Site Loader

Содержание

РЕМОНТ БЛОКА ПИТАНИЯ ДЛЯ НОУТБУКА

   Покупая ноутбук или нетбук, точнее расчитывая бюджет на это прибретение, мы не учитываем дальнейших сопутствующих расходов. Сам лэптоп стоит допустим 500$, но ещё сумка 20$, мышь 10$. Аккумулятор при замене (а его гарантийный ресурс всего пару лет) потянет на 100$, и столько же будут стоить блок питания, в случае его сгорания.

   Именно о нём и пойдёт тут разговор. У одного не очень состоятельного знакомого, недавно перестал работать блок питания для ноутбука acer. За новый придётся отдать почти сотню долларов, поэтому вполне логичным будет попробовать починить его своими руками. Сам БП представляет собой традиционную чёрную пластиковую коробочку с электронным импульсным преобразователем внутри, обеспечивающим напряжение 19В при токе 3А. Это стандарт для большинства ноутбуков и единственное отличие между ними — штеккер питания:). Сразу привожу здесь несколько схем блоков питания — кликните для увеличения.

   При включении блока питания в сеть ничего не происходит — светодиод не светится и на выходе вольтметр показывает ноль. Проверка омметром сетевого шнура ничего не дала. Разбираем корпус. Хотя проще сказать, чем сделать: винтов или шурупов тут не предусмотрено, поэтому будем ломать! Для этого потребуется на соединительный шов поставить нож и стукнуть по нему слегка молотком. Смотрите не перестарайтесь, а то разрубите плату!

   После того, как корпус слегка разойдётся, вставляем в образовавшуюся щель плоскую отвертку и с усилием проводим по контуру соединения половинок корпуса, аккуратно разламывая его по шву.

   Разобрав корпус проверяем плату и детали на предмет чего-нибудь чёрного и обугленного.

   Прозвонка входных цепей сетевого напряжения 220В сазу же выявила неисправность — это самовосстанавливающийся предохранитель, который почему-то не захотел восстановиться при перегрузке:)

   Заменяем его на аналогичный, либо на простой плавкий с током 3 ампера и проверяем работу БП. Зелёный светодиод засветился, свидетельствуя о наличии напряжения 19В, но на разъёме по прежнему ничего нет. Точнее иногда что-то проскакивает, как при перегибе провода.

   Придётся ремонтировать и шнур подключения блока питания к ноутбуку. Чаще всего обрыв происходит в месте ввода его в корпус или на разъёме питания.

   Обрезаем сначала у корпуса — не повезло. Теперь возле штекера, что вставляется в ноутбук — снова нет контакта!

   Тяжёлый случай — обрыв где-то посередине. Самый простой вариант, разрезать шнур пополам и оставить рабочую половинку, а нерабочую выкинуть. Так и сделал.

   Припаиваем назад соединители и проводим испытания. Всё заработало — ремонт закончен. 

   Осталось только склеить половинки корпуса клеем «момент» и отдать блок питания заказчику. Весь ремонт БП занял не больше часа.

Originally posted 2019-02-12 08:49:13. Republished by Blog Post Promoter

Схемы блоков питания компьютеров с описанием

Дата: 26.04.2016 // 0 Комментариев

Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.

Cхемы компьютерных блоков питания ATX

Схема JNC LC-250ATX

Схема JNC LC-B250ATX

Схема JNC SY-300ATX

Схема JNC LC-B250ATX

Схема Enlight HPC-250 и HPC-350

Схема Linkworld 200W, 250W и 300W

Схема Green Tech MAV-300W-P4

Схема AcBel API3PCD2 ATX-450P-DNSS 450W

Схема AcBel API4PC01 400W

Схема Maxpower PX-300W

Схема PowerLink LPJ2-18 300W

Схема Shido LP-6100 ATX-250W

Схема Sunny ATX-230

Схема KME PM-230W

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-200PB-59

Схема InWin IW-P300A2-0

Схема SevenTeam ST-200HRK

Схема SevenTeam ST-230WHF

Схема DTK PTP-2038

Схема PowerMaster LP-8

Схема PowerMaster FA-5-2

Схема Codegen 200XA1 250XA1 CG-07A CG-11

Схема Codegen 300X 300W

Схема PowerMan IP-P550DJ2-0

Схема Microlab 350w

Схема Sparkman SM-400W (STM-50CP)

Схема GEMBIRD 350W (ShenZhon 350W)

Схема блока питания FSP250-50PLA (FSP500PNR)

Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105

Дата: 26.04.2016 // 0 Комментариев

Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.

Cхемы компьютерных блоков питания ATX

Схема JNC LC-250ATX

Схема JNC LC-B250ATX

Схема JNC SY-300ATX

Схема JNC LC-B250ATX

Схема Enlight HPC-250 и HPC-350

Схема Linkworld 200W, 250W и 300W

Схема Green Tech MAV-300W-P4

Схема AcBel API3PCD2 ATX-450P-DNSS 450W

Схема AcBel API4PC01 400W

Схема Maxpower PX-300W

Схема PowerLink LPJ2-18 300W

Схема Shido LP-6100 ATX-250W

Схема Sunny ATX-230

Схема KME PM-230W

Схема Delta Electronics DPS-260-2A

Схема Delta Electronics DPS-200PB-59

Схема InWin IW-P300A2-0

Схема SevenTeam ST-200HRK

Схема SevenTeam ST-230WHF

Схема DTK PTP-2038

Схема PowerMaster LP-8

Схема PowerMaster FA-5-2

Схема Codegen 200XA1 250XA1 CG-07A CG-11

Схема Codegen 300X 300W

Схема PowerMan IP-P550DJ2-0

Схема Microlab 350w

Схема Sparkman SM-400W (STM-50CP)

Схема GEMBIRD 350W (ShenZhon 350W)

Схема блока питания FSP250-50PLA (FSP500PNR)

Схема блока ATX Colorsit 330U (Sven 330U-FNK) на SG6105

Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений. Введение нового стандарта было связано и с выпуском новых материнских плат. Компьютерная техника стремительно развивалась и развивается, поэтому возникла необходимость улучшения и расширения материнских плат. С 2001 года и был введен этот стандарт.

Давайте рассмотрим, как устроен компьютерный блок питания ATX.

Расположение элементов на плате

Для начала взгляните на картинку, на ней подписаны все узлы блока питания, далее мы кратко рассмотрим их предназначение.

Чтобы вы поняли, о чем пойдет речь дальше, ознакомьтесь со структурной схемой боока питания.

А вот схема электрическая принципиальная, разбитая на блоки.

На входе блока питания стоит фильтр электромагнитных помех из дросселя и ёмкости (1 блок). В дешевых блоках питания его может не быть. Фильтр нужен для подавления помех в электропитающей сети возникших в результате работы импульсного источника питания.

Все импульсные блоки питания могут ухудшать параметры электропитающей сети, в ней появляются нежелательные помехи и гармоники, которые мешают работе радиопередающих устройств и прочего. Поэтому наличие входного фильтра крайне желательно, но товарищи из Китая так не считают, поэтому экономят на всём. Ниже вы видите блок питания без входного дросселя.

Дальше сетевое напряжение поступает на выпрямительный диодный мост, через предохранитель и терморезистор (NTC), последний нужен для зарядки фильтрующих конденсаторов. После диодного моста установлен еще один фильтр, обычно это пара больших электролитических конденсаторов, будьте внимательны, на их выводах присутствует большое напряжение. Даже если блок питания выключен из сети следует предварительно их разрядить резистором или лампой накаливания, прежде чем трогать руками плату.

После сглаживающего фильтра напряжение поступает на схему импульсного блока питания она сложная на первый взгляд, но в ней нет ничего лишнего. В первую очередь запитывается источник дежурного напряжения (2 блок), он может быть выполнен по автогенераторной схеме, а может быть и на ШИМ-контроллере. Обычно – схема импульсного преобразователя на одном транзисторе (однотактный преобразователь), на выходе, после трансформатора, устанавливают линейный преобразователь напряжения (КРЕНку).

Типовая схема с ШИМ-контроллером выглядит примерно так:

Вот увеличенная версия схемы каскада из приведенного примера. Транзистор стоит в автогенераторной схеме, частота работы которой зависит от трансформатора и конденсаторов в его обвязке, выходное напряжение от номинала стабилитрона (в нашем случае 9В) который играет роль обратной связи или порогового элемента который шунтирует базу транзистора при достижении определенного напряжения. Оно дополнительно стабилизируется до уровня 5В, линейным интегральным стабилизатором последовательного типа L7805.

Дежурное напряжение нужно не только для формирования сигнала включения (PS_ON), но и для питания ШИМ-контроллера (блок 3). Компьютерные блоки пиатния ATX чаще всего построены на TL494 микросхеме или её аналогах. Этот блок отвечает за управление силовыми транзисторами (4 блок), стабилизацию напряжения (с помощью обратной связи), защиту от КЗ. Вообще 494 – это культовая микросхема используется в импульсной технике очень часто, её можно встретить и в мощных блоках питания для светодиодных лент. Вот её распиновка.

На приведенном примере силовые транзисторы (2SC4242) из 4 блока включаются через «раскачку» выполненную на двух ключах (2SC945) и трансформаторе. Ключи могут быть любыми, как и остальные элементы обвязки – это зависит от конкретной схемы и производителя. Обе пары ключей нагружены на первичные обмотки соответствующих трансформаторов. Раскачка нужна, поскольку для управления биполярными транзисторами нужен приличный ток.

Последний каскад – выходные выпрямители и фильтры, там расположены отводы от обмоток трансформаторов, диодные сборки Шоттки, дроссель групповой фильтрации и сглаживающие конденсаторы. Компьютерный блок питания выдаёт целый ряд напряжений для функционирования узлов материнской платы, питания устройств ввода-вывода, питания HDD и оптических приводов: +3.3В, +5В, +12В, -12В, -5В. От выходной цепи запитан и охлаждающий кулер.

Диодные сборки представляют собой пару диодов соединенных в общей точки (общий катод или общий анод). Это быстродействующие диоды с малым падением напряжения.

Дополнительные функции

Продвинутые модели компьютерных блоков питания могут дополнительно оснащаться платой контроля оборотов кулера, которая подстраивает их под соответствующую температуру, когда вы нагружаете блок питания, кулер крутится быстрее. Такие модели более комфортны в использовании, поскольку создают меньше шума при малых нагрузках.

В дешевых источниках питания кулер подключен напрямую к линии 12В и работает на полную мощность постоянно, это усиливает его износ, в результате чего шум станет еще больше.

Если ваш блок питания имеет хороший запас по мощности, а материнская плата и комплектующие довольно скромные по потреблению – можно перепаять кулер на линию 5В или 7В припаяв его между проводами +12В и +5В. Плюс кулера к желтому проводу, а минус к красному. Это снизит уровень шума, но не стоит так делать, если блок питания нагружен полностью.

Еще более дорогие модели оснащены активным корректором коэффициента мощности, как уже было сказано, он нужен для уменьшения влияния источника питания на питающую сеть. Он формирует нужные напряжения на входных каскадах ИП, при этом сохраняя изначальную форму питающего напряжения. Достаточно сложное устройство и в пределах этой статьи подробнее рассказывать о нем не имеет смысла. Ряд эпюр отображает примерный смысл использования корректора.

Проверка работоспособности

К компьютеру ИП подключается через стандартизированный разъём, он универсален в большинстве блоков, за исключением специализированных источников питания, которые могут использовать ту же клеммную колодку, но с иной распиновкой, давайте рассмотрим стандартный разъём и назначение его выводов. У него 20 выводов, на современных материнских платах подключается дополнительных 4 вывода.

Кроме основного 20-24 контактного разъёма питания из блока выходят провода с колодками для подключения напряжения к жесткому диску, оптическому приводу SATA и MOLEX, дополнительное питание процессора, видеокарты, питание для флоппи-дисковода. Все их распиновки вы видите на картинке ниже.

Конструкция всех разъёмов таков, чтобы вы случайно не вставили его «вверх ногами», это приведет к выходу из строя оборудования. Главное, что стоит запомнить: красный провод – это 5В, Жёлтый – 12В, Оранжевый – 3.3В, Зеленый – PS_ON – 3. 5В, Фиолетовый – 5В, это основные которые приходится проверять до и после ремонта.

Помимо общей мощности блока питания большую роль играет мощность, а вернее ток каждой из линий, обычно они указываются на наклейке на корпусе блока. Эта информация станет очень кстати, если вы собрались запускать свой блок питания ATX без компьютера для питания других устройств.

При проверке блока желательно его отключить от материнской платы, это предотвратит превышение напряжений выше номинальных (если блок всё же не исправен). Но на холостом ходу запускать его не рекомендуют, это может привести к проблемам и поломке. Да и напряжения на холостом ходу могут быть в норме, но под нагрузкой значительно проседать.

В качественных блоках питания установлена защита, которая отключает схему при отклонении от нормальных напряжений, такие экземпляры вообще не включатся без нагрузки. Далее мы подробно рассмотрим, как включать блок питания без компьютера и какую можно повесить нагрузку.

Использование блока питания без компьютера

Если вы вставите вилку в розетку и включите тумблер на задней панели блока, напряжений на выводах не будет, но должно появиться напряжение на зеленом проводе (от 3 до 5В), и фиолетовом (5В). Это значит, что источник дежурного питания в норме, и можно пробовать запускать блок питания.

На самом деле всё достаточно просто, нужно замкнуть зеленый провод на землю (любой из черных проводов). Здесь всё зависит от того как вы будете использовать блок питания, если для проверки, то можно это сделать пинцетом или скрепкой. Если он будет включен постоянно или вы будете выключать его пол линии 220В, то скрепка, вставленная между зеленым и черным проводом рабочее решение.

Другой вариант – это установить кнопку с фиксацией или тумблер между этими же проводами.

Чтобы напряжения блока питания были в норме при его проверке нужно установить нагрузочный блок, можно его сделать из набора резисторов по такой схеме. Но обратите внимание на величину резисторов, по каждому из них будет протекать большой ток, по линии 3.3 вольта порядка 5 Ампер, по линии 5 вольт – 3 Ампера, по линии 12В – 0.8 Ампер, а это от 10 до 15Вт общей мощности по каждой линии.

Резисторы нужно подбирать соответствующие, но не всегда их можно найти в продаже, особенно в небольших городах, где малый выбор радиодеталей. В других вариантах схемы нагрузки, токи еще больше.

Один из вариантов исполнения подобной схемы:

Другой вариант использовать лампы накаливания или галогеновые лампы, на 12В подойдут от автомобиля их можно использовать и на линиях с 3.3 и 5В, стоит только подобрать нужные мощности. Еще лучше найти автомобильные или мотоциклетные 6В лампы накаливания и подключить несколько штук параллельно. Сейчас продаются 12В светодиодные лампы большой мощности. Для 12В линии можно использовать светодиодные ленты.

Если вы планируете использовать компьютерный блок питания, например, для питания светодиодной ленты, будет лучше, если вы немного нагрузите линии 5В и 3.3В.

Заключение

Блоки питания ATX отлично подходят для питания радиолюбительских конструкций и как источник для домашней лаборатории. Они достаточно мощные (от 250, а современные от 350Вт), при этом можно найти на вторичном рынке за копейки, также подойдут и старые модели AT, для их запуска нужно лишь замкнуть два провода, которые раньше шли на кнопку системного блока, сигнала PS_On на них нет.

Если вы собрались ремонтировать или восстанавливать подобную технику, не забывайте о правилах безопасной работы с электричеством, о том, что на плате есть сетевое напряжение и конденсаторы могут оставаться заряженными долгое время.

Включайте неизвестные блоки питания через лампочку, чтобы не повредить проводку и дорожки печатной платы. При наличии базовых знаний электроники их можно переделать в мощное зарядное для автомобильных аккумуляторов или в лабораторный блок питания. Для этого изменяют цепи обратной связи, дорабатывают источник дежурного напряжения и цепи запуска блока.

Схема регулируемого блока питания – FROLOV TECHNOLOGY

Схема регулируемого блока питания, приведённого в этой статье, обладает отличными характеристиками и выдерживает максимальный ток нагрузки до 10 Ампер. Для поддержания стабильности на высоком уровне, хорошей фильтрации помех и максимального упрощения схемы, в блоке применён интегрированный стабилизатор напряжения на 15 Вольт и добавлены два транзистора, для усиления тока после регулировочного резистора. Отсутствие защиты от короткого замыкания на выходе, компенсируется применением выходного транзистора с двойным запасом мощности и установкой предохранителя на 10 Ампер.

Принципиальная схема регулируемого блока питания :

Для компенсации падения напряжения на выходных транзисторах, в пределах 1 Вольта, средняя ножка стабилизатора подключена к минусовому проводу через диоды, которые поднимают напряжение на выходе микросхемы, обеспечивая этим максимальное выходное напряжение блока питания до 15 Вольт, при установке переменного резистора в верхнее по схеме положение, без применения VD1 и VD2, граничное напряжение регулировки равно примерно 14 вольтам. Для стабилизации выходного напряжения при сильном нагреве транзисторов, рекомендуем установить эти диоды на одном радиаторе охлаждения вместе с VT2.

В этой схеме блока питания, применяются очень распространённые радиодетали, но они легко заменяются на элементы с похожими параметрами. Трансформатор можно устанавливать любой, но достаточной мощности, с напряжением на вторичной обмотке от 15 до 20 Вольт и током не менее 10 Ампер. Конденсаторы подойдут с минимальным граничным напряжением не менее 50 Вольт, резисторы любые, мощностью 0,25 Ватт, переменный резистор R1 в схеме, желательно применять с линейной характеристикой регулировки, для того, чтобы на корпусе блока питания можно было нанести равномерную шкалу напряжений. Диодный мост можно заменить четырьмя диодами, на ток не менее 10 Ампер, микросхема стабилизатора имеет много аналогов, главным параметром при её выборе будет выходное напряжение 15 Вольт. Мощные транзисторы можно заменить импортными аналогами, с достаточным коэффициентом передачи h31э, для обеспечения максимального тока на выходе схемы.

Налаживания блок питания не требует, хорошо работает сразу после сборки схемы, при включении, напряжение на выходе должно плавно регулироваться переменным резистором R1 от 0 до 15 Вольт. Для обеспечения надёжной работы на большую нагрузку, установите выходной транзистор VT2 и диодный мост VDS-1 на радиатор охлаждения достаточной площади, остальные радиоэлементы практически не нагреваются, и могут эксплуатироваться без охлаждения.

Каждый радиолюбитель и конструктор найдёт применение для данного устройства, блок питания построенный по такой схеме очень пригодиться при наладке различных радио схем, испытании низковольтной аппаратуры, которая меняет свои параметры при регулировке напряжения питания, и так далее… Если подключить к выходу устройства амперметр, то его с успехом можно использовать для зарядки автомобильных аккумуляторов, контролируя при этом ток зарядки. Удачи Вам !

Электрическая схема блока питания

На данный момент в современном мире одну из главенствующих позиций занимает производство электронной аппаратуры. Только одних мобильных телефонов и смартфонов (за период весна – лето) в 2013 году было продано более 435 миллионов. И это далеко не предел, утверждают производители.

Но, как известно, если автомобиль не едет без мотора, то и любое электронное устройство не может обойтись без блока питания. Известно огромное количество различных устройств, которые можно объединить одним словосочетанием – «Электрическая схема блока питания».

Самая простейшая электрическая схема блока питания состоит из источника тока (батарейки или аккумулятора) с выключателем. Во многих устройствах применяют блок питания, составленные из нескольких батарей или аккумуляторов (ноутбуки, пульты, магнитофоны, плееры, детские игрушки и так далее). Но это все простейшие блоки питания.

Как известно, батарейки быстро выходят из строя, а аккумуляторы имеют тенденцию – разряжаться. И поэтому более совершенная электрическая схема блока питания состоит из множества деталей (в основном полупроводниковых: диодов, транзисторов, микросхем), источником тока которых служит электрическая сеть.

Электрическая схема блока питания бывает трех видов:

  • С повышением напряжения или тока.
  • С понижением напряжения или тока.
  • Сглаживающие фильтры, выпрямители или стабилизаторы входного напряжения или тока (без повышения или понижения напряжения).

Они в свою очередь подразделяются на блоки питания постоянного и переменного тока.

Электрическая схема блока питания постоянного тока

Самая простая электрическая схема блока питания постоянного тока (без повышения или понижения напряжения) состоит из одного диода (выпрямителя), вставленного в разрыв одного из проводов осветительной сети. Это, так называемый, однополупериодный выпрямитель. Но такая электрическая схема, применяется в основном, для зарядки аккумуляторов дома (из-за дешевизны). Так же однополупериодные выпрямители ставят в импульсных блоках питания после разделительного трансформатора.

Более совершенна электрическая схема с двуполупериодным выпрямителем (два диода соединенные встречно — параллельно), которая применяется и в зарядных блоках и в китайских черно-белых телевизорах. Но и эта схема далека от идеала. На практике (в большинстве случаев) применяют мостовые схемы выпрямителей.

Более сложна электрическая схема блока питания с повышением или понижением напряжения. Различают два вида таких блоков питания:
1. трансформаторный — на входе этого блока питания стоит понижающий или повышающий трансформатор, далее идет выпрямитель, а затем стабилизатор или импульсный блок питания.
2. безтрансформаторный – на входе стоит фильтр, выпрямитель, а затем стабилизатор или импульсный блок питания.

Трансформаторы, в основном, бывают:

  • Повышающими – когда количество витков первичной обмотки меньше количества витков последующих обмоток. Применяются в ламповой аппаратуре, в телевизорах и дисплеях с электронно-лучевой трубкой (ТВС, ТДКС)
  • Понижающими – когда количество витков первичной обмотки больше количества витков последующих обмоток. Применяются почти везде.
  • Трансформаторы с переменным коэффициентом трансформации (и с понижением и с повышением) Применяются в ламповой аппаратуре, в телевизорах и дисплеях с электронно-лучевой трубкой (ТВС, ТДКС)

Рассмотрим, как работает электрическая схема трансформаторного блока питания.

Напряжение сети (220 вольт), проходя через трансформатор, повышается или понижается. Следующий за ним выпрямитель, выделяет постоянную составляющую, которая фильтруется конденсаторами и поступает на стабилизатор или преобразователь напряжения, а затем далее на схему самого устройства.

Если стабилизатор только стабилизирует (оставляет на одном уровне) величину выходного напряжения, то преобразователь действует совсем иначе.

Преобразователь состоит из задающего генератора и ключей. Задающий генератор, генерируя сигнал, раскачивает ключи, и они начинают колебаться с частотой генератора, выпуская (в основном) синусоидальный сигнал переменного тока. Причем, если частота задающего генератора больше частоты входного сигнала, то преобразователь может выдавать повышенное напряжение. Так действуют блоки питания в аккумуляторах мобильных телефонов.

Электрическая схема безтрансформаторного блока питания.

Стоящий на входе сглаживающий фильтр предупреждает и сглаживает обратные импульсы с блока питания в осветительную сеть. Стоящий после него выпрямитель выделяет из переменной составляющей постоянное напряжение ток. Это напряжение поступает в преобразователь на высоковольтном транзисторе, с которого идет на импульсный трансформатор, где понижается. Пониженное импульсное напряжение поступает на однополупериодные выпрямители, затем на стабилизаторы (если они нужны) и далее на электрическую схему изделия.

Так работают все современные блоки питания компьютеров, телевизоров, дисплеев и другой аппаратуры

E206420 ne5000a схема блока питания

Речь пойдёт о технологии переделки компьютерного блока питания (БП) в лабораторный БП.

Три года назад я опубликовал статью «Лабораторный блок питания из БП АТ», к которой читатели проявили огромный интерес! Стоит только сказать, что повторивших этот БП уже более 20 человек! Да не у всех получилось всё сразу, но я отвечал на комментарии к статье, помогая разобраться в проблемах. В итоге радость от работающего БП получили все!

Хочу сказать огромное спасибо моим читателям, что задавали вопросы! Во-первых, мои ответы на комментарии превратились в кладезь знаний для всех! Именно поэтому, я просил писать вопросы в статье, а не в личной переписке. Во-вторых, вы помогли мне усовершенствовать данную конструкцию! Ещё раз всем спасибо, кто задавал вопросы и высказывал предложения по усовершенствованию.

Отдельная благодарность Юрию Вячеславовичу Evergreen747 , который наравне со мною помогает отвечать на ваши многочисленные вопросы!

Тот блок питания делался много лет назад (намного раньше, чем была написана первая статья!). К тому же я переделал всего один экземпляр БП AT, и не было возможности набрать статистики по проблемам, которые могут встретиться в других вариантах таких блоков. Вы же мне очень помогли это сделать.

Недостатки первой конструкции лабораторного БП, прежде всего, связаны с отсутствием дежурного источника питания. Это выражается в том, что БП не держит низкое напряжение на выходе при малых токах нагрузки. Типично на холостом ходу выставить напряжение ниже 5…8 В не удаётся. Второе – это неустойчивая работа в режиме стабилизации тока, особенно в момент перехода из режима стабилизации напряжения: появляется пульсация выходного напряжения, иногда сопровождающаяся треском или писком…

Тот блок питания прекрасно подходит для питания мощных потребителей и зарядки аккумуляторных батарей, но для работы с маломощной электроникой, требующей низкого напряжения питания – он немного грубоват. Поэтому я сделал новый блок питания, внеся доработки, а старый перевёл на «постоянную работу» в гараж.

Новый вариант БП

Всё дальнейшее повествование будет основано на том, что вы хорошо изучили первую статью о переделке БП AT – я повторяться не буду, а расскажу лишь о модификациях прежней конструкции с практической стороны на примере создания нового БП. Так что кто не читал – идите по ссылке и изучайте. Первая статья для вас так и должна остаться «библией»!

Итак, разгребая хлам на работе, заинтересовал меня один БП ATX 400W: он не из самых современных, а выполнен на обычной TL494 (то, что нам нужно!), схема защиты – на LM339 (не плохо), у него добротный фильтр по питанию, крупный трансформатор, большая ёмкость конденсаторов в фильтре (470 мкФ 200 В), а также солидные радиаторы – что обещало действительно хорошую выходную мощность. Его я и препарировал!

Начал, естественно, с пылесоса… Затем, внимательнее изучил внутренности: выполнен он очень добротно – все входные цепи, выпрямитель сетевого напряжения, конденсаторы фильтра, силовые транзисторы преобразователя (MJE13009) уже стоят «по максимуму», значит умощнять его не придётся.

После включил его, нагрузив цепи +5V и +12V лампочками 12 В 35 Вт (очень удобно использовать миниатюрные галогеновые лампочки для люстр – они без проблем втыкаются прямо в разъёмы Mini-Fit) – работает! За минуту работы с такой нагрузкой при отключенном вентиляторе ничего не нагрелось – отлично.

Далее начал искать его принципиальную схему. Посмотрел основные моменты слаботочной части: хоть в нём и стоят две самые распространённые для БП ATX микросхемы (TL494 и LM339), но схема включения LM339 сильно отличалась (их действительно много вариантов). Защита по мощности через диод от среднего отвода запускающего трансформатора вела как раз к ней, а нам нужно её сохранить! Ничего страшного – начал срисовывать этот кусок схемы с печатной платы. Хуже нет копаться в чужом монтаже…

Ага, защита по превышению мощности выполнена на первом компараторе LM339, второй компаратор является триггером (защёлкой) и на него же заведена защита от перенапряжения. Выход защиты заведён на выв. 4 TL494 (что нам и нужно!). На двух оставшихся компараторах сделана индикация Power_Good. Схема включения БП (PS_ON) выполнена на двух транзисторах и также заведена на выв. 4. Удачная схема! Теперь ясно что оставить, а что сохранить:

В данном случае мне повезло: схема защиты по мощности работает через выв. 4 TL494. Но если вы внимательно посмотрите на схему входных цепей защиты, то увидите, что сигнал со среднего вывода запускающего трансформатора через R20 и D22 поступает на два делителя напряжения, и первый из них (на резисторах 47 и 6,2 кОм) заведён также и на выв. 16 TL494, который нам нужно высвободить. В данном случае это грубая «аварийная защита», дублирующая схему на компараторах LM339 и её можно спокойно убирать, выпаяв этот делитель.

Второй же делитель (R48–R50), перед входом компаратора (выв. 7 LM339) нужно превратить в регулируемый, для возможности настройки порога срабатывания защиты. Для этого можно заменить постоянный резистор в любом из его плеч на подстроечный с номиналом в 2 раза больше. Я заменил резистор верхнего плеча (47 кОм) на подстроечный 100 кОм.

В схеме защиты от перенапряжения достаточно заменить стабилитрон ZD3, подключенный к цепи +12V на КС522А. Кстати, для проверки работоспособности этой защиты достаточно закоротить стабилитрон пинцетом – БП должен выключиться.

Если в вашем БП схема защиты выполнена с использованием второго компаратора TL494 (выв. 15 и 16), который нам нужно высвободить для петли регулировки тока – то рекомендую собирать самую распространённую и многократно проверенную схему защиты на двух транзисторах. Вот полная схема БП в хорошем разрешении, в котором используется данная схема защиты. А вот, что должно остаться от защиты:

Сигнал берётся от среднего вывода трансформатора T2, через диод D22 и далее по цепочке поступает на базу Q10. А с коллектора Q8 через диод D29 поступает на выв. 4 TL494. Также на базу Q10 заведена защита от перенапряжения с выхода выпрямителя: стабилитрон КС522А и резистор 1-1,5 кОм включенные последовательно.

Что касается выпрямителя и фильтра выходного напряжения, то здесь меня также ждала удача: выпрямитель +12V имел разводку на плате для размещения двух выпрямительных диодных сборок параллельно (зеркально, с каждой стороны радиатора) в корпусе TO-220. В схеме фильтра уже присутствовал второй дроссель (на ферритовом стержне) и имелось достаточное место для установки электролитических конденсаторов взамен штатных. Значит, делаем фильтр на его же месте, в соответствии с рекомендациями в первой статье.

Диодные сборки для выпрямителя подобрал SBR20100CT (20 А, 100 В, корпус TO-220) из имеющихся дома от других компьютерных БП. Установил два корпуса в параллель, как это и позволяла печатная плата.

Дроссель групповой фильтрации я выпаял, и смотал с кольца родные обмотки (обмотка +12V содержала 12 витков). После намотал новую обмотку эмалированным проводом Ø1,0 мм на этом же кольце – 25 витков в два провода, сложенных вместе — всё, как рекомендовано в первой статье. Это, как раз 2 слоя намотки: на внешней стороне кольца витки второго слоя располагаются между витками первого слоя. Мотать рекомендую «от середины» к каждому концу обмотки – так короче концы проводов которые нужно пропускать через кольцо. Провод нужно хорошо натягивать, что бы он плотно прилегал к кольцу.

У меня имеется много конденсаторов с промышленных плат 1500 мкФ 35 В – их я и поставил в фильтр взамен штатных. В принципе, такой ёмкости уже достаточно. Также добавил керамические конденсаторы параллельно им, и установил резистор 100 Ом 2 Вт для устойчивой работы БП без внешней нагрузки. Этот резистор должен быть поднят над платой на всю длину его выводов – он может нагреваться при установке предельных значений напряжения.

Единственное, что нужно не забыть сделать в БП ATX – это убрать цепь вольтдобавки от выпрямителя +12V, которая питает микросхему ШИМ TL494 (выв. 12). Обычно это диод или диод последовательно с резистором в несколько Ом. В отличие от штатной схемы – выходное напряжение нашего БП будет регулируемым, и эта цепь только добавит нестабильности питания для ШИМ. Пульсации на выходе от этого увеличиваются. Пусть ШИМ питается только от дежурного источника.

Стал просматривать ещё раз схемы на сайте и наткнулся на схему аналогичного БП… Бывает! Ничего общего в названии, но отличие лишь в порядке нумерации элементов на плате и значениях ёмкости больших электролитических конденсаторов (не удивительно, схема от БП мощностью 300 Вт) – остальное один в один. Покажу и на примере всей схемы, что было удалено, а что оставлено.

И так, силовая (высоковольтная) часть у нас в порядке. Выходной выпрямитель и фильтр подготовлен. Защита от превышения мощности и перенапряжения имеется. Схема выключения БП выпаяна. Осталось сделать схему управления.

На этом этапе рекомендую испытать БП

Это выявит возможные ошибки в переделанной части, позволит определиться с максимальной нагрузочной способностью БП, проверить температурный режим его элементов, и работу схемы защиты. Вы будете полностью уверены в полной работоспособности БП до установки платы управления.

Для этого нужно подключить простейший делитель напряжения из двух резисторов (15 и 4,7 кОм) и потенциометр (10…50 кОм) к первому компаратору TL494 (выв. 1 и 2), как показано на схеме ниже. Чтобы исключить влияние второго компаратора, выв. 16 нужно заземлить, а на выв. 15 подать небольшое напряжение. В некоторых БП это уже сделано – так что не торопитесь резать эти цепи! В моём БП в штатной схеме на выв. 15 было уже подано +5 В, а выв. 16 остался заземлён через резистор 6,2 кОм от бывшего делителя.

Пробное включение в сеть производите через лампу накаливания 220 В 100 Вт, включенную вместо предохранителя. Это позволит избежать выхода из строя силовых транзисторов. В случае превышения тока, лампа просто зажжётся, сохранив дорогостоящие транзисторы. Естественно, БП запитанный через лампочку не позволит нагрузить его, так что испытание под нагрузкой нужно производить уже без лампочки.

Сделайте пробное включение. Если БП не запускается, то проверяйте сначала наличие напряжения 300…310 В на конденсаторах сетевого выпрямителя, затем наличие напряжения питания +12 В (или выше), которое поступает от источника дежурного напряжения на вывод 12 TL494, и затем отсутствие напряжения на выв. 4 – если оно там присутствует, то значит, защита запрещает работу ШИМ. Если ошибок нет – то выходное напряжение будет плавно регулироваться потенциометром в диапазоне от 0 до 20…21 В. Если это так, то можно отключать лампочку, ставить предохранитель обратно и переходить к испытаниям БП под нагрузкой.

Но сначала позаботьтесь об охлаждении силовых элементов! Вентилятор можно расположить сбоку от радиаторов, что бы он их хорошо продувал. Питание на вентилятор можно взять от дежурного источника (с выхода выпрямителя, питающего TL494), убедившись, что там, около 12 В.

В качестве нагрузки БП я использую толстую (около 1 мм) нихромовую проволоку, подсоединяясь к ней «крокодилами». Сопротивление меняю – изменяя расстояние между точками подключения – получается классический реохорд. Достаточно 2 м длины. Проволока будет накаляться (иногда докрасна) – так что позаботьтесь, чтобы она свободно висела не соприкасалась с окружающими предметами. При нагрузках более 10 А, я использую две сложенные вместе проволоки.

Нагружайте БП постепенно, контролируя напряжение и ток! Следите за нагревом силовых элементов. Лучший вариант – когда при предельных мощностях радиатор с силовыми транзисторами, радиатор с выпрямительными диодами и дроссель на кольце нагреваются примерно в равной степени. Не забывайте, что радиатор силовых транзисторов находится под потенциалом сети питания!

Подавляющее большинство компьютерных БП тянет ток 10 А при напряжении 20 В, т.е. 200 Вт мощности по бывшей 12V обмотке. Лучший вариант – контролировать осциллографом скважность импульсов на вторичной обмотке. Пределом следует считать примерно 90% заполнение (не бойтесь, 100% не даст выставить логика работы TL494). У моего БП предельная мощность по этой обмотке составила 250 Вт. Порог срабатывания защиты я настроил на 220…230 Вт.

Нагрев элементов был не столь существенный и я пошёл дальше. Попробовал нагрузить БП током 20 А при напряжении 10 В (те же 200 Вт) – диоды выпрямителя и дроссель стали греться больше, но терпимо. И тогда я решил сделать предел регулировки тока 20 А. Это позволит в диапазоне выходных напряжений от 0 до 10 В нагружать БП током 20 А. Выше этого напряжения предельный ток будет спадать (это ограничит нам схема защиты по перегрузке) до уровня 10 А при 20 В. Например, при напряжении 14 В блок может отдать в нагрузку ток 16 А, что очень заманчиво!

Многие жалуются на треск и писк, при определённых напряжениях и токах нагрузки. Испытывая БП на различных нагрузках я тоже с этим столкнулся и решил глубже изучить этот вопрос.

Писк – это самовозбуждение в петле регулировки выходного напряжения: от выходной «+» клеммы, до выв. 1 TL494 (включая внутренний компаратор в ней, т.е. как бы до выв. 3 TL494). Самовозбуждение проявляется появлением пульсаций напряжения на выходных клеммах БП, что прекрасно видно осциллографом. Прежде всего, это связано с цепочками отрицательной обратной связи (ООС) между выв. 2 и 3 и выв. 15 и 3, которые определяют коэффициент усиления в петле регулировки. В своей первой конструкции я оттуда выбросил резисторы, а зря!

Нужно сохранить штатную цепочку между выв. 2 и 3 TL494. У меня в старой схеме (конденсатор 0,1 мкФ) не лучший вариант, нужно поставить туда конденсатор в районе 0,022…0,047 мкФ и резистор 33…68 кОм, включенные последовательно. Резистор нужно подобрать по минимуму самовозбуждения (писка). Вместо резистора я ставил подстроечный 100 кОм, и загоняя БП в режим максимального «писка» (подбирая сочетание выходного напряжения и тока нагрузки БП), меняя сопротивление этого резистора находил минимум (проще смотреть осциллографом амплитуду пульсаций на выходе БП). У меня, например, идеальная цепочка получилась при сочетании 0,033 мкФ и 43 кОм.

Позднее, аналогично я подобрал и номиналы в петле ООС регулировки тока – RC цепочку между выв. 15 и 3 TL494. У меня идеальная цепочка получилась при сочетании 0,15 мкФ и 4,7 кОм. Конденсаторы этих цепочек должны отличаться по ёмкости, иначе, при одинаковых цепочках, появляется самовозбуждение на границе перехода из режима стабилизации напряжения в режим стабилизации тока – компараторы внутри TL494 начинают как бы «бороться» между собой, кому из них регулировать напряжение на выходе.

Также причиной самовозбуждения являются просадки напряжения по проводнику массы на плате между выпрямителем выходного напряжения и минусом питания TL494. Пробуйте соединить короткой толстой перемычкой (провод сечением не менее 1,5 мм²) средний вывод вторичной обмотки трансформатора (косичку), сидящий на земле, с землёй вблизи выв. 7 микросхемы TL494. Также точка, куда припаивается провод земли от переменных резисторов регулировки напряжения и тока должна быть выбрана вблизи выв. 7. Проверку лучше делать прямо на ходу: берёте кусок провода сечением 2,5 мм² длиной сантиметров 10-12, изгибаете дугой и пробуете соединять эти точки между собой.

Ну и третье – это наводки на провода цепи регулировки выходного напряжения от трансформатора – попробуйте повесить конденсатор 0,01 мкФ между выв. 2 и 7 (земля). Делайте именно в этом порядке! Т.к. иногда, установка перемычки, например, полностью убирает самовозбуждение, и после этого RC цепочку ООС уже не подобрать по минимуму.

В итоге я снизил размах пульсаций при токе нагрузки 10 А и напряжении 20 В в режиме стабилизации напряжения ниже 5 мВ, и в режиме стабилизации тока ниже 15 мВ. Это очень высокие показатели!

После испытания БП можно переходить к сборке платы управления. В первом варианте я отказался от использования дифференциального усилителя в петле регулировки тока, дабы уменьшить количество проводов. А зря! Коэффициент стабилизации тока оказался невысоким, плюс падение напряжения на проводах земли дополнительно вносило погрешность. Поэтому в новой схеме я включил оба операционных усилителя (ОУ) по дифференциальной схеме. Требования к типу ОУ остаются прежними, как написано в первой статье.

Усилитель в цепи регулировки напряжения (DA1.1) остался неизменным. При указанных номиналах резисторов (R1=R3 и R2=R4) предел регулировки напряжения соответствует 20,0 В. Для точной работы дифференциального усилителя нужно сохранять равенство этих сопротивлений в парах. Резисторы с номиналом 4,9 кОм составлены из двух, включенных последовательно (например, 3,9 и 1 кОм, или 4,7 кОм и 200 Ом и т.п.).

Усилитель в цепи регулировки тока собран по аналогичной дифференциальной схеме включения ОУ (DA1.2), что требует подключения его входов отдельными тонкими проводами непосредственно к клеммам шунта. Амперметр я использовал прежний SAH0012R-50, поэтому шунт остался точно таким же 75ШИП1-50-0.5 с сопротивлением 1,5 миллиОма. При этом шунте и указанных в схеме номиналах резисторов (R5=R7 и R6=R8) предел регулировки тока составляет 20 А. Чтобы уменьшить предел регулировки тока до 10 А нужно уменьшить сопротивление резисторов R5, R7 до 110 Ом. В случае использования амперметра с другим шунтом, отличающимся по сопротивлению, чтобы задать верхний предел регулировки тока, потребуется изменить сопротивление резисторов R5 и R7 (или R6 и R8), сохраняя равенство их сопротивлений между собой.

Индикацию перехода в режим стабилизации тока я перенёс в цепь регулировки напряжения, поменяв входы компаратора (DA1.4) между собой. В принципе – это не принципиально…

Как и в прошлой конструкции, переменные резисторы регулировки напряжения и тока (R10 и R11), а также R12–R14, C2 и C3 расположены на отдельной плате, расположенной на передней панели корпуса. Файл платы в формате Sprint-Layout можно скачать от сюда. Цепочки C4, R15 (штатная) и C5, R16 расположены на плате БП вблизи микросхемы TL494. Остальное расположено на отдельной плате, которую можно скачать от сюда. Монтаж выполнен на SMD элементах.

Хочу ещё раз подчеркнуть, что питание и землю на схему управления нужно брать от точек на плате БП в непосредственной близости от выв. 12 и 7 TL494. Земля к переменным резисторам регулировки тока и напряжения на передней панели также должна браться вблизи выв. 7 TL494. Корпус переменных резисторов должен быть заземлён.

Дежурный источник питания

Теперь поговорим о внутреннем питании ШИМ, платы управления, вольтметра, амперметра и вентилятора. В принципе, суммарный потребляемый ток этих элементов не высокий – его прекрасно потянет дежурный источник питания. Но нужно учитывать импульсный характер нагрузки, который имеет, прежде всего, вентилятор, и измерительные приборы (за счёт динамического режима работы светодиодных цифровых индикаторов). Пульсации в цепи питания ШИМ и платы управления нам ни к чему, поэтому их нужно развязать между собой.

Я пошёл ещё дальше: дежурный источник питания имеет два выхода: стабилизированный +5V_SB и второй, напряжением около 12 В, который стабилизирован параметрически (косвенно). Первый нам не нужен, а используется, как раз второй! Поэтому я перенёс цепи стабилизации напряжения с выхода +5V_SB на второй выход и настроил их на напряжение 12 В. (Если вам нужно для каких-либо целей +5 В, то можно установить интегральный стабилизатор LM7805 от этой цепи.)

Речь пойдёт о технологии переделки компьютерного блока питания (БП) в лабораторный БП.

Три года назад я опубликовал статью «Лабораторный блок питания из БП АТ», к которой читатели проявили огромный интерес! Стоит только сказать, что повторивших этот БП уже более 20 человек! Да не у всех получилось всё сразу, но я отвечал на комментарии к статье, помогая разобраться в проблемах. В итоге радость от работающего БП получили все!

Хочу сказать огромное спасибо моим читателям, что задавали вопросы! Во-первых, мои ответы на комментарии превратились в кладезь знаний для всех! Именно поэтому, я просил писать вопросы в статье, а не в личной переписке. Во-вторых, вы помогли мне усовершенствовать данную конструкцию! Ещё раз всем спасибо, кто задавал вопросы и высказывал предложения по усовершенствованию.

Отдельная благодарность Юрию Вячеславовичу Evergreen747 , который наравне со мною помогает отвечать на ваши многочисленные вопросы!

Тот блок питания делался много лет назад (намного раньше, чем была написана первая статья!). К тому же я переделал всего один экземпляр БП AT, и не было возможности набрать статистики по проблемам, которые могут встретиться в других вариантах таких блоков. Вы же мне очень помогли это сделать.

Недостатки первой конструкции лабораторного БП, прежде всего, связаны с отсутствием дежурного источника питания. Это выражается в том, что БП не держит низкое напряжение на выходе при малых токах нагрузки. Типично на холостом ходу выставить напряжение ниже 5…8 В не удаётся. Второе – это неустойчивая работа в режиме стабилизации тока, особенно в момент перехода из режима стабилизации напряжения: появляется пульсация выходного напряжения, иногда сопровождающаяся треском или писком…

Тот блок питания прекрасно подходит для питания мощных потребителей и зарядки аккумуляторных батарей, но для работы с маломощной электроникой, требующей низкого напряжения питания – он немного грубоват. Поэтому я сделал новый блок питания, внеся доработки, а старый перевёл на «постоянную работу» в гараж.

Новый вариант БП

Всё дальнейшее повествование будет основано на том, что вы хорошо изучили первую статью о переделке БП AT – я повторяться не буду, а расскажу лишь о модификациях прежней конструкции с практической стороны на примере создания нового БП. Так что кто не читал – идите по ссылке и изучайте. Первая статья для вас так и должна остаться «библией»!

Итак, разгребая хлам на работе, заинтересовал меня один БП ATX 400W: он не из самых современных, а выполнен на обычной TL494 (то, что нам нужно!), схема защиты – на LM339 (не плохо), у него добротный фильтр по питанию, крупный трансформатор, большая ёмкость конденсаторов в фильтре (470 мкФ 200 В), а также солидные радиаторы – что обещало действительно хорошую выходную мощность. Его я и препарировал!

Начал, естественно, с пылесоса… Затем, внимательнее изучил внутренности: выполнен он очень добротно – все входные цепи, выпрямитель сетевого напряжения, конденсаторы фильтра, силовые транзисторы преобразователя (MJE13009) уже стоят «по максимуму», значит умощнять его не придётся.

После включил его, нагрузив цепи +5V и +12V лампочками 12 В 35 Вт (очень удобно использовать миниатюрные галогеновые лампочки для люстр – они без проблем втыкаются прямо в разъёмы Mini-Fit) – работает! За минуту работы с такой нагрузкой при отключенном вентиляторе ничего не нагрелось – отлично.

Далее начал искать его принципиальную схему. Посмотрел основные моменты слаботочной части: хоть в нём и стоят две самые распространённые для БП ATX микросхемы (TL494 и LM339), но схема включения LM339 сильно отличалась (их действительно много вариантов). Защита по мощности через диод от среднего отвода запускающего трансформатора вела как раз к ней, а нам нужно её сохранить! Ничего страшного – начал срисовывать этот кусок схемы с печатной платы. Хуже нет копаться в чужом монтаже…

Ага, защита по превышению мощности выполнена на первом компараторе LM339, второй компаратор является триггером (защёлкой) и на него же заведена защита от перенапряжения. Выход защиты заведён на выв. 4 TL494 (что нам и нужно!). На двух оставшихся компараторах сделана индикация Power_Good. Схема включения БП (PS_ON) выполнена на двух транзисторах и также заведена на выв. 4. Удачная схема! Теперь ясно что оставить, а что сохранить:

В данном случае мне повезло: схема защиты по мощности работает через выв. 4 TL494. Но если вы внимательно посмотрите на схему входных цепей защиты, то увидите, что сигнал со среднего вывода запускающего трансформатора через R20 и D22 поступает на два делителя напряжения, и первый из них (на резисторах 47 и 6,2 кОм) заведён также и на выв. 16 TL494, который нам нужно высвободить. В данном случае это грубая «аварийная защита», дублирующая схему на компараторах LM339 и её можно спокойно убирать, выпаяв этот делитель.

Второй же делитель (R48–R50), перед входом компаратора (выв. 7 LM339) нужно превратить в регулируемый, для возможности настройки порога срабатывания защиты. Для этого можно заменить постоянный резистор в любом из его плеч на подстроечный с номиналом в 2 раза больше. Я заменил резистор верхнего плеча (47 кОм) на подстроечный 100 кОм.

В схеме защиты от перенапряжения достаточно заменить стабилитрон ZD3, подключенный к цепи +12V на КС522А. Кстати, для проверки работоспособности этой защиты достаточно закоротить стабилитрон пинцетом – БП должен выключиться.

Если в вашем БП схема защиты выполнена с использованием второго компаратора TL494 (выв. 15 и 16), который нам нужно высвободить для петли регулировки тока – то рекомендую собирать самую распространённую и многократно проверенную схему защиты на двух транзисторах. Вот полная схема БП в хорошем разрешении, в котором используется данная схема защиты. А вот, что должно остаться от защиты:

Сигнал берётся от среднего вывода трансформатора T2, через диод D22 и далее по цепочке поступает на базу Q10. А с коллектора Q8 через диод D29 поступает на выв. 4 TL494. Также на базу Q10 заведена защита от перенапряжения с выхода выпрямителя: стабилитрон КС522А и резистор 1-1,5 кОм включенные последовательно.

Что касается выпрямителя и фильтра выходного напряжения, то здесь меня также ждала удача: выпрямитель +12V имел разводку на плате для размещения двух выпрямительных диодных сборок параллельно (зеркально, с каждой стороны радиатора) в корпусе TO-220. В схеме фильтра уже присутствовал второй дроссель (на ферритовом стержне) и имелось достаточное место для установки электролитических конденсаторов взамен штатных. Значит, делаем фильтр на его же месте, в соответствии с рекомендациями в первой статье.

Диодные сборки для выпрямителя подобрал SBR20100CT (20 А, 100 В, корпус TO-220) из имеющихся дома от других компьютерных БП. Установил два корпуса в параллель, как это и позволяла печатная плата.

Дроссель групповой фильтрации я выпаял, и смотал с кольца родные обмотки (обмотка +12V содержала 12 витков). После намотал новую обмотку эмалированным проводом Ø1,0 мм на этом же кольце – 25 витков в два провода, сложенных вместе — всё, как рекомендовано в первой статье. Это, как раз 2 слоя намотки: на внешней стороне кольца витки второго слоя располагаются между витками первого слоя. Мотать рекомендую «от середины» к каждому концу обмотки – так короче концы проводов которые нужно пропускать через кольцо. Провод нужно хорошо натягивать, что бы он плотно прилегал к кольцу.

У меня имеется много конденсаторов с промышленных плат 1500 мкФ 35 В – их я и поставил в фильтр взамен штатных. В принципе, такой ёмкости уже достаточно. Также добавил керамические конденсаторы параллельно им, и установил резистор 100 Ом 2 Вт для устойчивой работы БП без внешней нагрузки. Этот резистор должен быть поднят над платой на всю длину его выводов – он может нагреваться при установке предельных значений напряжения.

Единственное, что нужно не забыть сделать в БП ATX – это убрать цепь вольтдобавки от выпрямителя +12V, которая питает микросхему ШИМ TL494 (выв. 12). Обычно это диод или диод последовательно с резистором в несколько Ом. В отличие от штатной схемы – выходное напряжение нашего БП будет регулируемым, и эта цепь только добавит нестабильности питания для ШИМ. Пульсации на выходе от этого увеличиваются. Пусть ШИМ питается только от дежурного источника.

Стал просматривать ещё раз схемы на сайте и наткнулся на схему аналогичного БП… Бывает! Ничего общего в названии, но отличие лишь в порядке нумерации элементов на плате и значениях ёмкости больших электролитических конденсаторов (не удивительно, схема от БП мощностью 300 Вт) – остальное один в один. Покажу и на примере всей схемы, что было удалено, а что оставлено.

И так, силовая (высоковольтная) часть у нас в порядке. Выходной выпрямитель и фильтр подготовлен. Защита от превышения мощности и перенапряжения имеется. Схема выключения БП выпаяна. Осталось сделать схему управления.

На этом этапе рекомендую испытать БП

Это выявит возможные ошибки в переделанной части, позволит определиться с максимальной нагрузочной способностью БП, проверить температурный режим его элементов, и работу схемы защиты. Вы будете полностью уверены в полной работоспособности БП до установки платы управления.

Для этого нужно подключить простейший делитель напряжения из двух резисторов (15 и 4,7 кОм) и потенциометр (10…50 кОм) к первому компаратору TL494 (выв. 1 и 2), как показано на схеме ниже. Чтобы исключить влияние второго компаратора, выв. 16 нужно заземлить, а на выв. 15 подать небольшое напряжение. В некоторых БП это уже сделано – так что не торопитесь резать эти цепи! В моём БП в штатной схеме на выв. 15 было уже подано +5 В, а выв. 16 остался заземлён через резистор 6,2 кОм от бывшего делителя.

Пробное включение в сеть производите через лампу накаливания 220 В 100 Вт, включенную вместо предохранителя. Это позволит избежать выхода из строя силовых транзисторов. В случае превышения тока, лампа просто зажжётся, сохранив дорогостоящие транзисторы. Естественно, БП запитанный через лампочку не позволит нагрузить его, так что испытание под нагрузкой нужно производить уже без лампочки.

Сделайте пробное включение. Если БП не запускается, то проверяйте сначала наличие напряжения 300…310 В на конденсаторах сетевого выпрямителя, затем наличие напряжения питания +12 В (или выше), которое поступает от источника дежурного напряжения на вывод 12 TL494, и затем отсутствие напряжения на выв. 4 – если оно там присутствует, то значит, защита запрещает работу ШИМ. Если ошибок нет – то выходное напряжение будет плавно регулироваться потенциометром в диапазоне от 0 до 20…21 В. Если это так, то можно отключать лампочку, ставить предохранитель обратно и переходить к испытаниям БП под нагрузкой.

Но сначала позаботьтесь об охлаждении силовых элементов! Вентилятор можно расположить сбоку от радиаторов, что бы он их хорошо продувал. Питание на вентилятор можно взять от дежурного источника (с выхода выпрямителя, питающего TL494), убедившись, что там, около 12 В.

В качестве нагрузки БП я использую толстую (около 1 мм) нихромовую проволоку, подсоединяясь к ней «крокодилами». Сопротивление меняю – изменяя расстояние между точками подключения – получается классический реохорд. Достаточно 2 м длины. Проволока будет накаляться (иногда докрасна) – так что позаботьтесь, чтобы она свободно висела не соприкасалась с окружающими предметами. При нагрузках более 10 А, я использую две сложенные вместе проволоки.

Нагружайте БП постепенно, контролируя напряжение и ток! Следите за нагревом силовых элементов. Лучший вариант – когда при предельных мощностях радиатор с силовыми транзисторами, радиатор с выпрямительными диодами и дроссель на кольце нагреваются примерно в равной степени. Не забывайте, что радиатор силовых транзисторов находится под потенциалом сети питания!

Подавляющее большинство компьютерных БП тянет ток 10 А при напряжении 20 В, т.е. 200 Вт мощности по бывшей 12V обмотке. Лучший вариант – контролировать осциллографом скважность импульсов на вторичной обмотке. Пределом следует считать примерно 90% заполнение (не бойтесь, 100% не даст выставить логика работы TL494). У моего БП предельная мощность по этой обмотке составила 250 Вт. Порог срабатывания защиты я настроил на 220…230 Вт.

Нагрев элементов был не столь существенный и я пошёл дальше. Попробовал нагрузить БП током 20 А при напряжении 10 В (те же 200 Вт) – диоды выпрямителя и дроссель стали греться больше, но терпимо. И тогда я решил сделать предел регулировки тока 20 А. Это позволит в диапазоне выходных напряжений от 0 до 10 В нагружать БП током 20 А. Выше этого напряжения предельный ток будет спадать (это ограничит нам схема защиты по перегрузке) до уровня 10 А при 20 В. Например, при напряжении 14 В блок может отдать в нагрузку ток 16 А, что очень заманчиво!

Многие жалуются на треск и писк, при определённых напряжениях и токах нагрузки. Испытывая БП на различных нагрузках я тоже с этим столкнулся и решил глубже изучить этот вопрос.

Писк – это самовозбуждение в петле регулировки выходного напряжения: от выходной «+» клеммы, до выв. 1 TL494 (включая внутренний компаратор в ней, т.е. как бы до выв. 3 TL494). Самовозбуждение проявляется появлением пульсаций напряжения на выходных клеммах БП, что прекрасно видно осциллографом. Прежде всего, это связано с цепочками отрицательной обратной связи (ООС) между выв. 2 и 3 и выв. 15 и 3, которые определяют коэффициент усиления в петле регулировки. В своей первой конструкции я оттуда выбросил резисторы, а зря!

Нужно сохранить штатную цепочку между выв. 2 и 3 TL494. У меня в старой схеме (конденсатор 0,1 мкФ) не лучший вариант, нужно поставить туда конденсатор в районе 0,022…0,047 мкФ и резистор 33…68 кОм, включенные последовательно. Резистор нужно подобрать по минимуму самовозбуждения (писка). Вместо резистора я ставил подстроечный 100 кОм, и загоняя БП в режим максимального «писка» (подбирая сочетание выходного напряжения и тока нагрузки БП), меняя сопротивление этого резистора находил минимум (проще смотреть осциллографом амплитуду пульсаций на выходе БП). У меня, например, идеальная цепочка получилась при сочетании 0,033 мкФ и 43 кОм.

Позднее, аналогично я подобрал и номиналы в петле ООС регулировки тока – RC цепочку между выв. 15 и 3 TL494. У меня идеальная цепочка получилась при сочетании 0,15 мкФ и 4,7 кОм. Конденсаторы этих цепочек должны отличаться по ёмкости, иначе, при одинаковых цепочках, появляется самовозбуждение на границе перехода из режима стабилизации напряжения в режим стабилизации тока – компараторы внутри TL494 начинают как бы «бороться» между собой, кому из них регулировать напряжение на выходе.

Также причиной самовозбуждения являются просадки напряжения по проводнику массы на плате между выпрямителем выходного напряжения и минусом питания TL494. Пробуйте соединить короткой толстой перемычкой (провод сечением не менее 1,5 мм²) средний вывод вторичной обмотки трансформатора (косичку), сидящий на земле, с землёй вблизи выв. 7 микросхемы TL494. Также точка, куда припаивается провод земли от переменных резисторов регулировки напряжения и тока должна быть выбрана вблизи выв. 7. Проверку лучше делать прямо на ходу: берёте кусок провода сечением 2,5 мм² длиной сантиметров 10-12, изгибаете дугой и пробуете соединять эти точки между собой.

Ну и третье – это наводки на провода цепи регулировки выходного напряжения от трансформатора – попробуйте повесить конденсатор 0,01 мкФ между выв. 2 и 7 (земля). Делайте именно в этом порядке! Т.к. иногда, установка перемычки, например, полностью убирает самовозбуждение, и после этого RC цепочку ООС уже не подобрать по минимуму.

В итоге я снизил размах пульсаций при токе нагрузки 10 А и напряжении 20 В в режиме стабилизации напряжения ниже 5 мВ, и в режиме стабилизации тока ниже 15 мВ. Это очень высокие показатели!

После испытания БП можно переходить к сборке платы управления. В первом варианте я отказался от использования дифференциального усилителя в петле регулировки тока, дабы уменьшить количество проводов. А зря! Коэффициент стабилизации тока оказался невысоким, плюс падение напряжения на проводах земли дополнительно вносило погрешность. Поэтому в новой схеме я включил оба операционных усилителя (ОУ) по дифференциальной схеме. Требования к типу ОУ остаются прежними, как написано в первой статье.

Усилитель в цепи регулировки напряжения (DA1.1) остался неизменным. При указанных номиналах резисторов (R1=R3 и R2=R4) предел регулировки напряжения соответствует 20,0 В. Для точной работы дифференциального усилителя нужно сохранять равенство этих сопротивлений в парах. Резисторы с номиналом 4,9 кОм составлены из двух, включенных последовательно (например, 3,9 и 1 кОм, или 4,7 кОм и 200 Ом и т.п.).

Усилитель в цепи регулировки тока собран по аналогичной дифференциальной схеме включения ОУ (DA1.2), что требует подключения его входов отдельными тонкими проводами непосредственно к клеммам шунта. Амперметр я использовал прежний SAH0012R-50, поэтому шунт остался точно таким же 75ШИП1-50-0.5 с сопротивлением 1,5 миллиОма. При этом шунте и указанных в схеме номиналах резисторов (R5=R7 и R6=R8) предел регулировки тока составляет 20 А. Чтобы уменьшить предел регулировки тока до 10 А нужно уменьшить сопротивление резисторов R5, R7 до 110 Ом. В случае использования амперметра с другим шунтом, отличающимся по сопротивлению, чтобы задать верхний предел регулировки тока, потребуется изменить сопротивление резисторов R5 и R7 (или R6 и R8), сохраняя равенство их сопротивлений между собой.

Индикацию перехода в режим стабилизации тока я перенёс в цепь регулировки напряжения, поменяв входы компаратора (DA1.4) между собой. В принципе – это не принципиально…

Как и в прошлой конструкции, переменные резисторы регулировки напряжения и тока (R10 и R11), а также R12–R14, C2 и C3 расположены на отдельной плате, расположенной на передней панели корпуса. Файл платы в формате Sprint-Layout можно скачать от сюда. Цепочки C4, R15 (штатная) и C5, R16 расположены на плате БП вблизи микросхемы TL494. Остальное расположено на отдельной плате, которую можно скачать от сюда. Монтаж выполнен на SMD элементах.

Хочу ещё раз подчеркнуть, что питание и землю на схему управления нужно брать от точек на плате БП в непосредственной близости от выв. 12 и 7 TL494. Земля к переменным резисторам регулировки тока и напряжения на передней панели также должна браться вблизи выв. 7 TL494. Корпус переменных резисторов должен быть заземлён.

Дежурный источник питания

Теперь поговорим о внутреннем питании ШИМ, платы управления, вольтметра, амперметра и вентилятора. В принципе, суммарный потребляемый ток этих элементов не высокий – его прекрасно потянет дежурный источник питания. Но нужно учитывать импульсный характер нагрузки, который имеет, прежде всего, вентилятор, и измерительные приборы (за счёт динамического режима работы светодиодных цифровых индикаторов). Пульсации в цепи питания ШИМ и платы управления нам ни к чему, поэтому их нужно развязать между собой.

Я пошёл ещё дальше: дежурный источник питания имеет два выхода: стабилизированный +5V_SB и второй, напряжением около 12 В, который стабилизирован параметрически (косвенно). Первый нам не нужен, а используется, как раз второй! Поэтому я перенёс цепи стабилизации напряжения с выхода +5V_SB на второй выход и настроил их на напряжение 12 В. (Если вам нужно для каких-либо целей +5 В, то можно установить интегральный стабилизатор LM7805 от этой цепи.)

Утилиты и справочники.

cables.zip – Разводка кабелей – Справочник в формате .chm. Автор данного файла – Кучерявенко Павел Андреевич. Большинство исходных документов были взяты с сайта pinouts.ru – краткие описания и распиновки более 1000 коннекторов, кабелей, адаптеров. Описания шин, слотов, интерфейсов. Не только компьютерная техника, но и сотовые телефоны, GPS-приемники, аудио, фото и видео аппаратура, игровые приставки и др. техника.

Конденсатор 1.0 – Программа предназначена для определения ёмкости конденсатора по цветовой маркировке (12 типов конденсаторов).

Transistors.rar – База данных по транзисторам в формате Access.

Блоки питания.

Разводка для разъемов блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов:

Таблица контактов 24-контактного разъема блока питания стандарта ATX (ATX12V) с номиналами и цветовой маркировкой проводов

Конт Обозн Цвет Описание
1 3.3V Оранжевый +3.3 VDC
2 3.3V Оранжевый +3.3 VDC
3 COM Черный Земля
4 5V Красный +5 VDC
5 COM Черный Земля
6 5V Красный +5 VDC
7 COM Черный Земля
8 PWR_OK Серый Power Ok – Все напряжения в пределах нормы. Это сигнал формируется при включении БП и используется для сброса системной платы.
9 5VSB Фиолетовый +5 VDC Дежурное напряжение
10 12V Желтый +12 VDC
11 12V Желтый +12 VDC
12 3.3V Оранжевый +3.3 VDC
13 3.3V Оранжевый +3.3 VDC
14 -12V Синий -12 VDC
15 COM Черный Земля
16 /PS_ON Зеленый Power Supply On. Для включения блока питания нужно закоротить этот контакт на землю ( с проводом черного цвета).
17 COM Черный Земля
18 COM Черный Земля
19 COM Черный Земля
20 -5V Белый -5 VDC (это напряжение используется очень редко, в основном, для питания старых плат расширения.)
21 +5V Красный +5 VDC
22 +5V Красный +5 VDC
23 +5V Красный +5 VDC
24 COM Черный Земля

typical-450.gif – типовая схема блока питания на 450W с реализацией active power factor correction (PFC) современных компьютеров.

ATX 300w .png – типовая схема блока питания на 300W с пометками о функциональном назначении отдельных частей схемы.

ATX-450P-DNSS.zip – Схема блока питания API3PCD2-Y01 450w производства ACBEL ELECTRONIC (DONGGUAN) CO. LTD.

AcBel_400w.zip – Схема блока питания API4PC01-000 400w производства Acbel Politech Ink.

Alim ATX 250W (.png) – Схема блока питания Alim ATX 250Watt SMEV J.M. 2002.

atx-300p4-pfc.png – Схема блока питания ATX-300P4-PFC ( ATX-310T 2.03 ).

ATX-P6.gif – Схема блока питания ATX-P6.

ATXPower.rar – Схемы блоков питания ATX 250 SG6105, IW-P300A2, и 2 схемы неизвестного происхождения.

GPS-350EB-101A.pdf – Схема БП CHIEFTEC TECHNOLOGY 350W GPS-350EB-101A.

GPS-350FB-101A.pdf – Схема БП CHIEFTEC TECHNOLOGY 350W GPS-350FB-101A.

ctg-350-500.png – Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P

ctg-350-500.pdf – Chieftec CTG-350-80P, CTG-400-80P, CTG-450-80P и CTG-500-80P

cft-370_430_460.pdf – Схема блоков питания Chieftec CFT-370-P12S, CFT-430-P12S, CFT-460-P12S

gpa-400.png – Схема блоков питания Chieftec 400W iArena GPA-400S8

GPS-500AB-A.pdf – Схема БП Chieftec 500W GPS-500AB-A.

GPA500S.pdf – Схема БП CHIEFTEC TECHNOLOGY GPA500S 500W Model GPAxY-ZZ SERIES.

cft500-cft560-cft620.pdf – Схема блоков питания Chieftec CFT-500A-12S, CFT-560A-12S, CFT-620A-12S

aps-550s.png – Схема блоков питания Chieftec 550W APS-550S

gps-650_cft-650.pdf – Схема блоков питания Chieftec 650W GPS-650AB-A и Chieftec 650W CFT-650A-12B

ctb-650.pdf – Схема блоков питания Chieftec 650W CTB-650S

ctb-650_no720.pdf – Схема блоков питания Chieftec 650W CTB-650S Маркировка платы: NO-720A REV-A1

aps-750.pdf – Схема блоков питания Chieftec 750W APS-750C

ctg-750.pdf – Схема блоков питания Chieftec 750W CTG-750C

cft-600_850.pdf – Схема блоков питания Chieftec CFT-600-14CS, CFT-650-14CS, CFT-700-14CS, CFT-750-14CS

cft-850g.pdf – Схема блока питания Chieftec 850W CFT-850G-DF

cft-1000_cft-1200.pdf – Схема блоков питания Chieftec 1000W CFT-1000G-DF и Chieftec 1200W CFT-1200G-DF

colors_it_330u_sg6105.gif – Схема БП NUITEK (COLORS iT) 330U (sg6105).

330U (.png) – Схема БП NUITEK (COLORS iT) 330U на микросхеме SG6105 .

350U.pdf – Схема БП NUITEK (COLORS iT) 350U SCH .

350T.pdf – Схема БП NUITEK (COLORS iT) 350T .

400U.pdf – Схема БП NUITEK (COLORS iT) 400U .

500T.pdf – Схема БП NUITEK (COLORS iT) 500T .

600T.pdf – Схема БП NUITEK (COLORS iT) ATX12V-13 600T (COLORS-IT – 600T – PSU, 720W, SILENT, ATX)

codegen_250.djvu – Схема БП Codegen 250w mod. 200XA1 mod. 250XA1.

codegen_300x.gif – Схема БП Codegen 300w mod. 300X.

PUh500W.pdf – Схема БП CWT Model PUh500W .

Dell-145W-SA145-3436.png – Схема блока питания Dell 145W SA145-3436

Dell-160W-PS-5161-7DS.pdf – Схема блока питания Dell 160W PS-5161-7DS

Dell_PS-5231-2DS-LF.pdf – Схема блока питания Dell 230W PS-5231-2DS-LF (Liteon Electronics L230N-00)

Dell_PS-5251-2DFS.pdf – Схема блока питания Dell 250W PS-5251-2DFS

Dell_PS-5281-5DF-LF.pdf – Схема блока питания Dell 280W PS-5281-5DF-LF модель L280P-01

Dell_PS-6311-2DF2-LF.pdf – Схема блока питания Dell 305W PS-6311-2DF2-LF модель L305-00

Dell_L350P-00.pdf – Схема блока питания Dell 350W PS-6351-1DFS модель L350P-00

Dell_L350P-00_Parts_List.pdf – Перечень деталей блока питания Dell 350W PS-6351-1DFS модель L350P-00

deltadps260.ARJ – Схема БП Delta Electronics Inc. модель DPS-260-2A.

delta-450AA-101A.pdf – Схема блока питания Delta 450W GPS-450AA-101A

delta500w.zip – Схема блока питания Delta DPS-470 AB A 500W

DTK-PTP-1358.pdf – Схема блока питания DTK PTP-1358.

DTK-PTP-1503.pdf – Схема блока питания DTK PTP-1503 150W

DTK-PTP-1508.pdf – Схема блока питания DTK PTP-1508 150W

DTK-PTP-2001.pdf – Схема БП DTK PTP-2001 200W.

DTK-PTP-2005.pdf – Схема БП DTK PTP-2005 200W.

DTK PTP-2007 .png – Схема БП DTK Computer модель PTP-2007 (она же – MACRON Power Co. модель ATX 9912)

DTK-PTP-2007.pdf – Схема БП DTK PTP-2007 200W.

DTK-PTP-2008.pdf – Схема БП DTK PTP-2008 200W.

DTK-PTP-2028.pdf – Схема БП DTK PTP-2028 230W.

DTK_PTP_2038.gif – Схема БП DTK PTP-2038 200W.

DTK-PTP-2068.pdf – Схема блока питания DTK PTP-2068 200W

DTK-PTP-3518.pdf – Схема БП DTK Computer model 3518 200W.

DTK-PTP-3018.pdf – Схема БП DTK DTK PTP-3018 230W.

DTK-PTP-2538.pdf – Схема блока питания DTK PTP-2538 250W

DTK-PTP-2518.pdf – Схема блока питания DTK PTP-2518 250W

DTK-PTP-2508.pdf – Схема блока питания DTK PTP-2508 250W

DTK-PTP-2505.pdf – Схема блока питания DTK PTP-2505 250W

EC mod 200x (.png) – Схема БП EC model 200X.

FSP145-60SP.GIF – Схема БП FSP Group Inc. модель FSP145-60SP.

fsp_atx-300gtf_dezhurka.gif – Схема источника дежурного питания БП FSP Group Inc. модель ATX-300GTF.

fsp_600_epsilon_fx600gln_dezhurka.png – Схема источника дежурного питания БП FSP Group Inc. модель FSP Epsilon FX 600 GLN.

green_tech_300.gif – Схема БП Green Tech. модель MAV-300W-P4.

HIPER_HPU-4K580.zip – Схемы блока питания HIPER HPU-4K580 . В архиве – файл в формате SPL (для программы sPlan) и 3 файла в формате GIF – упрощенные принципиальные схемы: Power Factor Corrector, ШИМ и силовой цепи, автогенератора. Если у вас нечем просматривать файлы .spl , используйте схемы в виде рисунков в формате .gif – они одинаковые.

iwp300a2.gif – Схемы блока питания INWIN IW-P300A2-0 R1.2.

IW-ISP300AX.gif – Схемы блока питания INWIN IW-P300A3-1 Powerman.
Наиболее распространенная неисправность блоков питания Inwin, схемы которых приведены выше – выход из строя схемы формирования дежурного напряжения +5VSB ( дежурки ). Как правило, требуется замена электролитического конденсатора C34 10мкФ x 50В и защитного стабилитрона D14 (6-6.3 V ). В худшем случае, к неисправным элементам добавляются R54, R9, R37, микросхема U3 ( SG6105 или IW1688 (полный аналог SG6105) ) Для эксперимента, пробовал ставить C34 емкостью 22-47 мкФ – возможно, это повысит надежность работы дежурки.

IP-P550DJ2-0.pdf – схема блока питания Powerman IP-P550DJ2-0 (плата IP-DJ Rev:1.51). Имеющаяся в документе схема формирования дежурного напряжения используется во многих других моделях блоков питания Power Man (для многих блоков питания мощностью 350W и 550W отличия только в номиналах элементов ).

JNC_LC-B250ATX.gif – JNC Computer Co. LTD LC-B250ATX

JNC_SY-300ATX.pdf – JNC Computer Co. LTD. Схема блока питания SY-300ATX

JNC_SY-300ATX.rar – предположительно производитель JNC Computer Co. LTD. Блок питания SY-300ATX. Схема нарисована от руки, комментарии и рекомендации по усовершенствованию.

KME_pm-230.GIF – Схемы блока питания Key Mouse Electroniks Co Ltd модель PM-230W

L & C A250ATX (.png) – Схемы блока питания L & C Technology Co. модель LC-A250ATX

LiteOn_PE-5161-1.pdf – Схема блоков питания LiteOn PE-5161-1 135W.

LiteOn-PA-1201-1.pdf – Схема блоков питания LiteOn PA-1201-1 200W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VW.pdf – Схема блоков питания LiteOn PS-5281-7VW 280W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VR1.pdf – Схема блоков питания LiteOn PS-5281-7VR1 280W (полный комплект документации к БП)

LiteOn_model_PS-5281-7VR.pdf – Схема блоков питания LiteOn PS-5281-7VR 280W (полный комплект документации к БП)

LWT2005 (.png) – Схемы блока питания LWT2005 на микросхеме KA7500B и LM339N

M-tech SG6105 (.png) – Схема БП M-tech KOB AP4450XA.

Macrom Power ATX 9912 .png – Схема БП MACRON Power Co. модель ATX 9912 (она же – DTK Computer модель PTP-2007)

Maxpower 230W (.png) – Схема БП Maxpower PX-300W

MaxpowerPX-300W.GIF – Схема БП Maxpower PC ATX SMPS PX-230W ver.2.03

PowerLink LP-J2-18 (.png) – Схемы блока питания PowerLink модель LP-J2-18 300W.

Power_Master_LP-8_AP5E.gif – Схемы блока питания Power Master модель LP-8 ver 2.03 230W (AP-5-E v1.1).

Power_Master_FA_5_2_v3-2.gif – Схемы блока питания Power Master модель FA-5-2 ver 3.2 250W.

microlab350w.pdf – Схема БП Microlab 350W

microlab_400w.pdf – Схема БП Microlab 400W

linkworld_LPJ2-18.GIF – Схема БП Powerlink LPJ2-18 300W

Linkword_LPK_LPQ.gif – Схема БП Powerlink LPK, LPQ

PE-050187 – Схема БП Power Efficiency Electronic Co LTD модель PE-050187

ATX-230.pdf – Схема БП Rolsen ATX-230

SevenTeam_ST-230WHF (.png) – Схема БП SevenTeam ST-230WHF 230Watt

hpc-360-302.zip – Схема БП SIRTEC INTERNATIONAL CO. LTD. HPC-360-302 DF REV:C0 заархивированный документ в формате .PDF

hpc-420-302.pdf – Схема блока питания Sirtec HighPower HPC-420-302 420W

HP-500-G14C.pdf – Схема БП Sirtec HighPower HP-500-G14C 500W

cft-850g-df_141.pdf – Схема БП SIRTEC INTERNATIONAL CO. LTD. NO-672S. 850W. Блоки питания линейки Sirtec HighPower RockSolid продавались под маркой CHIEFTEC CFT-850G-DF.

SHIDO_ATX-250.gif – Схемы блока питания SHIDO модель LP-6100 250W.

SUNNY_ATX-230.png – Схема БП SUNNY TECHNOLOGIES CO. LTD ATX-230

s_atx06f.png – Схема блока питания Utiek ATX12V-13 600T

Wintech 235w (.png) – Схема блока питания Wintech PC ATX SMPS модель Win-235PE ver.2.03

Схемы блоков питания для ноутбуков.

EWAD70W_LD7552.png – Схема универсального блока питания 70W для ноутбуков 12-24V, модель SCAC2004, плата EWAD70W на микросхеме LD7552.

KM60-8M_UC3843.png – Схема блока питания 60W 19V 3.42A для ноутбуков, плата KM60-8M на микросхеме UC3843.

ADP-36EH_DAP6A_DAS001.png – Схема блока питания Delta ADP-36EH для ноутбуков 12V 3A на микросхеме DAP6A и DAS001.

LSE0202A2090_L6561_NCP1203_TSM101.png – Схема блока питания Li Shin LSE0202A2090 90W для ноутбуков 20V 4.5A на микросхеме NCP1203 и TSM101, АККМ на L6561.

ADP-30JH_DAP018B_TL431.png – Схема блока питания ADP-30JH 30W для ноутбуков 19V 1.58A на микросхеме DAP018B и TL431.

ADP-40PH_2PIN.jpg – Схема блока питания Delta ADP-40PH ABW

Delta-ADP-40MH-BDA-OUT-20V-2A.pdf – Ещё один вариант схемы блока питания Delta ADP-40MH BDA на чипах DAS01A и DAP8A.

PPP009H-DC359A_3842_358_431.png – Схема блока питания HP Compaq CM-0K065B13-LF 65W для ноутбуков 18.5V 3.5A, модель PPP009H-DC359A на микросхемах UC3842 и LM358.

NB-90B19-AAA.jpg – Схема блока питания NB-90B19-AAA 90W для ноутбуков 19V 4.74A на TEA1750.

PA-1121-04.jpg – Схема блока питания LiteOn PA-1121-04CP на микросхеме LTA702.

Delta_ADP-40MH_BDA.jpg – Схема блока питания Delta ADP-40MH BDA (Part No:S93-0408120-D04) на микросхеме DAS01A, DAP008ADR2G.

LiteOn_LTA301P_Acer.jpg – Схема блока питания LiteOn 19V 4.74A на LTA301P, 103AI, PFC на микросхемах TDA4863G/FAN7530/L6561D/L6562D.

ADP-90SB_BB_230512_v3.jpg – Схема блока питания Delta ADP-90SB BB AC:110-240v DC:19V 4.7A на микросхеме DAP6A, DSA001 или TSM103A

Delta-ADP-90FB-EK-rev.01.pdf – Схема блоков питания Delta ADP-90FB AC:100-240v DC:19V 4.74A на микросхеме L6561D013TR, DAP002TR и DAS01A.

PA-1211-1.pdf – Схема блока питания LiteOn PA-1211-1 на LM339N, L6561, UC3845BN, LM358N.

Li-Shin-LSE0202A2090.pdf – Схема блоков питания Li Shin LSE0202A2090 AC:100-240v DC:20V 4.5A 90W на микросхемах L6561, NCP1203-60 и TSM101.

GEMBIRD-model-NPA-AC1.pdf – Схема универсального блока питания Gembird NPA-AC1 AC:100-240v DC:15V/16V/18V/19V/19.5V/20V 4.5A 90W на микросхеме LD7575 и полевом транзисторе MDF9N60.

ADP-60DP-19V-3.16A.pdf – Схема блоков питания Delta ADP-60DP AC:100-240v DC:19V 3.16A на микросхеме TSM103W (он же M103A) и I6561D.

Delta-ADP-40PH-BB-19V-2.1A.jpg – Схема блоков питания Delta ADP-40PH BB AC:100-240v DC:19V 2.1A на микросхеме DAP018ADR2G и полевом транзисторе STP6NK60ZFP.

Asus_SADP-65KB_B.jpg – Схема блоков питания Asus SADP-65KB B AC:100-240v DC:19V 3.42A на микросхеме DAP006 (DAP6A или NCP1200) и DAS001 (TSM103AI).

Asus_PA-1900-36_19V_4.74A.jpg – Схема блоков питания Asus PA-1900-36 AC:100-240v DC:19V 4.74A на микросхеме LTA804N и LTA806N.

Asus_ADP-90CD_DB.jpg – Схема блоков питания Asus ADP-90CD DB AC:100-240v DC:19V 4.74A на микросхеме DAP013D и полевике 11N65C3.

PA-1211-1.pdf – Схема блоков питания Asus ADP-90SB BB AC:100-240v DC:19V 4.74A на микросхеме DAP006 (она же DAP6A) и DAS001 (она же TSM103AI).

LiteOn-PA-1900-05.pdf – Схема блока питания LiteOn PA-1900/05 AC:100-240v DC:19V 4.74A на LTA301P и 103AI, транзистор PFC 2SK3561, транзистор силовой 2SK3569.

LiteOn-PA-1121-04.pdf – Схема блока питания LiteOn PA-1121-04 AC:100-240v DC:19V 6.3A на LTA702, транзистор PFC 2SK3934, транзистор силовой SPA11N65C3.

Прочее оборудование.

monpsu1.gif – типовая схема блоков питания мониторов SVGA с диагональю 14-15 дюймов.

sch_A10x.pdf – Схема планшетного компьютера («планшетника») Acer Iconia Tab A100 (A101).

HDD SAMSUNG.rar – архив с обширной подборкой документации к HDD Samsung

HDD SAMSUNG M40S – документация к HDD Samsung серии M40S на английскомязыке.

sonyps3.jpg – схема блока питания к Sony Playstation 3.

APC_Smart-UPS_450-1500_Back-UPS_250-600.pdf – инструкции по ремонту источников бесперебойного питания производства APC на русском языке. Принципиальные схемы многих моделей Smart и Back UPS.

Silcon_DP300E.zip – эксплуатационная документация на UPS Silcon DP300E производства компании APC

symmetra-re.pdf – руководство по эксплуатации UPS Symmetra RM компании APC.

symmetrar.pdf – общие сведения и руководство по монтажу UPS Symmetra RM компании APC (на русском языке).

manuals_symmetra80.pdf – эксплуатационная документация на Symmetra RM UPS 80KW, высокоэффективную систему бесперебойного питания блочной конфигурации, конструкция которой обеспечивает питание серверов высокой готовности и другого ответственного электронного оборудования.

APC-Symmetra.zip – архив с эксплуатационной документацией на Symmetra Power Array компании APC

Smart Power Pro 2000.pdf – схема ИБП Smart Power Pro 2000.

BNT-400A500A600A.pdf – Схема UPS Powercom BNT-400A/500A/600A.

ml-1630.zip – Документация к принтеру Samsung ML-1630

splitter.arj – 2 принципиальные схемы ADSL – сплиттеров.

KS3A.djvu – Документация и схемы для 29″ телевизоров на шасси KS3A.

Если вы желаете поделиться ссылкой на эту страницу в своей социальной сети, пользуйтесь кнопкой «Поделиться»

характеристика, схемы, как сделать своими руками

Автор Andrey Ku На чтение 8 мин Опубликовано

Трансформаторный блок питания на 12В используется для преобразования сетевого напряжения до уровня необходимого для работы определенного устройства. Сегодня в данной разновидности блоков питания устанавливаются системы предохранения от резких скачков напряжения, коротких замыканий и для нормализации высокочастотных помех. Конструкция обладает надежностью при сравнительной простоте и низкой стоимости. Блок питания с трансформаторным типа можно самостоятельно сконструировать и собрать в домашних условиях.

Устройство и принцип работы

От обычного блока питания трансформаторный отличается наличием понижающего устройства, который позволяет снизить подаваемое в сети напряжение с 220В до 12В. Также в этих устройствах используется выпрямитель, который изготавливают из 1, 2 или 4 диодов полупроводникового типа – в зависимости от разновидности схемы.

В блоках питания этой категории используются трансформаторы в которых используется три основных компонента:

  • Сердечник специального сплава металлов или из ферромагнетика;
  • Сетевая первичная обмотка которая питается от 220В;
  • Вторичную обмотку применяют с понижающим действием – к ней подключается выпрямитель.

В остальном данный блок совпадает по принципу работы, строению и устройству с обычным блоком питания. Благодаря этому есть возможность подключать устройства различных категорий.

Применяемый выпрямитель определяется схематическим устройством, которое зависит от того, до каких значений нужно довести уровень напряжения. Например, в случае удвоения напряжения, используется два полупроводника. После проводника необходимо в устройстве конструкции использовать электролитический конденсатор.

Общая структура

Структурная схема блока питания с трансформаторным действием имеет следующий тип:

При этом в некоторых зарядных устройствах трансформаторного типа не используются последние два элемента. По сути основными являются трансформатор и выпрямитель, именно они отвечают за снижение напряжения, но фильтр и стабилизатор обеспечивают дополнительную защиту и регулировку значений в подаваемом на устройство напряжении.

На рынке электроники сегодня наиболее популярными являются однополярные трансформаторные блоки питания. Схема данного устройства выглядит следующим образом:

О конструкции самого трансформатора и принципах его работы поговорим далее. Двухполюсный блок питания данной категории имеет следующую схему:

В отличии от первой схемы, в этой применяется трансформатор с одинаковыми парными вторичными обмотками, которые последовательно соединяются.

Трансформатор

Один из основных элементов конструкции трансформатора – сердечник. В блоках питания он может быть Ш-образный либо U-образный, в редких случаях применяются тороидальные сердечники. На них располагаются трансформаторные обмотки из двух слоев: вторичная поверх первичной.

Конструкция

При сборке конструкции используется специальная формула, которая позволяет вычислить необходимые габариты трансформатора:

(1/N)~F*S*B

В этой формуле используются следующие значения:

  • N – число витков на 1 вольт;
  • F – уровень частоты в переменном напряжении;
  • S – сечение магнитопровода;
  • B – индукция магнитного поля в магнитопроводе.

Таким образом можно вычислить конструктивные особенности трансформатора. В трансформаторных блоках питания применяются тороидальные, стержневые и броневые виды обмоток.

Их внешний вид представлен на картинке ниже:

Для расчета вторичной обмотки можно использовать следующий прием. Наматывается 10 витков, собирается трансформатор и с соблюдением техники безопасности, стандартным методом первичная обмотка подключается к электросети. Затем производятся замеры уровня напряжения на выводе из вторичной обмотки. Полученные значения делятся на 10, после этого 12 делится на 10. Так определяется число витков необходимое для выработки напряжения в 12В.

Принцип работы

Трансформатор на этой разновидности блока питания позволяет преобразовывать напряжение в 220В получаемое из обычной электросети до необходимого уровня напряжения для определенного устройства.

Генератором электромагнитных полей выступает проводник через который проходит переменный ток, а благодаря тому, что на трансформаторе он смотан в катушку его действие производится более плотно. Согласно закону электромагнитной индукции переменное поле наводится во вторичной обмотке.

Выбор напряжения

Необходимое напряжение определяется устройством, для питания которого будет использоваться блок питания. Можно использовать напряжение в 12В, 3.3В, 5В и 9В. Это самые популярные значения напряжения на выходе, при этом оно может иметь и другие значения. Все зависит от конструкции трансформатора, количества обмоток и размер сечения, используемого магнитопровода.

12В

Блок питания с напряжением на выходе в 12В широко используются в быту с конца прошлого столетия. Их применяют для питания котлов отопления, светодиодных лент, игровых устройств, сварочных аппаратов, телевизионных приставок и различных бытовых приборов.

3.3 В

Блоки с напряжением этого уровня используются преимущественно в персональных компьютерах, но могут использоваться и для подзарядки других устройств, например, в сварочных аппаратах.

Данный вид трансформаторных блоков питания также используется для обеспечения питания компьютеров и серверов.

Эта разновидность блоков для питания устройств широко применяется для работы со строительной техникой и различных бытовых устройств. Например, им подпитывается дрель, болгарка или перфоратор.

Выпрямитель

В трансформаторном блоке питания используется обычно мостовой выпрямитель с одним, двумя или четырьмя диодами.

Используем мостовую схему выпрямления

Использование мостового выпрямителя показано на данной схеме:

Как работает

Принцип работы у выпрямителя мостового типа следующий: во время течения в полупериоде, электрический ток идет через два диода, которые включены в прямом направлении. Это позволяет конденсатору получать напряжение с пульсацией в два раза большей частотой от питания.

Выше представлена схема как использовать выпрямитель мостового типа в конструкции. Чтобы понять, как работает выпрямитель с постоянным и переменным напряжением мостового типа можно использовать для ознакомления данную схему:

Треугольники на схеме – это диоды, которые позволяют работать мостовому выпрямителю.

Как спаять

Для спайки мостового выпрямителя следует использовать следующую схему:

Фильтр

В блоках трансформаторного типа фильтрация и отсечение переменных, составляющих являются обязательными. С этой целью в данных устройствах используются электролитические конденсаторы с большой емкостью.

Назначение

Электролитический конденсатор, выполняющий роль фильтра в этих устройствах используется как при работе блока с постоянным, так и переменным напряжением. Но в некоторых случаях выбор конденсатора может быть другим.

Выбор конденсатора

Для трансформаторных блоков питания подбирается конденсатор согласно уровню напряжения, с которым он работает. При постоянном напряжении вместо электролитного конденсатора можно использовать постоянный резистор, а при переменном напряжении обычной перемычкой, так как конденсатор становится проводником.

Как правильно подключать

Чтобы при самостоятельной сборке трансформаторного блока питания на 12В конденсаторы правильно работали, на выходе устройство укомплектовывается резистором с сопротивлением от 3 до 5 Мом.

Стабилизатор напряжения или тока

Источник питания стандартного типа собирается с использованием электролитического конденсатора с емкостью не более 10000 мкФ, двухполупериодного выпрямителя мостового типа из диодов с обратным напряжением в 50 вольт и прямым током 3А, а также с предохранителем 0,5А. В роли интегрального стабилизатора напряжения на 12В используется конденсатор 7912, либо 7812.

Стабилитрон

Для постоянства напряжения при выходе из блока питания рекомендуется использовать стабилитрон.

Интегральный стабилизатор напряжения

Без использования стабилизатора напряжения блок питания не сможет правильно функционировать. В роли этих компонентов используются конденсаторы серий LM 78xx и LM 79xx. Стабилитроны подбираются по подходящей величине параметров тока и напряжения, на рынке их большое множество, но самым продвинутым считается элемент типа КР142ЕН12.

Чем больше емкость конденсатора, тем лучше уровень сигнала на выходе, он имеет правильную форму и стремится к прямой линии.

Серия LM 78xx

Данные регуляторы напряжения имеют выходной ток до 1А, и выходное напряжение: 5, 6, 8, 9, 12, 15, 18, 24. Кроме того в этих конденсаторах есть тепловая защита от перегрузок и защита от коротких замыканий.

Серия LM 79xx

Эти регуляторы напряжения имеют значения схожие с серией 78xx. В них также реализована тепловая защита от больших перегрузок и защита от замыканий.

Вспомогательные узлы

В конструкции можно реализовать вспомогательные узлы, например, индикаторы или переключатели напряжения. Главное не переусердствовать и делать устройство согласно всем нормам и рекомендациям.

Индикаторные светодиоды

В конструкции можно продумать светодиодные индикаторы, которые применяются в заводских блоках и подзарядных устройствах. Светодиоды служат сигнализатором о том, что полезная работа трансформатора производится и напряжение соответствует требуемому значению.

Амперметр и вольтметр

Для произведения расчетов и подбора элементов, а также для правильной сборки блока питания необходимо использовать амперметр и вольтметр.

Схема самодельного источника питания

Схемы как собрать самодельный блок питания трансформаторного типа представлены были выше, но для удобства предлагаем для ознакомления еще одну схему, с понятными обозначениями.

На данной схеме изображен понижающий трансформатор с двумя обмотками и диодный мост для выпрямления.

Это простая схема, которая позволяет собрать самодельный источник питания с трансформатором любому начинающему электрику.

Как паять

Для сборки используется печатная плата из фольгированного диэлектрика. Сначала рисуется схема, затем на заготовку платы наносится рисунок и производится протравка. После этого засверливаются отверстия для крепления каждого элемента схемы блока.

Правила выбора комплектующих

Чтобы сделать своими руками блок питания с трансформатором необходимо правильно подобрать комплектующие. В данной статье мы разобрались как подсчитать значения необходимых элементов устройства, какие трансформаторы, выпрямители и фильтры можно использовать в блока питания этой разновидности. Для удобства предлагаю таблицу ниже, она поможет при выборе комплектующих:

В данной таблице приведены оптимальные значения и соотношения мощности устройства и технических характеристик всех компонентов, используемых в конструкции. Емкость конденсаторов должна обеспечивать заданную пульсацию в расчете 1мкФ на 1Вт в показателях мощности на выходе. Электролитический конденсатор должен выбираться для напряжения от 350В.

Схема простого блока питания для усилителя мощности Phoenix P-400

Изготовление хорошего источника питания для усилителя мощности (УНЧ) или другого электронного устройства — это очень ответственная задача. От того, каким будет источник питания зависит качество и стабильность работы всего устройства.

В этой публикации расскажу о изготовлении не сложного трансформаторного блока питания для моего самодельного усилителя мощности низкой частоты «Phoenix P-400».

Такой, не сложный блок питания можно использовать для питания различных схем усилителей мощности низкой частоты.

Содержание:

  1. Предисловие
  2. Тороидальный трансформатор 
  3. Подбор напряжений для вторичных обмоток
  4. Расчет количества витков и намотка
  5. Схема выпрямителей и стабилизаторов напряжения
  6. Конструкция
  7. Заключение

Предисловие

Для будущего блока питания (БП) к усилителю у меня уже был в наличии тороидальный сердечник с намотанной первичной обмоткой на ~220В, поэтому задача выбора «импульсный БП или на основе сетевого трансформатора» не стояла.

У импульсных источников питания небольшие габариты и вес, большая мощность на выходе и высокий КПД. Источник питания на основе сетевого трансформатора — имеет большой вес, прост в изготовлении и наладке, а также не приходится иметь дело с опасными напряжениями при наладке схемы, что особенно важно для таких начинающих как я. 

Тороидальный трансформатор

Тороидальные трансформаторы, в сравнении с трансформаторами на броневых сердечниках из Ш-образных пластин, имеют несколько преимуществ:

  • меньший объем и вес;
  • более высокий КПД;
  • лучшее охлаждение для обмоток.

Мне оставалось только рассчитать напряжении и количества витков для вторичных обмоток с последующей их намоткой.

Первичная обмотка уже содержала примерно 800 витков проводом ПЭЛШО 0,8мм, она была залита парафином и заизолирована слоем тонкой ленты из фторопласта.

Измерив приблизительные размеры железа трансформатора можно выполнить расчет его габаритной мощности, таким образом можно прикинуть подходит ли сердечник для получения нужной мощности или нет.

Рис. 1. Размеры железного сердечника для тороидального трансформатора.

  • Габаритная мощность (Вт) = Площадь окна (см2) * Площадь сечения (см2)
  • Площадь окна = 3,14 * (d/2)2
  • Площадь сечения = h * ((D-d)/2)

Для примера, выполним расчет трансформатора с размерами железа: D=14см, d=5см, h=5см.

  • Площадь окна = 3,14 * (5см/2) * (5см/2) = 19,625 см2
  • Площадь сечения = 5см * ((14см-5см)/2) = 22,5 см2
  • Габаритная мощность = 19,625 * 22,5 = 441 Вт.

Если вам нужно рассчитать тороидальный трансформатор, то вот небольшая подборка из статей: Скачать (1Мб).

Габаритная мощность используемого мною трансформатора оказалась явно меньшей чем я ожидал — где-то 250 Ватт.

Подбор напряжений для вторичных обмоток

Зная необходимое напряжение на выходе выпрямителя после электролитических конденсаторов, можно приблизительно рассчитать необходимое напряжение на выходе вторичной обмотки трансформатора.

Числовое значение постоянного напряжения после диодного моста и сглаживающих конденсаторов возрастет примерно в 1,3..1,4 раза, по сравнению с переменным напряжением, подаваемым на вход такого выпрямителя.

В моем случае, для питания УМЗЧ нужно двуполярное постоянное напряжение — по 35 Вольт на каждом плече. Соответственно, на каждой вторичной обмотке должно присутствовать переменное напряжение: 35 Вольт / 1,4 = ~25 Вольт.

По такому же принципу я выполнил приблизительный расчет значений напряжения для других вторичных обмоток трансформатора.

Расчет количества витков и намотка

Для питания остальных электронных блоков усилителя было решено намотать несколько отдельных вторичных обмоток. Для намотки катушек медным эмалированным проводом был изготовлен деревянный челнок. Также его можно изготовить из стеклотекстолита или пластмассы.

Рис. 2. Челнок для намотки тороидального трансформатора.

Намотка выполнялась медным эмалированным проводом, который был в наличии:

  • для 4х обмоток питания УМЗЧ — провод диаметром 1,5 мм;
  • для остальных обмоток — 0,6 мм.

Число витков для вторичных обмоток я подбирал экспериментальным способом, поскольку мне не было известно точное количество витков первичной обмотки.

Суть метода:

  1. Выполняем намотку 20 витков любого провода;
  2. Подключаем к сети ~220В первичную обмотку трансформатора и измеряем напряжение на намотанных 20-ти витках;
  3. Делим нужное напряжение на полученное из 20-ти витков — узнаем сколько раз по 20 витков нужно для намотки.

Например: нам нужно 25В, а из 20-ти витков получилось 5В, 25В/5В=5 — нужно 5 раз намотать по 20 витков, то есть 100 витков.

Расчет длины необходимого провода был выполнен так: намотал 20 витков провода, сделал на нем метку маркером, отмотал и измерил его длину. Разделил нужное количество витков на 20, полученное значение умножил на длину 20-ти витков провода — получил приблизительно необходимую длину провода для намотки. Добавив 1-2 метра запаса к общей длине можно наматывать провод на челнок и смело отрезать.

Например: нужно 100 витков провода, длина 20-ти намотанных витков получилась 1,3 метра, узнаем сколько раз по 1,3 метра нужно намотать для получения 100 витков — 100/20=5, узнаем общую длину провода (5 кусков по 1,3м) — 1,3*5=6,5м. Добавляем для запаса 1,5м и получаем длину — 8м.

Для каждой последующей обмотки измерение стоит повторить, поскольку с каждой новой обмоткой необходимая на один виток длина провода будет увеличиваться. 

Для намотки каждой пары обмоток по 25 Вольт на челнок были параллельно уложены сразу два провода (для 2х обмоток). После намотки, конец первой обмотки соединен с началом второй — получились две вторичные обмотки для двуполярного выпрямителя с соединением посередине.

После намотки каждой из пар вторичных обмоток для питания схем УМЗЧ, они были заизолированы тонкой фторопластовой лентой.

Таким образом были намотаны 6 вторичных обмоток: четыре для питания УМЗЧ и еще две для блоков питания остальной электроники.

Схема выпрямителей и стабилизаторов напряжения

Ниже приведена принципиальная схема блока питания для моего самодельного усилителя мощности.

Рис. 2. Принципиальная схема источника питания для самодельного усилителя мощности НЧ.

Для питания схем усилителей мощности НЧ используются два двуполярных выпрямителя — А1.1и А1.2. Остальные электронные блоки усилителя будут питаться от стабилизаторов напряжения А2.1 и А2.2.

Резисторы R1 и R2 нужны для разрядки электролитических конденсаторов, в момент когда линии питания отключены от схем усилителей мощности.

В моем УМЗЧ 4 канала усиления, их можно включать и выключать попарно с помощью выключателей, которые коммутируют линии питания платок УМЗЧ с помощью электромагнитных реле.

Резисторы R1 и R2 можно исключить из схемы если блок питания будет постоянно подключен к платам УМЗЧ, в таком случае электролитические емкости будут разряжаться через схему УМЗЧ.

Диоды КД213 рассчитаны на максимальный прямой ток 10А, в моем случае этого достаточно. Диодный мост D5 рассчитан на ток не менее 2-3А,собрал его из 4х диодов. С5 и С6 — емкости, каждая из которых состоит из двух конденсаторов по 10 000 мкФ на 63В.

Рис. 3. Принципиальные схемы стабилизаторов постоянного напряжения на микросхемах L7805, L7812, LM317.

Расшифровка названий на схеме:

  • STAB — стабилизатор напряжения без регулировки, ток не более 1А;
  • STAB+REG — стабилизатор напряжения с регулировкой, ток не более 1А;
  • STAB+POW — регулируемый стабилизатор напряжения, ток примерно 2-3А.

При использовании микросхем LM317, 7805 и 7812 выходное напряжение стабилизатора можно рассчитать по упрощенной формуле:

Uвых = Vxx * ( 1 + R2/R1 )

Vxx для микросхем имеет следующие значения:

  • LM317 — 1,25;
  • 7805 — 5;
  • 7812 — 12.

Пример расчета для LM317: R1=240R, R2=1200R, Uвых = 1,25*(1+1200/240) = 7,5V.

Конструкция

Вот как планировалось использовать напряжения от блока питания:

Микросхемы и транзисторы стабилизаторов напряжения были закреплены на небольших радиаторах, которые я извлек из нерабочих компьютерных блоков питания. Корпуса крепились к радиаторам через изолирующие прокладки.

Печатная плата была изготовлена из двух частей, каждая из которых содержит двуполярный выпрямитель для схемы УМЗЧ и нужный набор стабилизаторов напряжения.

Рис. 4. Одна половинка платы источника питания.

Рис. 5. Другая половинка платы источника питания.

Рис. 6. Готовые компоненты блока питания для самодельного усилителя мощности.

Позже, при отладке я пришел к выводу что гораздо удобнее было бы изготовить стабилизаторы напряжений на отдельных платах. Тем не менее, вариант «все на одной плате» тоже не плох и по своему удобен.

Также выпрямитель для УМЗЧ (схема на рисунке 2) можно собрать навесным монтажом, а схемы стабилизаторов (рисунок 3) в нужном количестве — на отдельных печатных платах.

Соединение электронных компонентов выпрямителя показано на рисунке 7.

Рис. 7. Схема соединений для сборки двуполярного выпрямителя -36В+36В с использованием навесного монтажа.

Соединения нужно выполнять используя толстые изолированные медные проводники.

Диодный мост с конденсаторами на 1000pF можно разместить на радиаторе отдельно. Монтаж мощных диодов КД213 (таблетки) на один общий радиатор нужно выполнять через изоляционные термо-прокладки (терморезина или слюда), поскольку один из выводов диода имеет контакт с его металлической подкладкой!

Для схемы фильтрации (электролитические конденсаторы по 10000мкФ, резисторы и керамические конденсаторы 0,1-0,33мкФ) можно на скорую руку собрать небольшую панель — печатную плату (рисунок 8).

Рис. 8. Пример панели с прорезями из стеклотекстолита для монтажа сглаживающих фильтров выпрямителя.

Для изготовления такой панели понадобится прямоугольный кусочек стеклотекстолита. С помощью самодельного резака (рисунок 9), изготовленного из ножовочного полотна по металлу, прорезаем медную фольгу вдоль по всей длине, потом одну из получившихся частей разрезаем перпендикулярно пополам.

Рис. 9. Самодельный резак из ножовочного полотна, изготовленный на точильном станке.

После этого намечаем и сверлим отверстия для деталей и крепления, зачищаем тоненькой наждачной бумагой медную поверхность и лудим ее с помощью флюса и припоя. Впаиваем детали и подключаем к схеме.

Заключение

Вот такой, не сложный блок питания был изготовлен для будущего самодельного усилителя мощности звуковой частоты. Останется дополнить его схемой плавного включения (Soft start) и ждущего режима.

UPD: Юрий Глушнев прислал печатную плату для сборки двух стабилизаторов с напряжениями +22В и +12В. На ней собраны две схемы STAB+POW (рис. 3) на микросхемах LM317, 7812 и транзисторах TIP42.

Рис. 10. Печатная плата стабилизаторов напряжения на +22В и +12В.

Скачать — (63 КБ).

Еще одна печатная плата, разработанная под схему регулируемого стабилизатора напряжения STAB+REG на основе LM317:

Рис. 11. Печатная плата для регулируемого стабилизатора напряжения на основе микросхемы LM317.

Скачать — (7 КБ).

Начало цикла статей: Усилитель мощности ЗЧ своими руками ( Phoenix-P400 )

Блок питания

Обзор электроники »Примечания по электронике

— обзор основ электроники в цепях питания с подробным описанием строительных блоков, используемых в источниках питания, и используемых методов.


Руководство по схемам источника питания и руководство Включает:
Обзор электроники источника питания Линейный источник питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


Источники питания — важный элемент во многих элементах электронного оборудования.В то время как некоторые из них работают от батарей, другие нуждаются в источниках питания от сети, а электронная схема и конструкция источника питания имеют первостепенное значение для успешной работы всего оборудования.

Цепи электроники источника питания можно разделить на несколько секций или строительных блоков. Каждый из них важен для работы блока питания в целом, но каждая секция электроники блока питания должна удовлетворительно выполнять свою функцию для успешной работы всего блока.

ВНИМАНИЕ !: Многие источники питания содержат сетевое или линейное напряжение, которое может быть опасным. При работе с этими цепями необходимо соблюдать особую осторожность, поскольку поражение электрическим током может быть смертельным. Только квалифицированный персонал должен иметь дело с внутренней схемой электронных схем источника питания.

Типы блоков питания электроники

Можно использовать три основных типа источников питания. У каждого есть свои преимущества и недостатки, и в результате каждый из них используется в немного разных обстоятельствах.

Три основных типа блоков питания электроники:

  • Выпрямленный и сглаженный источник питания: Эти источники питания для электроники являются простейшими типами и обычно используются для некритических приложений, где производительность не является большой проблемой. Этот тип источника питания широко использовался в оборудовании с термоэмиссионным клапаном или вакуумной трубкой, поскольку регулировать подачу было не так просто, и часто требования не были столь критичными.
  • Линейно-регулируемый источник питания: Этот источник питания для электроники обеспечивает очень высокий уровень производительности.Однако тот факт, что в нем используется последовательный регулирующий элемент, означает, что он может быть сравнительно неэффективным, рассеивая значительную часть входной мощности в виде тепла. Тем не менее, эти источники питания могут обеспечивать очень высокий уровень регулирования с низкими значениями пульсаций и т. Д. . . . . Узнайте больше о линейных источниках питания .
  • Импульсный источник питания: В этой форме источника питания электронные схемы используют коммутационную технологию для регулирования выхода.Хотя на выходе присутствуют пики, они предлагают очень высокий уровень эффективности, и в связи с этим они могут содержаться в гораздо меньших корпусах, чем их линейные эквиваленты. . . . . Узнайте больше о импульсных источниках питания , SMPS.

Различные типы источников питания используются для разных типов приложений в зависимости от их преимуществ. Как таковые, все они широко используются, но в разных областях электроники.

Каждый тип строительного блока и источника питания более подробно описан на других страницах этого веб-сайта.Ссылки на эти страницы можно найти в левой части страницы под главным меню в разделе «Похожие статьи».

Основные блоки электроники блока питания

Источник питания можно разделить на несколько элементов, каждый из которых выполняет функцию в рамках общего источника питания. Естественно, эти области могут быть довольно произвольными и могут незначительно отличаться в зависимости от фактической конструкции источника питания, но их можно предъявить в суд в качестве приблизительного общего руководства.

  • Фильтрация входной мощности: В некоторых случаях необходимо убедиться, что выбросы от линии питания не попадают в источник питания, и что шум, который может создаваться источником питания, не проникает в линии питания.Для этого на входе источника питания размещена схема для удаления шума и ограничения воздействия падающих импульсов. Во многих случаях фильтрация на этом этапе минимальна, хотя для специализированных источников питания могут использоваться более сложные схемы.
  • Входной трансформатор: Если используется источник питания с сетевым / линейным напряжением 110 или 240 вольт переменного тока, то на входе обычно есть трансформатор для преобразования входящего линейного напряжения до уровня, необходимого для конструкции источника питания.
  • Выпрямитель: Необходимо изменить форму волны входящего переменного тока на форму волны постоянного тока. Это достигается с помощью выпрямительной схемы переменного тока. Могут использоваться два типа выпрямительных схем — двухполупериодные и однополупериодные. Они эффективно блокируют часть сигнала в одном смысле и пропускают часть сигнала в другом смысле. Выпрямляющее действие диода
    Примечание по схемам диодного выпрямителя:
    Цепи диодного выпрямителя

    используются во многих областях, от источников питания до радиочастотной демодуляции.В схемах диодного выпрямителя используется способность диода пропускать ток только в одном направлении. Есть несколько разновидностей от полуволнового до двухполупериодного, мостовые выпрямители, пиковые детекторы и многое другое.

    Подробнее о Цепи диодного выпрямителя

  • Сглаживание выпрямителя: Выходной сигнал схемы выпрямителя переменного тока состоит из формы волны, изменяющейся от нуля вольт до 1.В 414 раз больше действующего значения входного напряжения (за вычетом потерь, вносимых выпрямителем). Для того, чтобы это могло использоваться электронными схемами, его необходимо сгладить. Это достигается с помощью конденсатора. Он будет заряжаться в течение части цикла, а затем, когда напряжение упадет, он будет подавать ток в цепь, снова заряжаясь при повышении напряжения. . . . . . Узнайте больше о схемах сглаживания конденсаторов .
  • Регулировка: Даже после того, как выпрямленное напряжение было сглажено, остаточный гул может оставаться значительным.Кроме того, напряжение будет изменяться при потреблении различных уровней тока. Чтобы обеспечить стабильное выходное напряжение от источника питания с небольшим остаточным гудением и шумом, требуется схема регулятора напряжения. Регуляторы могут обеспечивать стабильное напряжение на заданном или переменном уровне в зависимости от требований. Для доведения выходного напряжения до требуемого уровня можно использовать методы линейного или импульсного режима.
  • Защита от перенапряжения: В случае выхода из строя регулятора при некоторых обстоятельствах выходное напряжение источника питания может подняться до уровня, который может повредить схему, на которую подается питание.Для предотвращения этого может использоваться схема защиты от перенапряжения. Этот элемент схемы определяет уровень выходного напряжения, и если оно начинает подниматься выше допустимых пределов, он срабатывает, отключая питание от регулятора и обычно ограничивая выходное напряжение регулятора до нуля вольт, тем самым защищая оставшуюся схему от повреждения.

Не все из этих строительных блоков электроники блока питания используются в каждом блоке питания. Большинство из них будет иметь трансформатор, сглаживание и регулятор, но другие элементы могут быть включены или не включены в зависимости от спецификации.

Характеристики блока питания

При покупке или выборе блока питания необходимо ознакомиться со спецификациями и понять, что они означают. Все, от номинальных значений напряжения и тока до пульсации, регулирования нагрузки, регулирования входного напряжения и т. Д.

. . . . Узнать больше о Технические характеристики и параметры источника питания

Источники питания, просто сглаженные, регулируемые с помощью линейного или импульсного регулятора, широко используются.Подход с использованием импульсного регулятора используется наиболее широко, особенно в компьютерах и очень многих других элементах электронного оборудования. Для этой функции доступно множество ИС, они легкие, эффективные и очень рентабельные.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Возврат в меню проектирования схем.. .

Что такое первичный контур?

Что такое первичный контур?

Первичная цепь относится к входной части изолированного источника питания, подключенной к сети переменного тока. Эта секция источника питания имеет опасные уровни напряжения и не предназначена для прямого доступа пользователей.

В большинстве источников питания первичная цепь начинается на входе сети и заканчивается первичной обмоткой трансформатора.Передача энергии от первичной стороны к вторичной происходит, когда переменный ток, индуцируемый в первичной обмотке трансформатора, индуцирует ЭДС во вторичной обмотке. Количество передаваемой энергии зависит от коэффициента трансформации трансформатора и толщины провода. Отношение относится к количеству первичной обмотки к количеству вторичной обмотки.


Основная первичная и вторичная схема трансформатора — Имиджевый кредит

В большинстве случаев вторичная обмотка имеет меньше витков, чем первичная, поэтому на вторичной обмотке доступно более низкое напряжение по сравнению с первичной обмоткой.Однако в некоторых схемах, таких как приложения сверхвысокого напряжения, такие как источник питания ЭЛТ, больше витков вторичной обмотки, что заставляет обратноходовой трансформатор вырабатывать несколько киловольт.

Первичный преобразователь постоянного тока в переменный ток


В сетевых приложениях переменного тока первичные цепи начинаются от входа питания переменного тока и в основном будут включать предохранитель, устройства защиты от перенапряжения, выпрямитель, емкостные конденсаторы, а затем первичную обмотку трансформатора для линейного преобразователя. Однако SMPS имеет дополнительные компоненты, включая генератор, инвертор и коммутационное устройство.Кроме того, выходная частота инвертора обычно имеет более высокую частоту, примерно 50 кГц, по сравнению с частотой сети 50 или 60 Гц. Высокие частоты требуют меньших трансформаторов и имеют меньшие потери.

В цепях с батарейным питанием с внутренними источниками питания или внешними инверторами, такими как те, которые используются с солнечными энергосистемами, первичная цепь относится к части перед трансформатором. Однако в этом случае повышающий трансформатор используется для увеличения напряжения с 12 вольт постоянного тока и вывода 120 или 240 вольт постоянного тока.

Первичная и вторичная обмотки трансформатора


В большинстве источников питания, будь то линейные или импульсные источники питания, трансформатор выполняет следующие две функции.

  • Понижение сетевого напряжения
  • Обеспечивает изоляцию между сетью и цепью, питаемой от источника питания.

Трансформатор использует магнитную индукцию для передачи мощности с первичной стороны на вторичную, и нет прямого физического соединения между двумя цепями, следовательно, и изоляцией.SMPS должен иметь обратную связь от вторичной к первичной цепи. Это позволяет инвертору настраивать и поддерживать стабильный выходной сигнал. В конструкции используются изоляторы оптопары для обеспечения обратной связи посредством световых сигналов, что предотвращает любой физический контакт между вторичной обмоткой и первичной обмоткой.

Подключение источников питания параллельно или последовательно для увеличения выходной мощности

В некоторых приложениях использования одного источника питания может быть недостаточно для обеспечения мощности, необходимой для нагрузки.Причины использования нескольких источников питания могут включать избыточную работу для повышения надежности или увеличения выходной мощности. При обеспечении комбинированного питания необходимо следить за тем, чтобы все источники питания передавали его сбалансированным образом.

Источники питания, подключенные для резервирования

Резервные источники питания — это топология, в которой выходы нескольких источников питания соединены для повышения надежности системы, но не для увеличения выходной мощности. Резервные конфигурации обычно предназначены для получения выходного тока только от основных источников питания и для получения тока от резервных источников питания в случае отказа одного из основных источников питания.Поскольку потребление тока нагрузки создает нагрузку на компоненты в источнике питания, высокая надежность в системе достигается, когда ток не потребляется от резервных источников до тех пор, пока не возникнет проблема с одним из основных источников питания.

  • Источники питания A и B аналогичны; Vout и максимальный Iout одинаковые
  • Напряжение нагрузки равно напряжению питания
  • Максимальный ток нагрузки равен максимальному выходному току одного источника
  • Электронный переключатель подключает один из выходов питания к нагрузке

Источники питания с параллельными выходами

Обычная топология, используемая для увеличения выходной мощности, заключается в параллельном подключении выходов двух или более источников питания.В этой конфигурации каждый источник питания обеспечивает необходимое напряжение нагрузки, а параллельное подключение источников увеличивает доступный ток нагрузки и, следовательно, доступную мощность нагрузки.

Эту топологию можно успешно реализовать, но есть много соображений для обеспечения эффективности конфигурации. Для параллельных конфигураций предпочтительны источники питания с внутренними цепями, поскольку внутренние цепи улучшают эффективность распределения тока. Если источники питания, используемые в приложении для распределения тока, не имеют внутренних цепей распределения, необходимо использовать внешние методы, которые могут быть менее эффективными.

Основная проблема заключается в том, насколько равномерно ток нагрузки распределяется между источниками питания. Распределение тока нагрузки зависит как от конструкции источников питания, так и от конструкции внешней цепи и проводников, используемых для параллельного подключения выходов источников питания. Практически всегда при параллельном подключении используются одинаковые блоки питания из-за проблем, связанных с эффективной настройкой блоков питания. Однако можно настроить источники питания параллельно с согласованными выходными напряжениями и несовпадающими максимальными выходными токами.

Более подробное обсуждение параллельного подключения источников питания можно найти в нашем техническом документе Current Sharing with Power Supplies.

  • Источники питания A и B должны иметь одинаковый Vout; Максимум Iout может быть разным
  • Напряжение нагрузки равно напряжению питания
  • Максимальный ток нагрузки равен сумме максимального выходного тока обоих источников
  • Цепи контроля тока уравновешивают ток нагрузки между источниками питания

Источники питания с последовательными выходами

Другой вариант увеличения мощности, подаваемой на нагрузку, — это соединение выходов нескольких источников питания последовательно, а не параллельно.Некоторые из преимуществ использования последовательной топологии включают в себя: почти идеальное использование мощности, подаваемой между источниками, отсутствие необходимости в конфигурации или совместном использовании цепей, а также устойчивость к большому разнообразию конструкций приложений. Как упоминалось ранее, при параллельном соединении выходов источников питания каждый источник обеспечивает необходимое напряжение, а ток нагрузки распределяется между источниками. Для сравнения, когда выходы источников питания соединены последовательно, каждый источник обеспечивает требуемый ток нагрузки, а выходное напряжение, подаваемое на нагрузку, будет представлять собой комбинацию последовательно включенных источников.

Следует отметить, что когда блоки питания сконфигурированы с последовательным подключением выходов, источники питания не обязательно должны иметь аналогичные выходные характеристики. Ток нагрузки будет ограничен наименьшим допустимым током нагрузки любого из источников в конфигурации, а напряжение нагрузки будет суммой выходных напряжений всех источников в цепочке.

Есть несколько ограничений, накладываемых на источники питания, когда они используются в конфигурации с последовательным выходом.Одним из ограничений является то, что выход источников питания должен быть спроектирован так, чтобы выдерживать смещение напряжения из-за последовательной конфигурации. Это напряжение смещения обычно не является проблемой, но выходные напряжения источников питания с заземлением не могут быть суммированы на выходах других источников. Второе ограничение заключается в том, что выход источника питания может подвергаться обратному напряжению, если выход неактивен, когда активны остальные выходы в цепочке. Проблема обратного напряжения может быть легко решена путем размещения диода с обратным смещением на выходе каждого источника питания.Номинальное напряжение пробоя диода должно быть больше, чем выходное напряжение отдельного источника питания, а номинальный ток диода должен быть больше, чем максимальный номинальный выходной ток любого источника питания в последовательной цепочке.

  • Источники питания A и B могут иметь разные максимальные значения Vout и Iout
  • Напряжение нагрузки равно сумме выходных напряжений питания
  • Максимальный ток нагрузки равен наименьшему из максимального выходного тока любого источника
  • Диоды обратного смещения защищают выходы источников питания

Сводка

Параллельно подключенных источников питания:

  • Плохое использование мощности из-за допуска управления разделением тока между источниками
  • Требуется специальная цепь для управления разделением тока между источниками
  • Чувствительность к проектированию и изготовлению проводов, соединяющих источники питания параллельно
  • Наиболее простая конструкция с аналогичными блоками питания

Источники питания, подключенные последовательно:

  • Эффективное использование мощности ограничено только точностью выходного напряжения каждого источника
  • Нет необходимости в цепях для управления распределением напряжения или тока между источниками
  • Отсутствие чувствительности к конструкции или конструкции проводников, соединяющих источники питания в серии
  • Простая конструкция с любой комбинацией источников питания

Хотя общий метод, используемый для увеличения мощности нагрузки, подаваемой от источников питания, заключается в параллельном подключении выходов, другое решение может заключаться в последовательном соединении выходов нескольких источников питания.У поставщиков блоков питания, таких как CUI, есть технический персонал, который может помочь настроить приемлемое решение для этих и других проблем применения блоков питания.

Категории: Основы , Выбор продукта

Вам также может понравиться


У вас есть комментарии к этому сообщению или темам, которые вы хотели бы, чтобы мы освещали в будущем?
Отправьте нам письмо по адресу powerblog @ cui.ком

Что такое импульсный источник питания?

Чтобы понять, почему эволюция электроники привела к гораздо более сложному способу изготовления регулируемых блоков питания (далее БП), нам нужно вернуться немного назад и взглянуть на линейные блоки питания. Это были простые, надежные, тихие блоки питания с хорошей регулировкой и низким уровнем пульсаций — так зачем менять?

Есть две основные причины, и обе связаны со стоимостью.

Поскольку трансформатор работает при частоте сети 50 или 60 Гц, сердечник должен быть большим, поскольку его поперечное сечение зависит от частоты. Это большой кусок стали и меди, который сегодня довольно дорогой. Во-вторых, регулирующий транзистор с последовательным проходом всегда будет иметь линейное напряжение между его входом и выходом. Умноженная на ток, это мощность, от которой необходимо избавиться в виде тепла, для чего требуется большой и дорогой алюминиевый радиатор.

Например, переменный блок питания на 50 В, установленный на 5 В и дающий 2 А, может иметь (50-5) * 2 = 90 Вт тепла для рассеивания.Импульсный источник питания (далее SMPS) почти устраняет обе эти проблемы за счет сложности схемы, увеличивая частоту трансформатора, чтобы сделать ее меньше, и видеть, что устройство регулятора всегда полностью включено или полностью выключено, таким образом рассеивая гораздо меньше тепла. .

Как работает SMPS

На приведенной выше блок-схеме сеть подается непосредственно в первый блок без использования трансформатора. Конечно, используемые здесь диоды и конденсаторы должны быть подходящими.Обратите внимание, что здесь также может подаваться постоянный ток, например, в преобразователе постоянного тока от 12 до 5 В. Входящая сеть переменного тока теперь представляет собой выпрямленный постоянный ток высокого напряжения.

Следующий блок — это высокочастотный преобразователь, схема прерывателя, включающая и выключающая силовое устройство, такое как полевой МОП-транзистор, с частотой несколько кГц. Это преобразование поступающего постоянного тока в прямоугольную волну, подаваемую на высокочастотный трансформатор подходящей конструкции с вторичной обмоткой с напряжением, подходящим для желаемого выходного напряжения. Этот трансформатор также обеспечивает гальваническую развязку между выходным напряжением и входящей сетью или постоянным током.

Следующий каскад еще раз исправляет это и отфильтровывает пульсации и шум. В последнем блоке, цепи управления, происходит волшебство. Это цепь обратной связи, управляющая полевым МОП-транзистором.

Схема управления имеет делитель / умножитель напряжения, который измеряет выходное напряжение. Поскольку мы будем передавать это обратно в цепь прерывателя, работающего на сотни вольт, его необходимо изолировать, обычно с помощью оптопары. Есть эталон — это может быть фиксированный эталонный диод или подстроечный резистор.Усилитель ошибки сравнивает эти два напряжения и регулирует генератор ШИМ (широтно-импульсной модуляции), который управляет полевым МОП-транзистором.

Собираем все вместе

Функциональная блок-схема, приведенная выше, дает лучшее и более подробное представление о задействованных частях.

Практический пример

Ниже показан простой, но работающий пример по сравнению с монстром, которого вы можете найти внутри блока питания вашего ПК. Он демонстрирует принцип, который мы обсуждали выше.

Все сложные функции генератора ШИМ, переключателя прерывателя MOSFET, а также ошибок и контроля выполняются в одной микросхеме TNY267. Конечный выход составляет 12 В, и он может выдавать 1 А.

Слева направо Vin — это сеть переменного тока 100–300 В или даже источник постоянного тока. MOV — это тип резистора, который замыкается накоротко при скачке высокого напряжения более 275 В и перегорает предохранитель F1, но F1 действует медленно и может выдерживать начальный пусковой ток цепи. D3 — двухполупериодный мостовой выпрямитель, и выход постоянного тока появляется на C2.Для входа 220 В это будет примерно 220 * 1,4 = 308 В, так что имейте в виду!

TNY работает на частоте около 132 кГц. D2 — это диод подавления переходных процессов на 180 В для защиты от всплесков обратной ЭДС.

D1 (Шоттки) на вторичной обмотке выпрямляет переменный ток 132 кГц, а C1 сглаживает и устраняет пульсации. C3 — обязательный колпачок байпаса. R1, R2 и D5 обеспечивают цепь обратной связи с TNY через оптоизолятор, чтобы гарантировать гальваническую развязку от сети во всех точках.

Поскольку многие из этих компонентов усердно работают, при их выборе необходимо соблюдать осторожность, например, напряжение, эквивалентное последовательное сопротивление и т. Д.

Первичная цепь T1 — 157 т, вторичная — 14 т. Сердечник представляет собой ферритовый трансформатор типа E19 с центральным сердечником примерно 4,5 × 4,5 мм.

Теперь мы знаем, насколько более эффективным может быть SMPSU, но он более сложен и требует качественных компонентов для обеспечения надежности.

Разрешение на использование некоторых изображений с сайта www.tutorialspoint.com.


Что такое двойной источник питания? — Строительство и работа схем — Robu.in | Индийский интернет-магазин | Радиоуправляемый хобби

Для многих электронных схем требуется источник постоянного тока.Двойной источник питания используется для питания как электронного, так и электрического оборудования. Двойной источник питания обеспечивает как положительный, так и отрицательный потенциал на землю. В основном электронные схемы состоят из ламп или транзисторов, требующих источника питания постоянного тока.

Например, в ламповых усилителях напряжение постоянного тока требовалось для пластины, экранной сетки и управляющей сетки. Точно так же постоянный ток необходим для смещения эмиттера и коллектора транзисторов. Кроме того, операционные усилители нуждаются в двойных источниках питания. В таких случаях батареи используются редко, поскольку они дороги и требуют частой замены.

В этой главе мы обсудим конструкцию схемы и работу двойного источника питания.

Зачем нам двойной источник питания?

1. Необходимость двойного источника питания в OPAMPS

OPAMPS

обычно должны переключать биполярные выходные напряжения. Один из них переходит в положительную или отрицательную полярность в зависимости от диапазона нормального входного сигнала. Таким образом, OPAMPS имеет две направляющие. Итак, чтобы обеспечить питание OPAMPS, нам нужен двойной источник питания.

2. Необходимость двойного источника питания для генераторов

Когда мы хотим подключить две разные цепи питания к одному источнику питания, не отключая его, нам нужен двойной источник питания. Это позволяет нам проводить техническое обслуживание и другие работы с электрооборудованием, не отключая его.

3. Потребность в двойном блоке питания в DIY

В DIY мы можем использовать двойной источник питания в качестве схемы зарядки сотового телефона, схемы блока питания, в цепях питания без батареи, также в случае любого источника постоянного тока мы можем использовать этот двойной источник питания.

Типы двойных источников питания

Для большинства электронного оборудования требуется источник постоянного тока в диапазоне 5-15 В. Таким образом, существует три типа двойного источника питания.

  1. Цепь сдвоенного источника питания 5 В
  2. Цепь сдвоенного блока питания 12 В
  3. Цепь сдвоенного блока питания 15 В

Все эти цепи имеют отдельные понижающие трансформаторы и регуляторы напряжения. При необходимости мы можем добавить светодиод для индикации.

Двойной блок питания 5 В

Двойной блок питания 12 В

Двойной источник питания 15 В

Необходимые компоненты

Строительство и работа

Строительство
  1. Подключите четыре диода, как показано на рисунке, чтобы сформировать схему выпрямителя.
  2. Вход этого выпрямителя должен быть подключен ко вторичной обмотке трансформатора, а выход — к микросхеме регулятора напряжения.
  3. Входная клемма регулятора напряжения подключена к земле через конденсатор емкостью 1000 мкФ.
  4. Выход этих регуляторов напряжения — наш окончательный результат.
  5. Каждая опорная клемма подключена к земле напрямую.

Рабочий:

В принципе, любой блок питания состоит из четырех блоков

  1. Трансформатор.
  2. Выпрямительная схема.
  3. Фильтр контур.
  4. Регулятор напряжения.

Вход любой мощности 230В AC; для понижения мы используем понижающий трансформатор. Этот трансформатор понижает 230 В переменного тока до 5 В переменного тока.

Теперь нам нужно напряжение постоянного тока; выпрямительная схема выполняет эту задачу. Выпрямитель преобразует пониженное переменное напряжение в постоянное.

Если мы получили напряжение постоянного тока, это еще не означает, что задача выполнена. Чтобы получить стабилизированное постоянное напряжение, нам понадобится схема фильтра. Задача фильтрации выполняется конденсаторами, используемыми в схеме. На выходе выпрямителя имеется несколько пиков.Конденсаторы помогают нам уменьшить эти пики, и, таким образом, фильтрация завершается.

Теперь основная и последняя задача — регулирование напряжения. Чтобы выполнить эту задачу, мы должны использовать другие микросхемы стабилизатора напряжения. Например, 7812, 7912 и т. Д. Обычно серия 78xx предназначена для положительного питания, а 79xx — для отрицательного.

Используя такие интегральные схемы, мы можем значительно контролировать напряжение.

ИС регулятора напряжения (78xx) (79xx)
78xx

Регулятор напряжения IC 78xx также обозначается как L78xx, LM78xx или MC78xx.Когда нам нужно подать определенное количество напряжения на оборудование, серия 78xx является подходящей ИС, которую мы можем использовать. Он работает от постоянного напряжения и постоянного тока.

Регулятор положительного напряжения. Он имеет встроенную внутреннюю цепь защиты от тепловой перегрузки и тока короткого замыкания. Максимальная температура перехода составляет 125 градусов по Цельсию.

79xx

Стабилизаторы напряжения 79xx являются регуляторами отрицательного напряжения.Стабилизаторы отрицательного напряжения так же важны, как и положительные. Эти микросхемы имеют три клеммы и доступны в диапазоне фиксированных напряжений, то есть -5В, -12В, -15В. Они также имеют встроенную внутреннюю цепь защиты от тепловой перегрузки и тока короткого замыкания.

Приложения

1. В аудиоусилителях, операционных усилителях, усилителях мощности мы используем двойной источник питания.

2. В направлении низкого напряжения двигателя постоянного тока мы можем использовать этот двойной источник питания.

3.В цепи зарядки аккумулятора 12 В.

4. В цепи зарядки сотового телефона.

5. В цепи power bank.

Заключительные слова

Спасибо, что были со мной до конца. Надеюсь, все ваши представления о блоке питания прояснились.

Если вам понравилась эта статья, дайте мне знать в разделе комментариев. Кроме того, не стесняйтесь давать предложения и делиться своим опытом во время этого эксперимента в разделе комментариев.

Замечания по проектированию источника питания

: схемы выпрямителя

Это первая статья из большой серии о конструкции блоков питания. Мы проанализируем несколько аспектов аппаратного обеспечения и моделирования. Наслаждаться!

В электронных схемах, питаемых от сетевого напряжения, входное переменное напряжение должно быть преобразовано в постоянное напряжение с достаточной степенью стабилизации. Самый простой способ выпрямить переменное напряжение — использовать обычный полупроводниковый диод, пассивный нелинейный электронный компонент, свойство которого — пропускать электрический ток в одном направлении и блокировать его в другом. Рисунок 1 показывает схему однополупериодного выпрямителя, а Рисунок 2 показывает двухполупериодный выпрямитель, в котором используется трансформатор с центральным отводом. Резистор R L имитирует наличие выходной нагрузки, а V M указывает максимальное напряжение на каждой вторичной обмотке трансформатора.

Рисунок 1: Схема основной схемы однополупериодного выпрямителя Рисунок 2: Схема основной схемы двухполупериодного выпрямителя

В двух только что показанных конфигурациях пиковое напряжение на нагрузке приблизительно равно пиковому напряжению, подаваемому вторичной обмоткой трансформатора.В частности, в случае полуволнового выпрямителя выходное напряжение постоянного тока V CC определяется по следующей формуле, где V MAX представляет пиковое значение входного переменного напряжения:

С другой стороны, в случае двухполупериодного выпрямителя напряжение V CC определяется по следующей формуле, где V MAX теперь представляет пиковое значение на каждой из двух вторичных обмоток трансформатора:

Снижение пульсации

Для большинства приложений пульсации выходного напряжения, создаваемые вышеупомянутыми схемами, слишком высоки.Напротив, для довольно простых приложений, таких как питание лампы или управление небольшим электродвигателем, это может быть приемлемо. За счет добавления фильтрующего конденсатора после выпрямительных диодов форма выходного напряжения значительно улучшается, что приводит к значительному снижению пульсаций. В схеме на рис. 3 используется трансформатор с центральным отводом и два выпрямительных диода, а в схеме на рис. 4 рис. 4 используется обычный трансформатор только с одной вторичной обмоткой и четырьмя выпрямительными диодами в классической мостовой конфигурации.Обе схемы обычно используются для получения постоянного напряжения от переменного источника питания.

Рисунок 3: Двухполупериодный выпрямитель с промежуточным трансформатором Рисунок 4: Двухполупериодный выпрямитель с мостовым выпрямительным диодом

Формы выходного сигнала

Рисунок 5 показывает эффект, производимый добавлением конденсатора фильтра в схему однополупериодного выпрямителя в Рисунок 1 : Как мы видим, выходное напряжение гораздо более равномерное, со сглаженной тенденцией.В Section b c , с линейным трендом, именно конденсатор фильтра обеспечивает зарядный ток. Наклон этого участка становится более крутым с увеличением тока, определяя положение точки c на положительной полуволне. Чем ниже точка c , тем больше время проводимости диода (соответствует периоду раздела c d ) и, следовательно, пульсации выходного напряжения. В период, связанный с разделом c d , конденсатор заряжается.Если подключенная нагрузка требует большого тока, конденсатор разрядится очень быстро, увеличивая пульсации. Поэтому для цепей, требующих высоких уровней мощности, предпочтительнее решение на основе двухполупериодного выпрямителя.

Рисунок 5: Форма выходного сигнала двухполупериодного выпрямителя с фильтрующим конденсатором

Если ток, потребляемый нагрузкой, равен нулю, постоянное выходное напряжение равно пиковому значению выпрямленного переменного напряжения.

Максимальная пульсация напряжения в двухполупериодном выпрямителе определяется не только емкостью конденсатора фильтра, но также частотой пульсаций и током нагрузки:

Где I НАГРУЗКА (A) — постоянный ток, поглощаемый нагрузкой, f (Гц) — частота пульсаций, а C (фарад) — емкость конденсатора фильтра.

Для получения дополнительной информации:

Силовая электроника играет все более важную роль на различных рынках, таких как автомобильный, промышленный и потребительский. Это также технология, позволяющая реализовать широкий спектр новых и улучшенных функций, которые повышают производительность, безопасность и функциональность автомобилей и интеллектуальных сетей. Сложные электрические и тепловые требования сильно влияют на конструкцию силовых электронных систем. Новости силовой электроники будут посвящены основным темам, таким как преобразователь мощности, управление движением, полупроводники и управление температурой.Электронная книга Power Electronics News — это интерактивный подход к информированию о последних технологиях, тенденциях и инновационных продуктах на определенных рынках.

Источники питания — внешние / внутренние (вне платы) | Конфигурируемые модули питания постоянного и переменного тока

DC Модуль вывода
Активный модуль вывода постоянного тока

905 905 905 905 905 905 905 905 905 905 905 905 905 905 905


905

CONFIG DC PWR MOD 48V 9 WIDE ADJ 9 170 долларов.35000

Выходной модуль DC


Активный модуль DC

Выходной модуль DC


Коробка ™ 000

$ 74,78000

324 — Немедленно

Vox Power Ltd. Vox Power Ltd. NEVO +

Box

Active Модуль вывода постоянного тока 1 48V (18 ~ 58V) 3.75A 150 Вт IEC, EN 60601-1; 60601-1-2; 60950-1; 62368-1

$ 74,78000

284 — Немедленно

Vox Power Ltd. Vox Power Ltd.

Box

Active Модуль вывода постоянного тока 1 24 В (9 ~ 30 В) 7.5A 150 Вт IEC, EN 60601-1; 60601-1-2; 60950-1; 62368-1

$ 79,38000

181 — Немедленно

Vox Power Ltd.

Box

Active Модуль вывода постоянного тока 1 12 В (4,5 ~ 15 В) 15A 150 Вт IEC, EN 60601-1; 60601-1-2; 60950-1; 62368-1

CONFIG DC PWR MOD 24V (5-28V)

120 долларов США.07000

145 — Немедленно

Advanced Energy Advanced Energy

1

633-1019-ND

powerMods

905 905 905 905 905 905 905 905 905 905 905 905


905
24 В (5 ~ 28 В) 5A 120 Вт Дистанционное включение / выключение, настраивается пользователем

CONFIG DC PWR MOD 24 В (5-28 В)

121.17000

0 — Немедленно

Advanced Energy Advanced Energy

1

633-1301-ND

powerMods Active

90

24 В (5 ~ 28 В) 3A, 3A 144 Вт Дистанционное включение / выключение, настраивается пользователем

CONFIG DC PWR MOD 12 В (6-15 В) 9

144 доллара.80000

422 — Немедленно

Advanced Energy Advanced Energy

1

633-1329-ND

CoolX ™ 600 NFF

1 12 В (6,0 ~ 15,0 В) 15A 180 Вт Дистанционное включение / выключение, дистанционное управление, настраиваемое пользователем

CONFIGV DC ( 5-28В)

166 долларов США.87000

89 — Немедленно

Advanced Energy Advanced Energy

1

633-1020-ND

powerMods 24 В (5 ~ 28 В) 3A, 3A 144 Вт Дистанционное включение / выключение, настраивается пользователем

CONFIG DC PWR MOD 489

39 — Немедленно

Advanced Energy Advanced Energy

1

633-CMD-W01-ND

CoolX ™ 1800 9000 905 Объем

Модуль

1 48V (3 ~ 58V) 6.25A 300 Вт Дистанционное включение / выключение, дистанционное управление, настраиваемое пользователем

CONFIGV DC (24-58В)

173 долл. США.28000

107 — Немедленно

Advanced Energy Advanced Energy

1

633-1316-ND

powerMods 48 В (24 ~ 58 В) 6A 288 Вт Дистанционное включение / выключение, дистанционное управление, настраиваемое пользователем

CONFIG DC PWR MOD 24 В (12-30 В)

173 долл. США.30000

29 — Немедленно

Advanced Energy Advanced Energy

1

633-1315-ND

powerMods 24 В (12 ~ 30 В) 10A 240 Вт Дистанционное включение / выключение, дистанционное управление, настраиваемое пользователем

$ 79.38000

141 — Немедленно

Vox Power Ltd. Vox Power Ltd.

1

2050-OPC-ND

VCCM600 9 905 905 Активный выход VCCM600

905 Коробка Модуль

1 24 В (9 ~ 30 В) 7,5 А 150 Вт IEC, EN 60601-1; 60601-1-2; 60950-1; 62368-1

92 долл. США.53000

290 — Немедленно

MEAN WELL USA Inc. MEAN WELL USA Inc.

1

1866-NMS-240-48-ND

NMP 9 Активный Модуль вывода постоянного тока, одиночный 1 48 В (30 ~ 55 В) 5A 240 Вт Дистанционное включение / выключение, настраивается пользователем 60601-1; 62368-1

92 долл. США.53000

228 — Немедленно

MEAN WELL USA Inc. MEAN WELL USA Inc.

1

1866-NMS-240-24-ND

NMP 9 Коробка Активный Модуль вывода постоянного тока, одиночный 1 24 В (15 ~ 30 В) 10A 240 Вт Дистанционное включение / выключение, настраивается пользователем 60601-1; 62368-1

КОНФИГУРАЦИЯ DC PWR MOD 2.5 В (1,5-3,6 В)

$ 137,35000

30 — Немедленно

Advanced Energy Advanced Energy

1

633-1302-ND

Power

0

Активный Модуль вывода постоянного тока 1 2,5 В (1,5 ~ 3,6 В) 40A 100 Вт Дистанционное включение / выключение, дистанционное управление, настраивается пользователем

КОНФИГУРАЦИЯ DC PWR MOD 5V (2.5-6В)

144,80000 $

48 — Немедленно

Advanced Energy Advanced Energy

1

633-1328-ND

Cool0005
Активный Модуль вывода постоянного тока 1 5 В (2,5 ~ 6 В) 21A 105 Вт Дистанционное включение / выключение, дистанционное управление, настраивается пользователем

КОНФИГУРАЦИЯ ПИТАНИЯ ПОСТОЯННОГО ТОКА МОД 2.5 В (1,5 — 3,6 В)

$ 178,71000

48 — Немедленно

Advanced Energy Advanced Energy

1

633-1014-ND

Bulk power Активный Модуль вывода постоянного тока 1 2,5 В (1,5 ~ 3,6 В) 50A 125 Вт Дистанционное включение / выключение, дистанционное управление, настраивается пользователем

ИСТОЧНИК ПИТАНИЯ ПОСТОЯННОГО НАПРЯЖЕНИЯ 5В

$ 1.30000

2,988 — Немедленно

Rochester Electronics, LLC Sanyo

231

2156-L78MS05J-A-ND

905 9000 905 905 905 905 905 905 905 905 905 —

ЦЕПЬ ПОДДЕРЖКИ БЛОКА ПИТАНИЯ, AD

$ 2.54000

LLC

Intersil

119

2156-ISL6255AHRZ-TS2378-ND

*

Навалом

Активный
2 —
5 2 —
2 — 905 905 905 9065 00 905 905 Advanced Advanced Energy

559 905

905 905 905 905 905 905 905 905 905 905 DC Box
905

+ 12В, 30МА ПРОГРАММА ВСПЫШКИ ПАМЯТИ

$ 2.61000

1,000 — Немедленно

Rochester Electronics, LLC Maxim Integrated

115

2156-MAX662ACSA + TG068-ND

905 9905 905 905 905 905 905 905

ДВОЙНОЙ СЛОТ 300 Вт (4,5 В — 15 В ВЫХОД

$ 103.40000

97 — Немедленно

Vox Power Ltd. Vox Power Ltd.

1

2050-OPA2-ND

NEVO + 9 905 905 Модуль 1 12 В (4,5 ~ 15 В) 25A 375 Вт Дистанционное включение / выключение, дистанционное управление, настраиваемое пользователем

$06000

133 — Немедленно

Advanced Energy Advanced Energy

1

XGRC-ND

*

Навалом 00

КОНФИГУРИРУЕМЫЙ ИСТОЧНИК ПИТАНИЯ

$ 178.71000

559

633-XGMC-ND

*

Коробка

Активная 4 —

225 долларов США.22000

45 — Немедленно

Advanced Energy Advanced Energy

1

633-CMF-ND

CoolX1800

905 905 Активный модуль выхода DC 1 0004 905

48 В 18.75A 900 Вт Дистанционное включение / выключение, дистанционное управление, настраиваемое пользователем

CONFIG DC PWR MOD 12V (6-15V) 8 905 8 905 311 долларов.49000

349 — Немедленно

Advanced Energy Advanced Energy

1

633-1314-ND

powerMods Active

12 В (6,0 ~ 15,0 В) 20A 240 Вт Дистанционное включение / выключение, дистанционное управление, настраиваемое пользователем

CONFG DC PWR MOD 12V (11.6-12,3 В)

$ 19,75000

103 — Немедленно

Sanken Sanken

1

C065S12-ND

905 Модуль вывода

1 12 В (11,6 ~ 12,3 В) 5A 60 Вт Дистанционное включение / выключение, настраивается пользователем
.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *