САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА ГОТОВЫХ МОДУЛЯХ
Всем привет. У всех, кто занимается электроникой, должен быть лабораторный блок питания. Если паять неохота или вы начинающий радиолюбитель — эта статья специально для вас написана. Сразу поговорим про характеристики блока питания и его отличие от популярных разновидностей БП на LM317 или LM338.
Модули для БП
Мы будем собирать импульсный блок питания, но паять ничего не будем, просто купим у китайцев уже спаянный модуль регулировки напряжения с ограничением тока, такой модуль может отдать 30 вольт 5 ампер. Согласитесь, что не каждый аналоговый БП на такое способен, да и какие потери в виде тепла, так как транзистор или микросхема лишнее напряжение берет на себя. О конкретном типе модуля и его схеме не пишу — они всякие бывают.
Теперь индикация — здесь мы тоже ничего изобретать не будем, возьмем готовый модуль индикации, как и с модулем управления напряжением.
Чем буде все это питать от сети 220 В — читаем дальше.
- Первый — искать готовый трансформатор или намотать свой.
- Второй — это взять импульсный БП на нужное напряжение и ток, или доработать под нужные характеристики.
И да, забыл сказать, что подать на модуль управления максимально без последствий можно 32 вольта, но лучше 30 вольт 5 ампер, с током нужно быть аккуратнее тоже, так как схема управления терпит 5 ампер, но не более, но отдаёт все что есть на трансформаторе потому и легко сгорает.
Сборка БП
Сам процесс сборки ещё занятнее дело. Давайте расскажу как у меня предстают дела с комплектующими.
- Блок питания импульсный от ноутбука 19 вольт 3.5 ампер.
- Модуль управления.
- Модуль индикации.
Вот и все, да-да я ничего не забыл дописать, но наверное ещё нам нужен какой-то старый корпус. У меня от советской автомагнитолы пошёл в дело, также пойдет и любой другой, но отдельно хочу похвалить корпус от DVD привода ПК.
Собираем наш будущий блок питания, прежде чем прикрепить плати к корпусу, нужно их изолировать, я дал подложку из толстой пленки и тогда все платы можно прикрепить на двухсторонний скотч.
Но когда дело дошло к переменным резисторам для регулировки напряжения и ограничения тока я понял, что у меня их нет, ну не то что вообще нет — нужного номинала нет, а именно 10 К. Но на плате они есть, и я поступил следующим образом: нашёл два переменника спаленных (чтоб не жалко было), изъял ручки и думал их припаять к переменникам, что были на плате, почему были — я их выпаял, и залудил винт.
Но ничего не вышло, отцентрировать смог лишь когда через термоусадку сделал вот эту ерунду. Но она работала, меня устраивает, а как долго она будет работать — узнаем.
По желанию можно покрасить корпус, у меня это не очень хорошо получилось, но лучше чем просто металл.
В результате у нас получился очень компактный легкий лабораторный блок питания, обладающий защитой от короткого замыкания, ограничением тока, и разумеется, регулировкой напряжения.
Форум по БП
Форум по обсуждению материала САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА ГОТОВЫХ МОДУЛЯХ
ИМПУЛЬСНЫЙ БП СВОИМИ РУКАМИ
На основе готового импульсного трансформатора от компьютерного блока питания можно соорудить мощный самодельный БП на 200 ватт. Схема достаточно проста и в наладке не нуждается. Основа самотактируемый полумостовой драйвер выполненный на микросхеме IR2151.
Сигнал генератора усиливается каскадом на мощных полевых транзисторах, транзисторы нужно укрепить на теплоотвод. Термистор любой, его можно найти в тех же компьютерных блоках питания. Резистор 47 килоом подобрать с мощностью в несколько ватт. Диод FR107 можно заменить на аналогичный импульсный диод, например на FR207 и т.
Таким блоком питания можно питать достаточно мощные усилители низкой частоты или же приспособить блок под обыкновенный 12 вольтовый усилитель из серии TDA. Кроме этого блок питания можно дополнить регулятором напряжения и использовать в качестве импульсного лабораторного блока питания.
В качестве выпрямителей можно использовать быстрые или ультрабыстрые диоды на 4-10 ампер, отлично подходят диодные сборки из компьютерных блоков питания, там обычно ставят диоды шоттки с током до 20 ампер, диоды тоже желательно укрепить на теплоотвод, но только в том случае, если блок питания предназначен для работы на нагрузку от 100 ватт. Данный блок питания можно использовать как зарядное устройство для автомобильного аккумулятора, поскольку выходной ток более 10 ампер!
Поделитесь полезными схемами
ПЕРЕДАТЧИК НА 1 КИЛОМЕТР Делаем серьёзный радиопередатчик для дальности связи с радиоприёмником УКВ более километра. |
СХЕМА ИНДИКАТОРА УРОВНЯ ЖИДКОСТИ Этот простой датчик уровня воды предназначен для использования в любой ёмкости с жидкостью. Схема индикатора состоит всего из нескольких резисторов, транзисторов и 3-х светодиодов. |
ГАУСС ПУШКА — ПРЕОБРАЗОВАТЕЛЬ В последнее время пользователи обращаются с просьбой помочь со схемой преобразователем для Гаусс пуки. На сегодня, единственная схема, которая соответствует всем требованиям — это знаменитая схема Вальдемара. |
Радиосхемы. — Источники питания
Раздел
Схемы блоков питания, теория построения источников питания
Для любой аппаратуры требуется электропитание.
В некоторых случаях электроэнергию можно получить от электрохимических источников (батареек или аккумуляторов), но это когда речь идет о носимых устройствах, но на практике мы чаще всего используем промышленную сеть 220 Вольт, и вот здесь возникает целый ряд вопросов: ведь это напряжение необходимо преобразовывать: уменьшить (а иногда и увеличить), выпрямить, стабилизировать и так далее…
Устройства, которые преобразовывают электроэнергию принять называть вторичными источниками питания или просто блок питания (под понятием «первичный источник питания» подразумеваются химические источники) или просто блок питания, и именно блокам питания и посвящен данный раздел: здесь Вы сможете ознакомиться с теорией построения блоков питания, а также найдете различные схемы блоков питания.
Теория построения блоков питания
Параметрический стабилизатор
Компенсационный стабилизатор
Специализированные микросхемы стабилизаторов напряжения
Умножитель напряжения
Устройство импульсного источника питания
Защита стабилизаторов от перегрева
Транзисторные стабилизаторы с защитой от перегрузки (теория)
Практические схемы источников питания
Электронный ЛАТР
Регулятор температуры паяльника
Стабилизатор температуры паяльника
Стабилизированный Блок питания на 35 Вольт
Стабилизатор напряжения с защитой 13V/10A
Зарядное устройство для никель-кадмиевых аккумуляторов
Безтрансформаторный преобразователь напряжения
Регулируемый источник питания 1…29V, 2A
Блок питания 13V, 20A
Схемы стабилизированных блоков питания
Блоки питания с регулировкой
Простой регулятор мощности
Блок питания с регулировкой напряжения и тока
Стабилизатор напряжения 0. ..25V с защитой по току
Зарядное устройство из компьютерного блока питания
Блок питания на 3V
Блок питания 13V, 20A на микросхеме серии КРЕН
Как увеличить мощность КРЕНки до 20 Ампер
Еще раз об увеличении мощности КРЕН8А
Импульсный блок питания для усилителя
Преобразователь 12V-220V на трансформаторе от компьютерного блока питания
Импульсные преобразователи напряжения
Электронный предохранитель
Устройство защиты радиоаппаратуры от повышенного и пониженного напряжения
Самодельный бесперебойник
Компьютерный блок питания в радиолюбительских конструкциях
Регуляторы напряжения с компаратором
Регуляторы постоянного напряжения на таймере 555
Регуляторы постоянного напряжения на ждущих мультивибраторах и и счетчиках
ШИМ-регулятор на простой логике
ШИМ-регулятор на операционном усилителе
Блок питания для цифровых и аналоговых микросхем
Преобразователь для питания варикапа
Стабилизатор с защитой от КЗ
Дополнительная цепь к регулируемому стабилизатору с цель защиты
Стабилизатор с установкой порогового тока для защиты
Электронно-механическое устройство защиты от перегрузки
Защита от перегрузки по току с использованием динисторного оптрона
Светодиодные индикаторы перегрузки по току
Электронный предохранитель до 10 Ампер
Схемы защиты устройств от всплесков тока и напряжения
Устройство защиты галогенных ламп
Аварийная защита низковольтной аппаратуры
Ограничитель пускового тока
Преобразователь напряжения 12В-220В для электробритвы
Звуковой сигнализатор перегрузки блока питания
Самовосстанавливающийся предохранитель на 12 Вольт
Регулируемый электронный предохранитель
Защита блока питания от КЗ
Стабилизатор напряжения К142ЕН2 и его применение
Мощный стабилизированный инвертор 24- 220 Вольт
Высоковольтный преобразователь напряжения
Преобразователи напряжения из 4,5В в двуполярное 15В
Преобразователь сетевого напряжения в трехфазное
Мощный двухполярный источник питания для лабораторных целей
Источник питания с регулировкой полярности
Зарядное устройство с цифровыми микросхемами
Не сложный импульсный стабилизатор
Транзисторный стабилизатор 9V с системой защиты
Стабилизатор переменного напряжения
Сигнализаторы разряда элементов питания
Стабилизатор напряжения на микросхеме К142ЕН2
Стабилизатор сетевого напряжения
Стабилизатор тока до 150 А
Стабилизированный источник питания с защитой от перегрузки
Преобразователь 1,5V в 9V
Ступенчатое включение мощной нагрузки
Тиристорный преобразователь 12V в 220V
Двуполярное напряжение от батарейки «Крона»
Уменьшение пульсаций выходного напряжения
Универсальное зарядное устройство
Универсальный блок питания на микросхеме КР142ЕН12
Устройство аварийного электропитания
Регулируемый стабилизатор тока
Регулируемое двуполярное из однополярного
Регулятор мощности не создающий помех
Регулятор сетевого напряжения
Тиристорный регулятор тока
Регулятор мощности для активной нагрузки
Преобразователь напряжения 12/220В-50Гц
Импульсный источник питания 30 вольт, 200 Вт
Преобразователь напряжения с 4,5 на 15 В
Преобразователь напряжения 12V-30V
Автоматическое отключение аккумуляторной батареи
Бесперебойное питание для цифровых микросхем
Стабилизированный блок питания 1-40V с защитой от перегрузки
Лабораторный блок питания 0-20V
Трехфазный инвертор для электродвигателей
Импульсный блок питания для мощного УМЗЧ
Резервный преобразователь напряжения
Электронный предохранитель для устройств с питанием до 25 Вольт
Электронный предохранитель 12V/1A
Преобразователь 50Гц\ 60Гц
Усовершенствованный лабораторный блок питания
Высоковольтный преобразователь
Устройство защиты источника питания от перегрузки
Симисторный регулятор повышенной мощности
Устройство для зарядки малогабаритных аккумуляторов
Мягкое включение УНЧ
Таймер для зарядки аккумулятора
Импульсный стабилизатор напряжения с высоким КПД
Универсальный эквивалент нагрузки для ремонта и настройки источников питания
Преобразователь напряжения для цифровых микросхем
Регулируемый стабилизатор напряжения и тока
Стабилизированный регулятор мощности для изменяющейся нагрузки
Блок бесперебойного питания
Импульсный понижающий стабилизатор 24V-12V
Лабораторный блок питания 5. ..100 Вольт
Звуковой сигнализатор разряда аккумулятора
Стабилизатор тока до 150 Ампер
Ограничение зарядного тока конденсаторов
Ni-Cd аккумуляторы и их эксплуатация
Импульсный сетевой источник 5 В с высокими параметрами
Зарядное устройство для Ni-Cd аккумуляторов
Преобразователь 12- 220V и зарядное устройство
Двуполярный источник питания на основе «электронного трансформатора»
Малогабаритный мощный стабилизатор 12V
Блок питания отключающийся без нагрузки
Преобразователь 12V- 24V на ячейке логической микросхемы
Двуполярное стабилизированное напряжение 5V из однополярного 12V
Преобразователь напряжения 12V\ 220V 50Гц
Регулируемый двуполярный блок питания с искусственной «средней точкой»
Стабилизированный блок питания 3V для аудиоплеера
Маломощный импульсный двуполярный
Агрегаты тиристорные серий ТЕ, ТП, ТПР, ТЕР схемы и документация
Источник опорного напряжения ИОНА
Мощный лабораторный источник с защитой и регулировкой
Вариант мощного двуполярного стабилизатора напряжения
Лабораторный источник питания с защитой и индикацией перегрузки
Преобразователь 12-220 вольт на NE555
Блок питания на 10 А с регулируемым током и термометром
Решил сделать простой блок питания на ток более 10 Ампер (заодно с функцией заряда и разряда любых аккумуляторов, в том числе от авто). Чтобы не усложнять дело, использовал пару транзисторов плюс LM317. Блок питания работал, но нужно было его усилить, поэтому добавил ещё пару транзисторов. Блок питания после 30 минут работы с 10 А и принудительном охлаждении достиг вполне терпимой температуры. Единственно мост немного грелся, но по документации он может выдерживать температуру до 150 C, поэтому все равно.
Схема БП на 10 Ампер
Чтобы нагрузить источник питания 12 амперами, добавил к нагрузке мотор-редуктор, который во время блокировки тянет около 2 А и ничего — держит.
Схема принципиальная Блока питания на ток 10АДалее пришла в голову мысль, чтобы добавить светодиодный термометр в этот блок питания, так как были все необходимые компоненты. И вот после сборки получилось такое полезное дело: Блок питания 10 А с ограничением тока, искусственной нагрузкой и термометром.
В качестве вольтметра обычный цифровой модуль, который купил для предыдущего источника питания, но, к сожалению, оказалось, что у него должно быть гальванически развязанное напряжение.
Параметры блока питания
- Источник питания даст на выходе 1.2…19 В
- Кратковременная мощность (ток) 10 A
- Постоянная мощность 8 А транзисторы TIP122 4 шт.
- Трансформатор ТС 170
Искусственная нагрузка регулирование 0..8 A. Входное напряжение 10 … 24 В
Схема и параметры термометра
Схема термометра на ICL7107- Светодиодный термометр с напряжением питания + 5 В.
- Потребляемый ток термометром 200 мА.
- Работа и измерение датчика температуры: -25 C до + 125 C.
- Чтение датчика 3 раза в секунду.
- Размеры: 65 x 60 x 15 мм
- Индикация на дисплее : 2.5 + 1
Основным преимуществом этого решения является очень простая схема и представление результатов на легко читаемом светодиодном дисплее — отлично видном на расстоянии или в темноте.
Важнейшим компонентом решения является чип ICL 7107. Калибровка проста: сначала датчик помещают в ледяную воду, т. е. температура составляет около 0 С, устанавливаем потенциометры на дисплее 0, затем помещаем датчик в кипящую воду — температура приближается к 100 С и устанавливается на дисплее 100. Для точной калибровки между крайними значениями лучше всего подойдет обычный термометр.
Список элементов схемы
- R1 — 100K
- R2 — 1M
- R3 — 220K
- R4 — 47K
- R5 — 22K
- R6 — 330R
- R7 — 10K
- R8 — 220R
- P1, P2 — 100K
- C1 — 120 пФ
- C2, C6 — 100 нФ
- C3 — 10 нФ
- C4 — 470 нФ
- C5 — 220 нФ
- C7 — 22 мкФ
- D1 — 1N4148
- D2 — BAT 42
- T1 — BC547B
- IO1 — ICL7107
- T — любой кремниевый транзистор
- Q1, Q2 — светодиодные дисплеи
Вот такая получилась универсальная штука для радиолюбительской лаборатории. Работает и как мощное зарядно-разрядное устройство, и как электронная нагрузка, и как обычный регулируемый блок питания.
Самодельный лабораторный блок питания
Изготовление самодельного лабораторного блока питания из подручных доступных компонентов.
Для настройки самодельной электроники и не только самодельной, требуется источник питания. Для каждого устройства требуется свое напряжения питания. У каждого мастера должен быть универсальный блок питания, идеальный вариант это лабораторный блок питания. У меня есть только регулируемый блок питания. На нем нет возможности установить ограничение тока. Выход есть, соберу свой ЛБП.
Комплектующие
Лежал у меня алюминиевый корпус. Насколько я помню, корпус от регулятора паяльника времен СССР. Он крепкий и легкий.
Трансформатор от старого телевизора, может еще от чего. Я сделал отвод от 22-х вольт. Обмотки были рассчитаны на 27 вольт, мне показалось много. Намотал отдельную обмотку для питания Вольт-Ампер метра. Напряжение порядка 7-8 вольт. Сетевая обмотка соответственно 220 вольт.
Диодный мост самодельный. Состоит из диодов Д242. Диоды установлены на радиаторы.
После моста установлю электролитический конденсатор. Емкость и рабочее напряжение видны на фото.
Вольт-Ампер метр из Китая. Точность довольно хорошая. На крайний случай есть подстроечные резисторы, которыми можно подкорректировать значения.
Регулировать напряжение, и ток буду при помощи китайского модуля. Главное, не превышать входящее напряжение выше 30 вольт. На модуле установлен маломощный стабилизатор с максимальным входным напряжением 30 вольт.
Выходные клеммы советские. Одну пометил красным лаком, будет плюсовой.
Передняя панель отсутствует. Сделаю из композитного пластика.
Сборка
Собирать буду по простой схеме. В первичной цепи трансформатора установил выключатель и предохранитель. С вторички напряжение поступает на диодный мост и электролитический конденсатор. С них напряжение поступает на понижающий модуль. С модуля, через Вольт-Ампер метр поступает на выходные клеммы. Подстроечные резисторы выпаиваем и на проводах выносим за пределы платы, но устанавливаем регулируемые. Нижняя часть схемы, с линейным стабилизатором, служит для питания Вольт-Ампер метра.
Схема регулируемого блока питания
Расставляю силовые элементы на нижней части корпуса. Конденсатор установил между трансформатором и диодным мостом.
Соединяем трансформатор, диодный мост и понижающий модуль. Витые провода пойдут на регулировочные резисторы.
Так получилась часть для питания приборчика. Диодный мостик, электролитический конденсатор и стабилизатор на 5 вольт.
На задней панели вырезаю отверстие под сетевой разъем. Такой разъем можно снять со старого компьютерного блока питания.
На заготовке из композитного пластика, вырезаю все необходимые отверстия. Сетевой выключатель клавишный, до последнего момента не знал что установить. Разметку производил по защитной пленке, ее при установке сниму.
Распаиваю резисторы. Подключаю выключатель. Распаял провода на Вольт-Ампер метр. В разрыве предохранитель, на задней панели.
Устанавливаем все элементы передней панели на свои места. Защитная пленка снята.
Ручки на резисторы нашел разных цветов. Верхнюю крышку покрасил. Можно испытать. Диапазон регулировки получился от 1 до 27 вольт. Ток на короткое замыкание получился около 9 ампер.
Такой ЛБП получился. Для всех моих потребностей более чем достаточно.
Видео по сборке
Схема блок питания на tl494 с регулировкой напряжения и тока
Представляем схему импульсного самодельного блока питания на микросхеме tl494 с возможностью регулировки выдаваемого напряжения и тока. Такой блок питания обычно называют лабораторным блоком питания потому что при помощи него можно запитать как низковольтные маломощные потребители так и зарядить аккумулятор. Такой блок питания может выдать 30 Вольт при силе тока до 10 А.
Составные части импульсного блок питания на tl494
Блок питания можно разделить на 3 части:
1. Внутренний блок питания
Это блоки питания необходим для запитки вентилятора охлаждения, шим контроллера и вольтамперметра. Сюда подойдет любой блок питания с небольшой мощностью. Лучше конечно не собирать свой а использовать готовые решения, к примеру можно взять AC-DC преобразователь.
2 Блок управления.
Блок состоит из микросхемы TL494 и драйвера на 4-х транзисторах.
Схема включения TL494 получается очень простая, такая схема подключения довольно распространена у радиолюбителей. При помощи резистора R4 осуществляется регулировка напряжения от 0 до максимального значения, а при помощи R2 задается максимальное значение силы тока. Резисторы R11 и R12 можно использовать многооборотные.
Блок управления можно собрать на отдельной плате.
Печатная плата блока управления
3 Силовая часть
Большую часть деталей можно взять из старого блока питания компьютера, входной фильтр, выпрямитель, конденсаторы тоже берем из него.
Далее нам необходимо изготовить трансформатор управления силовыми ключами. Большинство радиолюбителей пугает тот факт что придется изготавливать трансформатор. Но в нашем случае все просто.
Для изготовления трансформатора понадобится колечко R16 x 10 x 4.5 и провод МГТФ 0.07 кв. мм. Провод берем 3 отрезка по 1 метру и делаем 30 витков в 3 провода на кольце.
Дроссель L1 также наматывается на ферритовое кольцо медным проводом длинной 1.5-2 метра и сечением 2 мм. Такая намотка позволят достичь приблизительно требуемой индуктивности.
Во множестве блоков питания есть второй дроссель на ферритовом стрежне, в качестве L2 можно взять его.
Силовой трансформатор тоже берется из блока питания от компьютера, но выходное напряжение будет 20 Вольт. Для того чтобы получить 30 Вольт, силовой трансформатор нужно перемотать. Для больших токов предпочтительнее брать ферритовые кольца.
Схема блок питания на tl494 с регулировкой напряжения и тока
Расчет для нашего блока питания 30 вольт 10 ампер. Трансформатор-донор из компьютерного блока питания оказался 39/20/12:
Печатная плата блок питания
Внешний вид готового блока питания
Регулируемый блок питания 0-24v 5a
R1 180R 0,5W R2 6К8 0,5W R3 10k (4k7 – 22k) reostat R4 6k8 0,5W R5 7k5 0,5W R6 0.22R 5W (0,15- 0.47R) R7 20k 0,5W R8 100R (47R – 330R) |
C1 1000 x35v (2200 x50v) C2 1000 x35v (2200 x50v) C3 1 x35v C4 470 x 35v C5 100n ceramick (0,01-0,47) F1 5A |
T1 KT816 (BD140) T2 BC548 (BC547) T3 KT815 (BD139) T4 KT819(КТ805,2N3055) T5 KT815 (BD139) VD1-4 КД202 (50v 3-5A) VD5 BZX27 (КС527) VD6 АЛ307Б, К (RED LED) |
Регулируемый стабилизированный блок питания – 0-24V, 1 – 3А
с ограничением тока.
Блок питания (БП) предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка 1-3А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.
В блоке питания предусмотрена так называемая защита т е ограничение максимального тока.
Для чего это нужно? Для того что бы этот БП служил верой и правдой, не боясь коротких замыканий и не требовал ремонта, так сказать «несгораемый и неубиваемый»
На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт
Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС156 на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно — если стабилитрон на 27 вольт , то максимальное выходное напряжение будет в пределах 24-25 вольт.
Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на 3-5 вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,
Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.
Выбор конденсаторов по емкости С1 и С2 –примерно по 1000-2000 мкф на 1А, С4 – 220 мкф на 1А
Несколько сложнее с емкостями по напряжению – рабочее напряжение грубо рассчитывается по такой методике – переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4
(~Uвх:3×4)
Т е – допустим, что выходное напряжение вашего трансформатора порядка 30 вольт – 30 делим на 3 и множим на 4 – получаем 40 – значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.
Уровень ограничения тока на выходе стабилизатора зависит от R6 по минимуму и R8 (по максимуму вплоть до отключения)
При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,
Как понять «ограничение»? Очень просто – выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,,,
А можно ли заряжать автомобильный аккумулятор? Запросто. Достаточно выставить регулятором напряжения , извиняюсь — потенциометром R3 напряжение 14,5 вольта на холостом ходу (т е с отключенным аккумулятором) а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта (14,5 в – напряжение полностью заряженного акк) он будет равен нулю.
Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка 5-7 вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью 5-10 ватт и последовательно с ним амперметр. Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне.
Теперь про детали. Выпрямительный мостик – диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД202 диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить 3-5 ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер. Хочется больше – загляните в справочник и выбирайте диоды помощнее, скажем ампер на 10.
Транзисторы – VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить – поверьте, не помешает.
Особо пытливым – почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор. Давайте посчитаем – на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт.
Из 30 вольт минусуем 13 вольт получаем 17 вольт (кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения)
Ну так вот , тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло это, которым воздух греем и можно назвать мощностью, которая рассеивается… Но попробуем выразиться математически , то бишь
школьный курс физики
P=U×J
где Р— это мощность в ваттах, U – напряжение на транзисторе в вольтах, а J — ток который течет и через нашу нагрузку и через амперметр и естественно через транзистор.
Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе,
Ну а допустим подключим сопротивление на 1 ом. По закону Ома при токе 3А падение напряжения на резисторе получится 3 вольта и рассеиваемая мощность величиной в 3 ватта начнет греть сопротивление. Тогда падение напряжения на транзисторе: 30 вольт минус 3 вольта = 27 вольт, а мощность рассеиваимая на транзисторе 27v×3A=81 ватт… Теперь заглянем в справочник, в раздел транзисторы. Ежели проходной транзистор т е VТ4 у нас стоит скажем КТ819 в пластмассовом корпусе то по справочнику выходит что он не выдержит т к мощность рассеивания (Рк*max) у него 60 ватт, но зато в металлическом корпусе (КТ819ГМ , аналог 2N3055) – 100 ватт – вот этот подойдет, но радиатор обязателен.
Надеюсь на счет транзисторов более менее понятно, перейдем к предохранителям. Вообще то предохранитель это последняя инстанция, реагирующая на грубые ошибки допущенные вами и «ценой своей жизни» предотвращающая…. Давайте допустим что в первичной обмотке трансформатора по каким то причинам произошло замыкание,или во вторичной. Может от того что перегрелся, может изоляция прохудилась, а может и просто – неправильное соединение обмоток, но предохранителей нет. Трансформатор дымит, изоляция плавится,сетевой провод пытаясь выполнить доблестную функцию предохранителя, горит и не дай бог если на распределительном шите вместо автомата у вас стоят пробоки с гвоздиками вместо предохранителей.
Один предохранитель на ток примерно на 1А больше чем ток ограничения блока питания (т е 4-5А), должен стоять между диодным мостом и трансформатором, а второй между трансформатором и сетью 220 вольт примерно на 0,5-1 ампер.
Трансформатор. Самое пожалуй дорогое в конструкции Грубо говоря чем массивнее трансформатор тем он мощнее. Чем толще провод вторичной обмотки, тем больший ток может отдать трансформатор. Все это сводится к одному – мощности трансформатора. Так как же выбрать трансформатор? Опять школьный курс физики, раздел электротехника…. Опять 30 вольт, 3 ампера и в итоге мощность 90 ватт. Это минимум, который следует понимать так – этот трансформатор кратковременно может обеспечить выходное напряжение 30 вольт при токе 3 ампера, Поэтому желательно накинуть по току запас минимум процентов 10, а лучше все 30-50 процентов. Так что 30 вольт при токе 4-5 ампер на выходе трансформатора и ваш БП сможет часами если не сутками отдавать ток 3 ампера в нагрузку.
Ну и тем кто желает получть максимум по току от этого БП, скажем ампер эдак 10.
Первое – соответствующий вашим запросам трансформатор
Второе – диодный мост ампер на 15 и на радиаторы
Третье – проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом (радиатор и принудительный обдув)
Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство – это не критично.
Пятое – армировать токопроводящие дорожки по пути следования больших токов напайкой дополнительных проводников и соответственно не забывать про соединительные провода «потолще»
Схема подключения запараллеленных транзисторов вместо одного
(VT4)
ПРИМЕЧАНИЕ:
Расположение светодиода на схема верное.Просьба обратить внимание, что на печатной плате допущена ошибка и светодиод(LED Red) следует впаивать в обратно полярности, а не так, как указанно. Приносим свои извинения за допущенную ошибку.
Схема двойного переменного переменного тока от 0 до 50 В, от 0 до 10 ампер
Привет всем,
Я построил источник питания Swagatams и хочу внести свой вклад в это описание моего подхода. Если я укажу на некоторые проблемы, это отнюдь не означает, что я критикую Свагатам. Я очень уважаю людей, публикующих что-то бесплатно, и даже больше, когда они поддерживают свой проект так же тщательно, как Swagatam. Это мой опыт настройки.
Так вот, у меня был очень хороший настольный блок питания, который точно регулируется до мВ и мА.Проблема была в том, что он имеет только + -15 В на 3 А, и у меня было несколько случаев, когда мне нужно было больше, + -30 В на 1-2 А было бы неплохо. Еще одним важным требованием была защита от сверхтоков. В комплекте идет дизайн Swagatams.
В таком виде он делает то, чего и следовало ожидать. Я запускаю его с + -42В при 3А. Регулировка напряжения и тока немного грубая, но это не имеет значения, поскольку это единица «ворчания».
Какие детали я использовал? Это может быть хорошо известный трюк, но на самом деле я выпотрошил старый ресивер Denon AV 5.1.Старые без HDMI выбрасываются, а когда повезет, можно получить очень дешево. У меня было 10 долларов, правда, со сгоревшими выходами.
Что вы от этого получите? Мощный трансформатор, радиатор, способный на многое. И 2, может быть 4 конденсатора фильтра, рассчитанные на напряжение, поступающее от трансформатора. Это, безусловно, самые дорогие части нашего проекта. Если вам повезет, вы получите вентиляторы, ножки, кастрюли, силиконовые термопрокладки и множество других полезных деталей.
Я разработал печатную плату с KiCad, чтобы она соответствовала корпусу, который у меня был от другого заброшенного проекта.Он идеально подходил к креплению и был очень дешево изготовлен JLCPCB.
Это можно было сделать на прототипной плате, но мне нравится оттачивать свои навыки работы с KiCad.
На печатной плате я добавил небольшой регулируемый источник питания на 12 В от другой вторичной обмотки AV-трансформатора, опять же с использованием розеток, выпрямителя, колпачков и регулятора, взятых с Denon.
Я также добавил небольшую схему с использованием триггера 4013, который включается и выключается при нажатии кнопки для переключения реле и активации светодиода. Это необходимо для легкого отключения нагрузки.
В корпусе смонтирована плата контроллера вентилятора с вентилятором с регулируемой температурой. Их можно дешево купить на eBay, и у меня их было несколько. Для этого я использовал 8-сантиметровый ШИМ-вентилятор от старого ПК. Он также получает питание от небольшого блока питания 12 В.
Затем я добавил два вольт / амперметра. Опять же, эти измерители панельного типа дешевы на eBay. Они не очень точны, но достаточно хороши для моих нужд. Они тоже получали питание от 12 вольт.
Я обнаружил, что эти дешевые счетчики измеряют только положительное напряжение.И они получают свою ссылку от земли амперметра. Это сработало для положительной части проекта, но при подключении обратной стороны к отрицательной, все не работало или закорачивалось. Решение заключалось в том, чтобы дать отрицательному счетчику собственное питание 12 В, чтобы он был отделен от остальных и мог установить свое собственное заземление. Поэтому я добавил небольшой регулируемый источник питания на 12 В от резервного трансформатора Denon, построенного на прототипной плате. Счетчик потребляет всего 15 мА.
При всем этом питание работало, но у меня были проблемы с токоограничивающим потенциалом P1 конструкции.Это ничего не дало. Однако одинокий R4 отлично справляется со своей задачей. После нескольких бесплодных попыток я отказался от этого, снял горшок и реализовал 6-позиционный двухполюсный селектор для включения 6 различных R4, что дало мне ограничение тока 0,1, 0,2, 0,5, 1, 3 и 5 ампер. Обратите внимание, что мой переключатель рассчитан на 5 ампер, но при переключении только 150 мА. При изменении текущей настройки защиты необходимо отключить нагрузку.
Тестирование положительного результата продолжено. Выпрямленное напряжение без нагрузки 48 вольт, с нагрузкой 42.Между прочим, крупные производители не так щедры со своими ограничениями по напряжению, как Svagatam, экономя там несколько копеек. Крышки фильтров в Denon имели 10000 мкФ при 50 В. Близко, но работает. Когда я проверил полные 42 вольта с током примерно 3 ампера, волшебный дым вышел и сгорел предохранитель.
Расследование показало, что сгорел R2. Это произошло, потому что BC546 T3 не выдержал нагрузки и закоротил. С ним потребовался T1 (я использую TIP142), также закорачивающий, что привело к перегоранию предохранителя.
Проблема, связанная с недооценкой T3, упоминается в комментариях.Поэтому я заменил детали, увеличил R2 до 1/2 ватта и заменил T3 на BD139. Это сработало нормально, и BD139 выдерживает нагрузку. Я соответствующим образом изменил отрицательную сторону с помощью BD140.
Теперь питание работает нормально, и я очень им доволен. Я также многому научился, и в этом вся суть DIY, верно?
Еще раз спасибо Swagatam за прекрасный проект.
С уважением
Как сделать блок питания 18 В и 10 А
Как сделать блок питания на 18 в и 10 ампер
В этом проекте мы узнаем, как легко сделать источник питания 18 В и 10 А в домашних условиях, выполнив несколько простых шагов с помощью видео и принципиальной схемы.Обычно стабилизатор напряжения обеспечивает выходной ток 1 ампер. но мы получаем желаемый ток с помощью одиночного транзистора.Как сделать блок питания 18 В и 10 А |
Компоненты:
- Трансформатор 24 В 10 А
- Tip3055 транзистор
- 10A10 Диод (2)
- 1N4007 Диод
- LM7818 Регулятор напряжения
- Радиатор
- Печатная плата
- Паяльник
- Проволока для пайки
- 50 В, 4700 мкФ конденсатор
- 50v 40 мкФ конденсатор
Схема источника питания 18 В 10 А |
- Трансформатор 24 В 10 А имеет 2 стороны,
- Использование первичной стороны для входного источника питания 220 В.
- Вторичная сторона имеет 3 провода.
- Соединить диод 10A10 с 1-м и 3-м проводами трансформатора.
- И 2 стороны обоих диодов соединяются друг с другом.
- Средний провод трансформатора используется для заземляющего провода.
- Теперь подключите положительную сторону конденсатора 4700 мкФ ко 2-м сторонам диода, а отрицательную сторону — к заземляющему проводу трансформатора.
- А теперь соедините входной провод регулятора напряжения с плюсовым проводом конденсатора 4700 мкФ,
- Теперь подключите диод 1N4007 к заземляющему проводу регулятора напряжения, как на схеме,
- А теперь выходной провод регулятора напряжения соединить с базой транзистора,
- Теперь коллекторный вывод транзистора соединен с положительной стороной конденсатора 4700 мкФ,
- И теперь положительная сторона конденсатора 470 мкФ соединяется с выводом эмиттера транзистора, а отрицательная сторона соединяется с проводом заземления.
- Наконец, вывод эмиттера транзистора используется для положительного выхода, а заземляющий провод — для отрицательного выхода.
Транзистор Tip3055 имеет 3 контакта.
- 1 контакт для цоколя
- Использование 2-го штифта для коллектора
- Использование 3-го контакта для эмиттера
Это очень простой самодельный и очень мощный сильноточный источник питания. мы узнаем это лучше с просмотром видео
Видео о том, как сделать блок питания постоянного тока 18 в, 10 ампер:
Сколько напряжения и тока мы получаем от диода 10А10?
мы можем получить 1000 вольт и ток 10 ампер от диода 10A10.
Как легко сделать источник питания на 12 В и 10 А в домашних условиях
Как легко сделать источник питания на 12 В и 10 А в домашних условиях
В этом проекте мы узнаем, как легко сделать источник питания 12 В и 10 А в домашних условиях, выполнив несколько простых шагов с помощью принципиальной схемы. для создания этого проекта нам понадобятся некоторые компоненты.Как легко сделать источник питания 12 В и 10 А в домашних условиях |
Компоненты:
- 12v 10amp трансформатор
- TIP3055 Транзистор
- LM7812 Регулятор напряжения
- 4700 мкФ, конденсатор 35 В
- 220 мкФ, конденсатор 25 В
- 1N5408 Диод (2)
- 1N4007 Диод
- Радиатор (2)
- Печатная плата
- Паяльная проволока
- Паяльник
В этом проекте мы используем регулятор напряжения LM7812.Обычно он дает нам только 1 ампер на выходе. но мы используем транзистор для увеличения мощности. следуйте этим простым шагам и создайте свой собственный блок питания.
Схема блока питания 12 В 10 А |
- Трансформатор имеет 2 стороны первичной обмотки для входного источника питания 220 В.
- Вторичная сторона имеет 3 провода.
- Соединить диод 1N5408 с 1-м и 3-м проводами трансформатора. Как диаграмма.
- И 2 стороны обоих диодов соединяются друг с другом.
- Средний провод трансформатора используется для заземляющего провода.
- Теперь подключите положительную сторону конденсатора 4700 мкФ ко 2-м сторонам диода, а отрицательную сторону — к заземляющему проводу трансформатора.
- А теперь соедините входной провод регулятора напряжения с плюсовым проводом конденсатора 4700 мкФ.
- Теперь подключите диод 1N4007 к заземляющему проводу регулятора напряжения, как на схеме,
- А теперь выходной провод регулятора напряжения соединить с базой транзистора,
- Теперь коллекторный вывод транзистора соединен с положительной стороной конденсатора 4700 мкФ,
- И теперь положительная сторона конденсатора 220 мкФ соединяется с выводом эмиттера транзистора, а отрицательная сторона соединяется с проводом заземления.
- И, наконец, вывод эмиттера транзистора используется для положительного выхода, а заземляющий провод — для отрицательного выхода.
Транзистор TIP3055 имеет 3 контакта.
- 1-я база
- 2-й коллектор
- 3-й эмиттер
узнаем больше аккум с просмотром видео
Видео о том, как сделать блок питания 12 в 10 ампер:
Некоторые основные вопросы и ответы:
Почему мы выбрали транзистор TIP3055 для источника питания 12 В 10 А?
Поскольку мы можем получить ток 15 ампер от транзистора TIP3055, мы выбрали этот транзистор.
Как сделать зарядное устройство на 12 вольт на 5 ампер?
Просто используйте эту схему и замените этот трансформатор на трансформатор на 5 ампер.
Настольные блоки питания | Фиксированный, регулируемый и программируемый
Настольные блоки питанияВыбор настольного источника питания: обзор
Ниже приведен список информации, охватывающий любые вопросы, которые могут возникнуть при выборе настольного источника питания:
Использование настольного источника питания
Настольные источники питания в основном работают так же, как и любые другие AC-DC конвертеры, только на более высоком уровне.Они более интуитивно понятны и предлагают гораздо больше возможностей для управления средой и моделирования. Подумайте о стандартном источнике переменного тока, но с более мощными функциями.
Некоторые настольные блоки питания имеют несколько выходов, способных одновременно запитывать разные цепи. Другие могут сохранять предварительно запрограммированные выходы для мгновенного вызова и легкой настройки. Некоторыми моделями можно управлять даже с внешнего компьютера.
Но когда дело доходит до эксплуатации, настольный источник питания сильно отличается от других типов регулируемых блоков питания.
Во-первых, настольный блок питания — более надежный источник питания. Он также не мешает работе схемы даже при питании самой схемы. Во-вторых, он позволяет вам регулировать выход постоянного тока, используя как точную, так и грубую регулировку для большей точности. Многие модели настольных источников питания также оснащены встроенными системами безопасности, такими как ограничение напряжения, охлаждение активной зоны и автоматическое регулирование температуры, что идеально подходит для защиты как пользователя, так и самого устройства.
Режимы настольного источника питания: постоянное напряжение и постоянный ток
Одна из лучших и наиболее полезных функций настольного источника питания — это его два режима работы: постоянное напряжение и постоянный ток.
- Постоянное напряжение — заданные значения напряжения поддерживаются независимо от сопротивления нагрузки
- Постоянный ток — заданные значения тока поддерживаются независимо от сопротивления нагрузки
Эти два режима чрезвычайно полезны в ситуациях, требующих тестирования цепи с ограниченным внешним питания и / или проверить нестабильную систему цепи, которая подвержена риску повреждения при воздействии более высоких уровней мощности.
Используя стендовый источник питания для тестирования цепей, вы можете иметь разные уровни напряжения, питающие разные цепи или просто разные части одной и той же системы цепей.Именно по этой причине многие стандартные модели имеют выходные гнезда положительного, отрицательного и нулевого уровня напряжения.
В целом, если вы хотите быстро устранить неисправности, проанализировать или проверить электрическое устройство, настольный источник питания — это лучший инструмент. Это надежный, легко настраиваемый и регулируемый источник питания, который обеспечивает чистую контролируемую мощность, когда вам это нужно.
Различные типы настольных блоков питания
Не все настольные блоки питания одинаковы. Существует шесть основных типов:
- Одноканальные и многоканальные источники питания. Настольный одноканальный блок питания имеет именно то, что предполагает его название; один управляемый выход. С другой стороны, многоканальность имеет два или более варианта вывода. Они также лучше всего подходят для разработки устройств с биполярной схемой или как цифровой, так и аналоговой схемой.
- Биполярные и униполярные источники питания. Биполярные регулируемые блоки питания могут работать как в области положительного, так и отрицательного напряжения. Это делает их способными обрабатывать более широкий спектр практических приложений питания.Однако это также делает их намного более дорогими и сложными по сравнению с однополярными источниками питания.
- Линейные и импульсные источники питания. Следует обратить внимание на линейные источники питания: они способны производить высокоточные измерения с минимальными помехами сигнала. Однако их размер не позволяет им быть столь же эффективными, как импульсные источники питания. Импульсные источники питания — несмотря на то, что они немного беспорядочные и менее точные — могут обеспечивать высокий уровень мощности в более компактной и энергосберегающей форме.
На что обращать внимание в настольном источнике питания
Настольный источник питания действует как временный сторонний источник питания, который вы можете до некоторой степени настроить в соответствии с любым проектом, над которым вы работаете. Поэтому очень важно получить тот, который удовлетворяет ваши потребности. Например, если вы используете его для интенсивных полевых работ или промышленных электромонтажных работ, вам обязательно понадобится что-то с большим количеством энергии. Однако для хобби или случайных домашних проектов ничего с уровнем напряжения выше 120 может быть излишним.
Итак, вот что следует учитывать при выборе настольного источника питания:
Current Limiting Control — Это отличная функция для вашего устройства, если вы новичок. С помощью элемента управления ограничением тока можно интуитивно установить предел тока, чтобы предотвратить возможные скачки или перегрев источника питания и его компонентов.
Регулировка нагрузки — часто нагрузка изменяется во время выполнения проекта. Настольный источник питания должен иметь функцию регулирования нагрузки, которая показывает, насколько хорошо выходное напряжение или выходной ток могут оставаться постоянными при этих изменениях. Вам определенно нужна модель, которая может хорошо сохранять последовательность.
Линейное регулирование — , как и регулирование нагрузки, линейное регулирование относится к способности устройства поддерживать постоянное выходное напряжение или выходной ток, несмотря на изменения, происходящие в середине проекта. Разница в том, что линейное регулирование относится к стабильности, которая поддерживается, пока входное напряжение и частота сети переменного тока продолжают изменяться.
Выходные каналы — в идеале вам понадобятся два (2) выходных канала для настольного источника питания.Три и более подойдут для большего количества промышленных проектов, один может оказаться слишком неэффективным. Два выходных канала — это твердая золотая середина.
Пульсация и шум — почти любой источник переменного тока будет испытывать периодические и случайные отклонения (PARD). Что касается переменного тока на выходе, «пульсация» — это периодическое явление. «Шум» — случайное проявление.
Точность считывания — определяет точность теоретического значения выходного напряжения; Другими словами, насколько близки внутренние измеренные значения к предустановкам.
Стабильность — это относится к производительности вашего настольного источника питания с течением времени. По мере старения агрегата ему потребуется больше обслуживания. Интенсивность обслуживания будет зависеть от устойчивости устройства.
Примеры настольных источников питания
Если вы думаете о выборе настольного источника питания для себя, но не знаете, с чего начать, мы можем порекомендовать несколько невероятно эффективных и удобных в использовании моделей.
Во-первых, у вас есть программируемый CSI305DB 30 В постоянного тока 5.Блок питания 0 ампер. Отлично подходит для научных исследований, производства электроники, ремонта компьютеров, лабораторных работ и / или разработки продуктов.
CSI305DB — прочный, высоконадежный настольный источник питания, который отличается эргономичным дизайном, интуитивно понятным управлением и тремя (3) независимыми клеммами. Помимо программируемости и компактности, эта модель также оснащена 4-значным, легко читаемым дисплеем и памятью для хранения до 60 значений. Это упрощает программирование и предварительную установку значений тока и напряжения.
Ручки токовой защиты легко регулируются в пределах номинального диапазона.
В сочетании с улучшенной схемой защиты устройства от перегрузки и встроенной технологией поверхностного монтажа (SMT) настольный источник питания 30 В постоянного тока CSI305DB представляет собой надежную модель, идеально подходящую для промышленного использования.
Далее у нас есть модель с тройным выходом; CSI305 30 В постоянного тока 5.0. Он идеально подходит для разработки продуктов, лабораторных работ, обучения и производства электроники.
Этот настольный блок питания на 30 В обладает рядом полезных функций, которые делают его идеальным как для сложных производственных линий, так и для повседневного использования в лабораториях.Он имеет два плавно регулируемых выходных канала (для тока и напряжения) и один фиксированный выходной канал.
Другие примечательные особенности включают 4-значный ЖК-дисплей с большим экраном, встроенные ручки регулировки — как точной, так и грубой — для достижения точной желаемой производительности, а также внутренний охлаждающий вентилятор для поддержания низких температур и продления срока службы машины.
Модель CSI305 имеет три различных режима для выходного напряжения и тока: режим независимых операций, режим последовательного отслеживания и режим параллельного отслеживания.
- Независимые операции: позволяет 2 шт. при выходном напряжении и токе 0-30 В 0-5A
- Series Tracking: допускает максимальное выходное напряжение 60 В с максимальным выходным током 5A
- Parallel Tracking: допускает максимальное значение выходного напряжения 30 В с максимальным выходным током 10A
В целом, это полностью регулируемый, прочный источник питания с функциями, обеспечивающими точное считывание и разнообразный потенциал.
Наконец, у вас есть линейный настольный источник питания CSI1802X. Он хорошо подходит для испытательных стендов, школьных помещений и лабораторного обучения / тестирования.
Портативный, регулируемый и полностью регулируемый CSI1802X — это линейный настольный источник питания, обеспечивающий до 18 В и 2,0 А стабильного питания постоянного тока. Ручки управления напряжением и током расположены спереди для легкого доступа и быстрого и точного ввода. Вы можете легко перепроверить цифры на ярком ЖК-дисплее. Выходные устройства установлены на большом радиаторе сзади для обеспечения термостойкости.Другие встроенные меры безопасности включают схему защиты от перегрузки, многоконтурное высокоточное регулирование напряжения и прогрессивное регулирование тока.
Модель CSI1802X, в частности, также оснащена клеммами, установленными на передней панели, для подключения банановых вилок для питания постоянного тока и многопетлевой регулировкой напряжения для высокой точности.
100+ Принципиальная схема блока питания с печатной платой
Вы ищете много принципиальных схем блока питания, не так ли?
Потому что различные электронные проекты должны использовать их в качестве источника энергии.
Но иногда может понадобиться сэкономить время и почерпнуть идеи.
Кроме того, они просты в сборке и дешевы.
Сначала взгляните на:
3 источник питания для электронных устройств
Давайте познакомимся с тремя наиболее типичными типами источников питания.
Типы 1 # Батарея
Многие схемы потребляют мало энергии. Так что он может питаться от батареек.
Это маленький и простой в использовании в любом месте. Но обычно они низкого напряжения.
Таким образом…
Они лучше всего подходят для работы с малым током.
Но для большой нагрузки. Что нам использовать?
Лучше подойдут аккумуляторные батареи. Для многократного использования много раз, чтобы сэкономить деньги.
Мне нравится, когда мои дети ими пользуются. Потому что для него это безопасно.
Тип 2 # Solar
Мы можем использовать его как солнечную энергию напрямую в нашей цепи.
Но…
Нам нравится использовать это солнечное зарядное устройство для аккумуляторной батареи.
Например…
Мой сын любит делать солнечный свет.
Тип 3 # Линия переменного тока
Мы используем линию переменного тока, в основном это адаптер переменного тока, как блок питания. Они компактнее и проще в использовании, чем аккумулятор.
Их можно применять для различных выходных напряжений и токов.
Когда мы в доме. мы должны использовать их вместо батарей и солнечных батарей, это сэкономит нам деньги.
Осторожно:
Мы должны использовать его осторожно. Безопасность прежде всего! Это много полезного, но также может убить вас!
Почему следует использовать линейный источник питания?
Есть много видов цепей питания.Но все их можно разделить на две группы.
- Линейный источник питания
- Импульсный источник питания
Как работает линейный?
Во-первых, напряжение переменного тока подается на силовой трансформатор для повышения или понижения напряжения.
Затем преобразовано в постоянное напряжение.
И далее, применительно к цепи регулятора системы.
Поддерживает напряжение и ток нагрузки.
Но…
Как работает импульсный источник питания
Без трансформатора — он преобразует мощность переменного тока напрямую в постоянное напряжение без трансформатора.
И…
Высокая частота — это постоянное напряжение преобразуется в высокочастотный сигнал переменного тока.
Затем схема регулятора внутри выдает желаемое напряжение и ток.
Линейные импульсные источники питания постоянного тока
В таблице ниже сравниваются различные параметры линейной и импульсной формы.
Благодарности: CR Источник питания Tekpower 30V 5A на Amazon
Мне нравится линейный источник питания.
Почему?
Это…
- простая принципиальная схема
- тихий
- высокостабильный, прочный и тяжелый
- низкий уровень шума, пульсации, задержки и электромагнитных помех
Какой тип переключения прямо противоположный.
ОБНОВЛЕНИЕ: Теперь я также люблю импульсные источники питания постоянного тока
Читайте также: Как это работает
Вы можете полюбить это со мной.
Изучение источников питания
Я знаю, что вы не хотите терять время, хотите быстро создать цепь питания. Но ждать. Если вы новичок.
Следует хотя бы раз изучить его принципы работы. Чтобы уменьшить количество ошибок и правильно выбрать схему Я хочу легко увидеть вашу жизнь.
8 Верхние схемы питания
На нашем сайте есть очень много схем питания.Мы не можем показать вам все. Таким образом, для экономии вашего времени см. Списки ниже.
1 # Первый источник переменного тока постоянного тока, LM317
Вы можете настроить выходное напряжение от 1,25 В до 30 В при 1,5 А. Мне это нравится. Потому что… Это просто и дешево.
Подробнее: LM317 Блок питания
Например, вы можете использовать его вместо батареи 1,5 В.
Читайте также: См. Распиновку LM317 и способы использования
2 # Простой фиксированный стабилизатор постоянного тока
Вы часто смотрите на эту схему во многих устройствах.Это довольно старая схема, но очень полезная.
Потому что… Это очень просто: всего , один транзистор , стабилитрон , и резистор. Выходное напряжение зависит от стабилитрона.
Например…
Вам нужно питание 12 В, вы используете стабилитрон 12 В. Ты сможешь. Я верю тебе!
Продолжить чтение »
3 # 78xx регулятор напряжения — круто!
Фиксированный стабилизатор 5 В, 6 В, 9 В, 10 В, 12 В, 1 А от IC 7805,7806,7809,7812
Это популярный фиксированный стабилизатор постоянного тока на 1 А, простой и дешевый.
Например…
Если вам необходимо питание 5V 1A для цифровой схемы. Обычно здесь используется LM7805. Продолжить чтение »
Также: Изучите распиновку цепи 7805 и многое другое
4 # Простой регулируемый регулятор 3A, LM350
Регулируемый регулятор напряжения LM350Иногда мне нужно использовать источник переменного напряжения 3A.
Но…
LM317 не может мне легко помочь.
В скором времени мы используем LM350 Переменный источник питания .
Это лучшая линейная [электронная почта] Выходное напряжение от 1,25 В до 25 В.
5 # Регулируемый источник постоянного тока 0–30 В, 3 А
Мы редко используем ток 3 А, который позволяет регулировать выходное напряжение от 0 до 30 В.
Это лучший выбор.
Он использует LM723 в качестве известной ИС регулятора.
А вот схема современного дизайна, полная защита, чем у LM350T.
Продолжить чтение »
6 # Переменный источник питания, 0-50 В при 3 А
Если вам нужно использовать выходное напряжение более 30 В или отрегулировать от 0 до 50 В.
Можно использовать. У них есть ключевые компоненты, LM723, и транзистор 2SC5200 более высокого напряжения.
Также полная защита от перегрузки.
Продолжить чтение »
7 # Соберите блок питания 12В 2А с помощью молотка
Если торопитесь и нет печатной платы. Эта идея может быть хорошей. Вы можете легко и недорого собрать адаптер 12В 2А.
С помощью молотка и улитки по деревянной доске. Кроме того, чтобы узнать больше.
8 # 15V Двойное питание для предусилителя
Если вам нужно использовать много схем с OP-AMP.
Например, предусилитель с регулятором тембра и др. Им необходимо использовать источник питания +/- 15 В.
У нас есть для вас 3 схемы схем. Продолжить чтение >>
Цепей много в категориях: Блоки питания.
Другие схемы линейного источника питания
Регулятор постоянного напряжения: 1,5 В, 3 В, 6 В, 9 В, 12 В
Низкое напряжение
Источники питания 5 В Цифровые источники питания
9 В
Низкое падение напряжения
Просто и идеи
Схема регулируемого источника питания
Что такое регулируемый источник питания? Проще говоря, это блок питания, который может регулировать выходное напряжение или ток. Но он по-прежнему имеет те же характеристики, что и фиксированный регулируемый источник питания. Он будет поддерживать стабильное напряжение при любой нагрузке.
Менее 1 А
Выходной ток 2 А
3 А Выходной ток
Высокий ток (5 А вверх)
Высокое напряжение (100 В вверх)
Двухканальный регулятор и несколько напряжений
Бестрансформаторный
Источник постоянного тока
Режим переключения Цепи питания
Это импульсные блоки питания постоянного тока.Быть идеями по созданию проектов или инструментов. Потому что они имеют небольшие размеры и дешевле линейных блоков питания.
На моем сайте появляется много схем. Пока друзья не сказали, что сложно увидеть схемы или проекты, как он хочет.
Особый импульсный источник питания постоянного тока очень полезен. В приведенном ниже списке представлены идеи по созданию отличного блока питания, небольшого размера и позволяющего сэкономить деньги. Для применения или обучения.
Итак, я собираю эти схемы для облегчения доступа к интересующим меня проектам.Кроме того, они могут быть вам полезны.
Примеры схем
Регулятор режима переключения
Преобразователь постоянного тока в постоянный
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
Создайте простой блок питания постоянного тока
В мире существуют более эффективные и сложные блоки питания. Есть более простые способы получить простой источник питания, подобный этому (например, повторно использовать бородавку).Но если вы сделаете такой источник питания хотя бы раз в жизни, вы будете гораздо лучше понимать, как переменный ток становится регулируемой мощностью постоянного тока. Будет много других подобных блоков питания, но этот будет вашим.
Блок питания, как мы его здесь будем называть, преобразует переменный ток из розетки на стене в постоянный. Есть несколько способов сделать это. Мы рассмотрим один из самых простых, но и наиболее наглядных примеров.
Электроэнергия проходит через несколько ступеней в источнике питания с регулятором напряжения, подобном этому или обычному настенному бородавку.Способы его изменения на каждом этапе объяснены ниже. В следующий раз, когда вы воспользуетесь бородавкой для питания одного из своих проектов, вы поймете, что происходит внутри.
Теория:
Вход переменного тока
Напряжение переменного тока, идущего от стены, изменяется от минимального до максимального с частотой 60 Гц (в США и других странах с частотой 60 Гц). Это то, что питает все приборы переменного тока в вашем доме и магазине, и это похоже на график ниже. После трансформатора график аналогичен, за исключением того, что синусоида имеет меньшую амплитуду.
Простой график, показывающий мощность переменного тока. Vin MarshallРектификация
Первая ступень этого блока питания — выпрямитель. Выпрямитель представляет собой систему диодов, которая позволяет току течь только в одном направлении. Представьте себе односторонний обратный клапан для воды. Из-за расположения диодов в двухполупериодном выпрямителе, используемом в этой конструкции, положительная часть сигнала переменного тока проходит беспрепятственно, а отрицательная часть сигнала переменного тока фактически инвертируется и добавляется обратно в выходной сигнал выпрямителя.Теперь наш сигнал выглядит так:
График мощности переменного тока после отключения выпрямителя. Vin MarshallСглаживание
Теперь у нас есть по крайней мере стабильно положительные уровни напряжения, но они все еще опускаются до нуля 120 раз в секунду. Большой конденсатор, который можно представить себе как батарею, работающую на очень короткие периоды времени, устанавливается поперек цепи, чтобы выровнять эти быстрые колебания мощности. Конденсатор заряжается при высоком напряжении и разряжается при низком напряжении. С помощью конденсатора кривая напряжения выглядит так:
График мощности переменного тока при сглаживании конденсатором. Vin Marshall РегламентНа этом этапе мы используем интегральную схему (ИС), чтобы последовательно регулировать напряжение до желаемого уровня. При выборе размеров компонентов для всех предыдущих этапов важно управлять этой ИС с уровнем напряжения, значительно превышающим регулируемое напряжение, чтобы оставшиеся провалы 120 раз в секунду не опускались ниже требуемого минимального входного значения.Однако вы не хотите использовать слишком высокое напряжение, так как эта избыточная мощность будет рассеиваться в виде тепла. Кривая напряжения в этой точке (в идеале) представляет собой сигнал постоянного тока при желаемом напряжении; горизонтальная линия.
На этом графике мощности постоянного тока нет провалов. Vin Marshall Что вам понадобитсяДля сборки этого конкретного блока питания вам потребуется следующее:
- Шнур питания. Где-то должен быть один…
- Тумблер SPST 120 В
- Монтаж на панели неоновая лампа 120 В
- 3 зажимных штыря
- Трансформатор с входным напряжением 120 В и выходным напряжением около 24 В, чтобы Vin для регулятора 7812 оставался выше минимум.Я использовал Radio Shack p / n 273-1512.
- Двухполупериодный мостовой выпрямитель
- 6800 мкФ конденсатор
- 2x 100 нФ (точное значение не имеет значения) конденсаторы
- 2x 1 мкФ (точное значение не имеет значения) конденсаторы
- 7805 регулятор напряжения 5 В
- 7812 регулятор напряжения 12 В
Инструкции
Конструкция блока питания довольно проста. Я построил этот блок питания много лет назад и использовал двухточечную проводку на монтажной плате.Есть много более чистых способов его создания, чем этот, и я рекомендую вам воспользоваться одним из них. Однако это прекрасно работает. При создании этого блока питания было бы разумно прикрепить какой-либо радиатор к регуляторам напряжения 78xx. Эта конструкция может быть легко модифицирована для обеспечения регулируемого выходного напряжения с помощью регулятора напряжения LM317 вместо или в дополнение к указанным регуляторам напряжения. Заземлив центральный отвод вторичной обмотки трансформатора (при условии, что у вас есть трансформатор с центральным отводом), взяв положительный и отрицательный выводы от мостового выпрямителя и используя регуляторы отрицательного напряжения серий LM79xx и / или LM337, ваш источник питания может обеспечить регулируемые отрицательные напряжения.
Полная схема блока питания. Vin MarshallГотовый продукт выглядит так:
Внутри блока питания. Вин МаршаллКак сделать переменный источник питания. Источник питания с регулируемым напряжением и током 1-25 В и 0-10 А
Как регулировать силу тока и напряжение от 0 до 10 ампер. | От 1 до 25 В.
Источник питания с регулируемым напряжением и током.
Это источник питания постоянного тока. Может использоваться с трансформатором постоянного тока переменного тока или адаптером режима переключения.
MUSTOOL MT8206 Интеллектуальный цифровой осциллограф-мультиметр 2 в 1: https: // ban.ggood.vip/RvRx
DANIU PX-988 Цифровой термостат 90 Вт Пайка регулируемого утюга: https://ban.ggood.vip/RvRz
Материалы:
Встроенный регулятор LM317, 1 шт. Https://www.banggood.com/custlink/Gv3Gowv8o3
Конденсатор 2 x 0,1 мкФ: https://www.banggood.com/custlink/v3DGOAqc2e
Потенциометр 1 x 5K: https://www.banggood.com/custlink/vmvGaQUWTG
Потенциометр 1 x 10K: https://www.banggood.com/custlink/vmvGaQUWTG
Резистор 1 x 220R
Резистор 1 x 1K: https: // www.banggood.com/custlink/vD3vawKig9
1 светодиод x 5 мм: https://www.banggood.com/custlink/KmGDofvZMQ
Резистор 2 x 0,10R или 0,22R 5 Вт: https://www.banggood.com/custlink/GD3GoTK9bG
1 x 1000 мкФ, 35 В конденсатор: https://www.banggood.com/custlink/KD3Kl7GIs5
Печатная плата 1 x 5X10 https://www.banggood.com/custlink/DvvKjuvZNU
Регулятор 1 x 7806 http://bit. ly/2kcLclI
1 x 10K NTC: https://www.banggood.com/custlink/KDKmlu3ZkK
Тримпот 1 x 5K: https: // www.banggood.com/custlink/KDKGo7DiqE
Вентилятор 2 x 4 см, 6 В: https://www.banggood.com/custlink/Dm3DOTv9U9
2 транзистора BD139 http://bit.ly/2lNS1Lc
2 транзистора питания TIP3055 http://bit.ly/2kJwdQz
2 алюминиевых радиатора
: https://www.banggood.com/custlink/3KmKQmuk85
ИСПРАВЛЕНИЕ: В видео диод, подключенный к конденсатору на выходе схемы, не нужен, поэтому я удалил его со схемы. Диод использовать не нужно.
Схема вентилятора:
Схема электропитания и выпрямителя:
.