходимости использования радиаторов для мощных диодов. Но с этим сделать ничего нельзя – физику не обмануть. Когда эти условия станут неприемлемыми, надо решать вопрос о переходе к импульсной схеме источника питания. Кстати, мостовое включение диодов может быть использовано и в ней.

Также надо отметить форму выходного напряжения, далекую от постоянной. Для работы с потребителями, предъявляющими требования к стабильности питающего напряжения, надо использовать мост совместно со сглаживающими фильтрами, а при необходимости и стабилизаторами на выходе.

Диодный мост – что это такое?

Как мы знаем, в наших розетках протекает переменный электрический ток с напряжением в 220 вольт. Но как быть если нам нужно запитать низковольтный приемник, которому требуется постоянный ток? Если с напряжением все понятно – нам поможет трансформатор, то как сделать из переменного тока постоянный – вопрос.

В этой ситуации нам на помощь приходит такое устройство как выпрямитель.Это устройство содержится почти во всех электронных приборах, которые работает на постоянном токе, от сварочных полуавтоматов, до блоков питания. В статье мы рассмотрим классическую схему выпрямителя из четырех диодов, которая именуется выпрямительным диодным мостом.

Для чего нужен диодный мост

Как мы должны были понять, диодный мост нужен для того, чтобы сделать из переменного тока постоянный. Это устройство придумал немецкий ученый Леоц Гретц, второе название диодного моста – мостовая схема Гретца.

Принцип действия таков: на вход диодного моста подается переменный электрический ток, а на его выходах появляется постоянный пульсирующий ток. Частота пульсаций зависит от частоты переменного тока.

Если взять стандартное значение частоты для наших широт (50 Гц), то частота пульсаций постоянного тока будет равна 100 Гц. Для того, чтобы сгладить пульсации, ставиться конденсатор – это устройство будет полноценным выпрямителем.

Схема, которая рассматривается в данной статье, применяется в двухфазной сети. Для трехфазной сети применяется другие схемы, которые не будут рассмотрены в этой статье. Выполняется в виде четырех соединённых диодов или диодной сборки. Диодная сборка – это тот же диодный мост, только сделан в одном корпусе. У обоих вариантов исполнения есть свои плюсы и недостатки. Например, в случае неисправности одного из диодов, продеться заменить всю диодную сборку – это ее минус.

При подборе диодного моста или отдельных диодов для него, учитываются следующие характеристики:

  • Обратное напряжение диодов;
  • Обратный ток диодов;
  • Длительно допустимый ток;
  • Максимальная рабочая температура;
  • Рабочая частота (актуально для высокочастотных приборов).

Это основные параметры, по которым подбираются диоды для самостоятельной сборки или диодные мосты. Все зависит от нагрузки, которую вы хотите запитать, но будь то блок питания или зарядное устройство, лучше взять с запасом, нежели впритык.

Это обезопасит ваше устройство. Бывают ситуации, когда диодный мост может сильно нагреваться или даже сгореть. Это происходит из-за высокого тока, которые проходя по диодам нагревает их, либо из-за плохого охлаждения, особенно в мощных устройствах.

Для лучшего охлаждения и профилактики сгораний диодного моста, рекомендуется использовать радиаторы, которые будут эффективно рассеивать тепло.

Диоды тоже имеют свое сопротивление и на каждом из них падает напряжение. Для высоковольтных аппаратов – это не существенные потери, но для низковольтных приемников (до 12 вольт) такие потери будут существенны.

В этой ситуации в место обычных диодов, в схеме применяется диоды Шоттки. На выпрямителе из таких диодов будет низкое падение напряжения, приемлемое для низковольтной аппаратуры.

Из-за особенностей диодов Шоттки, такие диодные мосты могут работать на сверхвысоких частотах. Но будьте осторожны, при малейшем превышении обратного напряжения, такие диоды выходят из строя.

Схема диодного моста

Как мы выяснили выше, схема диодного моста состоит из четырех полупроводниковых диодов, соединенных по схеме Гретца. Такая схема еще называется двухполупериодным выпрямителем.

На принципиальных схемах диодный мост может обозначаться по-разному, либо как схема из четырех диодов, либо как один большой диод в ромбике. Суть его от этого не меняется, вот несколько примеров:

А вот так обозначается выпрямитель со сглаживающим конденсатором:

Как работает диодный мост

Принцип работы диодного моста достаточно прост. Переменный ток имеет две полуволны: положительную отрицательную. Каждое плечо (2 диода) выпрямляют свою полуволну, в то время как второе плечо блокирует протекание тока в другом направлении. В результате выпрямляется два полупериода, а на выводах всегда неизменная полярность.

Подключить диодный мост не составит труда, ведь это схематично показано на всех УГО (это и есть схема подключения) этого устройства. В случае с подключением диодной сборки, ее выводы обозначены соответственными обозначениями.

Собрать диодный мост самостоятельно тоже проще простого. Если вы уже подобрали диоды, то достаточно припаять их концы соответственно схеме. Но перед этим не поленитесь проверить диоды на исправность и не перепутайте их полярность.

Обычно катод и анод указаны на корпусе диодов.

Если остались вопросы, то рекомендуем к просмотру видео, чтобы найти ответы на оставшиеся вопросы.

Вывод

В статье мы рассмотрели такое классическое электронное устройство как диодный мост. Изучили его схему и разобрались в принципе работы. Я, как автор этой статьи, надеюсь, что она будет понятна даже чайнику и эти знания помогут вам в освоении радиоэлектроники.

Что такое диодный мост — простое объяснение

Определение

Диодный мост – это схемотехническое решение, предназначенное для выпрямления переменного тока. Другое название – двухполупериодный выпрямитель. Строится из полупроводниковых выпрямительных диодов или их разновидности – диодов Шоттки.

Мостовая схема соединения предполагает наличие нескольких (для однофазной цепи – четырёх) полупроводниковых диодов, к которым подключается нагрузка.

Он может состоять из дискретных элементов, распаянных на плате, но в 21 веке чаще встречаются соединенные диоды в отдельном корпусе. Внешне это выглядит, как и любой другой электронный компонент – из корпуса определенного типоразмера выведены ножки для подключения к дорожкам печатной платы.

Стоит отметить, что несколько совмещенных в одном корпусе вентилей, которые соединены не по мостовой схеме, называют диодными сборками.

В зависимости от сферы применения и схемы подключения диодные мосты бывают:

  • однофазные;
  • трёхфазные.

Обозначение на схеме может быть выполнено в двух вариантах, какое использовать УГО на чертеже зависит от того, собирается мост из отдельных элементов или используется готовый.

Принцип действия

Давайте разбираться, как работает диодный мост. Начнем с того, что диоды пропускают ток в одном направлении. Выпрямление переменного напряжения происходит за счет односторонней проводимости диодов. За счет правильного их подключения отрицательная полуволна переменного напряжения поступает к нагрузке в виде положительной. Простыми словами – он переворачивает отрицательную полуволну.

Для простоты и наглядности рассмотрим его работу на примере однофазного двухполупериодного выпрямителя.

Принцип работы схемы основам на том, что диоды проводят ток в одну сторону и состоит в следующем:

    На вход диодного моста подают переменный синусоидальный сигнал, например 220В из бытовой электросети (на схеме подключения вход диодного моста обозначается как AC или

).

  • Каждая из полуволн синусоидального напряжения (рисунок ниже) пропускается парой вентилей, расположенных на схеме по диагонали.
  • Положительную полуволну пропускают диоды VD1, VD3, а отрицательную — VD2 и VD4. Сигнал на входе и выходе схемы вы видите ниже.

    Такой сигнал называется – выпрямленное пульсирующее напряжение. Для того, чтобы его сгладить, в схему добавляется фильтр с конденсатором.

    Основные характеристики

    Рассмотрим основные характеристики полупроводниковых диодов. Латинскими буквами приведено их обозначение в англоязычной технической документации (т.н. Datasheet):

    • Vrpm – пиковое или максимальное обратное напряжение. При превышении этого напряжения pn-переход необратимо разрушается.
    • Vr(rms) – среднее обратное напряжение. Нормальное для работы, то же что и Uобр в характеристиках отечественных компонентов.
    • Io – средний выпрямленный ток, то же что и Iпр у отечественных.
    • Ifsm – пиковый выпрямленный ток.
    • Vfm – падение напряжения в прямом смещении (в открытом проводящем состоянии) обычно 0.6-0.7В, и больше у высокотоковых моделей.

    При ремонте электронной техники и блоков питания или их проектировании новички спрашивают: как правильно выбрать диодный мост?

    В этом случае самыми важными для вас параметрами будут обратное напряжение и ток. Например, чтобы подобрать диодный мост на 220В, нужно смотреть на модели с номинальным напряжением больше 400В и нужный ток, например, KBPC106 (или 108, 110). Его технические характеристики:

    • максимальный выпрямленный ток – 3А;
    • пиковый ток (кратковременно) – 50А;
    • обратное напряжение – 600В (800В, 1000В у KBPC108 и 110 соответственно).

    Запомните эти характеристики и вы легко сможете определить, какой выбрать вариант по каталогу.

    Схемы выпрямителей

    Выпрямление тока в блоках питания – основное назначение, среди других компонентов схемы можно выделить входной фильтр, который подключают после выпрямителя – он предназначен для сглаживания пульсаций. Давайте разберемся в этом вопросе подробнее!

    В первую очередь стоит отметить, что диодным мостом называют схему однофазного выпрямителя из 4 диодов или трёхфазного из 6. Но любители часто так называют схему выпрямителя со средней точкой.

    У двухполупериодного выпрямителя к нагрузке поступает две полуволны, а у однополупериодного – одна.

    Чтобы не было путаницы, давайте разбираться в терминологии.

    Ниже вы видите однофазную двухполупериодную схему, её правильное название «Схема Гретца», именно её чаще всего подразумевают под названием «диодный мост».

    Схема Ларионова – трёхфазный диодный мост, на выходе сигнал двухполупериодный. Диоды в нём пропускают полуволны, открываясь на линейное напряжение, т.е. поочередно: верхний диод фазы A и нижний диод фазы B, верхний фазы B и нижний фазы C и т.д.

    Для полноты картины следует рассказать и о других схемах выпрямителей переменного напряжения.

    Однополупериодный выпрямитель из 1 диода, включенного последовательно с нагрузкой. Применяется в балластных блоках питания, маломощных миниатюрных блоках питания, а также в приборах, нетребовательных к коэффициенту пульсаций. К нагрузке поступает только одна полуволна.

    Двухполупериодный со средней точкой – это и есть то, что ошибочно называют мостом из 2 диодов. Здесь каждую полуволну проводит только один диод. Её преимуществом является больший КПД, чем у схемы Гретца, за счет меньшего числа полупроводниковых вентилей. Однако её использование осложнено тем, что нужен трансформатор с отводом от средней точки, что отражено на схеме принципиальной. Её нельзя использовать для выпрямления сетевого напряжения 220В.

    Выпрямитель из сборок Шоттки. Используется в импульсных блоках питания, потому что у диодов Шоттки меньше время обратного восстановления, малая барьерная ёмкость (быстрее переход из открытого состояния в закрытое) и малое прямое падение напряжения (меньше потерь). Чаще всего Шоттки встречаются в сборках, с общим анодом или катодом, как изображено на рисунке ниже.

    Поэтому для сборки схемы моста потребуется несколько сборок. Ниже приведен пример из 3 сборок Шоттки с общим катодом.

    Из 4 сборок с общим катодом. Отличается от предыдущей тем, что выдерживает больший ток, при тех же компонентах потому, что Шоттки в ней соединены параллельно.

    Из 2 сборок Шоттки – одна с общим анодом и одна с общим катодом. Узнать о том, что такое анод и катод, вы можете в нашей отдельной статье.

    Как спаять и подключить

    Изучать и знать схемы не сложно, основные трудности возникают, когда новичок решает спаять диодный мост своими руками. Для пайки выпрямителя из 4 советских экземпляров типа кд202 используйте иллюстрацию приведенную ниже.

    Для сборки диодного моста из современных дискретных диодов типа маломощных 1n4007 (и других – все выглядят аналогично и отличаются только размерами) внимательно посмотрите на следующую иллюстрацию.

    Но если вы не собираете его из отдельных деталей, а используете готовый мост, то смотрите ниже, как правильно подключить его в цепь.

    Также новичкам будет интересно посмотреть видео о том, как сделать простейший блок питания на 12В:

    Область применения и назначение

    Чаще всего диодные мосты используют в блоках питания. В трансформаторных БП они подключаются ко вторичной обмотке трансформатора

    В импульсных БП – ко входу сети 220В. При этом электронная схема управления и силовая цепь ИБП питается от выпрямленного и сглаженного (не всегда) сетевого напряжения (достигает порядка 300-310 Вольт).

    На выводах вторичной обмотки импульсного блока питания высокочастотное переменное напряжение. Для того, чтобы его выпрямить, устанавливают сборки из сдвоенных диодов Шоттки. В связи с этим часто используют схему выпрямления со средней точкой.

    В автомобилях и мотоциклах используются трёхфазные диодные мосты, собранные по схеме Ларионова с тремя дополнительными вентилями, потому что для питания бортовой сети используется трёхфазный генератор. Мост в генераторе выполняется в виде сектора окружности и устанавливается на его задней части.

    Исключение составляют некоторые современные автомобили Toyota и прочих марок, в них используют 6 фазный генератор, для реализации двенадцатипульсной схемы выпрямления из 12 вентилей. Это нужно для снижения пульсации и увеличения выходного тока.

    Способы проверки

    Для проверки диодного моста лучше всего подходит мультиметр в режиме проверки диодов.

    Для этого нужно прозвонить на короткое замыкание входную, затем выходную (диодный мост должен быть выпаян).

    Не выпаивая прямо на плате, вы можете измерить падение напряжения на переходах диодов. Для этого нужно определить цоколевку моста, обычно она указывается прямо на корпусе, что мы и рассматривали выше.

    На экране мультиметра в прямом смещении должно отображаться цифры в пределах 500-800 мВ, а в обратном – выше 1500 и до бесконечности (зависит от конкретного компонента и измерительного прибора). Тоb же самое можно сделать в режиме Омметра, как показано на рисунке ниже.

    Более подробно этот процесс описан в статье «как проверить диодный мост», где кроме методики проверки мы рассказали и о признаках неисправности. Также ознакомьтесь с видео о том, как проверить однофазный выпрямитель и диодный мост автомобильного генератора:

    На этом мы и заканчиваем наше подробное объяснение. Надеемся, теперь вам стало понятно, для чего нужен диодный мост и что он делает в электрической цепи. Если возникли вопросы, задавайте их в комментариях под статьей!

    Диодный мост — Вики

    Рисунок 1. Электрические принципиальные схемы однофазного двухполупериодного моста Гретца (слева) и трёхфазного двухполупериодного выпрямителя Ларионова (справа), ~A, ~B, ~C — фазы трёхфазной питающей сети переменного тока.

    Рисунок 2. Упрощённое графическое обозначение диодного моста на принципиальных электрических схемах[1].

    Рисунок 3. Схема включения моста Гретца в качестве двухполупериодного выпрямителя.

    У этого термина существуют и другие значения, см. Мост (электротехника).

    Дио́дный мост — электрическое устройство, электрическая схема для преобразования («выпрямления») переменного тока в пульсирующий (постоянный). Выпрямление с помощью диодного моста называется двухполупериодным[2].

    Существуют однофазные и многофазные мосты. Однофазный мост выполняется по мостовой схеме Гретца. Изначально в ней использовались электровакуумные диоды и эта схема считалась сложным и дорогим решением, вместо неё обычно применялась схема Миткевича, в которой вторичная обмотка трансформатора имеет средний вывод[3]. Сейчас, когда полупроводниковые диоды стали дешёвые и доступные практически всем, в большинстве случаев применяется мостовая схема, за исключением применяемой в некоторых низковольтных выпрямителях схемы Миткевича, имеющей при прочих равных больший КПД[4].

    Вместо диодов в схеме могут применяться выпрямительные вентили любых типов — например селеновые выпрямители, ртутные вентили и другие, принцип действия схемы от этого не изменяется.

    Также в плечах моста применяют управляемые вентили, например, тиристоры или игнитроны, при этом возможно управление выходным напряжением выпрямителя с помощью фазоимпульсного управления управляемыми вентилями.

    Содержание

    • 1 История
    • 2 Принцип работы выпрямительных мостов
      • 2.1 Однофазный мост (схема Гретца)
      • 2.2 Трёхфазный мост (схема Ларионова)
      • 2.3 Преимущества выпрямительных мостов
      • 2.4 Недостатки выпрямительных мостов
    • 3 Выпрямители на диодных мостах
    • 4 Электрические и эксплуатационные параметры
      • 4.1 Предельно-допустимые параметры
      • 4.2 Основные параметры
    • 5 Иные применения диодных мостов
    • 6 Конструкция
    • 7 Маркировка
    • 8 См. также
    • 9 Ссылки
    • 10 Примечания

    История

    Рисунок 4. Выпрямительный мост из патента Поллака. В качестве выпрямительных вентилей использованы электрохимические выпрямительные ячейки.

    Схема выпрямительного моста (рисунок 4) была изобретена польским электротехником Каролем Поллаком[pl] и запатентована в декабре 1895 года в Великобритании[5], и в январе 1896 года в Германии[6][7].

    В 1897 году немецкий физик Лео Гретц независимо от предшественников изобрел и опубликовал описание аналогичной схемы[8][9][10][11]. Публикация Гретца стала широко известной электротехникам того времени, поэтому эту схему и сейчас часто называют схемой Гретца или мостом Гретца[12].

    В 1924 году советский электротехник А. Н. Ларионов изобрёл мостовую схему двухполупериодного выпрямителя трёхфазного тока, названную его именем[13].



    Принцип работы выпрямительных мостов

    Рисунок 5. Направление тока и открытые диоды при выпрямлении обеих полуволн входного напряжения.

    Рисунок 6. Анимация принципа работы моста Гретца.

    Рисунок 7. Форма выходных напряжений без сглаживающего фильтра при однополупериодном и двухполупериодном однофазном выпрямлении.

    Однофазный мост (схема Гретца)

    На вход (∼U{\displaystyle \sim U}) моста подаётся переменное напряжение, не обязательно синусоидальное. В одном из полупериодов (на рисунке 5 слева) открыты два диода в противоположных плечах моста и ток проходит только через эти 2 диода, а 2 других в другой паре противоположных плеч при этом заперты. На другом полупериоде (на рисунке 5 справа) открываются два других диода и другая пара диодов запирается. В нагрузке RL{\displaystyle R_{L}} ток в обоих полупериодах течёт в одном направлении, — диодный мост преобразует переменный ток в пульсирующий постоянный[14].

    Так как с нагрузкой всегда последовательно включены 2 диода, на каждом из которых в открытом состоянии падает часть входного напряжения Urd,{\displaystyle U_{rd},} то максимальное пульсирующее напряжение на нагрузке URLmax{\displaystyle U_{R_{L}max}} всегда меньше амплитуды входного напряжения U0{\displaystyle U_{0}} на удвоенное прямое падение напряжения на диоде. Амплитуда переменного напряжения больше эффективного напряжения Ueff{\displaystyle U_{eff}} в 2{\displaystyle {\sqrt {2}}} раз:

    URLmax=U0−2 Urd=2 Ueff−2 Urd.{\displaystyle U_{R_{L}max}=U_{0}-2\ U_{rd}={\sqrt {2}}\ U_{eff}-2\ U_{rd}.}

    Величина падения напряжения на одном диоде зависит от полупроводникового материала и типа диода Так, например, у кремниевых диодов с p-n-переходом прямое падение при малых токах через диод составляет ≈0,6 В при токах близких к предельно-допустимому для конкретного прибора ≈1 В. У германиевых диодов и диодов Шоттки ≈0,3 В (≈0,6 В) и ≈0,2 В (≈0,4 В) соответственно. Потери энергии, вызванные прямым падением напряжения на диодах снижают КПД выпрямителя, особенно это снижение существенно при выпрямлении низких напряжений. Например, источник питания с диодным мостом на кремниевых диодах с p-n-переходом на 5 В и током 10 А (выходная мощность 50 Вт) будет иметь КПД не более 70 %. Поэтому в низковольтных сильноточных выпрямителях применяют в основном диоды Шоттки или схемы активного выпрямления[en] с помощью активных управляемых ключей, например, мощных полевых транзисторов.

    Частота пульсаций fp{\displaystyle f_{p}} выпрямленного напряжения равна удвоенной частоте питающего переменного напряжения f0{\displaystyle f_{0}}:

    fp=2 f0.{\displaystyle f_{p}=2\ f_{0}.}

    Средний ток Idm{\displaystyle I_{dm}} через любой диод при среднем токе нагрузки IRL{\displaystyle I_{R_{L}}}[15]:

    Idm=IRL/2.{\displaystyle I_{dm}=I_{R_{L}}/2.}

    Далее формулы приведены в предположении, что прямое падение на диодах равно 0.

    Размах пульсаций Up{\displaystyle U_{p}} (разность напряжений между максимальным и минимальным значениями) на выходе моста без сглаживающего ёмкостного фильтра:

    Up=U0=2 Ueff≈1,41 Ueff. {\displaystyle U_{p}=U_{0}={\sqrt {2}}\ U_{eff}\approx 1{,}41\ U_{eff}.}

    Максимальное обратное напряжение Ur{\displaystyle U_{r}} на диоде при работе моста на ёмкостную нагрузку[15]:

    Ur=U0=2 Ueff.{\displaystyle U_{r}=U_{0}={\sqrt {2}}\ U_{eff}.}

    Среднее значение U¯{\displaystyle {\overline {U}}} выпрямленного напряжения:

    U¯=2 U0π=22 Ueffπ≈0,64 U0≈0,9 Ueff.{\displaystyle {\overline {U}}={\frac {2\ U_{0}}{\pi }}={\frac {2{\sqrt {2}}\ U_{eff}}{\pi }}\approx 0{,}64\ U_{0}\approx 0{,}9\ U_{eff}.}

    Трёхфазный мост (схема Ларионова)

    Рисунок 8. Электрическая схема трёхфазного моста с источником переменного напряжения, включенного по схеме «звезда».

    Рисунок 9. Частота основной гармоники пульсаций выпрямленного напряжения моста Ларионова в 6 раз выше частоты питающего напряжения. На рисунке для сравнения показано выпрямленное трёхфазное напряжение однополупериодным трёхфазным выпрямителем у которого частота пульсаций равна утроенному значению частоты питающего напряжения.

    Основная статья: Трёхфазный выпрямитель

    В этой схеме (рисунок 8) при изменении фазных напряжений открываются последовательно по паре диодов — один из верхней по рисунку 8 группы и один — из нижней.

    Так как диоды открываются как на верхней части синусоидального фазного напряжения так и на нижней части этих синусоидальных напряжений трёх фаз, сдвинутых относительно друг друга на 120°, частота пульсаций fp{\displaystyle f_{p}} выпрямленного напряжения в 6 раз больше частоты питающего трёхфазного переменного напряжения f0:{\displaystyle f_{0}:}

    fp=6 f0.{\displaystyle f_{p}=6\ f_{0}.}

    В каждый момент открыты по 2 диода и в схеме 3 пары диодов, поэтому средний ток Idm{\displaystyle I_{dm}} через любой диод при среднем токе нагрузки IRL{\displaystyle I_{R_{L}}}[15]:

    Idm=IRL/3.{\displaystyle I_{dm}=I_{R_{L}}/3.}

    Обычно выпрямитель по схеме Ларионова питают переменным напряжением от источника, включенного по схеме «звезда», но также возможно её питание от источника, включённого по схеме «треугольник».

    Выходное напряжение схемы Ларионова при питании от трёхфазного источника типа «звезда» с фазными напряжениями с амплитудами U0{\displaystyle U_{0}} в пренебрежении прямого падения напряжения на диодах (полагая их нулевыми, далее формулы приведены в предположении нулевого падения на диоде в открытом состоянии) равна:

    URLmax=3 U0=32 Ueff≈{\displaystyle U_{R_{L}max}={\sqrt {3}}\ U_{0}={\sqrt {3}}{\sqrt {2}}\ U_{eff}\approx }
    ≈1,65 U0≈2,45 Ueff,{\displaystyle \approx 1{,}65\ U_{0}\approx 2{,}45\ U_{eff},}

    то есть, в 3{\displaystyle {\sqrt {3}}} раз больше, чем в однофазной схеме с с мостом Гретца, это вызвано тем, что некоторое время в течение периода два фазных напряжения включены последовательно.

    Размах пульсаций Up{\displaystyle U_{p}} (разность напряжений между максимальным и минимальным значениями) на выходе схемы Ларионова без сглаживающего ёмкостного фильтра:

    Up=(3−1,5) U0=(3−1,5)3URLmax≈{\displaystyle U_{p}=({\sqrt {3}}-1{,}5)\ U_{0}={\frac {({\sqrt {3}}-1{,}5)}{\sqrt {3}}}U_{R_{L}max}\approx }
    ≈(1,73−1,5) U0≈0,23 U0≈0,14 URLmax. {\displaystyle \approx (1{,}73-1{,}5)\ U_{0}\approx 0{,}23\ U_{0}\approx 0{,}14\ U_{R_{L}max}.}

    Таким образом, размах пульсаций в этой схеме составляют около 14 % от значения выпрямленного напряжения, что позволяет питать многие некритичные к пульсациям потребители постоянного тока без применения сглаживающего фильтра.

    Среднее значение выпрямленного напряжения:

    U¯=3⋅3⋅U0π=3⋅3⋅2⋅Ueffπ≈1,66 U0≈2,34 Ueff.{\displaystyle {\overline {U}}={\frac {3\cdot {\sqrt {3}}\cdot U_{0}}{\pi }}={\frac {3\cdot {\sqrt {3}}\cdot {\sqrt {2}}\cdot U_{eff}}{\pi }}\approx 1{,}66\ U_{0}\approx 2{,}34\ U_{eff}.}

    Максимальное обратное напряжение Ur{\displaystyle U_{r}} на диоде при работе на ёмкостной фильтр[15]:

    Ur=3 U0=6 Ueff.{\displaystyle U_{r}={\sqrt {3}}\ U_{0}={\sqrt {6}}\ U_{eff}.}

    Преимущества выпрямительных мостов

    Двухполупериодное выпрямление с помощью моста (по сравнению с однополупериодным) имеет преимущества:

    • на выходе моста напряжение имеет повышенную частоту пульсаций, что упрощает фильтры пульсаций;
    • во вторичной обмотке трансформатора, питающей мост, отсутствует постоянный ток подмагничивания, что облегчает режим работы трансформатора и снижает его необходимые размеры;
    • увеличивает коэффициент использования габаритной мощности трансформатора (для однополупериодного выпрямителя он составляет около 0,45, так как в однополупериодном выпрямителе через нагрузку протекает только один полупериод переменного тока), что позволяет сделать габариты его магнитопровода меньшего сечения.

    Недостатки выпрямительных мостов

    • При работе происходит двойное падение напряжения на диодах по сравнению с однополупериодным выпрямлением (прямое напряжение на кремниевых диодах не менее 0,65 × 2 ≈ 1,3 В), это нежелательно в низковольтных схемах.
    • Также удваиваются потери энергии, рассеиваемой в виде тепла, на диодах, что снижает КПД мощных низковольтных (напряжение в несколько вольт) выпрямителей. Частично этот недостаток может быть преодолён за счет использования диодов Шоттки с малым прямым падением напряжения или применением синхронных активных выпрямителей. Меньшими потерями энергии при низковольтном выпрямлении большой мощности обладает двухполупериодный выпрямитель со средней точкой, в котором ток в каждом полупериоде протекает не через два последовательно включённых диода, а через один диод.
    • При выходе из строя одного из диодов (обрыве) схема превращается в однополупериодный выпрямитель, что может быть сразу не замечено, и в устройстве будет скрытый дефект, ухудшающий параметры.


    Выпрямители на диодных мостах

    Основная статья: Выпрямитель

    Основная статья: Сглаживающий фильтр

    Рисунок 10. Диодный мост Гретца с ёмкостным фильтром пульсаций. IB{\displaystyle I_{B}} — Ток моста;
    Cf{\displaystyle C_{f}} — ёмкость конденсатора фильтра;
    IR{\displaystyle I_{R}} — ток нагрузки;
    RL{\displaystyle R_{L}} — сопротивление нагрузки;
    ULL{\displaystyle U_{LL}} — напряжение холостого хода моста при отключённом конденсаторе фильтра;
    UR{\displaystyle U_{R}} — напряжение на нагрузке;
    ΔUR{\displaystyle \Delta U_{R}} — размах пульсаций напряжения на нагрузке;
    Tp{\displaystyle T_{p}} — период пульсаций;
    IB{\displaystyle I_{B}} — ток моста.

    Выходное напряжение выпрямителей переменного напряжения принципиально является пульсирующим. Многие потребители выпрямленного тока некритичны к пульсациям, например, электродвигатели постоянного тока, электрохимические потребители — электролизные ячейки, аккумуляторы при заряде и другие устройства, но большинство потребителей требует питания с минимальными пульсациями или их отсутствии.

    Пульсации на выходе выпрямителя характеризуют коэффициентом пульсаций kp{\displaystyle k_{p}}:

    kp=Uh/U¯{\displaystyle k_{p}=U_{h}/{\overline {U}}}
    где Uh{\displaystyle U_{h}} — сумма гармоник пульсаций,
    U¯{\displaystyle {\overline {U}}} — среднее выпрямленное напряжение выпрямителя.

    Обычно используют абсолютный коэффициент пульсаций:

    kpa=ΔUd/U¯,{\displaystyle k_{pa}=\Delta U_{d}/{\overline {U}},}
    где ΔUd{\displaystyle \Delta U_{d}} — размах пульсаций.

    Выпрямленное напряжение мостом Гретца имеет размах пульсаций равный амплитуде переменного напряжения:

    ΔUd=U0=2 Ueff,{\displaystyle \Delta U_{d}=U_{0}={\sqrt {2}}\ U_{eff},}

    и kpa=ΔUd/U¯=π/2≈1,57.{\displaystyle k_{pa}=\Delta U_{d}/{\overline {U}}=\pi /2\approx 1{,}57.}

    Для сглаживания пульсаций используются фильтры. Простейший фильтр — конденсатор, включённый параллельно нагрузке — потребителю постоянного тока (рисунок 10. ). Конденсатор фильтра запасает энергию (заряжается) импульсами тока на вершинах импульсов пульсаций и отдаёт её в нагрузку при провалах выходного напряжения моста, вызванного пульсациями. Скорость разряда конденсатора dUR/dt{\displaystyle dU_{R}/dt} с ёмкостью Cf,{\displaystyle C_{f},} при токе нагрузки IRL{\displaystyle I_{R_{L}}} в провалах от пульсаций:

    dUR/dt=−IR/Cf.{\displaystyle dU_{R}/dt=-I_{R}/C_{f}.}

    В результате сглаживающего действия конденсатора размах пульсаций уменьшается, спад напряжения на конденсаторе в промежутках между импульсами заряда на вершинах пульсаций, здесь упрощённо считается, что длительность импульса заряда конденсатора много меньше длительности полупериода переменного напряжения:

    ΔUR≈Tp dURdt=1fp⋅dURdt=IRCf fp,{\displaystyle \Delta U_{R}\approx T_{p}\ {\frac {dU_{R}}{dt}}={\frac {1}{f_{p}}}\cdot {\frac {dU_{R}}{dt}}={\frac {I_{R}}{C_{f}\ f_{p}}},}
    где Tp{\displaystyle T_{p}} — период пульсаций, Tp=1fp,{\displaystyle T_{p}={\frac {1}{f_{p}}},}
    fp{\displaystyle f_{p}} — частота пульсаций,
    Cf{\displaystyle C_{f}} — ёмкость фильтра,
    IR{\displaystyle I_{R}} — ток нагрузки,
    ΔUR{\displaystyle \Delta U_{R}} — размах пульсаций напряжения на нагрузке.

    Практически для получения фильтрации пульсаций также применяют и более сложные фильтры, например, многозвенные RC-фильтры или LC-фильтры с дросселем. При высоких требованиях к снижению пульсаций на выходе ёмкостного или другого пассивного фильтра устанавливают линейные или импульсные стабилизаторы напряжения.

    Электрические и эксплуатационные параметры

    Далее приведены широко принятые сокращённые обозначения параметров, разные изготовители могут применять иные обозначения. Например, в русскоязычной литературе VRMS{\displaystyle V_{RMS}} часто обозначают Uобр{\displaystyle U_{\text{обр}}} или Uобр.макс{\displaystyle U_{\text{обр.макс}}} и др.

    Предельно-допустимые параметры

    Это параметры, превышение которых недопустимо, даже кратковременное превышение этих параметров может привести к катастрофическому отказу прибора или деградации его параметров. Работа при параметрах ниже предельно-допустимых гарантирует безотказную работу прибора. Как правило, надёжность прибора снижается при его эксплуатации в режимах, приближающихся к предельно-допустимым.

    • VRMS{\displaystyle V_{RMS}} (В) — максимальное повторяющееся рабочее напряжение — предельное переменное амплитудное напряжения, подаваемое на мост.
    • VRPM{\displaystyle V_{RPM}} (В) — максимальное импульсное напряжение — предельное кратковременно подаваемое напряжение, допустимая длительность импульса обычно указывается в спецификации.
    • IO{\displaystyle I_{O}} (А) — максимальный средний выпрямленный ток. Указывается при оговорённой температуры корпуса, или даётся зависимость его от температуры. При повышении температуры этот ток приблизительно линейно уменьшается и при предельной температуре равен нулю.
    • IFRM{\displaystyle I_{FRM}} (А) — максимальный повторяющийся выпрямленный ток.
    • IFSM{\displaystyle I_{FSM}} (А) — максимальный импульсный выпрямленный ток, иногда называемый ударным прямым током, допустимая длительность импульса обычно указывается в спецификации для длительности равной половине периода промышленной частоты (10 мс для частоты 50 Гц; 8,3 мс для частоты 60 Гц). {2}t} (А2·с) — защитный фактор, характеризует стойкость прибора к импульсным перегрузкам — это предельное значение интеграла от квадрата неповторяющегося импульсного прямого тока диода за оговорённую длительность одного импульса, обычно — длительность половины периода переменного напряжения.
    • TJ{\displaystyle T_{J}} (°С) — предельная рабочая температура полупроводникового p-n-перехода.
    • TS{\displaystyle T_{S}} или Tstg{\displaystyle T_{stg}} (°С) — предельная температура хранения.
    • PJ{\displaystyle P_{J}} (Вт) — предельная рассеиваемая тепловая мощность.

    Основные параметры

    Эти параметры учитываются при проектировании и расчётах выпрямителей и для выбора прибора для конкретного применения:

    • VF{\displaystyle V_{F}} (В) — прямое падение напряжение на приборе в открытом состоянии, обычно указывается для предельно-допустимого среднего прямого тока.
    • IR{\displaystyle I_{R}} (А или мкА) — максимальный обратный ток, обычно указывается для максимальной рабочей температуры и предельно-допустимого обратного напряжения.
    • fmax{\displaystyle f_{max}} (кГц) — максимальная рабочая частота или частота, на которой средний выпрямленный ток снижается в 2{\displaystyle {\sqrt {2}}} раз. Разные изготовители могут применять и иные критерии максимальной рабочей частоты.
    • RθA{\displaystyle R_{\theta A}} (°С/Вт) — тепловое сопротивление полупроводниковые переходы — окружающий воздух.
    • RθJ{\displaystyle R_{\theta J}} (°С/Вт) — тепловое сопротивление полупроводниковые переходы — корпус.

    Для высокочастотных и импульсных диодных мостов иногда в спецификации указывают дополнительные параметры:

    • tR{\displaystyle t_{R}} (мкс) — максимальное время обратного восстановления — время переключения диода с заданного прямого тока на заданное обратное напряжение от момента прохождения тока через нулевое значение до момента достижения обратным током оговорённого значения — время, в течение которого обратный ток спадает до указанного значения.
    • CD{\displaystyle C_{D}} (пФ) — электрическая ёмкость в запертом состоянии, обычно указывается для заданного обратного напряжения.
    • QS{\displaystyle Q_{S}} (Кл, пКл) — заряд переключения — заряд неосновных носителей, накопленный в полупроводниковой структуре при протекании прямого указанного тока.

    Иные применения диодных мостов

    Помимо использования в качестве выпрямителя переменного напряжения в источниках питания, диодные мосты применяются для защиты от ошибочного подключения с неверной полярностью потребителя к источнику питания постоянного тока. При этом потребитель подключается в диагональ диодного моста к выводам «+{\displaystyle +}» и «−{\displaystyle -}», а источник постоянного напряжения к выводам «∼{\displaystyle \sim }», при этом при любой полярности подключения источника питания гарантирована правильная полярность питания потребителя. Недостаток такого решения — напряжение на потребителе будет меньше напряжения источника питания на двойное прямое падение напряжения на диоде, при использовании кремниевых диодов с p-n-переходом это от 1,3 В при малых токах нагрузки до 2 и более вольт при больших токах нагрузки.

    Рисунок 11. Управление переменным напряжением с помощью полевого транзистора.

    Другое применение — управление переменным напряжением с помощью активного элемента, не допускающего работы при другой полярности приложенного напряжения, например, полевого мощного транзистора с изолированным затвором (рисунок 11). В этой схеме активный прибор включен в диагональ «+{\displaystyle +}» — «−{\displaystyle -}» моста, а нагрузка, мост и источник переменного напряжения включены последовательно. Напряжение на управляющем приборе не изменяет полярность на обоих периодах переменного напряжения.

    В диагональ моста «+{\displaystyle +}» — «−{\displaystyle -}» может быть включён любой другой двухполюсник с нелинейной вольт-амперной характеристикой (ВАХ). При этом двухполюсник, образованный между выводами моста «∼{\displaystyle \sim }» будет иметь симметричную ВАХ. Например, при таком включении одноанодного несимметричного стабилитрона образуется электрический аналог симметричного двуханодного стабилитрона, преимущество такого решения по сравнению с обычным двуханодным стабилитроном — высокое равенство напряжения стабилизации на разнополярных ветвях ВАХ и малая паразитная емкость, определяемая в основном собственной ёмкостью запертых диодов моста, такие схемы иногда применяются для стабилизации амплитуды и формы напряжения в генераторах синусоидального напряжения с мостом Вина[16].

    Также быстродействующие диодные мосты применяются в ключевых схемах, например, в устройствах выборки-хранения, например в стробоскопических осциллографах. В этой схеме источником постоянного напряжения, включённого в диагональ моста «+{\displaystyle +}» и «−{\displaystyle -}» диоды моста при отсутствии стробирующего импульса заперты, строб-импульс открывает все 4 диода моста, подаваемый на выводы «+{\displaystyle +}» и «−{\displaystyle -}», подключает источник сигнала, включённый к одному из выводов «∼{\displaystyle \sim }», к запоминающему конденсатору схемы выборки-хранения, который подключен к другому выводу «∼{\displaystyle \sim }» моста. В силу принципа транслинейности такое применение линеаризует передаточную характеристику ключевой схемы.

    Конструкция

    Внешний вид некоторых однокорпусных мостов

    Мосты могут быть собраны из отдельных дискретных диодов и могут быть выполнены в виде однокорпусного изделия (диодные сборки).

    Промышленностью выпускается очень широкая номенклатура диодных мостов на разные предельно-допустимые напряжения и токи, в разнообразных корпусах для навесного монтажа и поверхностного монтажа на печатные платы с осевыми и планарными выводами.

    Однокорпусное исполнение при обычном применении предпочтительнее — дешевле, меньше по объёму. Диоды в высоковольтных сборках в ней подобраны изготовителем и имеют близкие предельно-допустимые параметры и значение обратного тока и при работе находятся в практически одинаковом тепловом режиме. Кроме того, однокорпусную сборку проще монтировать в устройства.

    Недостаток однокорпусного исполнения — при отказе одного из диодов в сборке приходится заменять весь компонент, в мостах из дискретных диодов заменяется только отказавший диод.

    При выпрямлении больших токов диоды выделяют много тепла, поэтому в этом случае могут применяться дискретные диоды средней или большой мощности, устанавливаемые на теплоотвод. Также конструкции некоторых мощных диодных сборок предусматривают их установку на теплоотвод.

    Маркировка

    В СССР и России
    Первая группа — буква или цифра указывает полупроводниковый материал:
    1 или Г — германий или его соединения;
    2 или К — кремний или его соединения;
    3 или А — соединения галлия;
    4 или И — соединения индия.
    Вторая группа — буква
    Ц — диодный мост.
    Третья группа:
    2, 3 или 4 цифры — порядковый номер разработки данного типа моста.
    Четвёртая группа — дополнительная буква, конкретизирующая параметры, обычно предельное рабочее напряжение.
    Примеры: КЦ407, КЦ405.
    Маркировки зарубежных изготовителей

    Стандартной маркировки диодных мостов у зарубежных изготовителей не существует, каждый производитель самостоятельно присваивает наименования своим приборам. Например, первые буквы в маркировке разных изготовителей могут быть DB, W, KBPC, MB, RC, QL и другие с добавление букв или цифр[17].

    См. также

    • Выпрямитель
    • Блок питания

    Ссылки

    • Выпрямительные диоды, диодные мосты и области их применения Архивная копия от 4 июля 2013 на Wayback Machine
    • Справочник по диодным мостам Архивная копия от 24 августа 2007 на Wayback Machine
    • Маркировка и обозначение радиоэлементов (Справочник) В.  В. Мукосеев, И. Н. Сидоров, 2001 г. Архивная копия от 19 июня 2008 на Wayback Machine

    Примечания

    1. ↑ http://docs.cntd.ru/document/1200006618 Архивная копия от 21 июля 2020 на Wayback Machine ГОСТ 2.730-73 Единая система конструкторской документации. Обозначения условные графические в схемах. Приборы полупроводниковые.
    2. Однополупериодным выпрямителем называется схема выпрямления только одного полупериода входного переменного напряжения. В однофазной цепи это схема с одним диодом, в трёхфазной цепи типа «звезда» — это схема с тремя диодами, каждый из которых включён в одну из трёх фаз.
    3. Хоровиц П., Хилл У. Искусство схемотехники: В 2-х томах = The Art of Electronics: Second Edition (© Cambridge University Press, 1980) / Пер. с англ. под ред. М. В. Гальперина, редакторы: Н. В. Серегина, Ю. Л. Евдокимова. — М.: Мир, 1983. — т. 1: 568 с., т. 2: 590 с. — 50 000 экз.
    4. ↑ Исключение составляют сильноточные низковольтные выпрямители, которые для повышения КПД обычно строятся по схеме с питанием от трансформатора от обмотки со средней точкой.
    5. ↑ British patent 24398 Архивная копия от 12 марта 2020 на Wayback Machine.
    6. ↑ (Graetz, 1897), p. 327 footnote. (неопр.). Дата обращения: 30 октября 2020. Архивировано 8 марта 2021 года.
    7. (Editorial staff) (24 June 1897). “Ein neues Gleichrichter-Verfahren” [A new method of rectification]. Elektrotechnische Zeitschrift [нем.]. 18 (25): 359 and footnote. Архивировано из оригинала 2021-03-08. Дата обращения 2020-10-30. Используется устаревший параметр |deadlink= (справка)
    8. Graetz, L. (1 May 1897). “Electrochemisches Verfahren, um Wechselströme in Gleichströme zu verwandeln” [Electrochemical method of changing alternating into direct currents]. Sitzungsberichte der Mathematisch-Physikalischen Classe der Königlich Bayerischen Akademie der Wissenschaften zu München (Transactions of the Mathematical-Physical Classes of the Royal Bavarian Academy of Sciences in Munich) [нем. ]. 27: 223—228.
    9. Graetz, L. (1897). “Electrochemisches Verfahren, um Wechselströme in Gleichströme zu verwandeln” [Electrochemical method of changing alternating into direct currents]. Annalen der Physik und Chemie. 3rd series [нем.]. 62: 323—327. Архивировано из оригинала 2021-03-08. Дата обращения 2020-10-30. Используется устаревший параметр |deadlink= (справка)
    10. Graetz, Leo (22 July 1897). “Electrochemisches Verfahren, um Wechselströme in Gleichströme zu verwandeln” [Electrochemical method of changing alternating into direct currents]. Elektrotechnische Zeitschrift [нем.]. 18 (29): 423—424. Архивировано из оригинала 2021-03-09. Дата обращения 2020-10-30. Используется устаревший параметр |deadlink= (справка)
    11. ↑ Strzelecki, R. Power Electronics in Smart Electrical Energy Networks Архивная копия от 30 мая 2019 на Wayback Machine. Springer, 2008, p. 57.
    12. ↑ Graetz Flow Control Circuit (неопр. ). Архивировано 4 ноября 2013 года.
    13. Шустов М. А. История электричества. — М., Берлин: Директ-Медиа, 2019. — 568 с. — ISBN 978-5-4475-9841-9.
    14. ↑ Bridge Rectifier Circuit — Electronics Basics (неопр.). The Geek Pub. Дата обращения: 3 сентября 2019. Архивировано 27 ноября 2020 года.
    15. 1 2 3 4 Источники электропитания на полупроводниковых приборах. Проектирование и расчет. / Под ред. Додика С. Д. и Гальперина Е. И.. — М.: Советское радио, 1969. — 448 с. — 55 000 экз. экз.
    16. Алексенко А. Г., Коломбет Е А., Стародуб Г. И. . — М.: Радио и связь, 1981. — 224 с.
    17. ↑ Диодные мосты импортные (неопр.).

    В статье не хватает ссылок на источники (см. также рекомендации по поиску).

    Информация должна быть проверяема, иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок. (27 января 2013)

    • Медиафайлы на Викискладе

    принцип работы и преимущества устройства, где используется, как собрать своими руками

    Содержание

    • Особенность выпрямителей
    • Принцип действия полупроводникового диода
    • Изготовление сварочного аппарата
    • Особенности видов напряжения
    • Как сделать выпрямитель своими руками?
    • Устройство и принцип работы
    • Назначение и практическое использование
    • История изобретения
    • Немного теории об аккумуляторах
    • Трансформаторы (с выпрямителем или без него)
    • Физические процессы
    • Как спаять и подключить

    Особенность выпрямителей

    Выпрямитель для сварочного аппарата выполняется по мостовой схеме. При изготовлении и применении диодов В200 нужно учитывать, что их корпус находится под напряжением.

    Поэтому когда выпрямитель устанавливают на радиатор, он должен быть изолирован от остальных элементов схемы, от корпуса прибора и от соседних диодов тоже. А это создает определенные неудобства для сварщика.

    Приходится использовать более крупный корпус. Для уменьшения габаритов аппарата применяют выпрямительный прибор ВЛ200, который имеет другую полярность. Это позволяет объединить полупроводники на два парных радиатора.

    В последние годы стали выпускать довольно мощные диодные мосты в одном корпусе. По размерам такая конструкция из диодов примерно соответствует спичечному коробку, имеет площадку для посадки радиатора, максимальный прямой ток 30-50 А. Диодная сборка имеет значительно меньшую стоимость по сравнению с диодами В200.

    Если по работе устройства требуется более мощный мост, то эту проблему можно легко решить, используя параллельное подключение мостовых сборок. Однако их надежность в таком случае будет ниже, чем у одиночных мощных диодов.

    Принцип действия полупроводникового диода


    Рис. 1

    Название описываемого устройства ясно указывает, что эта конструкция состоит из диодов – полупроводниковых приборов, хорошо проводящих электричество в одном направлении и практически не проводящих его в противоположную сторону. Изображение этого прибора (VD1) на принципиальных схемах приведено на рис. 2в. Когда ток по нему течет в прямом направлении – от анода (слева) к катоду (справа), сопротивление его мало. При изменении направления тока на противоположное сопротивление диода многократно возрастает. В этом случае через него течет мало отличающийся от нуля обратный ток.

    Поэтому при подаче на цепочку, содержащую диод, переменного напряжения Uвх (левый график), электричество через нагрузку течет только в течение положительных полупериодов, когда к аноду приложено положительное напряжение. Отрицательные полупериоды «срезаются», и ток в сопротивлении нагрузки в это время практически отсутствует.

    Строго говоря, выходное напряжение Uвых (правый график) является не постоянным, хотя и течет в одном направлении, а пульсирующим. Нетрудно понять, что количество его импульсов (пульсаций) за одну секунду равно 50. Это не всегда допустимо, но пульсации можно сгладить, если подсоединить параллельно нагрузке конденсатор, имеющий достаточно большую емкость. Заряжаясь во время импульсов напряжения, в промежутках между ними конденсатор разряжается на сопротивление нагрузки. Пульсации сглаживаются, а напряжение становится близким к постоянному.

    Изготовленный в соответствии в этой схемой выпрямитель называется однополупериодным, поскольку в нем используется лишь один полупериод выпрямленного напряжения. Наиболее существенные недостатки такого выпрямителя следующие:

    • повышенная степень пульсаций выпрямленного напряжения;
    • низкий КПД;
    • большой вес трансформатора и его нерациональное использование.

    Поэтому применяются такие схемы только для питания устройств малой мощности. Для исправления этой нежелательной ситуации разработаны двухполупериодные выпрямители, которые превращают отрицательные полуволны в положительные. Сделать это можно по-разному, но самый простой способ – использование диодного моста.

    Изготовление сварочного аппарата

    На сегодняшний день практически невозможно и довольно-таки трудно сварить металл или обработать его надлежащим способом, не применяя сварочное оборудование. После того, как вы сделаете сварочный аппарат своими руками, вы сможете выполнять любые работы с металлическими изделиями.

    Схема трансформатора с отдельным дросселем.

    Чтобы изготовить качественный агрегат необходимо обладать знаниями и навыками, которые помогут понять схему сварочного аппарата постоянного тока или переменного, что является двумя вариантами сборки оборудования.

    С целью домашнего использования лучше всего узнать, как сделать мини сварку.

    Удобнее вызвать мастера или приобрести уже готовый агрегат, однако иногда это бывает слишком затратно, поскольку на выбор модели по различным параметрам, таким как масса для сварочного аппарата, количество вольтов на сварочный аппарат определить достаточно трудно.

    Существует несколько типов сварочных аппаратов: работающих на переменном токе, постоянном, имеющие три фазы либо инверторные. Чтобы выбрать один из вариантов и начать сборку необходимо, рассмотреть каждую схему первых 2-х типов

    Во время подготовительного процесса необходимо обратить внимание на стабилизатор напряжения

    На переменном токе

    Чтобы изготовить самодельные сварочные аппараты необходимо подобрать показатель напряжения, самое лучшее это 60 вольт, ток лучше всего регулировать от 120 до 160 ампер.

    Можно самостоятельно определить значение сечения необходимого провода для изготовления первичной обмотки трансформатора, который должен подсоединяться к сети в 220 вольт.

    Сечение по параметрам площади не должно быть больше 7 мм2, поскольку к вниманию стоит отметить возможный перепад напряжения и возможной дополнительной нагрузки.

    Исходя из вычислений, оптимальным размером диаметра жилы из меди под первичную обмотку, который уменьшает действие механизма, является 3 миллиметра. При выборе алюминия для провода, сечение умножается на значение 1,6.

    При отсутствии необходимого провода, есть возможность заменить его жилой немного тоньше, приматывая её парно. Однако необходимо помнить, что обмотка толщина увеличится, из-за чего размеры сварочного оборудования будут большими. Под вторичную обмотку применяют большой толщины провод с большим количеством жил из меди.

    На постоянном токе

    Электрическая схема сварочника на постоянном токе.

    Некоторые сварочные аппараты работают при помощи постоянного тока. Благодаря такому агрегату можно сваривать чугунные изделия и конструкции из нержавеющей стали.

    Чтобы создать своими руками сварочный аппарат постоянного тока может потребоваться не больше получаса. С целью преобразования самоделки с переменным током, нужно, чтоб вторичная обмотка была подключена с выпрямителем, который собирается на диоде.

    В свою очередь, диод должен выдерживать ток с 200 ампер и обладать хорошим охлаждением. Чтобы подровнять значение тока можно воспользоваться конденсаторами, имеющие определенные характеристики и особенности напряжения. После этого агрегат собирается последовательно по схеме.

    Дроссели используют в регулировке тока, а контакты, чтоб присоединить держатель. Дополнительные детали используются в передаче тока от внешнего носителя на место сваривания.

    Особенности видов напряжения

    Возникает закономерный вопрос о том, зачем в розетках используется переменный ток, если подавляющее большинство электронной аппаратуры питается постоянным током. Дело в том, что для питания узлов той или иной аппаратуры требуются напряжения разной величины. Процессор компьютера, например, питается 3 В, а мобильный телефон требует для своей зарядки целых 5 В. Усилителю музыкального центра нужно уже около 25 В.

    Постоянное напряжение достаточно сложно трансформировать из одной величины в другую, а вот переменное — запросто. Для этого служат, к примеру, трансформаторы. Некоторые важные силовые узлы, такие как двигатели, все же нуждаются в переменном напряжении. Поэтому промышленные генераторы, питающие бытовые розетки, вырабатывают его до общепринятой величины (например, 220 В), а каждый прибор уже на месте получает из него то, что ему требуется.

    Как сделать выпрямитель своими руками?

    Если в наличии мастера имеются комплектующие детали, вполне реально изготовить самодельный сварочный выпрямитель. При условии соблюдения всех рекомендаций специалистов он гарантировано обеспечит процесс ручной дуговой сварки постоянным током, но потребуется применить электрод с обмазкой.

    Использовать проволоку без обмазки также допустимо, но только при условии большого опыта в сварных вопросах. Для неопытного сварщика справиться с ней будет практически нереально.

    Диодный мост для сварочного аппарата.

    Обмазка при расплавлении электрода препятствует проникновению составляющих воздуха в расплавленный металл сварного соединения. Без нее контакт металла в расплавленном виде с азотом и кислородом снизят прочностные свойства шва, сделав его хрупким и пористым.

    Сначала потребуется выбрать или смотать своими руками понижающий трансформатор с требуемыми параметрами. Собирают трансформатор до подключения диодного моста.

    Если выбран путь самостоятельного изготовления аппарата, важно правильно рассчитать его элементы, в том числе:

    • параметры магнитопровода;
    • актуальное количество витков;
    • размеры сечения шин, проводов.

    В работе не обойтись без светодиодов: нужны они в качестве проводников тока в одном единственном направлении. Простейший диодный выпрямитель, созданный по мостиковой схеме, монтируют на радиатор с целью теплообмена и охлаждения.

    Мощные диоды для сварочного аппарата, по типу ВД-200, выделяют при работе довольно большой объем тепловой энергии. Чтобы обеспечить падающую характеристику тока, в цепь потребуется включить дроссель последовательно.

    Активное переменное сопротивление в такой схеме обеспечит сварщику возможность плавно регулировать сварочный ток. Далее, один полюс нужно подключить к сварной проволоке, а второй ‒ к рабочему объекту.

    Электролитический конденсатор в составе схемы необходим в качестве сглаживающего фильтра для снижения пульсаций.

    Выполнить намотку реостата несложно своими силами, но для такой задачи потребуется керамический сердечник и проволока из никелина или нихрома. Актуальный диаметр проволоки определит величина регулируемого тока сварной операции.

    Расчет сопротивления реостата нужно проводиться учетом удельного сопротивления электрода, его сечения и общей длины.

    Электрическая схема сварки с диодным мостом.

    Шаг регулировки тока для сварки зависит от диаметра витков. Если правильно собрать перечисленные детали в единый агрегат, процесс сварки будет сопровождаться постоянным током. Не лишним будет и монтаж резистора, препятствующего короткому замыканию при работе.

    Оно может происходить при касании проволоки о металл без зажигания дуги. Если в это время на конденсаторе нет сопротивления, он мгновенно разрядится, произойдет щелчок, электрод разрушится или прилипнет к металлу.

    При наличии резистора можно сгладить разряды на конденсаторе, сделать поджога электрода более простым и мягким. Изготовление аппарата для выпрямления сварного тока своими руками позволит создавать максимально аккуратные и долговечные сварные швы.

    Устройство и принцип работы

    Диодный мост представляет собой электронную схему, собранную на основе выпрямительных диодов, который предназначен для преобразования подаваемого на него переменного тока в постоянный. Чаще всего в состав схемы включаются диоды Шоттки, но это не категоричное требование, поэтому в каком-либо конкретном случае может заменяться и другими моделями, подходящими по техническим параметрам. Схема моста из полупроводниковых диодов включает в себя четыре элемента для одной фазы. Диодный мостик может набираться как отдельными диодами, так и собираться единым блоком, в виде монолитного четырехполюсника.

    Принцип работы диодного моста основывается на способности p – n перехода пропускать электрический ток только в одном направлении. Схема включения диодов в мост построена таким образом, чтобы для каждой полуволны создавался свой путь протекания электрического тока к подключенной нагрузке.

    Рис. 1. Принцип работы диодного моста

    Для пояснения выпрямления диодным мостом необходимо рассматривать работу схемы относительно формы напряжения на входе. Следует отметить, что кривая напряжения за один период имеет две полуволны – положительную и отрицательную. В свою очередь, каждая полуволна имеет процесс нарастания и убывания по отношению к максимальной точке амплитуды.

    Поэтому работа выпрямительного устройства будет иметь такие этапы:

    • На вход выпрямительного моста, обозначенного буквами А и Б подается переменное напряжение 220В.
    • Каждая полуволна, подаваемая из электрической сети или от обмоток трансформатора, преобразуется в постоянную величину парой диодов, расположенных по диагонали.
    • Положительная полуволна будет проводиться парой диодов VD1 и VD4 и выдавать на выход моста полуволну в положительной области оси ординат.
    • Отрицательная полуволна будет выпрямляться парой диодов VD2 и VD3, с которых на том же выходе моста возникнет очередная полуволна в положительной области.

    В связи с тем, что оба полупериода получают реализацию на выходе диодного моста, такое электронное устройство получило название двухполупериодного выпрямителя, также его называют схемой Гретца.

    Обозначение на схеме и маркировка

    На электрической схеме диодный мост может иметь различные варианты изображения. Чаще всего вы можете встретить такие обозначения:

    Рис. 2. Обозначение на схеме

    Первый вариант обозначения мостового выпрямителя используется, как правило, в тех ситуациях, когда электронный прибор представляет собой монолитную конструкцию, единую сборку. На схеме маркировка выполняется латинскими буквами VD, за которыми указывается порядковый номер.

    Второй вариант наиболее распространен  для тех ситуаций, когда диодный мост состоит из отдельных полупроводниковых устройств, собранных в одну схему. Маркировка второго варианта, чаще всего, выполняется в виде ряда VD1 – VD4.

    Следует также отметить, что вышеприведенное схематическое обозначение и маркировка хоть и имеет общепринятый характер, но может нарушаться при составлении схем.

    Разновидности диодных мостов

    В зависимости от количества фаз, которые подключаются к диодному мосту, различают однофазные и трехфазные модели. Первый вариант мы детально рассмотрели на примере схемы Гретца выше.

    Трехфазные выпрямители, в свою очередь, разделяются на шести- и двенадцатипульсовые модели, хотя схема диодного моста у них идентична. Рассмотрим более детально работу диодного устройства для трехфазной схемы.

    Рис. 3. Схема трехфазного диодного моста

    Диодный мост, приведенный на рисунке выше, получил название схемы Ларионова. Конструктивно для каждой из фаз устанавливается сразу два диода в противоположном направлении друг относительно друга

    Здесь важно отметить, что синусоида во всех трех фазах имеет смещение в 120° друг относительно друга, поэтому на выходах устройства при наложении результирующей диаграммы получится следующая картина:

    Рис. 4. Напряжение выпрямленное трехфазным мостом

    Как видите, в сравнении с однофазным выпрямителем на базе диодного моста картина получается более плавной, а скачки напряжения имеют значительно меньшую амплитуду.

    Назначение и практическое использование

    Область использования моста, набранного из диодов, довольно широка. Это могут быть блоки питания и узлы управления. Он стоит во всех устройствах, питающихся от промышленной сети 220 вольт. Например, телевизоры, приёмники, зарядки, посудомоечные машины, светодиодные лампы.

    Не обходятся без него и автомобили. После запуска двигателя начинает работать генератор, вырабатывающий переменный ток. Так как бортовая сеть вся питается от постоянного напряжения, ставится выпрямительный мост, через который происходит подача выпрямленного напряжения. Этим же постоянным сигналом происходит и подзарядка аккумуляторной батареи.

    Выпрямительное устройство используется для работы сварочного аппарата. Правда, для него применяются мощные устройства, способные выдерживать ток более 200 ампер. Использование в устройствах диодной сборки даёт ряд преимуществ по сравнению с простым диодом. Такое выпрямление позволяет:

    • увеличить частоту пульсаций, которую затем просто сгладить, используя электролитический конденсатор;
    • при совместной работе с трансформатором избавиться от тока подмагничивания, что даёт возможность эффективнее использовать габаритную мощность преобразователя;
    • пропустить большую мощность с меньшим нагревом, тем самым увеличивая коэффициент полезного действия.

    Но также стоит отметить и недостаток, из-за которого в некоторых случаях мост не используют. Прежде всего, это двойное падение напряжения, что особенно чувствительно в низковольтных схемах. А также при перегорании части диодов устройство начинает работать в однополупериодном режиме, из-за чего в схему проникают паразитные гармоники, способные вывести из строя чувствительные радиоэлементы.

    Блок питания

    Ни один современный блок питания не обходится без выпрямительного устройства. Качественные источники изготавливаются с использованием мостовых выпрямителей. Классическая схема состоит всего из трёх частей:

    1. Понижающий трансформатор.
    2. Выпрямительный мост.
    3. Фильтр.

    Синусоидальный сигнал с амплитудой 220 вольт подаётся на первичную обмотку трансформатора. Из-за явления электромагнитной индукции во вторичной его обмотке наводится электродвижущая сила, начинает течь ток. В зависимости от вида трансформатора величина напряжения за счёт коэффициента трансформации снижается на определённое значение.

    Между выводами вторичной обмотки возникает переменный сигнал с пониженной амплитудой. В соответствии со схемой подключения диодного моста это напряжение подаётся на его вход. Проходя через диодную сборку, переменный сигнал преобразуется в пульсирующий.

    Такая форма часто считается неприемлемой, например, для звукотехнической аппаратуры или источников освещения. Поэтому для сглаживания используется конденсатор, подключённый параллельно выходу выпрямителя.

    Трёхфазный выпрямитель

    На производствах и в местах, где используется трёхфазная сеть, применяют трёхфазный выпрямитель. Состоит он из шести диодов, по одной паре на каждую фазу. Использование такого рода устройства позволяет получить большее значение тока с малой пульсацией. А это, в свою очередь, снижает требования к выходному фильтру.

    Наиболее популярными вариантами включения трёхфазных выпрямителей являются схемы Миткевича и Ларионова. При этом одновременно могут использоваться не только шесть диодов, но и 12 или даже 24. Трёхфазные мосты используются в тепловозах, электротранспорте, на буровых вышках, в промышленных установках очистки газов и воды.

    История изобретения

    В 1873 году английский учёный Фредерик Гутри разработал принцип работы вакуумных ламповых диодов с прямым накалом. Уже через год в Германии физик Карл Фердинанд Браун предположил похожие свойства в твердотельных материалах и изобрел точечный выпрямитель.

    В начале 1904 года Джон Флеминг создал первый полноценный ламповый диод. В качестве материала для его изготовления он использовал оксид меди. Диоды начали широко использоваться в радиочастотных детекторах. Изучение полупроводников привело к тому, что в 1906 году Гринлиф Виттер Пиккард изобрел кристаллический детектор.

    В середине 30-х годов XX века основные исследования физиков были направлены на изучение явлений, проходящих на границе контакта металл-полупроводник. Их результатом стало получение слитка кремния, обладающего двумя типами проводимости. Изучая его, в 1939 году американский учёный Рассел Ол открыл явление, названное позже p-n переходом. Он установил, что в зависимости от примесей, существующих на границе соприкосновения двух полупроводников, изменяется приводимость. В начале 50-х годов инженеры компании Bell Telephone Labs разработали плоскостные диоды, а уже через пять лет в СССР появились диоды на основе германия с переходом менее 3 см.

    Немного теории об аккумуляторах

    Любой аккумулятор (АКБ) — накопитель электрической энергии. При подаче на него напряжения энергия накапливается, благодаря химическим изменениям внутри батареи. При подключении потребителя происходит противоположный процесс: обратное химическое изменение создаёт напряжение на клеммах устройства, через нагрузку течёт ток. Таким образом, чтобы получить от батареи напряжение, его сначала нужно «положить», т. е. зарядить аккумулятор.

    Практически любой автомобиль имеет собственный генератор, который при запущенном двигателе обеспечивает электроснабжение бортового оборудования и заряжает аккумулятор, пополняя энергию, потраченную на пуск мотора. Но в некоторых случаях (частый или тяжёлый запуск двигателя, короткие поездки и пр.) энергия аккумулятора не успевает восстанавливаться, батарея постепенно разряжается. Выход из создавшегося положения один — зарядка внешним зарядным устройством.

    Как узнать состояние батареи

    Чтобы принимать решение о необходимости зарядки, нужно определить, в каком состоянии находится АКБ. Самый простой вариант — «крутит/не крутит» — в то же время является и неудачным. Если батарея «не крутит», к примеру, утром в гараже, то вы вообще никуда не поедете. Состояние «не крутит» является критическим, а последствия для аккумулятора могут быть печальными.

    Оптимальный и надёжный метод проверки состояния аккумуляторной батареи — измерение напряжения на ней обычным тестером. При температуре воздуха около 20 градусов зависимость степени зарядки от напряжения на клеммах отключённой от нагрузки (!) батареи следующая:

    • 12.6…12.7 В — полностью заряжена;
    • 12.3…12.4 В — 75%;
    • 12.0…12.1 В — 50%;
    • 11.8…11.9 В — 25%;
    • 11.6…11.7 В — разряжена;
    • ниже 11.6 В — глубокий разряд.

    Нужно отметить, что напряжение 10.6 вольт — критическое. Если оно опустится ниже, то «автомобильная батарейка» (особенно необслуживаемая) выйдет из строя.

    Правильная зарядка

    Существует два метода зарядки автомобильной батареи — постоянным напряжением и постоянным током. У каждого свои особенности и недостатки:

    • Зарядка постоянным напряжением — годится для восстановления заряда не полностью разряженных батарей, напряжение на клеммах которых не ниже 12.3 В. Процесс заключается в следующем: к клеммам батареи подключают источник постоянного тока напряжением 14.2–14.7 В. Окончание процесса контролируют по току потребления: когда он упадёт до нуля, зарядка считается оконченной. Недостаток такого способа — возможно большой начальный зарядный ток; чем сильнее батарея разряжена, тем выше ток. Преимущества метода очевидны — вам не нужно постоянно регулировать ток зарядки, аккумулятору не грозит перезарядка, если вы про него забудете.
    • Зарядка постоянным током — самый распространённый и надёжный способ. В этом режиме ЗУ выдаёт постоянный ток, равный 1/10 ёмкости батареи. Окончание процесса зарядки определяется по напряжению на батарее — когда оно достигнет 14.7 В, заряжать батарею прекращают. Недостаток такого метода — батарею можно испортить, не сняв вовремя с зарядки.

    Трансформаторы (с выпрямителем или без него)

    Сердце трансформатора — сердечник. Он набирается из пластин трансформаторной стали, изготовить которые вручную довольно проблематично. Правдами и неправдами исходный материал добывается на заводах, в строительных бригадах, на пунктах сбора металлолома. Полученная конструкция (как правило, в виде прямоугольника) должна иметь сечение не меньше, чем 55 см². Это довольно тяжелая конструкция, особенно после укладки обмоток.

    При сборке обязательно надо предусмотреть регулировочный винт, с помощью которого можно двигать вторичную обмотку относительно неподвижной первички.

    Чтобы не вдаваться в сложности расчетов сечения проводов, возьмем типовые параметры:

    • сила тока на вторичке 100–150 А;
    • напряжение холостого хода 60–65 вольт;
    • рабочее напряжение при сварке 18–25 вольт;
    • сила тока на первичной обмотке до 25 А.

    Исходя из этого, сечение провода первички должно быть не менее 5 мм², если делать с запасом — можно взять провод 6–7 мм². Изоляция должна быть жаростойкой, из материала, не поддерживающего горение.

    Вторичная обмотка набирается из провода (а лучше медной шины), сечением 30 мм². Изоляция тряпичная. Пусть толщина вас не пугает, количество витков на вторичке небольшое.

    Количество витков первичной обмотки определяется по коэффициенту 0.9–1 виток на вольт (для наших параметров).

    Формула выглядит так:

    W(количество витков) = U(напряжение) / коэффициент.

    То есть, при напряжении в сети 200–210 вольт, это будет порядка 230–250 витков.

    Соответственно, при напряжении вторички 60–65 вольт, количество ее витков составит 67–70.

    С технической точки зрения трансформатор готов. Для удобства использования рекомендуется выполнить небольшой запас по вторичной обмотке, с несколькими ответвлениями (на 65, 70, 80 витках). Это позволит уверенно работать в местах с пониженным напряжением сети.

    Прятать агрегат в корпус, или оставлять открытым — это вопрос безопасности использования. Типовой изготовленный сварочный трансформатор своими руками выглядит так:

    Оптимальный материал для корпуса — текстолит 10–15 мм.

    Добавляем выпрямитель

    Самодельный мощный сварочный трансформатор с точки зрения схемотехники — обычный блок питания. Соответственно выпрямитель устроен так же просто, как в сетевом заряднике для мобильного телефона. Только элементная база будет выглядеть на несколько порядков массивнее.

    Как правило, в простую схему из диодного моста добавляют пару конденсаторов, гасящих импульсы выпрямленного тока.

    Можно собрать выпрямитель и без них, но чем ровнее ток, тем качественней получается сварочный шов. Для сборки собственно моста применяются мощные диоды типа Д161–250(320). Поскольку при нагрузке на элементах выделяется много тепла, его нужно рассеивать с помощью радиаторов. Диоды крепятся к ним с помощью болтового соединения и термопасты.

    Разумеется, ребра радиаторов должны либо обдуваться вентилятором, либо выступать над корпусом. Иначе вместо охлаждения они будут греть трансформатор.

    Мини сварочный трансформатор

    Если вам не нужно варить рельсы или швеллера из стали 4–5 мм, можно собрать компактный сварочник для спайки стальной проволоки (изготовление каркасов для самоделок) или сварки тонкой жести. Для этого можно взять готовый трансформатор от мощного бытового прибора (идеальный вариант — микроволновка), и перемотать вторичную обмотку. Сечение провода 15–20 мм², потребляемая мощность не более 2–3 кВт.

    Расчет схемы производится также, как и для более мощных агрегатов. При сборке выпрямителя можно использовать менее мощные диоды.

    Микросварочник

    Если сфера применения ограничена спайкой медных проводов (например, при монтаже распределительных коробок), можно ограничиться конструкцией размером с пару спичечных коробков.

    Выполняется на транзисторе КТ835 (837). Трансформатор изготавливается самостоятельно. Фактически — это высокочастотный повышающий преобразователь.

    Трансформатор мотаем на ферритовом стержне. Две первичные обмотки: коллекторная (20 витком 1 мм), базовая (5 витков 0.5 мм). Вторичная (повышающая) обмотка — 500 витков 0.15 проволоки.

    Собираем схему, припаиваем по схеме резисторную обвязку (чтобы трансформатор не перегревался на холостом ходу), аппарат готов. Питание от 12 до 24 вольт, с помощью такого аппарата можно сваривать жгуты проводов, резать тонкую сталь, соединять металлы толщиной до 1 мм.

    В качестве сварочных электродов можно использовать толстую швейную иглу.

    Физические процессы

    В основе принципа работы диодного моста лежит способность p-n перехода пропускать ток только в одном направлении. Под p-n переходом понимается контакт двух полупроводников с различным типом проводимости. Граница, разделяющая области, характеризуется шириной запрещённой зоны, препятствующей прохождению зарядов. С одной её стороны находится p область, в которой основными носителями считаются дырки (положительный заряд), а с другой n область, где основные носители электроны (отрицательный заряд).

    Находясь изолированно друг от друга, в каждой области элементарные частички совершают беспорядочные тепловые колебания, из-за чего их выделяемая энергия компенсируется и результирующий ток равен нулю. При соприкосновении этих областей возникают диффузионные токи, вызванные притягиванием зарядов друг к другу. В итоге частички сталкиваются и рекомбинируют (исчезают). В зоне соприкосновения происходит обеднение носителей, и их движение прекращается. Устанавливается состояние динамического равновесия.

    При приложении к p-n переходу электрического поля картина меняется. При прямом смещении, то есть таком, когда положительный полюс источника питания подключается к p области, а отрицательный к n области, происходит введение основных носителей в области. Из-за этого ширина запрещённой зоны уменьшается, и частички свободно начинают проходить через барьер, образуя ток. Если же полярность источника питания изменить, то произойдёт ещё большее обеднение слоёв, в итоге барьер увеличится, и ток не возникнет.

    Таким образом, в зависимости от полярности сигнала, приложенного к переходу, ширина запрещённой зоны увеличивается или уменьшается. Если на элемент, в основе работы которого используется p-n переход подать переменный сигнал, то в результате к нему попеременно будет прикладываться прямое и обратное напряжение. Соответственно, часть сигнала он будет задерживать, а часть пропускать.

    Если же взять измерительный прибор, умеющий показывать форму сигнала (осциллограф), то на выходе радиоэлемента можно будет увидеть импульсы, длительность которых определяется периодом полуволны. Именно поэтому диод и называется выпрямительным, хотя к нему больше подходит название импульсный преобразователь. То есть устройство, преобразующее переменный сигнал в пачку импульсов.

    Вам это будет интересно Расчет сопротивления контура заземления в частных домах

    Как спаять и подключить

    Изучать и знать схемы не сложно, основные трудности возникают, когда новичок решает спаять диодный мост своими руками. Для пайки выпрямителя из 4 советских экземпляров типа кд202 используйте иллюстрацию приведенную ниже.

    Для сборки диодного моста из современных дискретных диодов типа маломощных 1n4007 (и других – все выглядят аналогично и отличаются только размерами) внимательно посмотрите на следующую иллюстрацию.

    Но если вы не собираете его из отдельных деталей, а используете готовый мост, то смотрите ниже, как правильно подключить его в цепь.

    Также новичкам будет интересно посмотреть видео о том, как сделать простейший блок питания на 12В:

    Tags: ip, ампер, анод, батарейка, бра, вид, выбор, генератор, дом, е, емкость, зарядка, измерение, импульсный, как, компьютер, конденсатор, конструкция, контур, кт, лс, магнит, маркировка, монтаж, мощность, напряжение, осциллограф, переменный, подключение, полярность, постоянный, правило, принцип, провод, пуск, р, работа, размер, расчет, резистор, реостат, розетка, ряд, сад, самодельный, свет, светодиод, сеть, сопротивление, стабилизатор, схема, тен, тип, ток, транзистор, трансформатор, трехфазный, ук, установка, фаза, фильтр, электричество, электронный, электроснабжение, эффект

    Цепь трехфазного двухполупериодного выпрямителя (4 цепи)

    24. 04.2022 Инженер ЭЛЕКТРОННЫЙ 0

    В этой статье мы узнаем о схеме трехфазного двухполупериодного неуправляемого выпрямителя (4 цепи): Определите, структуру и принцип каждой схемы трехфазного выпрямителя.

    Содержание

    Что такое трехфазный двухполупериодный выпрямитель?

    Трехфазная двухполупериодная схема неуправляемого выпрямителя представляет собой схему, которая преобразует трехфазное переменное напряжение в постоянное напряжение. В схеме мостового выпрямителя используется шесть диодов. Каждая фаза блока питания подключена к паре диодов, показанных на рисунке ниже.

    Что такое трехфазный двухполупериодный выпрямитель?

    Трехфазный двухполупериодный выпрямитель имеет большое значение в области силовой электроники. Поскольку эта схема создает выходное напряжение с низкими пульсациями, среднее выходное напряжение высокое. Частота выходного напряжения в шесть раз превышает частоту входного напряжения; это означает меньшую емкостную фильтрацию и гораздо более плавное выходное напряжение.

    Предположим, что: мы будем использовать идеальный 3-фазный источник питания. Электропитание 3 фазы амплитудой 380В, частотой 50Гц. Каждая фаза электроснабжения будет сдвинута по фазе на 120 градусов электричества. Уравнение напряжения каждой фазы V1, V2, V3 выглядит следующим образом:

    >>>См. также: Принцип работы 4-х цепей трехфазного однополупериодного выпрямителя

    Схема трехфазного двухполупериодного выпрямителя (4 схемы)

    1. Схема выпрямителя с R нагрузкой1 3 9004

    Трехфазная схема двухполупериодного выпрямителя будет использовать шесть диодов. Каждая фаза питания будет подключаться к средней точке пары диодов. Катоды трех верхних диодов соединены вместе, образуя положительный (+) вывод для нагрузки. А анод трех нижних диодов подключен как отрицательный (-) вывод для нагрузки R.

    Цепь трехфазного двухполупериодного выпрямителя с резистивной нагрузкой

    – Заметим, что: быть Т/6. Выходное напряжение будет линейным напряжением (линия-линия).

    По сравнению с трехфазной схемой однополупериодного выпрямителя цикл выходного напряжения равен T/3. Трехфазная схема двухполупериодного выпрямителя имеет лучшую форму волны выходного напряжения, что снижает емкость фильтрующего конденсатора.

    + Каждый диод будет поочередно проводить около 1/3 цикла. Вышеупомянутый диод будет работать, когда напряжение на его аноде будет самым большим по сравнению с двумя другими диодами. Точно так же диод ниже будет работать, когда напряжение на его катоде будет наименьшим по сравнению с двумя другими диодами.

    Заметим, что: выходной ток непрерывен. Диоды будут работать в порядке шести ступеней: D1+D5, D1+D6, D2+D6, D2+D4, D3+D4, D3+D5. Каждая пара диодов будет проводить только 60 0 цикла (T/6) в любой момент времени.

    – Принцип работы:

    + В начале цикла V3 (напряжение фазы 3) является самым большим, поэтому D3 проводит, а диоды D1 и D2 меняют направление смещения. В то же время V2 наименьший, поэтому D5 проводит, а D3 и D6 смещены в обратном направлении.

    => Ток начнется с фазы 3 через D3, R, D5 и вернется к фазе 2. Напряжение на нагрузке будет Vo = V3 – V2.

    + При 30 электрических градусах значение V1 самое большое, поэтому D1 проводит. V2 самый маленький, поэтому D5 продолжает проводить ток.

    + 60 электрических градусов позже, V1 — самый большой, а V3 — самый маленький, поэтому диоды D1 и D6 проводят ток.

    + 60 электрических градусов позже, V2 — самый большой, а V3 — самый маленький, поэтому диоды D2 и D6 будут проводить. Принцип действия тот же, что и для другой половины цикла.

    – Формула для расчета среднего выходного напряжения

    Среднее выходное напряжение и ток находятся по формуле:

    См. анимационный видеоролик «Как работает трехфазный двухполупериодный выпрямитель»

    2. Схема выпрямителя с нагрузкой RL

    Для схемы выпрямителя с индуктивной нагрузкой. Примем L = 0,1 Гн, R = 50 Ом. Мы моделируем схему выпрямителя в программе Psim и получаем следующую форму волны:

    Схема трехфазного двухполупериодного выпрямителя с нагрузкой RL

    – Принцип работы диоды такие же, как и в схеме выпрямителя с резистивной нагрузкой.

    + Выходной ток имеет небольшие колебания, поскольку характеристики катушки индуктивности не позволяют току через нее резко изменяться. Следовательно, пульсации трехфазного мостового выпрямителя, использующего нагрузку RL, малы.

    3. Схема выпрямителя с нагрузкой RLE

    Схема выпрямителя с элементами нагрузки, включая: R = 50, L = 0,1 и E = 250; электрическая схема выглядит следующим образом:

    Цепь трехфазного двухполупериодного выпрямителя с нагрузкой RLE

    – Принцип работы:

    + Напряжение на нагрузке – это линейное напряжение между двумя фазами источника. Когда линейное напряжение больше E, форма сигнала схемы выпрямителя с нагрузкой RLE не отличается от нагрузки RL.

    + Ток через нагрузку постоянный, а выходной ток имеет небольшие колебания. Средний ток цепи выпрямителя с нагрузкой RLE меньше, чем ток цепи выпрямителя с нагрузкой RL (Io = Vo/R). Среднее значение выходного тока: Io = (Vo – E)/R

    4. Схема трехфазного выпрямителя с фильтрующим конденсатором

    Всем известно, что форма выходного напряжения мостовой схемы трехфазного выпрямителя не является стандартным напряжением постоянного тока. Чтобы сгладить форму выходного сигнала, мы подключим конденсатор параллельно нагрузке. Принципиальная схема и форма сигнала нарисованы, как показано ниже.

    Схема трехфазного двухполупериодного выпрямителя с фильтрующим конденсатором

    – Принцип работы:

    + В первом цикле диоды D3 и D5 будут проводить. Через короткий промежуток времени мы видим, что ток на D3 и D5 большой. За счет тока, проходящего через нагрузку и одновременно заряжающего конденсатор. Конденсатор заряжается до тех пор, пока напряжение на нем не станет равным пиковому значению линейного напряжения (Vd = V3 – V5).

    + При снижении сетевого напряжения конденсатор разряжается через нагрузку. Если напряжение на конденсаторе падает ниже линейного напряжения, диоды смещены в прямом направлении. И снова конденсатор заряжается.

    + Из-за схемы 3-х фазного мостового выпрямителя выходное напряжение имеет небольшую пульсацию. Поэтому мы выберем конденсатор с меньшим значением, чем 3-фазная схема однополупериодного выпрямителя и 1-фазная мостовая схема. Расчет для выбора значения конденсатора очень сложен, поэтому мы проведем моделирование для выбора значения конденсатора.

    => Форма волны выходного напряжения схемы выпрямителя с использованием конденсатора соответствует стандартному напряжению постоянного тока.

    Allied Electronics & Automation, часть RS Group

    Вы видите эту страницу, если страница, которую вы искали, не существует или больше недоступна.

    Пожалуйста, используйте окно поиска выше или ссылки ниже, чтобы завершить свой запрос. Если вам потребуется помощь, свяжитесь с нами или позвоните по бесплатному номеру 1-866-433-5722. Спасибо и приносим извинения за неудобства.

    • Панели выключателей / центры нагрузки
    • Аксессуары для панелей выключателей / центров нагрузки
    • Автоматические выключатели
    • Трансформаторы постоянного напряжения
    • Фильтры
    • Аксессуары для предохранителей
    • Комплекты предохранителей
    • Предохранители
    • Защита GFI
    • Линейные реакторы
    • Стабилизаторы напряжения
    • Контроллер коэффициента мощности
    • Устройства защиты от перенапряжения
    • Специальные соединители
    • Аудио- и видеоразъемы и аксессуары
    • Автоматические разъемы
    • Соединители уровня платы
    • Шинные шины и изделия для заземления
    • Круглые соединители
    • Коаксиальные/РЧ разъемы
    • Разъемы для передачи данных/Ethernet/телекоммуникаций
    • Разъемы D-Sub, контакты и аксессуары
    • Электрические / сетевые разъемы
    • Розетки, вилки и адаптеры для ИС
    • Прямоугольные соединители
    • Пружинные датчики, тестовые соединители и адаптеры
    • Клеммные колодки и планки
    • Клеммы, наконечники и наконечники
    • Датчики для монтажа на плате
    • Конденсаторы
    • Компьютеры
    • Средства разработки и проектирования
    • Дискретные полупроводники
    • Экранирование/подавление электромагнитных/радиочастотных помех
    • Газоразрядные трубки (GDT)
    • Катушки индуктивности
    • Интегральные схемы
    • Оптоэлектроника
    • Пассивные аксессуары и комплекты
    • Модуль ввода питания (PEM)
    • Принадлежности модуля ввода питания
    • Массивы резисторов
    • Сети резисторных делителей
    • Резисторы
    • Продукция РФ
    • Термисторы
    • Переменные резисторы
    • Варисторы (MOV)
    • Видеоразветвители и мультиплексоры
    • Шкаф и стойка
    • Запчасти/аксессуары для шкафов и стоек
    • Принадлежности для электрических шкафов
    • Электрические шкафы
    • Электронный блок
    • Аксессуары для электронных корпусов
    • Системы продувки и повышения давления
    • Корпус кнопки
    • Рельсы структурной системы
    • Полка / каркас для карт
    • Принадлежности для полки/корзины для карт
    • Дорожные и портфели
    • Чистящие средства
    • Продукты ESD
    • Безопасность объекта
    • ОВКВ
    • Смазочные материалы, консистентные смазки и масла
    • Товары для офиса
    • Блок питания
    • Безопасность и СИЗ
    • Оборудование для мастерских и хранение
    • Кондиционеры
    • Воздуходувки
    • Потолочные вентиляторы
    • Вентиляторы для закрытых помещений
    • Охладители/чиллеры
    • Модули охлаждения
    • Настольные вентиляторы
    • Электрические нагреватели
    • Вентиляторы оборудования
    • Аксессуары для вентиляторов и воздуходувок
    • Защита вентилятора
    • Вентиляторы с фильтром
    • Решетки
    • Теплообменники
    • Радиаторы
    • Промышленные вентиляторы
    • Принадлежности для моторизованного рабочего колеса
    • Моторизованные рабочие колеса
    • Полупроводниковые изоляторы, розетки и комплекты
    • Обогреватели и радиаторы
    • Термопрокладки
    • Контакторы и принадлежности
    • Станции управления
    • Контроллеры и аксессуары
    • Разъединители
    • Электрический линейный привод
    • Электронные и механические счетчики
    • Индуктивные ответвители сигналов
    • Защита и безопасность машин
    • Механическая передача мощности
    • Панельные счетчики
    • Розетки
    • Переключатели питания
    • Роботы
    • Формирователи сигналов и преобразователи сигналов
    • Контактные кольца
    • Соленоиды и принадлежности для соленоидов
    • Таймеры
    • Аксессуары для передачи данных
    • Коммутаторы Ethernet
    • Пограничные шлюзы Интернета вещей
    • Медиаконвертеры
    • Преобразователи протоколов
    • Маршрутизаторы
    • Беспроводная связь
    • Аудибл
    • Балласты
    • Аксессуары для маяков
    • Маяки
    • Фонари и рабочие фонари
    • Патроны для ламп
    • Лампы (лампочки)
    • Линзы
    • Осветительные мачты, компоненты и аксессуары
    • Освещение
    • Индикаторы, линзы и оборудование для монтажа на панели
    • Фотоконтроль
    • Оповещения о питании
    • Принадлежности для привода переменного тока
    • Приводы переменного тока
    • Усовершенствованные пускатели двигателей
    • Комбинированные пускатели двигателей
    • Контроллеры двигателей постоянного тока
    • Мотор-редукторы
    • Ручные пускатели двигателей
    • Аксессуары для двигателей
    • Защита двигателя
    • Аксессуары для защиты двигателя
    • Принадлежности для пускателя двигателя
    • Пускатели двигателей
    • Комбинации мотор-привод
    • Двигатели
    • Нагреватели перегрузки
    • Перегрузки
    • Устройства плавного пуска
    • Комплекты и комплекты контроллера
    • Станции данных
    • Аксессуары ЧМИ
    • Дисплеи ЧМИ
    • Модули человеко-машинного интерфейса
    • Промышленные мониторы
    • Промышленные ПК
    • Сбор данных ПК
    • Принадлежности для сбора данных с ПК
    • Принадлежности ПЛК
    • Модули расширения ПЛК
    • ПО для программирования ПЛК
    • Комбинация ПЛК/ЧМИ
    • ПЛК
    • Модули удаленного ввода/вывода
    • Интеллектуальные реле
    • Подготовка/обработка воздуха
    • Воздушные насосы/воздушные компрессоры
    • Принадлежности для фитингов
    • Фитинги
    • Регуляторы расхода / регуляторы скорости
    • Гидравлика
    • Приборы
    • Логические элементы
    • Многоканальные соединители
    • Трубопровод и водопровод
    • Принадлежности для пневматического привода
    • Пневматические приводы
    • Пневматические глушители / Пневматические глушители
    • Насосы и принадлежности для насосов
    • Смотровые стекла
    • Трубки/шланги
    • Вакуум
    • Клапаны
    • Генераторы и генераторы
    • Батареи
    • Преобразователь (блоки питания постоянного тока)
    • Инвертор (блоки питания постоянного и переменного тока)
    • PoE (питание через Ethernet)
    • Блок питания (блоки питания переменного/постоянного тока)
    • Аксессуары для источников питания
    • Солнечное зарядное устройство/инвертор
    • Панель солнечных батарей
    • Объединитель солнечной энергии
    • Трансформаторы
    • ИБП (источник бесперебойного питания)
    • Магазин Ардуино
    • BBC micro:bit Магазин
    • Средства разработки и одноплатные компьютеры
    • Прототип
    • Магазин Raspberry Pi
    • Промышленные оптопары
    • Реле контроля
    • Силовые реле
    • Герконовые реле
    • Аксессуары для реле
    • Релейные модули
    • Сигнальные реле
    • Твердотельные реле
    • Реле задержки времени
    • Акселерометры
    • Датчики качества воздуха
    • Зонды анемометра
    • Считыватели штрих-кода
    • Датчики тока
    • Энкодеры
    • Датчики потока
    • Вилочный датчик/датчик паза
    • Датчики Холла
    • Датчики наклона
    • Световые завесы
    • Световые датчики
    • Линейные преобразователи
    • Датчики уровня жидкости
    • Тензодатчики
    • Датчики магнитного поля
    • Магнитные звукосниматели
    • Фотоэлектрические датчики
    • Датчики давления
    • Датчики приближения
    • Радарные датчики
    • Радиочастотная идентификация (RFID)
    • Аксессуары для датчиков
    • Тензодатчики
    • Датчики температуры
    • Термостаты
    • Датчики крутящего момента
    • Датчики вибрации
    • Датчики технического зрения
    • Датчики напряжения
    • Базовые переключатели мгновенного действия
    • Биометрические переключатели
    • Тросовые выключатели
    • DIP-переключатели
    • Выключатели аварийной остановки
    • Поплавковый выключатель
    • Ножные переключатели
    • Шарнирные переключатели
    • Выключатели блокировки
    • Джойстик-переключатель
    • Выключатели с замком
    • Концевые выключатели
    • Магнитные и герконовые переключатели
    • Программируемые переключатели дисплея
    • Кнопочные переключатели
    • Переключатели с нажимным колесом
    • Кулисные переключатели
    • Поворотные переключатели
    • Селекторные переключатели
    • Ползунковые переключатели
    • Электромагнитные блокировочные выключатели
    • Аксессуары для переключателей
    • Комплекты переключателей
    • Тактильные переключатели
    • Дисковые переключатели
    • Переключатели наклона
    • Тумблеры
    • Сенсорные переключатели
    • Беспроводные коммутаторы
    • Анализаторы
    • Калибраторы
    • Регистрация и сбор данных
    • Электронные нагрузки постоянного тока
    • Коробка Десятилетия
    • Платы расширения
    • Частотомер
    • Инспекционные прицелы
    • метров
    • Осциллографы
    • Блоки питания
    • Генераторы сигналов
    • Аксессуары для испытательного оборудования
    • Тестеры
    • Тепловизоры
    • Термометры
    • Химикаты и клеи
    • Соединительный и обжимной инструмент
    • Инженерные материалы
    • Оборудование
    • Пайка
    • Ленты
    • Принадлежности и детали для инструментов
    • Инструменты
    • Товары без категорий
    • Кабель
    • Кабельные сборки
    • Управление кабелями
    • Маркировка
    • Провод

    3-фазный диодный мост, рассчитанный на 3000 В постоянного тока при 1500 А

    Компания Applied Power Systems (APS) только что построила этот 3-фазный диодный мост для удовлетворения требований к мощному выпрямлению дизельного генератора, используемого в тяговом двигателе. Модель # APE6D7 обеспечивает выходной ток постоянного тока до 1500 А (макс. непрерывный) при напряжении 3300 В постоянного тока. Устройство было усилено, чтобы выдерживать сильные удары и вибрацию. Заказчик интегрирует свой собственный заменяемый на месте блок вентилятора, чтобы обеспечить поток воздуха, соответствующий размерам нашей изолированной рамы, которая направляет поток воздуха равномерно по всем поверхностям радиатора для оптимального управления температурой.

    APS примет участие в выставке LI Power Electronics…

    10.04.2017

    Приглашаются инженеры, менеджеры, студенты и другие специалисты, занимающиеся использованием, проектированием, квалификацией, испытаниями или производством источников питания, преобразователей мощности, управления питанием или накопителей энергии. Представлены все отрасли силовой электроники, включая военную, промышленную, медицинскую, космическую, потребительскую и автомобильную. Мероприятие бесплатное для участников, но необходимо зарегистрироваться заранее. Зарегистрированные посетители получат доступ к выставочному залу, техническим лекциям, бесплатному обеду и сетевому мероприятию с бесплатными закусками. Первые 200 зарегистрированных участников также…

    Приходите к нам на выставку The Battery Show &…

    25.08.2017

    Компания Applied Power Systems примет участие в выставке и конференции The Battery Show. Стенд 2145. 12–14 сентября 2017 г., Нови, штат Мичиган, США. поддержка возобновляемых источников энергии, портативная электроника, медицинские технологии, военные и телекоммуникации. Посетите нас на стенде 2145

    APS присоединяется к крупнейшей делегации на Hannover Messe…

    04.01.2016

    Компания Applied Power Systems, Inc. (APS) сегодня объявила о том, что она является частью крупнейшей за всю историю делегации США на Hannover Messe, крупнейшей в мире выставке промышленных технологий, которая пройдет 25-29 апреля в Ганновере, Германия. Впервые в истории ярмарки Соединенные Штаты будут страной-партнером, статус, который предоставляет более чем 390 предприятиям и организациям в американской делегации беспрецедентную возможность быть заметными на протяжении всего мероприятия. Президент Обама также примет участие в мероприятии этого года на тему «Интегрированные отраслевые решения». АПС будет…

    Battery & Critical Power Expo — APS сделает ставку на…

    09.02.2015

    Компания APS примет участие в выставке The Battery Show, которая будет проходить совместно с выставкой Critical Power Expo в Нови, штат Мичиган, с 15 по 17 сентября на стенде 2144. Перейдите по этим ссылкам, чтобы узнать больше о выставке: http://www.thebatteryshow.com/ http://www.criticalpowerexpo.com/

    APS участвует в выставке IPAC

    05.05.2015

    Компания Applied Power Systems примет участие в Международной конференции по ускорителям частиц. Подробную информацию можно найти по адресу: http://app.core-apps.com/ipac15/exhibitors/12e3b372e2b2f30a437d12c272df69.22. Загрузите это приложение для виртуального тура по конференции: http://m.core-apps.com/ipac15.

    Биполярный источник питания с нулевым кроссовером…

    25.02.2014

    Этот биполярный источник питания с нулевым перекрестным искажением был разработан для управления магнитами позиционирования луча в ускорителях частиц и научных лазерных приложениях. Этот источник питания представляет собой высокоточный линейный усилитель, который подключается к обычному однополярному источнику постоянного напряжения и превращает его в прецизионный биполярный источник питания с нулевыми кроссоверными искажениями. Этот линейный усилитель класса AB рассчитан на 160 А при 25 В и имеет пульсации напряжения менее 5 мВ от пика до пика. При использовании в сочетании с готовым однополярным источником напряжения источник питания обеспечивает прецизионный биполярный выходной сигнал. ..

    3200 Ампер / 850VDC выпрямитель для буровой установки

    18/02/2014

    Промышленный заказчик должен был спроектировать буровую установку, которая будет питаться от 3-х дизельных генераторов. Компания APS поставила (2) трехфазных выпрямителя 100-6758 с воздушным охлаждением, 3200 А, для обеспечения шины 850 В постоянного тока, необходимой для приводов двигателей с ЧРП. Мы также предоставили (2) прерывателя динамического торможения IAP2KD17 для ограничения напряжения на шине постоянного тока во время опускания двигателя лебедки. Выпрямитель и тормозные прерыватели являются стандартными продуктами APS.

    18-импульсный диодный мостовой выпрямитель, рассчитанный на 1100…

    17/09/2013

    Компания Applied Power Systems производит этот 18-импульсный диодный мостовой выпрямитель, который обеспечивает выходную мощность постоянного тока 1100 А для гальваники. Полупроводниковые выпрямители соединены параллельно шинами и установлены на высокопроизводительном экструдированном радиаторе, который охлаждается центробежным вентилятором с двойным входом. Компания APS использовала свои существующие возможности в области усовершенствованного управления температурным режимом, чтобы быстро спроектировать и изготовить эту нестандартную сборку для заказчика.

    Новый высоковольтный выключатель до 18 000 В /…

    17.09.2013

    Компания Applied Power Systems произвела этот высоковольтный твердотельный переключатель, интегрировав стандартные и готовые продукты, в том числе плату драйвера затвора высоковольтного тиристора BAP-1289, полупроводниковую сборку высоковольтного тиристора и высоковольтную зажимную систему, которая минимизирует как электрическое, так и тепловое сопротивление при обеспечение тесного контакта полупроводника с радиатором и шинами для достижения максимальной производительности устройств. Устройство способно коммутировать 10 000 ампер при 18 000 В в импульсном режиме и использовалось в различных приложениях, от импульсных лазеров до запуска плазмы…

    3-фазный диодный мост Рассчитан на 3000 В постоянного тока при 1500. ..

    09.02.2013

    Компания Applied Power Systems (APS) только что построила этот 3-фазный диодный мост для удовлетворения требований к мощному выпрямлению дизельного генератора, используемого в тяговом двигателе. Модель # APE6D7 обеспечивает выходной ток постоянного тока до 1500 А (макс. непрерывный) при напряжении 3300 В постоянного тока. Устройство было усилено, чтобы выдерживать сильные удары и вибрацию. Заказчик интегрирует свой собственный заменяемый на месте блок вентилятора, чтобы обеспечить поток воздуха, соответствующий размерам нашей изолированной рамы, которая направляет поток воздуха равномерно по всем поверхностям радиатора для оптимального управления температурой.

    Трехфазный диодный мост — Мостовые выпрямители

    Артикул № ЕСЛИ(АВ) Пакет ВРРМ ВФМ МСФО

    SD60-08

    60 SD60 800 1,35 1000

    ВС-300MT180C

    300 МТК 1800 1,7 2512

    ВС-300MT160C

    300 МТК 1600 1,7 2512

    ВС-160MT180C

    257 МТК 1800 1,85 1610

    ВС-160MT160C

    257 МТК 1600 1,85 1610

    ВС-130MT180C

    218 МТК 1800 2,05 1330

    ВС-130MT160C

    218 МТК 1600 2,05 1330

    ВС-100МТ160П-П

    100 MTP PressFit 1600 1,51 450

    ВС-70МТ160П-П

    75 MTP PressFit 1600 1,45 398

    ВС-40МТ160П-П

    45 MTP PressFit 1600 1,45 280

    ВС-90МТ80КПБФ

    90 INT-A-Pak (Мост) 800 1,6 810

    ВС-90МТ160КПБФ

    90 INT-A-Pak (Мост) 1600 1,6 810

    ВС-90МТ140КПБФ

    90 INT-A-Pak (мост) 1400 1,6 810

    ВС-90МТ120КПБФ

    90 INT-A-Pak (Мост) 1200 1,6 810

    ВС-90МТ100КПБФ

    90 INT-A-Pak (Мост) 1000 1,6 810

    ВС-70МТ80КПБФ

    70 INT-A-Pak (Мост) 800 1,55 500

    ВС-70МТ160ПБПБФ

    70 МТР 1600 1,45 398

    ВС-70МТ160ПАПБФ

    70 МТР 1600 1,45 398

    ВС-70МТ160КПБФ

    70 INT-A-Pak (Мост) 1600 1,55 500

    ВС-70МТ140КПБФ

    70 INT-A-Pak (Мост) 1400 1,55 500

    ВС-70МТ120КПБФ

    70 INT-A-Pak (Мост) 1200 1,55 500

    ВС-70МТ100КПБФ

    70 INT-A-Pak (Мост) 1000 1,55 500

    ВС-60МТ80КПБФ

    60 INT-A-Pak (Мост) 800 1,75 440

    ВС-60МТ160КПБФ

    60 INT-A-Pak (Мост) 1600 1,75 440

    ВС-60МТ140КПБФ

    60 INT-A-Pak (Мост) 1400 1,75 440

    ВС-60МТ120КПБФ

    60 INT-A-Pak (Мост) 1200 1,75 440

    ВС-60МТ100КПБФ

    60 INT-A-Pak (Мост) 1000 1,75 440

    ВС-40МТ160ПБПБФ

    45 МТР 1600 1,45 280

    ВС-40МТ160ПАПБФ

    45 МТР 1600 1,45 280

    ВС-36МТ80

    35 Д-63 800 1,19 500

    ВС-36МТ60

    35 Д-63 600 1,19 500

    ВС-36МТ40

    35 Д-63 400 1,19 500

    ВС-36МТ20

    35 Д-63 200 1,19 500

    ВС-36МТ160

    35 Д-63 1600 1,19 500

    ВС-36МТ140

    35 Д-63 1400 1,19 500

    ВС-36МТ120

    35 Д-63 1200 1,19 500

    ВС-36МТ100

    35 Д-63 1000 1,19 500

    ВС-36МТ10

    35 Д-63 100 1,19 500

    ВС-26МТ80

    25 Д-63 800 1,26 375

    ВС-26МТ60

    25 Д-63 600 1,26 375

    ВС-26МТ40

    25 Д-63 400 1,26 375

    ВС-26МТ20

    25 Д-63 200 1,26 375

    ВС-26МТ160

    25 Д-63 1600 1,26 375

    ВС-26МТ140

    25 Д-63 1400 1,26 375

    ВС-26МТ120

    25 Д-63 1200 1,26 375

    ВС-26МТ10А

    25 Д-63 100 1,26 375

    ВС-26МТ100

    25 Д-63 1000 1,26 375

    ВС-26МТ10

    25 Д-63 100 1,26 375

    ВС-200МТ40КПБФ

    200 INT-A-Pak (Мост) 400 1,4 1880

    ВС-160МТ80КПБФ

    160 INT-A-Pak (Мост) 800 1,49 1500

    ВС-160МТ160КПБФ

    160 INT-A-Pak (Мост) 1600 1,49 1500

    ВС-160МТ140КПБФ

    160 INT-A-Pak (Мост) 1400 1,49 1500

    ВС-160МТ120КПБФ

    160 INT-A-Pak (Мост) 1200 1,49 1500

    ВС-160МТ100КПБФ

    160 INT-A-Pak (Мост) 1000 1,49 1500

    ВС-130МТ80КПБФ

    130 INT-A-Pak (Мост) 800 1,63 1180

    ВС-130МТ160КПБФ

    130 INT-A-Pak (Мост) 1600 1,63 1180

    ВС-130МТ140КПБФ

    130 INT-A-Pak (Мост) 1400 1,63 1180

    ВС-130МТ120КПБФ

    130 INT-A-Pak (Мост) 1200 1,63 1180

    ВС-130МТ100КПБФ

    130 INT-A-Pak (Мост) 1000 1,63 1180

    ВС-110МТ80КПБФ

    110 INT-A-Pak (Мост) 800 1,4 1000

    ВС-110МТ160КПБФ

    110 INT-A-Pak (Мост) 1600 1,4 1000

    ВС-110МТ140КПБФ

    110 INT-A-Pak (Мост) 1400 1,4 1000

    ВС-110МТ120КПБФ

    110 INT-A-Pak (Мост) 1200 1,4 1000

    ВС-110МТ100КПБФ

    110 INT-A-Pak (Мост) 1000 1,4 1000

    ВС-100МТ160ПБПБФ

    100 МТР 1600 1,45 470

    ВС-100МТ160ПАПБФ

    100 МТР 1600 1,45 470

    Модуль трехфазного выпрямителя | MACMIC

    Трехфазный модуль выпрямителя

    1/5

    DL

    2 /5

    DE

    3 /5

    DEB

    4/5

    DF

    5 /5

    4 /5

    DF

    5 /

    4 /5

    DF

    5

    4 /5

    DF

    5

    ❮❯


    MacMic предлагает модули выпрямительных диодов для однофазных и трехфазных источников переменного тока. Как и другие линейки наших модулей, модули выпрямительных диодов полностью совместимы с общепринятыми в отрасли конфигурациями, что дает покупателю лучший выбор хорошего качества по более приемлемой цене. Наши модули выпрямительных диодов имеют блокирующее напряжение более 1600 В и доступны для запросов с более высокими номинальными характеристиками. Превосходные характеристики тока короткого замыкания (i²t) и тока перенапряжения (Ifsm) демонстрируют прочность модулей, которые более надежны для работы в более жестких условиях входной сети переменного тока.

    ДИАПАЗОН:

    1600-2000 В / 50-250 А

    ХАРАКТЕРИСТИКИ:

    Компактная конструкция
    Возможность сильного тока
    Высокое напряжение блокировки
    Высокая надежность
    Высокое соотношение цены и качества

    КОНФИГУРАЦИИ ЦЕПИ:

    Мостовая схема трехфазного выпрямителя

    ПРИМЕНЕНИЕ:

    Сварочный аппарат
    Медицинский блок питания
    СМПС
    Инвертор

    ТЕХНИЧЕСКОЕ ОПИСАНИЕ

    TC = 25°C, если не указано иное.

    . 0870
    Тип В РРМ
    (В)
    I D
    (А)
    В Ф
    (В)
    I ФШМ
    (А)
    R thJC
    (℃/Вт)
    Пакеты Лист данных Запрос
    MMD50L160X 1600 50 1.4 500 0.2 DL Add
    MMD100E200X 2000 100 1.35 1000 0.15 DE Add
    MMD70E200X 2000 70 1.35 700 0. 18 DE Add
    MMD100E180X 1800 100 1.35 1000 0.15 DE Add
    MMD100E160X 1600 100 1.35 1000 0.15 DE Add
    MMD70E180X 1800 70 1.35 700 0.18 DE Add
    MMD70E160X 1600 70 1.35 700 0.18 DE Add
    MMD70EB180X 1800 70 2.25 700 0.18 DEB Add
    MMD70EB160X 1600 70 1.35 700 0,18 DEB ADD
    MMD100EB160X 1600 100,357 1600 100,357 1600 DEB Add
    MMD200F200X 2000 200 1.45 2000 0.09 DF Add
    MMD160F200X 2000 160 1.5 1600 0.11 DF Add
    MMD100F200X 2000 100 1.35 1000 0.15 DF Add
    MMD250F180X 1800 250 1.55 2500 0.08 DF Add
    MMD250F160X 1600 250 1.55 2500 0.08 DF Add
    MMD200F180X 1800 200 1.45 2000 0.09 DF Add
    MMD200F160X 1600 200 1. 45 2000 0.09 DF Add
    MMD150F180X 1800 150 1.45 1500 0.11 DF Add
    MMD150F160X 1600 150 1.45 1500 0.11 DF Add
    MMD250FB180X 1800 250 1.55 2500 0.08 DFB Add
    MMD250FB160X 1600 250 1,55 2500 0,08 DFB ADD.0867 1600 200 1.45 2000 0.09 DFB Add
    MMD150FB160X 1600 150 1.45 1500 0. 11 DFB Add
    Тип В РРМ
    (В)
    I D
    (А)
    В Ф
    (В)
    I ФШМ
    (А)
    R thJC
    (℃/Вт)
    Пакеты Лист данных Запрос

    Ваш надежный профессиональный поставщик силовых полупроводников

    Свяжитесь с нами

    Рисунок 3 из трехфазного пассивного мостового выпрямителя с низким входным током искажений и повышенным выходным напряжением постоянного тока

    • title={Трехфазный пассивный мостовой выпрямитель с низким входным током искажений и повышенным выходным напряжением постоянного тока}, автор = {Одей А. Ахмед и Дж. А. М. Блейс}, journal={43-я Международная университетская конференция по энергетике, 2008 г.}, год = {2008}, страницы={1-5} }
      • O. Ahmed, J. Bleijs
      • Опубликовано 16 декабря 2008 г.
      • Engineering
      • 2008 43-я Международная университетская конференция по энергетике

      мостовой выпрямитель с использованием трех конденсаторов на входе мостового выпрямителя для повышения выходного постоянного напряжения без необходимости использования активных коммутационных устройств. Таким образом, выпрямитель можно использовать для приводов машин, не требуя снижения номинальных характеристик машины или методов перемодуляции. Входной индуктор/конденсаторный фильтр снижает гармоники тока, даже если приложенное переменное напряжение уже искажено… 

      Просмотр на IEEE

      doi.org

      Оценка размеров катушки индуктивности и конденсатора фильтра в 6-импульсном и 12-импульсном диодном мостовом выпрямителе

      • P. Rastogi, M. Borage, V. Dwivedi, A. Singh, S. Tiwari, I. Annapoorani
      • Engineering

      • 2015

      Для мощных импульсных преобразователей, работающих от трехфазной сети переменного тока, важным компонентом, обеспечивающим промежуточное напряжение звена постоянного тока, является выпрямитель с LC-фильтром нижних частот. . Так как фильтр…

      Трехфазный SEPIC PFC для трехфазного асинхронного привода при несимметричном и искаженном питании

      • S. Al-Gahtani, H. Azazi, Z. Elbarbary
      • Engineering

      • 2020

      • Проверка системы выполнена в11 Моделирование и эксперимент показали эффективность предлагаемой трехфазной системы коррекции коэффициента мощности (ККМ) при различных условиях напряжения питания.

        Трехфазный понижающий преобразователь с пониженным коэффициентом мощности и высоким коэффициентом мощности

        В документе предлагается трехфазный преобразователь понижающего типа с пониженным переключением, который может работать с коррекцией входного коэффициента мощности. Ключевой особенностью предлагаемого преобразователя является то, что переключатель в преобразователе…

        Трехфазный понижающий преобразователь с высоким коэффициентом мощности с пониженным выключателем

        преобразователь, который может работать с коррекцией входного коэффициента мощности. Ключевой особенностью предлагаемого преобразователя является то, что переключатель в преобразователе…

        Трехфазный двухпереключательный понижающий преобразователь высокой мощности

        • K. Premelakumari
        • Engineering

        • 2014

        В данной статье представлен трехфазный двухпереключающий понижающий преобразователь с высоким входным коэффициентом мощности. Ключевой особенностью предлагаемого преобразователя является то, что переключатели в преобразователе имеют более низкое пиковое напряжение напряжения…

        Применение стратегии управления преобразованием оси D-Q для трехфазного преобразователя переменного/постоянного тока Был предложен преобразователь переменного тока в постоянный.

        По сути, предлагаемый преобразователь использует трехфазную мостовую схему и имеет ряд преимуществ, таких как…

        Новый трехфазный преобразователь коррекции коэффициента мощности с режимом прерывистого напряжения для низковольтных приложений внедрен выпрямитель с коррекцией коэффициента мощности (ККМ) на основе преобразователя Чука. Предлагаемый преобразователь работает в режиме прерывистого напряжения и, следовательно, имеет…

        Новые одноступенчатые однокоммутационные трехфазные преобразователи SEPIC и Cuk с плавным переключением

        • R. Foroozeshfar, E. Adib, H. Farzanehfard
        • Engineering

        • 2014

        Представлены новые одноступенчатые одноступенчатые трехфазные преобразователи SEPIC и Cuk с плавным переключением и имеют возможность повышения и понижения напряжения.

        Проектирование и анализ инфраструктуры динамической беспроводной зарядки в рамках проекта INCIT-EV h3020

        В связи с ожиданием в будущем значительного расширения внедрения инфраструктуры электромобилей в распределительную сеть необходимо проанализировать качество электроэнергии в сети для обеспечения наилучшей производительности. В европейском проекте INCIT-EV [1],…

        Трехфазный модульный преобразователь PFC в режиме непрерывной проводимости

        • Назанин Аббаси, Д. А. Хабури, Хосе Р. Родригес
        • Инженер

          2021 12-й электроники, диристические системы, и технологии (PESTC.

          77777777777077077707797777077707
        • 07

          021.

        Современные стандарты и приложения требуют силовых электронных преобразователей переменного тока в постоянный, которые могут работать в широком диапазоне изменений нагрузки с приблизительно равным коэффициентом мощности, управляемой шиной постоянного тока…

        ПОКАЗАНЫ 1-6 ИЗ 6 ССЫЛОК

        Трехфазный выпрямитель с близкими к синусоиде входными токами и конденсаторами, подключенными на стороне переменного тока упомянуты применения двух вариантов трехфазных выпрямителей с входными токами, близкими к синусоидальным.

        Работа в режиме непрерывной проводимости трехфазного диодного мостового выпрямителя с постоянным напряжением нагрузки

        • J. Bleijs
        • Машиностроение

        • 2005

        Трехфазные диодные мостовые выпрямители с низким реактивным сопротивлением источника вызывают значительные гармоники тока в сети переменного тока, которые могут не соответствовать последним нормам электромагнитной совместимости. При большем реактивном сопротивлении источника…

        Топологии трехфазных выпрямителей с входными токами, близкими к синусоидальным

        • Д. Алекса, А. Сырбу, Д. Добреа, Т. Гораш
        • Машиностроение

        • 2004

        Представлено несколько топологий трехфазных диодных выпрямителей с низким уровнем гармоник, оснащенных катушками индуктивности, конденсаторами и диодами, основанных на оригинальном решении. Катушки индуктивности и конденсаторы используются в…

        Пассивный метод формирования входного тока для трехфазных диодных выпрямителей

        • A. Prasad, P. Ziogas, S. Manias
        • Engineering

        • 1992

          В этой статье пассивный a Представлен метод формирования сигнала для трехфазного диодного выпрямителя.

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *