Site Loader

Схемы терморегуляторов, термостатов и стабилизаторов температуры (Страница 4)

Схема терморегулятора на операционном усилителе (741, КТ503, 7812)

Терморегулятор, схема которого приведена ниже, предназначен для управления электрическимнагревательным прибором мощностью не более 1100W. Это может быть ТЭН или инфракрасная лампа накаливания, инфракрасная нагревательная пленка. Терморегулятор подходит для регулировки и поддержания температуры …

1 7303 0

Простой термостат для управления различными нагрузками (КТ3102, КТ3107)

Схема очень простого термостата, который можно использовать для управления различными нагрузками и устройствами в зависимости от температуры датчика. Устройство построено на трех транзисторах (2 х КТ3102 + КТ3107), на ее выходе подключено маломощное электромагнитное реле. Важно чтобы обмотка реле …

2 4535 0

Схема самодельного термостата на транзисторах (КТ3102, КТ3107, TIC106D)

Термостат (термореле), схема которого рассмотрена ниже, может быть использован для управления нагревательным устройством мощностью не более 220 Ватт.

Это может быть нагреватель выполненный на основе ИК-ламп или же обычных ламп накаливания, которые окрашены в черный цвет. Такой термостат может, например …

2 4992 0

Регулятор температуры с раздельной установкой температур срабатывания (LM311)

Большинство аналоговых терморегуляторов, построенных на компараторе, выполнено по схеме, в которой устанавливают только температуру, которую нужно поддерживать. При этом гистерезис установлен фиксированным и нигде не обозначается, поэтому понять в каких пределах поддерживается заданная температура …

1 6180 0

Термостат для управления обогревателем

Прибор служит для местного управления обогревом — включения и выключения электрического нагревателя. Этот термостат наиболеепригоден при использовании в фотографии, управлении грелкой в аквариуме, в красильных (покрасочных) работах и т. и. Базовый комплект элементов позволяет построить термостат,. ..

0 3963 0

Автоматический регулятор температуры обогрева

Домашний регулятор температуры предназначен для работы с разными типами электрообогревателей, которые используются для обогрева помещений. Максимальная мощность обогревателя не может быть выше 2 кВт. Датчиком температуры является термистор ТЫ, соединенный последовательно с резистором R4. Он…

1 4407 0

Терморегулятор для поддержания температуры в теплицах

Схема самодельного прибора для поддержания температуры в теплицах, выполнен на транзисторах. Температура в теплицах должна изменяться зависимости от освещенности (днем температура выше, ночью — ниже). Регулятор температуры, работая от двух датчиков (освещенности и температуры), отвечает всем требованиям тепличного регулятора температуры. Устройство состоит из блока регулирования…

1 4046 0

Схема терморегулятора для управления мощными нагревателями

Схема самодельного терморегулятора. который может быть использован в термостатах, калориметрах и других устройствах с мощностью нагревателя, не превышающей 1 кВт. Если требуется повысить мощность нагревательной установки, следует заменить тиристор V1 на более мощный, оставляя регулирующую часть прежней. Если нет подходящего…

1 4777 0

Электронный индикатор превышения температуры

С помощью электронного устройства можно за 20 с выявить заболевание животных по незначительному превышению температуры его тела. Устройство позволяет с точностью до 0,1 °С определить превышение температуры по сравнению с минимально допустимой, равной. Терморезистор R16 щупа включен в одно из…

0 3243 0

Регулятор с компаратором на операционном усилителе с точностью до 0,01 градуса

В мостовой схеме регулятора используется платиновый датчик. Сигнал с моста снимается операционным усилителем AD301, который включен как дифференциальный усилитель-компаратор.

В холодном состоянии сопротивление датчика менее 500 Ом, при этом выход операционного усилителя приходит в насыщение и…

0 2417 0

 1  2  3 4 5  6  7 


принцип работы, схема включения и выключения

Часто для работы какого-либо устройства или целой системы необходимо поддерживать определённый температурный режим. Это актуально при работе контуров отопления или охлаждения, построении устройств типа «инкубатор». Одним из простых приборов, позволяющих контролировать температуру, является термореле. Такое приспособление возможно приобрести в специализированных торговых точках, но можно изготовить такой регулятор температуры и своими руками.

  • Назначения и характеристики
    • Параметры приспособления
    • Принцип работы
  • Схемотехника регуляторов
    • Простые устройства
    • Термореле на микроконтроллере

Назначения и характеристики

В основе работы термореле лежит способность устройства управлять включением и выключением узлов схемы в зависимости от изменения температуры. Фактически — это приспособление, располагающееся между управляемыми элементами и датчиками температуры. Конструктивно прибор представляет собой электронную схему или же устройство, выполненное из специального материала.

Первый вид предполагает использование выносных или встроенных датчиков, а второй — использует свойства различных материалов изменять свои параметры при изменении характеристик электрической сети. То есть контроль происходит контактным или бесконтактным способом. Но несмотря на принципиальные различия, суть работы терморегуляторов одинаков. Регистрируя изменение температуры, устройство разрывает или подсоединяет подключённые к нему узлы аппаратуры или оборудования в автоматическом режиме.

Благодаря их применению, температура воздуха, воды, поверхностей различных приборов и радиоэлементов имеет стабильное значение.

Для каждой среды используются свои особенности размещения устройства. Его точность срабатывания зависит не только от качества исполнения самого регулятора, но и правильного размещения.

Выпускаются терморегуляторы разных видов. Классифицировать их можно по следующим признакам:

  1. По назначению. Разделяются на внутренние и наружные.
  2. Способу установки. Существуют независимые терморегуляторы, как способные располагаться на любой поверхности, так и размещаемые только внутри оборудования.
  3. Функциональностью. Терморегуляторы могут регистрировать только один сигнал или сразу несколько. При этом второго типа называются многоканальными. Они могут поддерживать значение температуры как на нескольких устройствах одновременно, используя независимые каналы, так и только на одном.
  4. Способу настройки. Управление режимами работы и настройка приспособления может быть механической, электронной или электромеханической.
  5. Гистерезису. В терморегуляторах под ним понимают значение температуры, при которой сигнал изменяется на противоположный знак, а также явление, когда происходит задержка переключения сигнала в зависимости от величины влияния. Именно он даёт возможность снизить частоту переключения, например, при повышении температуры в нагревателе. Но при этом следует понимать, что большая величина гистерезиса приводит к температурному скачку.
  6. Виду термодатчиков. Подключаемые к терморегуляторам датчики могут быть контактного и бесконтактного действия. Например, использующие в работе инфракрасное излучение или свойство биметаллической пластины.

Параметры приспособления

Как и любое оборудование, регуляторы температуры характеризуются набором параметров. От них в первую очередь зависит точность срабатывания устройства. Зависят эти характеристики не только от качества применяемых при построении схемы терморегулятора элементов, но и реализации системы, позволяющей избегать влияния посторонних факторов.

К основным характеристикам относят:

  1. Время переключения. Зависит от схемы реализации регулятора и способа установки датчика, определяющего его инерционность.
  2. Регулируемый диапазон. Устанавливает граничные значения температурного режима, в котором может происходить работа устройства.
  3. Напряжение питания. Это значение рабочего напряжения, необходимого для нормальной работы устройства.
  4. Активная нагрузка. Показывает, какой максимальной мощностью может управлять регулятор температуры.
  5. Класс защиты. Характеризует безопасность прибора. Обозначается согласно международной классификации по электрической безопасности.
  6. Система сигнализации. В регуляторе может использоваться светодиодный сигнализатор или жидкокристаллический экран. Ориентируясь на него, пользователь может сразу видеть, в каком режиме работает прибор контроля.
  7. Рабочая температура. Обозначает диапазон, в рамках которого обеспечивается правильная работа терморегулятора.
  8. Вид термодатчика. Являясь чувствительным элементом, он выступает в качестве индикатора температуры, отправляя данные на контроллер. Такие термодатчики на включение и выключение устройства бывают разных типов и конструкций, а также отличаются по способу передачи данных.

Кроме этого, к качественным характеристикам устройства относят: удобство использования, габариты, дополнительные возможности, общий вид.

Поэтому собирая терморегулятор своими руками, для получения законченного вида устройства желательно продумывать не только схему приспособления, но и корпус, в котором он будет располагаться.

Принцип работы

В общем виде терморегулятор можно представить в виде блок-схемы, состоящей из датчика температуры, блока обработки и регулирующего механизма. В основе работы механического теплового реле лежит способность биметаллической пластины изменять свою форму в зависимости от температуры. Для её изготовления используются два материала, жёстко скреплённые между собой с разным температурным коэффициентом расширения.

При нагреве такой пластины происходит её изгиб. Именно это свойство и используется при производстве тепловых реле. Во время деформирования пластинка замыкает или размыкает контактную группу, вследствие чего разрывается или восстанавливается электрический контакт. Такое реле может применяться в цепях как переменного, так и постоянного тока, а выбор граничной температуры в них обычно устанавливается с помощью механического регулятора.

Кроме этого, существуют твердотельные реле (электронные). В их конструкции уже нет движущихся и механических частей, а используется электронная схема, вычисляющая изменения температуры.

В качестве основных элементов таких приборов является термистор и микропроцессор. В первом происходит изменение электрических параметров при колебаниях температуры, а второй обрабатывает и в зависимости от запрограммированного алгоритма коммутирует контактные группы.

Схемотехника регуляторов

Из-за сложности настройки механического реле самостоятельное его изготовление практически невозможно, поэтому радиолюбители изготавливают твердотельные регуляторы. На сегодняшний день известно большое количество схем термореле разного класса. Так что подобрать подходящую для возможного повторения не составит сложности.

Но перед тем как приступить к самостоятельному изготовлению терморегулятора, необходимо подготовить ряд инструментов и материалов. Для этого, кроме электрической схемы и необходимых согласно ей радиоэлементов, понадобится:

  1. Паяльник или в случае использования сложных микроконтроллеров паяльная станция.
  2. Односторонний фольгированный стеклотекстолит. Если электрическая схема содержит большое количество радиоэлементов и относится к средней или высокой группе сложности, то изготовить её навесным монтажом не представляется возможным. Поэтому используется стеклотекстолит, на котором удобным методом, например, лазурно-утюжным или фотолитографией, наносится печатная схема будущего термореле.
  3. Мультиметр. Он необходим для настройки работы устройства и проверки правильности установки радиоэлементов.
  4. Мини-дрель. С помощью неё выполняют отверстия, в которые устанавливаются радиоэлементы.
  5. Рабочие материалы. К ним относятся: флюс, припой, спиртовой раствор, изолента или термоусадочные трубочки.

Последовательность действий при изготовлении сводится к следующему. На первом этапе выбирается схема и изучается её описание, доступность радиоэлементов. При этом не стоит забывать, что почти для каждой радиодетали существует аналог. Затем, изготавливается печатная схема, а по ней уже плата. На плату запаиваются радиоэлементы, коммутационные гнёзда и провода. Как только всё готово, производится тестовый запуск и в случае необходимости подстройка работы.

Простые устройства

Простейшее устройство, реагирующее на изменение температуры, можно собрать из нескольких сопротивлений и интегрального усилителя. Использующиеся резисторы представляют собой два полуплеча, образующие собой измерительную и опорную часть схемы. В качестве R2 используется термистор, то есть резистор, сопротивление которого меняется в зависимости от воздействующей на него температуры.

Интегральный усилитель LM393 работает в режиме компаратора, то есть сравнивает два сигнала, снимаемые с R1-R2 и R3-R4. Как только уровень сигнала на двух входах микросхемы сравняется, LM393 переключает нагрузку к питающей сети. В качестве нагрузки можно использовать вентилятор. Как только вентилятор охладит контролируемое устройство, уровень сигнала на втором и третьем входе компаратора снова начнёт различаться. Устройство снова переключит свои выходы, и питание прекратит поступать в нагрузку.

Несложную схему можно собрать и на тиристоре. В качестве её нагрузки можно использовать нагреватель, температуру которого и будет регулировать самодельный терморегулятор.

Эта схема может использоваться в инкубаторе или аквариуме.

В основе схемы также лежит способность компаратора сравнивать уровни напряжения на своих входах и в зависимости от этого открывать свои выходы. При одинаковом сигнале ток через транзистор VT1 не течёт, а значит, на управляющем выводе тиристора VS1 находится низкий уровень, и он закрыт. Появившееся напряжение на сопротивлении R8 приводит к его открытию. Запитывается схема через диод VD2 и R10. Для стабилизации питания используется стабилитрон VD1. Перечень и номиналы элементов приведены в таблице:

ОбозначениеНаименованиеАналог
R110 кОм 
R222 кОм 
R3100 кОм 
R4 =R66,8 кОм 
R51 кОм 
R8470 Ом 
R95,1 кОм 
R1027 кОм 
С10,33 мкФ 
VT1КТ1172N6027
VD1КС212ЖBZX30C12
VD2КД1051N4004
VS1КУ208ГTAG307— 800
   

Термореле на микроконтроллере

Собрав такой термостат, его можно использовать совместно с отопительной системой, например, совместно с котлом. В основе конструкции используется микросхема DS1621, которая совмещает в себе термометр и термостат. Её цифровой ввод-вывод обеспечивает точность ±0,5 °C.

При использовании DS1621 в качестве термостата в её внутреннюю энергонезависимую память (EEPROM) помещаются данные о температуре, которую необходимо поддерживать. А также контрольные точки, по достижении которых температура повышается или понижается. Разница между ними образует гистерезис, при этом на третьем выводе микросхемы формируется логическая единица или ноль.

Данные в микросхему заносятся с помощью микроконтроллера, выполненного на ATTINY2313. Устройство может поддерживать температуру в диапазоне от 10 до 40 градусов. Управление термоэлементом котла осуществляется через тиристор. С помощью кнопки S1 осуществляется включение и выключение термометра. А кнопками S2 и S3 устанавливается температура. Светодиод HL1 сигнализирует о работоспособности прибора. Во время нагревания термоэлемента котла он мигает. В качестве трансформатора используется TAIWAN 110—230V 6−0−6V 150TA.

При программировании в Features необходимо выбрать: int. RC Osc. 4 MHz; Start-up time: 14 CK + 0 ms; [CKSEL=0010 SUT=00] и Brown-out detection disabled; [B0DLEVEL=111] поставить галочку на Serial program downloading (SPI) enabled; [SPIEN=0]. А также отметить фьюзы: SUT1, SPIEN, SUTO, CKSEL3, CKSEL2, CKSELO. Правильно собранное устройство работает сразу и в наладке не нуждается.

Цифровой регулятор температуры | Полная принципиальная схема с пояснениями

— Реклама —

Рис. 1: ЖК-дисплей для регулятора температуры

Цифровой регулятор температуры является важным инструментом в области электроники, контрольно-измерительных приборов и автоматики для измерения и регулирования температуры. Его можно использовать как дома, так и в промышленных целях. На рынке легко доступны различные типы аналоговых и цифровых регуляторов температуры, но они, как правило, не только дороги, но и их температурный диапазон обычно не очень велик. Здесь представлен недорогой контроллер температуры на базе микроконтроллера, который может считывать и контролировать температуру в диапазоне от нуля до 1000ºC. Температура в реальном времени отображается на его ЖК-экране, и вы можете использовать его для контроля температуры в пределах заданного минимального и максимального диапазона.

Схема цифрового регулятора температуры и работа
На рис. 2 показана принципиальная схема цифрового регулятора температуры. Схема построена на микроконтроллере PIC16F877A (IC1), прецизионном усилителе термопары AD8495 (IC2), термопаре K-типа (подключена к CON3), ЖК-дисплее 16×2 (LCD1), реле с одним переключением (RL1) и нескольких общих компонентах.

Выбор датчика. В основном существует два типа систем измерения температуры — системы прямого измерения температуры до 1000°C и системы косвенного измерения температуры для более высоких температур, где датчики температуры могут быть физически повреждены из-за высоких температур. Выбор датчика температуры зависит от диапазона температуры, которую вы хотите проверить. Существуют различные типы датчиков прямого измерения для различных температурных диапазонов (см. Таблицу I).

— Реклама —

Термопара. Здесь мы использовали термопару типа K для прямого измерения температуры до 1000ºC. В термопаре К-типа для формирования соединения используются два материала: хромель (Ni-Cr) и алюмель (Ni-Al). K-тип — недорогая и одна из самых популярных термопар общего назначения. Его рабочий диапазон составляет от -250 до +1350ºC с чувствительностью примерно 42 мкВ/ºC.

Микроконтроллер . Сердцем системы является микроконтроллер PIC16F877A, представляющий собой маломощный, высокопроизводительный 8-разрядный микроконтроллер CMOS. Он включает в себя флэш-память 8 КБ, EEPROM 256 байт, RAM 368 байт, 33 контакта ввода/вывода (I/O), 10-битный 8-канальный аналого-цифровой преобразователь (АЦП), три таймера, сторожевой таймер с его собственный встроенный кварцевый генератор для надежной работы и синхронный интерфейс I2C.

Рис. 2: Принципиальная схема цифрового регулятора температуры

Контакты порта RD0–RD7 IC1 подключены к контактам D0–D7 ЖК-дисплея. Контакты порта с RB0 по RB2 подключены к регистру выбора RS, чтения/записи R/W и включения EN ЖК-дисплея. На канал АЦП RA0 микроконтроллера поступает аналоговый сигнал от термопарного усилителя IC2. Переключатели с S2 по S4 подключены к контактам порта с RC0 по RC2 IC1. Переключатели S2 и S3 используются для установки минимального и максимального пределов температуры соответственно. Переключатель S4 закрывается, чтобы запустить функцию АЦП и отобразить фактическую температуру. Штырек порта RC3 управляет нагревательным элементом. Когда на контакте RC3 порта появляется «высокий уровень», транзистор T1 переходит в режим насыщения, а реле RL1 срабатывает, чтобы включить нагревательный элемент.

Кристалл 4 МГц подключен между контактами 13 и 14 микроконтроллера IC1 для обеспечения базовой тактовой частоты. Сброс при включении питания обеспечивается комбинацией резистора R2 и конденсатора С1. Переключатель S1 используется для ручного сброса. IC2 представляет собой прецизионный инструментальный усилитель со схемой компенсации холодного спая термопары. Входной сигнал для IC2 (приблизительно 42 мкВ/°C) генерируется тепловым эффектом термопары. IC2 выдает выходной сигнал (5 мВ/°C) непосредственно из сигнала термопары. При напряжении питания 5 В выходной сигнал 5 мВ/°C позволяет устройству покрывать почти 1000 градусов температурного диапазона термопары. Выход IC2 подключен к входному контакту АЦП RA0 микроконтроллера IC1.

Рис. 3: Принципиальная схема источника питания 5 ВРис. 4: Бит конфигурацииРис. 5: Совмещенный односторонний макет печатной платы в натуральную величину для контроллера температуры и цепей питания Рис. 6: Компоновка компонентов для печатной платы
Загрузите PDF-файлы с компоновкой печатной платы и компонентов: нажмите здесь
Загрузите исходный код: нажмите здесь

Схема блока питания показана на рис. 9В, 500мА от трансформатора X1. Это пониженное переменное напряжение выпрямляется мостовым выпрямителем BR1 и фильтруется конденсатором C10 перед подачей на IC3. Регулятор IC3 обеспечивает регулируемое питание 5 В постоянного тока. Свечение LED1 указывает на наличие питания в цепи.

Программное обеспечение
Программа написана на языке C и скомпилирована с помощью компилятора Hi-Tech вместе с MPLAB для генерации шестнадцатеричного кода. Сгенерированный шестнадцатеричный код записывается в микроконтроллер с помощью подходящего программатора с настройкой битов конфигурации, как показано на рис. 4. Программа хорошо прокомментирована и проста для понимания.

Конструкция и испытания
Односторонняя печатная плата цифрового регулятора температуры в реальном размере показана на рис. 5, а расположение ее компонентов на рис. 6. Соберите схему на печатной плате, чтобы сэкономить время и свести к минимуму ошибки сборки. . Тщательно соберите компоненты и перепроверьте на наличие любой пропущенной ошибки. Используйте подходящую базу IC для IC1. IC2 представляет собой микросхему SMD, поэтому ее необходимо припаять к стороне пайки на печатной плате. После правильной сборки и подключения схемы подключите питание 230 В, 50 Гц к первичной обмотке трансформатора, а вторичную обмотку трансформатора подключите к плате X1.

Установите любую минимальную и максимальную температуру с помощью ЖК-дисплея, нажав переключатели S2 и S3. Максимальная температура начнется с минимальной температуры +10 градусов. Если измеряемая температура превышает установленную максимальную температуру, реле RL1 обесточивается и нагревательный элемент отключается. Аналогичным образом, когда измеренная температура становится ниже заданной минимальной температуры, реле RL1 срабатывает и включается нагревательный элемент.

Чтобы проверить правильность работы цепи, проверьте питание 5 В на TP1 по отношению к TP0. TP2 является «низким», когда температура опускается ниже минимальной температуры, и остается в этом состоянии до тех пор, пока не будет достигнута максимальная температура.


Автор имеет степень бакалавра технических наук (электронная инженерия) в компании Dr A.I.T., Бенгалуру

Цепь регулятора температуры: что заставляет ее тикать?

Приложения управления предлагают множество проектных идей. Но, по правде говоря, с помощью правильной схемы можно управлять различными устройствами и приборами. Итак, возможно, вам нужен ответ на вопрос: что я могу сделать со схемой регулятора температуры?

Терморегулятор может делать многое, помимо включения и выключения термостата.

К счастью, эта статья расскажет вам, как построить схему контроля температуры и что с ней делать.

Начнем!

Что такое устройство контроля температуры?

Как следует из названия, устройства контроля температуры могут управлять нагревателями или другими устройствами в зависимости от температуры при воздействии холода или тепла.

Вы можете установить пороговое значение температуры и настроить контроллер температуры на отключение или включение любого подключенного к нему устройства.

Кроме того, эти устройства обеспечивают точный и точный контроль температуры при работе в различных промышленных, бытовых и даже медицинских целях.

Например, устройство контроля температуры идеально подойдет для чувствительных к температуре устройств, таких как инкубаторы.

Как работает переключатель регулятора температуры?

Реле контроля температуры работает в соответствии с установленным значением (порог температуры). Интересно, что он делает это, измеряя условия окружающей среды или устройства в комнате и сравнивая их с температурным порогом.

Затем контроллер температуры использует разницу между двумя значениями для определения действия, которое необходимо предпринять. В конце концов, он решит, нуждается ли устройство в нагреве или охлаждении.

Когда устройство завершает свои расчеты, оно отправляет выходной сигнал мощности. Этот выходной сигнал выполняет необходимые изменения. Кроме того, конечный элемент управления (нагреватель, вентилятор или другие устройства) принимает сигнал и охлаждает или нагревает подключенное устройство.

Представьте себе духовку с нагревателем, термопарой и контроллером, чтобы лучше понять, как она работает. Контроллер измеряет температуру термопары духовки и сравнивает ее с установленным порогом.

Кроме того, контроллер рассчитывает, как долго нагреватель будет продолжать работать, чтобы поддерживать условия окружающей среды в духовке.

Цепь контроля температуры

Вы можете создавать различные схемы контроля температуры, такие как:

  • Цепь реле температуры

    Теперь давайте рассмотрим, как сделать эти схемы и как они работают.

    Цепь реле контроля температуры

    Во-первых, у нас есть схема контроля температуры, которую легко обойти. Это один из самых простых температурных контуров, но это не делает его менее эффективным. Короче говоря, это довольно практично для приложений автоматического контроля температуры.

    Этот регулятор температуры управляет реле, подключенным к контуру. Для этой задачи используется однокристальный датчик температуры LM35DZ.

    Когда температура превышает настройки температуры, реле начинает работать. Но, если температура опускается ниже точки, реле перестает работать.

    Components Needed
    • LM35DZ (IC1)
    • TL431 (IC2)
    • LM358 (1C3)
    • D1-2: 1N4148 Diode (2)
    • D3-4: 1N400X Diode (2)
    • Zener диод (13 В, 400 мВт)
    • PNP-транзистор (Q1)
    • Предустановка потенциометра: 2,2 кОм Порог температуры
    • Резисторы 1–6 (10 кОм, 4,7 МОм, 1,2 кОм, 1 кОм, 1 кОм и 33 Ом)
    • C1 — керамический или майларовый конденсатор (0,1 мкФ)
    • C2- Электролитический конденсатор (470 мкФ или 680 мкФ)
    • Малое реле
    Принцип работы

    Датчик температуры LM35DZ является центральным элементом этой схемы. Он работает со шкалой Цельсия и использует преобразование градусов в вольты для обеспечения точного контроля.

    Кроме того, LM35DZ изменяет свое выходное напряжение питания в соответствии с измеренной температурой. Кроме того, максимальная температура может составлять от нуля градусов (0 В) до 100 градусов Цельсия (1000 мВ).

    R3 (резистор) и VR1 (предустановка) этой схемы отвечают за настройку температуры схемы от 0В до 1,62В. Кроме того, операционный усилитель снижает опорное напряжение, чтобы предотвратить перегрузку VR1 и R3.

    Затем срабатывает компаратор и сравнивает выходное напряжение LM35DZ с настройками температуры. Он также решает, нужно ли реле включать или выключать.

    Реле контроля температуры с Arduino

    Эта схема контроля температуры отлично справляется с управлением реле вентиляторов постоянного тока. Самое интересное, что в схеме используется плата Arduino, а не только вентилятор постоянного тока. Таким образом, вы можете переключить вентилятор постоянного тока на лампочку или другие электрические устройства.

    Эта схема автоматически включает вентилятор или устройство, когда достигается максимальный предел температуры, и выключает его, когда она падает ниже.

    Вот что вам нужно для этого проекта:

    • Датчик температуры (LM35)
    • Arduino UNO
    • 16 x 2 ЖК-дисплея (1)
    • Батарея 9 В (1)
    • Релейный модуль 11190

      0

      0
    • Вентилятор постоянного тока 9 В/12 В

    Ниже приведены необходимые шаги.

    Шаг первый: выполните подключения

    Используйте приведенные ниже схемы для подключения всего оборудования:

    Релейные соединения 

    Подключение вентилятора постоянного тока

    Шаг второй: Программное время

    После настройки вашего оборудования вот эскиз Arduino для программной части: 

    Теперь у вас есть один цифровой датчик температуры, созданный с помощью Arduino. Но если ваш вентилятор по-прежнему не работает, проверьте соединения GND Arduino и аккумулятора.

    Кроме того, если вы ничего не видите на ЖК-дисплее после загрузки кода, измените потенциометр ЖК-дисплея. Затем продолжайте настройку, пока ЖК-дисплей не отреагирует.

    Вентилятор постоянного тока с регулируемой температурой

    В отличие от проекта Arduino, который включает только устройство, эта схема управляет вентилятором постоянного тока для поддержания температуры любого подключенного к нему устройства.

    Как и в других проектах, эта схема включает вентилятор, когда температура ядра превышает заданное значение, и выключает его, когда она падает. Он также полностью автоматический.

    Вот что вам нужно для этого проекта:

    • Термистор (4,7k NTC)
    • Voltage comparator (IC uA 741)
    • 12V Brushless DC fan (1)
    • VR (500K)
    • 1N4007
    • T1 (BD140)
    • R1 (4.7K)
    • R2 (47 Ω)
    Как это работает

    В схеме используется термистор NTC (отрицательный температурный коэффициент), который снижает сопротивление при повышении температуры. Когда схема нормализуется, вентилятор выключается. Но когда он становится горячее и превышает максимальную температуру, он активирует T1 в цепи.

    В этот момент включится вентилятор постоянного тока, чтобы охладить повышающуюся температуру. Когда все вернется в норму, вентилятор автоматически выключится. Кроме того, вы можете использовать электрическую энергию или батареи для питания этой схемы.

    Ниже приведены схемы, помогающие построить эту цепь:

    Схема цепи

    555 Схема контроллера температуры

    Вместе с микросхемой 555 работает термисторный резистивный делитель.

    С этой схемой вам не нужно будет регулировать источник питания. Разделительная сеть цепи способна справиться с этой задачей. Кроме того, в сеть входят регулируемый резистор (R3) и термисторы (R4 и R5)

    Как это работает

    Как и в предыдущем проекте, что-то происходит при повышении или понижении температуры. В этом случае снижение температуры активирует регулируемый нагреватель и временной цикл.

    Если внутренняя температура превысит пороговое значение до окончания временного цикла, схема выключит нагреватель.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *