Оптическая схема — это… Что такое Оптическая схема?
Оптическая система (англ. optical system) — совокупность оптических элементов (преломляющих, отражающих, дифракционных и т. п.), созданная для определённого формирования пучков световых лучей (в классической оптике), радиоволн (в радиооптике), заряженных частиц (в электронной и ионной оптике).
Оптическая схема — графическое представление процесса изменения света в оптической системе.
Оптический прибор (англ. optical instrument) — конструктивным образом оформленная для выполнения конкретной задачи оптическая система, состоящая, по крайней мере, из одного из базовых оптических элементов. В состав оптического прибора могут входить источники света и приёмники излучения. В иной формулировке, Прибор называют оптическим, если хотя бы одна его основная функция выполняется оптической системой.
В оптических приборах не все взаимодействующие со светом детали являются оптическими, специально предназначенными для его изменения. Такими неоптическими деталями в оптических приборах являются оправы линз, корпус и т. п.
Совокупность беспорядочно разбросанных оптических деталей не образует оптической системы.
Обычно под оптическими системами подразумевают системы, преобразующие электромагнитное излучение в видимом или близких диапазонах (ультрафиолетовый, инфракрасный). В таких системах преобразование пучков света происходит за счёт преломления и отражения света, его дифракции (явлющейся частным случаем явления интерференции (при необходимости учета ограничения протяженности волновых фронтов), поглощения и усиления интенсивности света (в случае использования квантовых усилителей).
Типы и разновидности оптических систем весьма разнообразны, однако обычно выделяют изображающие оптические системы, которые формируют оптическое изображение и осветительные системы, преобразующие световые пучки от источников света.
Базовые оптические элементы
Также называются оптическими деталями. Исторически такими элементами являлись
В XIX веке эта триада была дополнена поляризаторами и дифракционными элементами (дифракционная решётка, эшелон Майкельсона).
В XX веке появились:
Принцип действия
Оптическая система предназначена для пространственного преобразования поля излучения до оптической системы (в «пространстве предметов») в поле после оптической системы (в «пространстве изображений»). Такое разделение «пространств» весьма условно, поскольку эти различные с точки зрения изменения структуры поля «пространства» могут в некоторых случаях (например при использовании зеркал) совпадать в трёхмерном физическом пространстве.
Преобразование поля из пространства предметов в пространство изображений производится, как правило, путем использования надлежащим образом осуществляемого явления интерференции излучения, определяющего структуру поля в пространстве предметов. [1].
Такая организация и достигается путём использования имеющих определённую форму оптических элементов, действие которых проявляется в явлении преломления, отражения и рассеяния излучения. Физической причиной всех этих явлений является интерференция
Во многих случаях для объяснения действия оптического элемента вполне достаточно применения понятий о сущности этих явлений, без раскрытия роли интерференции, что позволяет описывать поле излучения его формализованной геометрической моделью, основанной на интуитивно понятном представлении о «луче света» и постулате о бесконечно малости длины волны излучения и оптической однородности среды, заполняющей всё пространство, в котором действуют законы геометрической оптики.
Но в случае, когда оказывается необходимым учитывать волновые свойства излучения и принимать во внимание сравнимость размеров оптического элемента с длиной волны излучения, геометрическая оптика начинает давать ошибки, что носит название дифракции
Параксиальное приближение
Даже в случае возможности пренебречь влиянием дифракции, геометрическая оптика позволяет с удовлетворительной точностью предсказать ход лучей в пространстве изображений лишь для тех из них, которые падают на рабочую поверхность очередного оптического элемента под малыми углами по отношению к оси и на малом расстоянии точки падения от оси параксиальные лучи.
В противном случае наблюдаются существенные отклонения хода луча, носящие название аберраций. Их роль может быть уменьшена за счёт усложнения оптической системы (добавления компонентов), отказа от использования сферических поверхностей и их заменой на поверхности образованные кривыми, описываемыми уравнениями более высокого порядка, что связано с существенным усложнением технологии их производства, а также расширения номенклатуры оптических сред в сторону создания прозрачных сред во все более широком спектральном диапазоне и имеющих все более высокие значения показателя преломления
Некоторые аберрации (например, хроматическая) проявляются и в параксиальных пучках.
Поглощение излучения
Кроме пространственного преобразования поля излучения любой оптический элемент всегда ослабляет его интенсивность за счёт потерь вызванных поглощением излучения материалом, из которого сделан оптический элемент. Для снижения этих потерь используется просветление оптики, основанное на возникновении интерференционных эффектов в тонких слоях прозрачного материала, наносимого на рабочие поверхности. Использование оптических материалов с минимальным коэффициентом поглощения на длине волны излучения является чрезвычайно важным в волоконной оптике, на использовании которой основано создание волоконных линий связи.
Ослабление интенсивности излучения в ряде случаев является полезным (например в солнцезащитных очках), тем более в случае избирательного поглощения излучения для спектральной его фильтрации цветные светофильтры.
В настоящее время стало также возможным усиление света за счёт использования внешнего источника энергии.
Примечания
- ↑ 1 2 3 4 Г. С. Ландсберг. Оптика.
Wikimedia Foundation. 2010.
Оптическая система — это… Что такое Оптическая система?
Оптическая система (англ. optical system) — совокупность оптических элементов (преломляющих, отражающих, дифракционных и т. п.), созданная для определённого формирования пучков световых лучей (в классической оптике), радиоволн (в радиооптике), заряженных частиц (в электронной и ионной оптике).
Оптическая схема — графическое представление процесса изменения света в оптической системе.
Оптический прибор (англ. optical instrument) — конструктивным образом оформленная для выполнения конкретной задачи оптическая система, состоящая, по крайней мере, из одного из базовых оптических элементов. В состав оптического прибора могут входить источники света и приёмники излучения. В иной формулировке, Прибор называют оптическим, если хотя бы одна его основная функция выполняется оптической системой.
В оптических приборах не все взаимодействующие со светом детали являются оптическими, специально предназначенными для его изменения. Такими неоптическими деталями в оптических приборах являются оправы линз, корпус и т. п.
Совокупность беспорядочно разбросанных оптических деталей не образует оптической системы.
Обычно под оптическими системами подразумевают системы, преобразующие электромагнитное излучение в видимом или близких диапазонах (ультрафиолетовый, инфракрасный). В таких системах преобразование пучков света происходит за счёт преломления и отражения света, его дифракции (являющейся частным случаем явления интерференции (при необходимости учета ограничения протяженности волновых фронтов), поглощения и усиления интенсивности света (в случае использования квантовых усилителей).
Типы и разновидности оптических систем весьма разнообразны, однако обычно выделяют изображающие оптические системы, которые формируют оптическое изображение и осветительные системы, преобразующие световые пучки от источников света.
Базовые оптические элементы
Также называются оптическими деталями. Исторически такими элементами являлись:
В XIX веке эта триада была дополнена поляризаторами и дифракционными элементами (дифракционная решётка, эшелон Майкельсона).
В XX веке появились:
Принцип действия
Оптическая система предназначена для пространственного преобразования поля излучения до оптической системы (в «пространстве предметов») в поле
Преобразование поля из пространства предметов в пространство изображений производится, как правило, путем использования надлежащим образом осуществляемого явления интерференции излучения, определяющего структуру поля в пространстве предметов. [1].
Такая организация и достигается путём использования имеющих определённую форму оптических элементов, действие которых проявляется в явлении преломления, отражения и рассеяния излучения. Физической причиной всех этих явлений является интерференция
Во многих случаях для объяснения действия оптического элемента вполне достаточно применения понятий о сущности этих явлений, без раскрытия роли интерференции, что позволяет описывать поле излучения его формализованной геометрической моделью, основанной на интуитивно понятном представлении о «луче света» и постулате о бесконечно малости длины волны излучения и оптической однородности среды, заполняющей всё пространство, в котором действуют законы геометрической оптики.
Но в случае, когда оказывается необходимым учитывать волновые свойства излучения и принимать во внимание сравнимость размеров оптического элемента с длиной волны излучения, геометрическая оптика начинает давать ошибки, что носит название дифракции[1], по сути своей не являющейся самостоятельным явлением, а лишь той же интерференцией.
Параксиальное приближение
Даже в случае возможности пренебречь влиянием дифракции, геометрическая оптика позволяет с удовлетворительной точностью предсказать ход лучей в пространстве изображений лишь для тех из них, которые падают на рабочую поверхность очередного оптического элемента под малыми углами по отношению к оси и на малом расстоянии точки падения от оси параксиальные лучи.
В противном случае наблюдаются существенные отклонения хода луча, носящие название аберраций. Их роль может быть уменьшена за счёт усложнения оптической системы (добавления компонентов), отказа от использования сферических поверхностей и их заменой на поверхности образованные кривыми, описываемыми уравнениями более высокого порядка, что связано с существенным усложнением технологии их производства, а также расширения номенклатуры оптических сред в сторону создания прозрачных сред во все более широком спектральном диапазоне и имеющих все более высокие значения показателя преломления[1]. В этом направлении действует специальная отрасль оптико-механической промышленности, исторически связанная с производством оптического стекла, а затем и других оптических сред как аморфных, так и кристаллических. Здесь проявили себя такие специалисты как Шотт и Аббе, а в России — Гребенщиков, Лебедев и др.
Некоторые аберрации (например, хроматическая) проявляются и в параксиальных пучках.
Потери излучения за счет отражения
Блики из-за переотражений в линзах объективаГраница двух оптических сред с разными показателями преломления всегда отражает какую либо часть излучения. Так поверхность стекла с показателем преломления 1,5 в воздухе отражает примерно 4 % света. Для снижения этих потерь используется просветление оптики, основанное на возникновении интерференционных эффектов в тонких слоях прозрачных материалов, наносимых на рабочие поверхности. Так, например, для сравнительно простых объективов типа Триплет или Тессар, имеющих 6 границ стекло/воздух, потери на отражение, без использования просветления, составили бы примерно 20 %. С потерями, как таковыми, еще можно было бы мириться, но отраженный свет, повторно отражаясь от других поверхностей, попадает на изображение и искажает его. Такие блики, даже несмотря на просветление, хорошо заметны на фотографиях, снятых против света.
Поглощение излучения
Кроме пространственного преобразования поля излучения любой оптический элемент всегда ослабляет его интенсивность за счёт потерь, вызванных поглощением излучения материалом, из которого сделан оптический элемент. Использование оптических материалов с минимальным показателем поглощения на длине волны излучения является чрезвычайно важным в волоконной оптике, на использовании которой основано создание волоконных линий связи.
В зеркальных и зеркально-линзовых оптических системах часть излучения поглощается на металлических зеркалах.
Ослабление интенсивности излучения в ряде случаев является полезным (например в солнцезащитных очках), тем более в случае избирательного поглощения излучения цветными светофильтрами.
В настоящее время стало также возможным усиление света за счёт использования внешнего источника энергии.
Примечания
- ↑ 1 2 3 4 Г. С. Ландсберг. Оптика.
Оптическая схема Википедия
Оптическая система (англ. optical system) — совокупность оптических элементов (преломляющих, отражающих, дифракционных и т. п.), созданная для преобразования световых пучков (в геометрической оптике), радиоволн (в радиооптике), заряженных частиц (в электронной и ионной оптике)[1].
Оптическая схема — графическое представление процесса изменения света в оптической системе.
Оптический прибор (англ. optical instrument) — конструктивным образом оформленная для выполнения конкретной задачи оптическая система, состоящая, по крайней мере, из одного из базовых оптических элементов. В состав оптического прибора могут входить источники света и приёмники излучения. В иной формулировке, Прибор называют оптическим, если хотя бы одна его основная функция выполняется оптической системой.
Общие сведения
В оптических приборах не все взаимодействующие со светом детали являются оптическими, специально предназначенными для его изменения. Такими неоптическими деталями в оптических приборах являются оправы линз, корпус и т. п.
Совокупность беспорядочно разбросанных оптических деталей не образует оптической системы.
Обычно под оптическими системами подразумевают системы, преобразующие электромагнитное излучение в видимом или близких диапазонах (ультрафиолетовый, инфракрасный). В таких системах преобразование пучков света происходит за счёт преломления и отражения света, его дифракции (являющейся частным случаем явления интерференции (при необходимости учёта ограничения протяжённости волновых фронтов), поглощения и усиления интенсивности света (в случае использования квантовых усилителей).
Типы и разновидности оптических систем весьма разнообразны, однако обычно выделяют изображающие оптические системы, которые формируют оптическое изображение и осветительные системы, преобразующие световые пучки от источников света.
Базовые оптические элементы
Также называются оптическими деталями. Исторически такими элементами являлись:
В XIX веке эта тетрада была дополнена поляризаторами и дифракционными элементами (дифракционная решётка, эшелон Майкельсона).
В XX веке появились:
Принцип действия
Оптическая система предназначена для пространственного преобразования поля излучения до оптической системы (в «пространстве предметов») в поле после оптической системы (в «пространстве изображений»). Такое разделение «пространств» весьма условно, поскольку эти различные с точки зрения изменения структуры поля «пространства» могут в некоторых случаях (например при использовании зеркал) совпадать в трёхмерном физическом пространстве.
Преобразование поля из пространства предметов в пространство изображений производится, как правило, путём использования надлежащим образом осуществляемого явления интерференции излучения, определяющего структуру поля в пространстве предметов.[2].
Такая организация и достигается путём использования имеющих определённую форму оптических элементов, действие которых проявляется в явлении преломления, отражения и рассеяния излучения. Физической причиной всех этих явлений является интерференция[2].
Во многих случаях для объяснения действия оптического элемента вполне достаточно применения понятий о сущности этих явлений, без раскрытия роли интерференции, что позволяет описывать поле излучения его формализованной геометрической моделью, основанной на интуитивно понятном представлении о «луче света» и постулате о бесконечно малости длины волны излучения и оптической однородности среды, заполняющей всё пространство, в котором действуют законы геометрической оптики.
Но в случае, когда оказывается необходимым учитывать волновые свойства излучения и принимать во внимание сравнимость размеров оптического элемента с длиной волны излучения, геометрическая оптика начинает давать ошибки, что носит название дифракции[2], по сути своей не являющейся самостоятельным явлением, а лишь той же интерференцией.
Параксиальное приближение
Даже в случае возможности пренебречь влиянием дифракции, геометрическая оптика позволяет с удовлетворительной точностью предсказать ход лучей в пространстве изображений лишь для тех из них, которые падают на рабочую поверхность очередного оптического элемента под малыми углами по отношению к оси и на малом расстоянии точки падения от оси параксиальные лучи.
В противном случае наблюдаются существенные отклонения хода луча, носящие название аберраций. Их роль может быть уменьшена за счёт усложнения оптической системы (добавления компонентов), отказа от использования сферических поверхностей и их заменой на поверхности образованные кривыми, описываемыми уравнениями более высокого порядка, что связано с существенным усложнением технологии их производства, а также расширения номенклатуры оптических сред в сторону создания прозрачных сред во все более широком спектральном диапазоне и имеющих все более высокие значения показателя преломления[2]. В этом направлении действует специальная отрасль оптико-механической промышленности, исторически связанная с производством оптического стекла, а затем и других оптических сред как аморфных, так и кристаллических. Здесь проявили себя такие специалисты как Шотт и Аббе, а в России — Гребенщиков, Лебедев и др.
Некоторые аберрации (например, хроматическая) проявляются и в параксиальных пучках.
Потери излучения за счёт отражения
Блики из-за переотражений в линзах объективаГраница двух оптических сред с разными показателями преломления всегда отражает какую либо часть излучения. Так поверхность стекла с показателем преломления 1,5 в воздухе отражает примерно 4 % света. Для снижения этих потерь используется просветление оптики, основанное на возникновении интерференционных эффектов в тонких слоях прозрачных материалов, наносимых на рабочие поверхности. Так, например, для сравнительно простых объективов типа Триплет или Тессар, имеющих 6 границ стекло/воздух, потери на отражение, без использования просветления, составили бы примерно 20 %. С потерями, как таковыми, ещё можно было бы мириться, но отражённый свет, повторно отражаясь от других поверхностей, попадает на изображение и искажает его. Такие блики, даже несмотря на просветление, хорошо заметны на фотографиях, снятых против света.
Поглощение излучения
Кроме пространственного преобразования поля излучения любой оптический элемент всегда ослабляет его интенсивность за счёт потерь, вызванных поглощением излучения материалом, из которого сделан оптический элемент. Использование оптических материалов с минимальным показателем поглощения на длине волны излучения является чрезвычайно важным в волоконной оптике, на использовании которой основано создание волоконных линий связи.
В зеркальных и зеркально-линзовых оптических системах часть излучения поглощается на металлических зеркалах.
Ослабление интенсивности излучения в ряде случаев является полезным (например в солнцезащитных очках), тем более в случае избирательного поглощения излучения цветными светофильтрами.
В настоящее время стало также возможным усиление света за счёт использования внешнего источника энергии.
Примечания
Литература
- Е. А. Иофис. Фотокинотехника / И. Ю. Шебалин. — М.,: «Советская энциклопедия», 1981. — С. 220, 221. — 447 с.
Оптический телескоп — Википедия
Сравнение основных зеркал некоторых телескоповтёмно-синий кружок — БТА
Оптический телескоп — телескоп, собирающий и фокусирующий электромагнитное излучение оптического диапазона. Его основные задачи увеличить блеск и видимый угловой размер[1] объекта, то есть, увеличить количество света, приходящего от небесного тела (оптическое проницание) и дать возможность изучить мелкие детали наблюдаемого объекта (разрешающая способность). Увеличенное изображение изучаемого объекта наблюдается глазом или фотографируется. Основные параметры, которые определяют характеристики телескопа (оптическое разрешение и оптическое проницание) — диаметр (апертура) и фокусное расстояние объектива, а также фокусное расстояние и поле зрения окуляра.
Оптический телескоп представляет собой трубу, имеющую объектив и окуляр и установленную на монтировке, снабжённой механизмами для наведения на объект наблюдения и слежения за ним. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра[2]. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения.
По своей оптической схеме делятся на:
- Разрешающая способность телескопа зависит от диаметра объектива. Предел разрешения накладывает явление дифракции — огибание световыми волнами краёв объектива, в результате чего вместо изображения точки получаются кольца. Для видимого диапазона он определяется по формуле
- r=140D{\displaystyle r={\frac {140}{D}}},
где r{\displaystyle r} — угловое разрешение в угловых секундах, а D{\displaystyle D} — диаметр объектива в миллиметрах. Эта формула выведена из определения предела разрешения двух звёзд по Рэлею. Если использовать другие определения предела разрешения, то численный коэффициент может быть меньше вплоть до 114 по Дове (Dawes’ Limit).
На практике, угловое разрешение телескопов ограничивается атмосферным дрожанием[3] — приблизительно 1 угловой секундой, независимо от апертуры телескопа.
- Γ=Ff{\displaystyle \Gamma ={\frac {F}{f}}},
где F{\displaystyle F} и f{\displaystyle f} — фокусные расстояния объектива и окуляра соответственно. В случае использования дополнительных оптических узлов между объективом и окуляром (оборачивающих систем, линз Барлоу, компрессоров и т. п.) увеличение должно быть умножено на кратность используемых узлов.
- Угловое поле зрения телескопа ω{\displaystyle \omega } (True Field Of View — TFOV) — истинный угловой размер участка, видимого в окуляр телескопа, — определяется используемым окуляром:
- ω=ΩΓ{\displaystyle \omega ={\frac {\Omega }{\Gamma }}},
где Ω{\displaystyle \Omega } — угловое поле зрения окуляра (Apparent Field Of View — AFOV), а Γ{\displaystyle \Gamma } — увеличение телескопа (которое зависит от фокусного расстояния окуляра — см. выше).
- Относительное отверстие объектива телескопа (светосила объектива) A{\displaystyle A} — это отношение его диаметра (апертуры) D{\displaystyle D} к фокусному расстоянию F{\displaystyle F}
- A=DF=1∀=∀−1{\displaystyle A={\frac {D}{F}}={\frac {1}{\forall }}={\forall }^{-1}}.
- Относительное фокусное расстояние объектива телескопа ∀{\displaystyle {\forall }} или F-number, F#,
- ∀=FD=1A=A−1{\displaystyle {\forall }={\frac {F}{D}}={\frac {1}{A}}={A}^{-1}}.
A{\displaystyle A} и ∀{\displaystyle {\forall }} являются важными характеристиками объектива телескопа. Это обратные друг другу величины. Чем больше относительное отверстие, тем меньше относительное фокусное расстояние и тем больше освещённость в фокальной плоскости объектива телескопа, что выгодно при фотоработах (позволяет уменьшить выдержку при сохранении экспозиции). Но при этом на кадре фотоприёмника получается меньший масштаб изображения.
- Масштаб изображения на приёмнике:
- u=3440F{\displaystyle u={\frac {3440}{F}}},
где u{\displaystyle u} — масштаб в угловых минутах на миллиметр (‘/мм), а F{\displaystyle F} — фокусное расстояние объектива в миллиметрах. Если известны линейные размеры ПЗС-матрицы, её разрешение и размер её пикселов, то отсюда можно вычислить разрешение цифрового снимка в угловых минутах на пиксел.
Схема Галилея[править | править код]
Телескоп Галилея имел в качестве объектива одну собирающую линзу, а окуляром служила рассеивающая линза. Такая оптическая схема даёт неперевернутое (земное) изображение. Главными недостатками галилеевского телескопа являются очень малое поле зрения и сильная хроматическая аберрация. Такая система все ещё используется в театральных биноклях, и иногда в самодельных любительских телескопах.[4]
Схема Кеплера[править | править код]
Иоганн Кеплер в 1611 г. усовершенствовал телескоп, заменив рассеивающую линзу в окуляре собирающей. Это позволило увеличить поле зрения и вынос зрачка, однако система Кеплера даёт перевёрнутое изображение. Преимуществом трубы Кеплера является также и то, что в ней имеется действительное промежуточное изображение, в плоскость которого можно поместить измерительную шкалу. По сути, все последующие телескопы-рефракторы являются трубами Кеплера. К недостаткам системы относится сильная хроматическая аберрация, которую до создания ахроматического объектива устраняли путём уменьшения относительного отверстия телескопа.
Схема Ньютона[править | править код]
Оптическая схема телескопа НьютонаТакую схему телескопов предложил Исаак Ньютон в 1667 году. Здесь плоское диагональное зеркало, расположенное вблизи фокуса, отклоняет пучок света за пределы трубы, где изображение рассматривается через окуляр или фотографируется. Главное зеркало параболическое, но если относительное отверстие не слишком большое, оно может быть и сферическим [источник не указан 1369 дней].
Схема Грегори[править | править код]
Оптическая схема телескопа ГрегориЭту конструкцию предложил в 1663 году Джеймс Грегори в книге Optica Promota. Главное зеркало в таком телескопе — вогнутое параболическое. Оно отражает свет на меньшее вторичное зеркало (вогнутое эллиптическое). От него свет направляется назад — в отверстие по центру главного зеркала, за которым стоит окуляр. Расстояние между зеркалами больше фокусного расстояния главного зеркала, поэтому изображение получается прямое (в отличие от перевёрнутого в телескопе Ньютона). Вторичное зеркало обеспечивает относительно большое увеличение благодаря удлинению фокусного расстояния[5].
Схема Кассегрена[править | править код]
Оптическая схема телескопа КассегренаСхема была предложена Лораном Кассегреном в 1672 году. Это вариант двухзеркального объектива телескопа. Главное зеркало вогнутое (в оригинальном варианте параболическое). Оно отбрасывает лучи на меньшее вторичное выпуклое зеркало (обычно гиперболическое). По классификации Максутова схема относится к так называемым предфокальным удлиняющим — то есть вторичное зеркало расположено между главным зеркалом и его фокусом и полное фокусное расстояние объектива больше, чем у главного. Объектив при том же диаметре и фокусном расстоянии имеет почти вдвое меньшую длину трубы и несколько меньшее экранирование, чем у Грегори. Система неапланатична, то есть несвободна от аберрации комы. Имеет много как зеркальных модификаций, включая апланатичный Ричи-Кретьен, со сферической формой поверхности вторичного (Долл-Кирхем) или первичного зеркала, так и зеркально-линзовых.
Отдельно стоит выделить систему Кассегрена, модифицированную советским оптиком Д. Д. Максутовым — систему Максутова-Кассегрена, ставшую одной из самых распространённых систем в астрономии, особенно в любительской.[6][7][8]
Схема Ричи-Кретьена[править | править код]
Оптическая схема телескопа Ричи—Кретьена—КассегренаСистема Ричи — Кретьена — усовершенствованная система Кассегрена. Главное зеркало тут не параболическое, а гиперболическое. Поле зрения этой системы — около 4°[5].
CCD-матрицы[править | править код]
ПЗС-матрица (CCD, «Charge Coupled Device») состоит из светочувствительных фотодиодов, выполнена на основе кремния, использует технологию ПЗС — приборов с зарядовой связью. Долгое время ПЗС-матрицы единственным массовым видом фотосенсоров. Развитие технологий привело к тому, что к 2008 году КМОП-матрицы стали альтернативой ПЗС.
CMOS-матрицы[править | править код]
КМОП-матрица (CMOS, «Complementary Metal Oxide Semiconductor») выполнена на основе КМОП-технологии. Каждый пиксел снабжён усилителем считывания, а выборка сигнала с конкретного пиксела происходит, как в микросхемах памяти, произвольно.
Адаптивная оптика предназначена для исправления в реальном времени атмосферных искажений изображения[9]. Разработка систем адаптивной оптики началась в 1970-е годы. С 2000-х годов системы адаптивной оптики используются практически на всех крупных телескопах, они позволяют довести угловую разрешающую способность телескопа до его физического предела, определяемого дифракцией.[9] Применение адаптивной оптики на телескопе «Субару» позволила увеличить угловое разрешение в 10 раз[10].
- Система лазерной гидирующей звезды. Лазерный луч направляется в небо, чтобы создать на любом участке неба искусственную звезду в натриевом слое атмосферы Земли на высоте около 90 километров. Свет от такой искусственной звезды используется для деформации специального зеркала, которое устраняет мерцание и улучшает качество изображения.
Монтировка[править | править код]
Монтировка — это поворотная опора, которая позволяет наводить телескоп на нужный объект, а при длительном наблюдении или фотографировании — компенсировать суточное вращение Земли. Состоит из двух взаимно перпендикулярных осей для наводки телескопа на объект наблюдения, может содержать приводы и системы отсчёта углов поворота. Устанавливается монтировка на какое-либо основание: колонну, треногу или фундамент. Основная задача монтировки — обеспечение выхода трубы телескопа в указанное место и плавность ведения объекта наблюдений.
Основные факторы, влияющие на качество решения задачи, следующие[11]:
- Сложность закона изменения атмосферной рефракции
- Дифференциальная рефракция
- Технологическая точность изготовления привода
- Точность подшипников
- Деформация монтировки
Экваториальная монтировка и её разновидности[править | править код]
Экваториальная монтировка — это монтировка, одна из осей вращения которой направлена на полюс мира. Соответственно, перпендикулярная ей плоскость параллельна плоскости экватора. Является классической монтировкой телескопов.
- Немецкая монтировка
Один из концов полярной оси несёт на себе корпус оси склонений. Эта монтировка несимметрична, поэтому требует противовеса.
- Английская монтировка
Полярная ось имеет опоры под обоими концами, а в её середине находится подшипник оси склонений. Английская монтировка бывает несимметричная и симметричная.
- Американская монтировка
Один конец полярной оси заканчивается вилкой, несущей ось склонений.
Достоинства и недостатки[править | править код]
Основное достоинство монтировки — простота сопровождения звёзд. Вместе с этим возникает ряд трудностей, которые при увеличении массы телескопа становятся существенными[11]:
- Деформации монтировки различны в зависимости от положения телескопа.
- При изменении положения телескопа изменяется и нагрузка на подшипники
- Сложность при синхронизации с куполом монтировки
Альт-азимутальная монтировка[править | править код]
Альт-азимутальная монтировка — монтировка, имеющая вертикальную и горизонтальную оси вращения, позволяющие поворачивать телескоп по высоте («альт» от англ. altitude) и азимуту и направлять его в нужную точку небесной сферы.
Телескопы-рефракторы[править | править код]
Обсерватория | Местонахождения | Диаметр, см / дюйм | Год сооружения / демонтажа | Примечания |
---|---|---|---|---|
Телескоп всемирной Парижской выставки 1900 года. | Париж | 125 / 49.21″ | 1900 / 1900 | Самый крупный рефрактор в мире, из когда либо построенных. Свет от звёзд направлялся в объектив неподвижного телескопа с помощью сидеростата. |
Йеркская обсерватория | Уильямс Бэй, Висконсин | 102 / 40″ | 1897 | Крупнейший рефрактор в мире 1897—1900 гг. После демонтажа телескоп всемирной Парижской выставки 1900 года снова стал крупнейшим из эксплуатируемых рефракторов. Рефрактор Кларка. |
Обсерватория Лика | гора Гамильтон, Калифорния | 91 / 36″ | 1888 | |
Парижская обсерватория | Медон, Франция | 83 / 33″ | 1893 | Двойной, визуальный объектив 83 см, фотографический — 62 см. |
Потсдамский астрофизический институт | Потсдам, Германия | 81 / 32″ | 1899 | Двойной, визуальный 50 см, фотографический 80 см. |
Обсерватория Ниццы | Франция | 76 / 30″ | 1880 | |
Пулковская обсерватория | Санкт-Петербург | 76 / 30″ | 1885 | |
Обсерватория Аллегейни | Питтсбург, Пенсильвания | 76 / 30″ | 1917 | Рефрактор Thaw |
Гринвичская обсерватория | Гринвич, Великобритания | 71 / 28″ | 1893 | |
Гринвичская обсерватория | Гринвич, Великобритания | 71 / 28″ | 1897 | Двойной, визуальный 71 см, фотографический 66 |
Обсерватория Архенхольда | Берлин, Германия | 70 / 27″ | 1896 | Самый длинный современный рефрактор |
Солнечные телескопы[править | править код]
Обсерватория | Местонахождения | Диаметр, м | Год сооружения |
---|---|---|---|
Китт-Пик | Тусон, Аризона | 1,60 | 1962 |
Сакраменто-Пик | Санспот, Нью-Мексико | 1,50 | 1969 |
Крымская астрофизическая обсерватория | Крым | 1,00 | 1975 |
Шведский солнечный телескоп | Пальма, Канары | 1,00 | 2002 |
Китт-Пик, 2 штуки в общем корпусе с 1,6 метра | Тусон, Аризона | 0,9 | 1962 |
Тейде | Тенерифе, Канары | 0,9 | 2001 |
Саянская солнечная обсерватория, Россия | Монды, Бурятия | 0,8 | 1975 |
Китт-Пик | Тусон, Аризона | 0,7 | 1973 |
Институт физики Солнца, Германия | Тенерифе, Канары | 0,7 | 1988 |
Митака | Токио, Япония | 0,66 | 1920 |
Камеры Шмидта[править | править код]
Обсерватория | Местонахождения | Диаметр коррекционной пластины — зеркала, м | Год сооружения |
---|---|---|---|
Обсерватория Карла Шварцшильда | Таутенбург, Германия | 1,3-2,0 | 1960 |
Паломарская обсерватория | гора Паломар, Калифорния | 1,2-1,8 | 1948 |
Обсерватория Сайдинг-Спринг | Кунабарабран, Австралия | 1,2-1,8 | 1973 |
Токийская астрономическая обсерватория | Токио, Япония | 1,1-1,5 | 1975 |
Европейская южная обсерватория | Ла-Силья, Чили | 1,1-1,5 | 1971 |
Телескопы-рефлекторы[править | править код]
Название | Местонахождения | Диаметр зеркала, м | Год сооружения |
---|---|---|---|
Гигантский южно-африканский телескоп, SALT | Сатерленд, ЮАР | 11 | 2005 |
Большой Канарский телескоп | Пальма, Канарские острова | 10,4 | 2002 |
Телескопы Кек | Мауна-Кеа, Гавайи | 9,82 × 2 | 1993, 1996 |
Телескоп Хобби-Эберли, HET | Джефф-Дэвис, Техас | 9,2 | 1997 |
Большой бинокулярный телескоп, LBT | гора Грэхем (англ.), Аризона | 8,4 × 2 | 2004 |
Очень большой телескоп, ESO VLT | Серро Параналь, Чили | 8,2 × 4 | 1998, 2001 |
Телескоп Субару | Мауна-Кеа, Гавайи | 8,2 | 1999 |
Телескоп Северный Джемини, GNT | Мауна-Кеа, Гавайи | 8,1 | 2000 |
Телескоп Южный Джемини, GST | Серро Пашон, Чили | 8,1 | 2001 |
Мультизеркальный телескоп (англ.), MMT | гора Хопкинс (англ.), Аризона | 6,5 | 2000 |
Магеллановы телескопы | Лас Кампанас, Чили | 6,5 × 2 | 2002 |
Большой телескоп азимутальный, БТА | гора Пастухова, Россия | 6,0 | 1975 |
Большой Зенитный телескоп, LZT | Мейпл Ридж, Канада | 6,0 | 2001 |
Телескоп Хейла, MMT | гора Паломар, Калифорния | 5,08 | 1948 |
Экстремально большие телескопы[править | править код]
Основная статья: ELT(Экстремально большой телескоп)
- Навашин М. С. Телескоп астронома-любителя. — М.: Наука, 1979.
- Сикорук Л. Л. Телескопы для любителей астрономии.
- Максутов Д. Д. Астрономическая оптика. — М.-Л.: Наука, 1979.
Оптические системы — это… Что такое Оптические системы?
Оптическая система (англ. optical system) — совокупность оптических элементов (преломляющих, отражающих, дифракционных и т. п.), созданная для определённого формирования пучков световых лучей (в классической оптике), радиоволн (в радиооптике), заряженных частиц (в электронной и ионной оптике).
Оптическая схема — графическое представление процесса изменения света в оптической системе.
Оптический прибор (англ. optical instrument) — конструктивным образом оформленная для выполнения конкретной задачи оптическая система, состоящая, по крайней мере, из одного из базовых оптических элементов. В состав оптического прибора могут входить источники света и приёмники излучения. В иной формулировке, Прибор называют оптическим, если хотя бы одна его основная функция выполняется оптической системой.
В оптических приборах не все взаимодействующие со светом детали являются оптическими, специально предназначенными для его изменения. Такими неоптическими деталями в оптических приборах являются оправы линз, корпус и т. п.
Совокупность беспорядочно разбросанных оптических деталей не образует оптической системы.
Обычно под оптическими системами подразумевают системы, преобразующие электромагнитное излучение в видимом или близких диапазонах (ультрафиолетовый, инфракрасный). В таких системах преобразование пучков света происходит за счёт преломления и отражения света, его дифракции (явлющейся частным случаем явления интерференции (при необходимости учета ограничения протяженности волновых фронтов), поглощения и усиления интенсивности света (в случае использования квантовых усилителей).
Типы и разновидности оптических систем весьма разнообразны, однако обычно выделяют изображающие оптические системы, которые формируют оптическое изображение и осветительные системы, преобразующие световые пучки от источников света.
Базовые оптические элементы
Также называются оптическими деталями. Исторически такими элементами являлись
В XIX веке эта триада была дополнена поляризаторами и дифракционными элементами (дифракционная решётка, эшелон Майкельсона).
В XX веке появились:
Принцип действия
Оптическая система предназначена для пространственного преобразования поля излучения до оптической системы (в «пространстве предметов») в поле после оптической системы (в «пространстве изображений»). Такое разделение «пространств» весьма условно, поскольку эти различные с точки зрения изменения структуры поля «пространства» могут в некоторых случаях (например при использовании зеркал) совпадать в трёхмерном физическом пространстве.
Преобразование поля из пространства предметов в пространство изображений производится, как правило, путем использования надлежащим образом осуществляемого явления интерференции излучения, определяющего структуру поля в пространстве предметов. [1].
Такая организация и достигается путём использования имеющих определённую форму оптических элементов, действие которых проявляется в явлении преломления, отражения и рассеяния излучения. Физической причиной всех этих явлений является интерференция[1].
Во многих случаях для объяснения действия оптического элемента вполне достаточно применения понятий о сущности этих явлений, без раскрытия роли интерференции, что позволяет описывать поле излучения его формализованной геометрической моделью, основанной на интуитивно понятном представлении о «луче света» и постулате о бесконечно малости длины волны излучения и оптической однородности среды, заполняющей всё пространство, в котором действуют законы геометрической оптики.
Но в случае, когда оказывается необходимым учитывать волновые свойства излучения и принимать во внимание сравнимость размеров оптического элемента с длиной волны излучения, геометрическая оптика начинает давать ошибки, что носит название дифракции[1], по сути своей не являющейся самостоятельным явлением, а лишь той же интерференцией.
Параксиальное приближение
Даже в случае возможности пренебречь влиянием дифракции, геометрическая оптика позволяет с удовлетворительной точностью предсказать ход лучей в пространстве изображений лишь для тех из них, которые падают на рабочую поверхность очередного оптического элемента под малыми углами по отношению к оси и на малом расстоянии точки падения от оси параксиальные лучи.
В противном случае наблюдаются существенные отклонения хода луча, носящие название аберраций. Их роль может быть уменьшена за счёт усложнения оптической системы (добавления компонентов), отказа от использования сферических поверхностей и их заменой на поверхности образованные кривыми, описываемыми уравнениями более высокого порядка, что связано с существенным усложнением технологии их производства, а также расширения номенклатуры оптических сред в сторону создания прозрачных сред во все более широком спектральном диапазоне и имеющих все более высокие значения показателя преломления[1]. В этом направлении действует специальная отрасль оптико-механической промышленности, исторически связанная с производством оптического стекла, а затем и других оптических сред как аморфных, так и кристаллических. Здесь проявили себя такие специалисты как Шотт и Аббе, а в России — Гребенщиков, Лебедев и др.
Некоторые аберрации (например, хроматическая) проявляются и в параксиальных пучках.
Поглощение излучения
Кроме пространственного преобразования поля излучения любой оптический элемент всегда ослабляет его интенсивность за счёт потерь вызванных поглощением излучения материалом, из которого сделан оптический элемент. Для снижения этих потерь используется просветление оптики, основанное на возникновении интерференционных эффектов в тонких слоях прозрачного материала, наносимого на рабочие поверхности. Использование оптических материалов с минимальным коэффициентом поглощения на длине волны излучения является чрезвычайно важным в волоконной оптике, на использовании которой основано создание волоконных линий связи.
Ослабление интенсивности излучения в ряде случаев является полезным (например в солнцезащитных очках), тем более в случае избирательного поглощения излучения для спектральной его фильтрации цветные светофильтры.
В настоящее время стало также возможным усиление света за счёт использования внешнего источника энергии.
Примечания
- ↑ 1 2 3 4 Г. С. Ландсберг. Оптика.
Wikimedia Foundation. 2010.
Рефлектор (телескоп) — Википедия
У этого термина существуют и другие значения, см. Рефлектор. Рефлектор в Институте ФранклинаРефле́ктор — оптический телескоп, использующий в качестве светособирающего элемента зеркало.
Первый рефлектор был построен Исааком Ньютоном в конце 1668 года[1]. Это позволило избавиться от основного недостатка использовавшихся тогда телескопов-рефракторов — значительной хроматической аберрации.
Основные оптические системы зеркальных телескопов[править | править код]
Оптический телескоп — это система, состоящая из объектива и окуляра. Задняя фокальная плоскость первого совмещена с передней фокальной плоскостью второго[2]. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом[3]. Оптические системы зеркальных телескопов разделяются по типам используемых объективов.
Система Ньютона[править | править код]
Оптическая схема телескопа НьютонаТакую схему телескопов изобрёл Исаак Ньютон в 1668 году. Здесь главное зеркало направляет свет на небольшое плоское диагональное зеркало, расположенное вблизи фокуса. Оно, в свою очередь, отклоняет пучок света за пределы трубы, где изображение рассматривается через окуляр или фотографируется. Главное зеркало параболическое, но, если относительное отверстие не слишком большое, оно может быть и сферическим.
Система Грегори[править | править код]
Оптическая схема телескопа ГрегориЭту конструкцию предложил в 1663 году Джеймс Грегори в книге Optica Promota. Главное зеркало в таком телескопе — вогнутое параболическое. Оно отражает свет на меньшее вторичное зеркало (вогнутое эллиптическое). От него свет направляется назад — в отверстие по центру главного зеркала, за которым стоит окуляр. Расстояние между зеркалами больше фокусного расстояния главного зеркала, поэтому изображение получается прямое (в отличие от перевёрнутого в телескопе Ньютона). Вторичное зеркало обеспечивает относительно большое увеличение благодаря удлинению фокусного расстояния[4].
Система Кассегрена[править | править код]
Оптическая схема телескопа КассегренаСхема была предложена Лораном Кассегреном в 1672 году. Это вариант двухзеркального объектива телескопа. Главное зеркало большего диаметра (вогнутое; в оригинальном варианте параболическое) отбрасывает лучи на вторичное выпуклое меньшего диаметра (обычно гиперболическое). По классификации Максутова схема относится к так называемым предфокальным удлиняющим — то есть вторичное зеркало расположено между главным зеркалом и его фокусом и полное фокусное расстояние объектива больше, чем у главного. Объектив при том же диаметре и фокусном расстоянии имеет почти вдвое меньшую длину трубы и несколько меньшее экранирование, чем у Грегори. Система неапланатична, то есть несвободна от аберрации комы. Имеет большое число как зеркальных модификаций, включая апланатичный Ричи — Кретьен, со сферической формой поверхности вторичного (Долл — Кирхем) или первичного зеркала, так и зеркально-линзовых.
Отдельно стоит выделить систему Кассегрена, модифицированную советским оптиком Д. Д. Максутовым — систему Максутова — Кассегрена, ставшую одной из самых распространённых систем в астрономии, особенно в любительской.[5][6][7]
Система Ричи — Кретьена[править | править код]
Оптическая схема телескопа Ричи — Кретьена — КассегренаСистема Ричи — Кретьена является усовершенствованием системы Кассегрена. Главное зеркало тут не параболическое, а гиперболическое. Поле зрения этой системы — около 4°[4].
Система Гершеля (Ломоносова)[править | править код]
Оптическая схема телескопа ГершеляЕщё в 1616 году Н. Цукки предложил заменить линзу вогнутым зеркалом, наклонённым к оптической оси телескопа. Подобный телескоп-рефлектор был сконструирован Уильямом Гершелем в 1772 году (на 10 лет раньше данную оптическую схему реализовал М. В. Ломоносов). В нём первичное зеркало имеет форму внеосевого параболоида и наклонено так, что фокус находится вне главной трубы телескопа, и наблюдатель не закрывает собой поступающий свет. Недостатком такой схемы является большая кома, но при малом относительном отверстии она почти незаметна.
Система Несмита[править | править код]
Система Шмидта[править | править код]
Оптическая схема телескопа Шмидта — КассегренаСистема Корша[править | править код]
Один из вариантов трёхзеркального анастигмата, с более общим набором решений, разработанный Дитрихом Коршем в 1972 году[8]. У телескопа Корша скорректированы сферическая аберрация, кома, астигматизм и кривизна поля, также он может иметь широкое поле зрения, гарантируя при этом, что в фокальной плоскости будет лишь немного рассеянного света.
Брахиты[править | править код]
Оптическая схема брахитаВ такой схеме вторичное зеркало вынесено за пределы пучка, падающего на главное зеркало. Такая конструкция сложна в изготовлении, так как требует внеосевых параболического и гиперболического зеркал. Однако при малых апертуре и относительном отверстии эти зеркала можно заменить на сферические. Кома и астигматизм главного зеркала компенсируются наклонами вторичного зеркала. К положительным качествам брахитов можно отнести отсутствие экранирования, что положительно сказывается на чёткости и контрастности изображения. Данная система была впервые применена в 1877 году И. Форстером и К. Фричем. Существуют различные конструкции брахитов.
Крупнейший в Евразии телескоп — БТА — находится на территории России, в горах Северного Кавказа, и имеет диаметр главного зеркала 6 м. Он работает с 1976 года и долго был крупнейшим телескопом в мире.
Крупнейший в мире телескоп с цельным зеркалом — Большой бинокулярный телескоп, расположенный на горе Грэхэм (США, штат Аризона) и работающий с 2005 года. Диаметр обоих зеркал — 8,4 метра[9][10]
11 октября 2005 года в эксплуатацию был запущен Большой южноафриканский телескоп в ЮАР с главным зеркалом размером 11×9,8 метров, состоящим из 91 одинакового шестиугольника.
13 июля 2007 года первый свет увидел Большой Канарский телескоп с диаметром зеркала 10,4 м (36 шестиугольных сегментов). Это самый большой оптический телескоп в мире по состоянию на первую половину 2009 года[10].
В современных составных рефлекторах с середины 1990-х годов используются деформируемые зеркала (англ.) и адаптивная оптика, что позволяет компенсировать атмосферные искажения. Это стало прорывом в телескопостроении и позволило значительно повысить качество работы наземных телескопов.
В 2025 году планируется получить первый свет с Чрезвычайно большого телескопа[11], а в 2027 году — начать научные наблюдения на международном Тридцатиметровом телескопе[12]. В 2029 году планируется ввод в эксплуатацию Гигантского Магелланова телескопа[13].
- ↑ Rupert Hall A. Isaac Newton: Adventurer in Thought (неопр.). — Cambridge University Press, 1996. — С. 67. — 468 с. — ISBN 0-521-56221-X.
- ↑ Панов В. А. Справочник конструктора оптико-механических приборов. — 1-е изд. — Л.: Машиностроение, 1991. — С. 81.
- ↑ Турыгин И. А. Прикладная оптика. — 1-е изд. — М.: Машиностроение, 1966.
- ↑ 1 2 Энциклопедический словарь юного астронома / Сост. Н. П. Ерпылев. — 2-е изд. — М.: Педагогика, 1986. — С. 234—235. — 336 с.
- ↑ Навашин, 1979.
- ↑ Сикорук.
- ↑ Максутов, 1979.
- ↑ Korsch, Dietrich. Closed Form Solution for Three-Mirror Telescopes, Corrected for Spherical Aberration, Coma, Astigmatism, and Field Curvature (англ.) // Applied Optics : journal. — 1972. — December (vol. 11, no. 12). — P. 2986—2987. — doi:10.1364/AO.11.002986. — Bibcode: 1972ApOpt..11.2986K.
- ↑ LBT — Optics (англ.) (недоступная ссылка). Дата обращения 30 мая 2013. Архивировано 30 мая 2013 года.
- ↑ 1 2 The World’s Largest Optical Telescopes (англ.). — Список крупнейших оптических телескопов. Дата обращения 25 сентября 2009. Архивировано 24 августа 2011 года.
- ↑ ESO’s Extremely Large Telescope (неопр.). http://www.eso.org.
- ↑ TMT timeline (неопр.). http://www.tmt.org.
- ↑ GMT overview (неопр.). http://www.gmto.org.
- Чикин А.А. Отражательные телескопы. Изготовленіе рефлекторовъ доступными для любителей средствами. — П.: Типографія Редакціи периодическихъ изданий Министерства Финансовъ, 1915. — 134 с.
- Навашин М.С. Самодельный телескоп-рефлектор. — М.: Гос. изд-во техн.-теор. лит., 1953. — 240 с. — 12 000 экз.
- Сикорук Л. Л. Телескопы для любителей астрономии.
- Максутов Д. Д. Астрономическая оптика. — М.-Л.: Наука, 1979.
Зеркально-линзовые оптические системы — Википедия
Зеркально-линзовые оптические системы, или катадиоптрические системы, — это разновидность оптических систем, содержащих в качестве оптических элементов как сферические зеркала (катоптрику), так и линзы. Зеркально-линзовые системы нашли применение в прожекторах, фарах, ранних маяках, микроскопах и телескопах, а также в телеобъективах и сверхсветосильных объективах.
Основное развитие катадиоптрические системы получили в телескопах, поскольку позволяют использовать сферическую поверхность зеркал, значительно более технологичную, чем другие кривые поверхности. Это даёт возможность создавать сравнительно дешёвые телескопы больших диаметров. Коррекционные линзы сравнительно небольшого диаметра могут использоваться в телескопах-рефлекторах для увеличения полезного поля зрения, но к зеркально-линзовым телескопам их не относят. Зеркально-линзовыми принято называть такие телескопы, в которых линзовые элементы сравнимы по размеру с главным зеркалом и предназначены для коррекции изображения (оно строится главным зеркалом).
Основные оптические системы катадиоптрических телескопов[править | править код]
Согласно законам оптики, шероховатость поверхности зеркала должна быть не хуже λ/8, где λ — длина волны (видимый свет — 550 нм), а отклонение формы поверхности от расчётной должно лежать в пределах от 0,02 мкм до 1 мкм[1]. Таким образом, основная сложность изготовления зеркала состоит в необходимости очень точно соблюдать кривизну поверхности. Изготовить сферическое зеркало технологически гораздо проще, чем параболическое и гиперболическое, которые используются в телескопах-рефлекторах. Но сферическое зеркало само по себе обладает очень большими сферическими аберрациями и непригодно для использования. Описанные ниже системы телескопов — это попытки исправить аберрации сферического зеркала добавлением в оптическую систему стеклянной линзы особой кривизны (корректора).
Первые системы катадиоптрических телескопов[править | править код]
К первым типам катадиоптрических телескопов можно отнести системы, состоящие из однолинзового объектива и зеркала Манжена. Первый телескоп такого типа был запатентован W. F. Hamilton в 1814. В конце 19 века немецкий оптик Людвиг Шупманн (Ludwig Schupmann) расположил катадиоптрическое зеркало за фокусом линзового объектива и добавил в систему третий элемент — линзовый корректор. Данные телескопы, однако, не получили распространения, будучи оттеснены ахроматическими рефракторами и рефлекторами. Любопытно отметить, что в конце 20 века некоторые оптики снова проявили интерес к данным схемам: так, в 1999 г. британский любитель астрономии и телескопостроения Джон Уолл запатентовал оптическую схему телескопа «Zerochromat».[2]
Принцип действия системы, позже Шмидт установил на место ограничивающей диафрагмы корректор сферической аберрации Оптическая схема телескопа Шмидта — КассегренаВ 1930 году эстонско-германский оптик, сотрудник Гамбургской обсерватории Бернхард Шмидт установил в центре кривизны сферического зеркала диафрагму, сразу устранив и кому, и астигматизм. Для устранения сферической аберрации он разместил в диафрагме линзу специальной формы, которая представляет собой поверхность 4-го порядка. В результате получилась фотографическая камера с единственной аберрацией — кривизной поля и удивительными качествами: чем больше светосила камеры, тем лучше изображения, которые она даёт, и больше поле зрения.
Телескоп Шмидта — КассегренаВ 1946 году Джеймс Бэкер установил в камере Шмидта выпуклое вторичное зеркало и получил плоское поле. Несколько позже эта система была видоизменена и стала одной из самых совершенных систем: Шмидта — Кассегрена, которая на поле диаметром 2 градуса даёт дифракционное качество изображения. В качестве вторичного зеркала обычно используется алюминированная центральная часть обратной стороны корректора.
Телескоп Шмидта очень активно используется в астрометрии для создания обзоров неба. Основное его преимущество — очень большое поле зрения, до 6°. Фокальная поверхность является сферой, поэтому астрометристы обычно не исправляют кривизну поля, а вместо этого используют выгнутые фотопластинки.
Система Максутова[править | править код]
Оптическая схема телескопа Максутова — КассегренаВ 1941 году Д. Д. Максутов нашёл, что сферическую аберрацию сферического зеркала можно компенсировать мениском большой кривизны. Найдя удачное расстояние между мениском и зеркалом, Максутов сумел избавиться от комы и астигматизма. Кривизну поля, как и в камере Шмидта, можно устранить, установив вблизи фокальной плоскости плоско-выпуклую линзу — так называемую линзу Пиацци-Смита.
Проалюминировав центральную часть мениска, Максутов получил менисковые аналоги телескопов Кассегрена и Грегори. Были предложены менисковые аналоги практически всех интересных для астрономов телескопов. В частности, в современной любительской астрономии часто применяются телескопы Максутова — Кассегрена, и, в меньшей степени, Максутова — Ньютона и Максутова — Грегори.
Телескоп Максутова — Кассегрена диаметром 150 ммСледует отметить, что существует два основных типа телескопов Максутова — Кассегрена, различие между которыми состоит в типе вторичного зеркала. В одном случае вторичное зеркало, как было указано выше, является алюминированным кружком на внутренней поверхности мениска. Это упрощает и удешевляет конструкцию. Однако, так как радиусы кривизны внешней и внутренней поверхности мениска одинаковы, для устранения сферической аберрации до приемлемых величин приходится увеличивать фокальное отношение системы. Поэтому абсолютное большинство коммерчески выпускающихся небольших телескопов любительского класса являются длиннофокусными и имеют фокальное отношение порядка 1/12—1/15.
Телескопы этого типа в англоязычных источниках обозначаются как Gregory–Maksutov или Spot–Maksutov, поскольку патент на такую схему (и тип вторичного зеркала) был выдан американскому оптику и инженеру Джону Грегори (John F. Gregory, 1927—2009). Первым коммерческим любительским телескопом такого типа был Questar, выпущенный в 1954 г.
Для создания более светосильных систем и телескопов высокого класса применяют отдельное вторичное зеркало, крепящееся к мениску. Наличие отдельного зеркала позволяет придать ему необходимую геометрическую форму, не изменяя при этом конструкцию мениска. В англоязычных источниках данный вариант телескопа Максутова обозначается как Maksutov–Sigler или Maksutov–Rutten.
Зеркально-линзовый телеобъектив «Phoenix» 500 mm f/8 Изображение бликов на воде, даваемое зеркально-линзовым телеобъективом в расфокусеКатадиоптрическая система нашла применение также при проектировании фотографических и киносъёмочных телеобъективов. Благодаря зеркально-линзовой конструкции существенно уменьшается длина оправы, поэтому объективы с фокусным расстоянием 1000 мм и более значительно компактнее и легче обычных длиннофокусных объективов[3]. В отдельных случаях уменьшение количества линз позволяет снизить хроматические аберрации.
Зеркально-линзовые объективы, как правило, не оснащаются регулируемой диафрагмой, и их фиксированное относительное отверстие лежит в диапазоне от f/5,6 до f/11. Поэтому снимать ими можно только при хорошем освещении или на фотоматериалы с высокой светочувствительностью. Некоторые специальные зеркально-линзовые объективы могут иметь и очень высокую светосилу (меньше 1).
Характерной особенностью изображений, создаваемых зеркально-линзовым объективом, является форма кружка рассеяния от ярких источников света, отображаемых не в фокусе. Такие источники изображаются в виде колец, соответствующих форме входного зрачка объектива. В некоторых случаях такой вид размытия создаёт своеобразный выразительный оптический рисунок.
Частотно-контрастная характеристика зеркально-линзовых объективов достаточно низка. Такой тип объективов приобрёл некоторую популярность в начале 1970-х годов из-за относительной компактности и дешевизны. Однако, низкая светосила и мягкий оптический рисунок заставили уступить место телеобъективам двухкомпонентных линзовых конструкций.
В отечественных фотокинообъективах использовалась, главным образом, система Максутова[4]. Примером могут послужить объективы серии «МТО» и «ЗМ».
Основные преимущества и недостатки катадиоптрических систем[править | править код]
Катадиоптрические системы — это синтез зеркальных и линзовых систем. Они имеют много преимуществ, но также получили в наследство и некоторые недостатки.
- Преимущества
- Главным преимуществом является простота изготовления сферического зеркала. Корректор избавляет систему от сферической аберрации, «трансформируя» её в аберрацию кривизны поля.
- В качестве вторичного зеркала часто (хотя и не всегда) используется алюминированная центральная часть обратной стороны корректора. Вторичное зеркало — алюминированная часть корректора или отдельное — жёстко зафиксировано в оправе, в то время, как почти во всех рефлекторах вторичное зеркало держится на трёх-четырёх растяжках, что может приводить к разъюстировке и портит дифракционную картину. Катадиоптрическая система во многом свободна от этих недостатков.
- Труба телескопа закрыта, что предотвращает загрязнение внутренних оптических элементов и снижает образование воздушных потоков внутри телескопа.
- Трубы телескопов этого типа наиболее компактны по сравнению с другими типами телескопов (при равном диаметре и фокусном расстоянии).
- Недостатки
- Сложность изготовления корректора больших размеров. Диаметр самых больших инструментов не превышает 2 метров.
- Большой фокус.
- Система содержит оптические элементы из стекла, поэтому на окраине поля зрения проявляется хроматическая аберрация и кома. Стекло корректора поглощает часть света, несколько уменьшая светопропускание инструмента.
- Проблема кривизны поля решалась использованием специального держателя, в котором плоская фотопластинка изгибалась до нужной кривизны. Изготовить же ПЗС-матрицу нужной кривизны сложно и дорого.
- Фокус жёстко связан с длиной трубы (расстояния от зеркала до корректора — половина фокуса). Относительное отверстие также ограничено остаточными аберрациями.
- Большое время термостабилизации оптики перед началом наблюдений.
Зеркально-линзовые системы создавались в поисках компромисса. Их применение ограничено. Малые размеры и фокус не позволяют применять их для астрофизических целей, но телескопы получили широкое распространение среди астрометристов.
- Фомин А. В. § 5. Фотографические объективы // Общий курс фотографии / Т. П. Булдакова. — 3-е. — М.,: «Легпромбытиздат», 1987. — С. 12—25. — 256 с. — 50 000 экз.
- Н. Кудряшов. Узкоплёночный киноаппарат // «Как самому снять и показать кинофильм». — 1-е изд. — М.,: Госкиноиздат, 1952. — С. 56—57. — 252 с.