Site Loader

Делаем микросхемы дома — шаги 0 и 1 / Habr

В этой статье я расскажу о начале своей работы над совершенно безбашенной задачей: конечная цель в том, чтобы получить рабочую микросхему по «толстым» нормам (5-10µm) дома. Это не первое апреля и я не сумасшедший, это просто моё хобби.

Возникла эта идея не сейчас и неспроста. С детства я хотел быть газосварщиком, и… делать микросхемы. И если по первому пункту мне достаточно быстро удалось сделать дома сварочный аппарат (бутан-водород/кислород), то с микросхемами все никак не складывалось. Долгое время все мысли останавливались на том, что я не знал где можно взять собственно полупроводники необходимой чистоты (и мысли останавливались на ковырянии мощных транзисторов), пока на форуме не подсказали что в принципе, можно и купить пластины. Затем я даже наткнулся на человека, который 20 лет работал над похожей задачей, и в итоге сдался. Пожалуй, тут можно было опустить руки и перестать тратить время на глупые мечты. Но, однажды я увидел ролик чудовищно гениальной женщины – Jeri Ellsworth – она смогла сделать отдельные полевые транзисторы на основе заводских пластин – и тогда я решил, что настало время поплотнее заняться этой проблемой.

В этой статьях я расскажу о своём текущем прогрессе, но не ждите быстрого продолжения – весь процесс может легко занять пару лет.

Шаг 0:

Были скуплены все книги по теме из местных Интернет-магазинов (как раз на 1 полку), повыкачаны из торрентов все доступные сборники оцифрованных книг. Теоретической информации там конечно много, но с практической стороны – многое покрыто мраком. Даже старые техпроцессы в деталях не описаны нигде, и потому придется много пробовать. Также перерыл интернет в поисках местных поставщиков всех потенциально необходимых материалов (собственно кремний, фоторезисты, химия, газы). Пока найти не удалось местную компанию которая может изготавливать асферическую оптику из оптического/кварцевого стекла – но это в ближайший год не станет препятствием.
Шаг 1: Кремний

Монокристаллический кремний – сердце домашней микросхемы. Вырастить дома – хоть и реально (по моим безумным меркам), но чертовски дорого. Потому я стал гуглить местных производителей кремния – кто-то говорил что они свернули производство и занимаются только сдачей помещений в аренду, кто-то не отвечал, пока наконец я не дошел до компании Терасил – там я наконец смог купить все что мне нужно. Самое главное – разрезанные и отполированные пластины монокристаллического кремния легированного в P и N тип (справа на фото).

Далее – куча разбитых пластин для тренировки. Потренировался раскалывать пластину на кусочки (оказалось, что они все с ориентацией кристаллической решетки 111 – раскалываются треугольниками, а не квадратами). Т.к они еще не отполированы – я попробовал и отполировать – провал полный: паста гои кремний не берет, нужна алмазная паста. Если со временем получится полировать, можно будет пробовать делать солнечные батареи (а из монокристаллического кремния они получаются довольно эффективные).

И наконец – кусочки монокристаллического кремния. Те что толстые слева – погрязнее (но достаточно чистые для микросхем), 2 тоненьких справа – сверхчистые, намного выше требований чистоты кремния для обычных микросхем. Само собой, разрезать их дома не выйдет (если конечно не завалялась алмазная дисковая пила) – только разбить. Нужны для того чтобы пробовать осаждать пленки аморфного кремния химическим (PE CVD Sih5) или физическим (испарение в вакууме) путем.

Какие дальше стоят задачи

  • В первую очередь – строительство печи на 1200 градусов для маленького образца. Промышленные печи под такую температуру в квартире не поставить, и стоят огого. Потому буду пробовать нагревать образец галогеновыми лампами с рефлекторами.
  • Переезд в отдельную квартиру: меня сразу выгонят увидев бородатого мужика в противогазе и резиновых перчатках с кучей подозрительных баночек.
  • Далее – необходимая химия и фоторезисты – и можно пробовать делать 1 транзистор по процессу Jeri.
Что я ищу и пока не нахожу

В первую очередь – это информация. Хотелось бы иметь контакты людей, которые работают на производстве – ведь я соберу все грабли, которые технологи собирали последние 50 лет Затем – информация о техпроцессах и главное – библиотеки под толстые техпроцессы – пока мне их не удалось достать, а из отдельных транзисторов особо не по-проектируешь. Ну и наконец, хочу найти разработчика ASIC, который показал бы мне основные шаги разработки (кое-что я думаю что знаю, но много пробелов и я могу ошибаться сильно). По всем этим вопросам приглашаю на форум по этому проекту (English only).

Комментарии / мнения — в студию.

Делаем микросхемы дома — часть 3 / Habr

Прошло чуть больше года после предыдущих статей о моем проекте создания микросхем дома (1, 2), люди продолжают интересоваться результатами — а значит пора рассказать о прогрессе.

Напомню цель проекта: научиться изготавливать несложные кремниевые цифровые микросхемы в «домашних» условиях. Это никоим образом не позволит конкурировать с серийным производством — помимо того, что оно на порядки более совершенное (~22нм против ~20мкм, каждый транзистор в миллион раз меньше по площади), так еще и чудовищно дешевое (этот пункт не сразу стал очевиден). Тем не менее, даже простейшие работающие микросхемы, изготовленные в домашних условиях будут иметь как минимум образовательную и конечно декоративную ценность.

Как я уже упоминал в комментариях к другому топику, попытка выйти с этим проектом на kickstarter провалилась — проект не прошел модерацию из-за отсутствия прототипа. Это заставило в очередной раз переосмыслить пути коммерциализации этой упрощенной технологии. Возможность релиза технологии домашних микросхем в виде RepRap-подобного opensource-кита покрыта туманом: очень уж много опасной, дорогой и нестойкой химии — так просто рассылать по почте не выйдет. Также по видимому отсутствует возможность делать мелкие партии микросхем дешевле серийных заводов: сейчас минимальные тестовые партии микросхем можно изготавливать примерно по 30-50$ штука (в партии ~25 штук), и существенно дешевле 30$ за микросхему сделать это на самодельной упрощенной установке не получится. Кроме того, не смотря на низкую цену на обычных заводах — любительские микросхемы практически никто не делает, задач где они имели бы преимущества перед FPGA/CPLD/микроконтроллерами практически нет, а стоимость и сложность разработки — остается очень высокой.

Но как я уже упоминал выше — даже с этими недостатками проект остается для меня интересным.

Из того, что уже упоминалось в моих других статьях в последние месяцы — куплен кислородный концентратор, позволяет получить ~95% кислород без головной боли. Из вредных примесей — похоже только углекислый газ (35ppm), будем надеяться, этого будет достаточно. Также едет из Китая генератор озона (ему на входе нужен кислород) — есть результаты исследований, показывающих что им удобно растить тонкие подзатворные диэлектрики и использовать как один из этапов для очистки пластин.

Уже достаточно давно куплен металлографический микроскоп, и исследованы кучи существующих микросхем. В целом, стало намного понятнее с чем придется иметь дело. И наконец, поскольку микроскоп — симметричный прибор, его можно использовать для проекции уменьшенного изображения при фотолитографии. Совмещение изображения — визуальное и ручное. Источник освещения для проецирования — даже не обязательно УФ диодом делать, белый свет также вполне подойдет — качество изображения позволяет (хотя мощные 405нм диоды у меня тоже есть). Достижимые таким образом нормы фотолитографии — микронные (если сильно постараться — то до ~350нм), но смысла сильно уменьшать транзисторы нет — т.к. пропорционально уменьшается и «размер кадра», контакты к которым придется приваривать выводы станут слишком мелкими. Так что придется первоначально ограничиться нормами 10-20мкм, как и планировалось.

Микроскоп несколько поколебал веру как в отечественных производителей, так и в китайских. Оказалось, некоторые «отечественные» микроскопы — перемаркированные китайцы за 200-300% цены. С другой стороны — один из объективов похоже немного кривоват и предметный столик имел небольшой дефект литья — пришлось дорабатывать напильником (в прямом смысле этого слова).

Один из важных химических элементов для производства микросхем — вода. Опять-же в Китае куплен кондуктометр — измеритель электропроводности воды. По электропроводности можно оценить количество растворенных солей (+-50%, если не известно что именно растворено). В воде обычно растворены соли калия, натрия, кальция и марганца — и все они очень опасны для микросхем (особенно натрий и калий), т.к. их ионы могут быстро двигаться в кремнии и оксиде кремния при обычных температурах и изменять электрические параметры транзисторов (для полевых транзисторов — пороговое напряжение, утечку).

Измерил имеющиеся образцы воды, и получил следующее:

Концентрация примесей
Водопроводная вода 219ppm
«Новый» бытовой фильтр 118ppm
«Старый» бытовой фильтр 210ppm
Кипяченая вода из нового фильтра 140ppm
(!!! 2 раза перепроверял)
Бидистиллированная вода из Русхима
(Не похоже на бидистиллированную)
10ppm
Деионизировнаная вода из института микробиологии 0ppm
Деионизированная после 6 часов на воздухе
(Из-за растворения углекислого газа из воздуха)
8ppm
«Правильная» деионизированная вода — должна иметь 0.1ppm и менее, что меньше того, что может измерить мой прибор. Тем не менее, сразу видно, что далеко не любой источник воды подойдет. Куплены ионообменные смолы — они используются для очистки воды до деионизированной. Оказалось, закрома родины очень глубоки — одна из банок расфасована в 1968-м году

Также удалось купить и TMAH (тетраметиламмония гидроксид) — используется как проявитель для фоторезиста, не содержащий ионов щелочных металлов (которые как мы знаем — зло).

Для вакуумной системы — вместо покупки вакуумной резины (несколько раз пытался — но так и не осилил), нашелся в Китае вот такой вот gasket maker — паста, которую можно выдавить в нужную форму, она затвердевает — и становится резиновой.

По печке: для теплоизоляции — куплено вот такое базальтовое полотно, используется для теплоизоляции ядерных реакторов. Выдерживает 1000-1200 градусов.

Под микроскопом — видно отдельные нити расплавленного базальта, из которых сплетено полотно. Вот это настоящие нанотехнологии!!! В голове по началу не укладывается: как из камня можно сделать тончайшие нити, и соткать гибкий материал? (масштаб: 1 пиксель ~ 3 микрометра):

Найдены и порезаны кварцевые трубки для печки разного диаметра. Первый уровень теплоизоляции — воздушный зазор межу вставленными друг в друга трубками.

Изначально я думал питать печку прямо от 220 вольт — но все-же благоразумно решил перейти на питание постоянным напряжением 48 Вольт — это позволит как точнее регулировать и контролировать мощность, так и сделает конструкцию безопаснее. Куплены 2 блока питания на 400Вт. Как китайцы такой блок производят и доставляют за 19$ — загадка:

Для контроля температуры — изначально были куплены высокотемпературные термопары, рассчитанные на 1200 градусов (про них писал в прошлой серии — но фотографии не было). Размер конечно конский. Вероятно будет проще следить за уровнем инфракрасного излучения на длине волны 1мкм — кварц для него прозрачен.

И наконец — инертная среда для печки. В моем случае это Аргон. Из-за особенностей разделения газов — аргон получается чище, чем азот, хоть и несколько дороже. Я купил маленький 10л баллон, и регулятор. Регулятор внезапно не подошел — резьба не совпадает, нужно или переходник искать, или другой регулятор покупать.

Оказалось, сжатые газы продают рядом с домом (жизнь в промышленной зоне Москвы имеет свои преимущества) — и я приехал за ним с тележкой. Рабочий не оценил мой порыв — и настоятельно рекомендовал завернуть баллон в картон, чтобы прохожие не переживали. За 15 минут мы справились с камуфляжем. В общем, встреча с реальным миром вечно дарит сюрпризы 🙂

Самое главное — удалось досконально разобраться в том, как работает микросхемы по NMOS технологии, зачем там 3 напряжения питания (или 2, со снижением скорости). Также наконец найден качественный open-source софт для разработки простых микросхем, в том числе поддерживающий и NMOS процесс — gnuelectric:

Из того, что упоминал в предыдущей статье — TEOS видимо не нужен, слишком сложно с ним работать, HMDS — не обязателен, по крайней мере для «больших» транзисторов.

Генератор азота — это конечно удобно, работать с пластинами в инертной атмосфере и не возиться с баллонами, но также не критично.

Единственное, что серьёзно могло бы облегчить работу — это образцы spin-on dopants и spin-on glass. В России по различным причинам их не используют и не производят, за рубежем — производителей мало, продается большими партиями и стоит дорого (тысячи $). Компания Emulsitone, у которой покупала образцы Jeri Ellsworth когда делала свои транзисторы — похоже загнулась, с ними связаться так и не удалось. Но это также не обязательный пункт — работать можно и без них (с фосфорной и борной кислотами, POCl3 и BBr3), хоть и намного сложнее / несколько опаснее.

И наконец — конечно не хватает спонсора для моих проектов, иногда между дополнительными затратами времени и дополнительными затратами денег приходится выбирать первое. Если кто-то из компаний или частных лиц имеет желание спонсировать мои проекты (условия обсуждаемы) — вы знаете, где меня найти :-).
Update: Ориентировочная смета есть, высылаю по запросу — т.е. представление на что именно нужны деньги — есть.

В прошлой статье я упоминал о моём классическом микроэлектронном проекте — я хотел разработать и производить на серийных заводах микроконтроллеры. Исследовав под микроскопом конкурентов (нормы производства, площадь), и узнав цены производства на практически всех заводах (как отечественных, так и зарубежных) — стало понятно, что бизнес это хороший, хоть и очень капиталоемкий. Тем не менее, тут похоже пока не судьба — в Сколково проект дважды завернули, из-за отсутствия у меня профильного опыта. С одной стороны они безусловно правы, с другой — пришел бы Цукерберг в Сколково, а ему «А сколько социальных сетей вы уже создали?». Вводить в команду фиктивных членов — совершенно нет желания. Так что жизнь как всегда вносит коррективы в радужные планы — видимо сначала придется зарабатывать деньги на проект другими путями, и вернуться к нему через 3-5 лет (если он тогда еще будет кому-то нужен). Следующий шаг — сборка печки с управляющей электроникой, и наконец производство первых образцов. Для начала — кремниевые диоды, исследование их характеристик, солнечные батареи, затем — полевые транзисторы, возможно и биполярные. Можно попробовать сделать диоды Шоттки — но с ними все не так просто (высокие требования к интерфейсу металл-полупроводник и краям диода).

Затем нужно думать, как в домашних условиях сделать ультразвуковую или термокомпрессионную сварку проволоки с кремниевой пластиной — это нужно для подключения выводов.

Надеюсь, в обозримом будущем домашние микросхемы мы все-же увидим 🙂

Паяльник для микросхем своими руками

Паяльник для микросхем своими руками
Доброго времени суток всем самоделкиным. Многие радиолюбители сталкиваются с такой проблемой, как припаивание мелких деталей, когда паяльник становиться большим по сравнению с размерами микросхем. Немногие знают, что эту проблему можно решить, сделав свой паяльник для микросхем. В этой статье я расскажу, как сделать этот чудопаяльник, который придется по душе каждому радиолюбителю.

В работе радиолюбителя приходится «дружить» с паяльником, но когда его размеры становятся неудобными нужно искать выход из этой проблемы. Проблема решается созданием паяльника для микросхем своими руками.

Для создания паяльника автор самоделки применяет довольно простые детали, в большинстве случаев они есть у каждого радиолюбителя.

А именно это:
•Резистор МЛТ (мощность его 0.5-2 Ватта), Сопротивление от 5 до 10 Ом.
•Отрезок двустороннего текстолита, размером 3*1 см.
•Кусочек стальной проволоки, приблизительно диаметром около 0.8 мм.
•Медная проволока, (снять ее можно, например, из блока питания компьютера), именно она будет служить жалом паяльника.
•Любая шариковая ручка, которая вам по душе, нужна для корпуса паяльника.

Паяльник для микросхем своими руками
Приступаем к сборке, необходимо снять защитный лак и краску с резистора, для уменьшения времени возни с этим делом можно нагреть резистор.

Следующий шаг. Отрезаем один из контактов резистора, на его месте делаем отверстие мелким сверлом. После того, как отверстие готово видно что сам резистор дальше просверлен, именно советские резисторы сделаны так, в импортных такого отверстия нет. Другой конец резистора будет подключен к источнику питания и одновременно служить креплением на ручке.

Паяльник для микросхем своими руками
Далее нужно расширить отверстие резистора, в его начале сделать потай большим сверлом, чтобы жало не касалось стенок резистора, в это место будет припаян второй контакт к питанию.

Этот контакт можно сделать, например, из железной проволоки, в данном случае автор самоделки применяет пружину, взятую из металлического штекера.

Паяльник для микросхем своими руками
Он должен хорошо залуживаться, сделанное в его середине кольцо должно получиться немного меньше по диаметру резистора так, чтобы он резистор плотно одевался на кольцо.

Делаем плату из текстолита, двустороннюю, передняя часть её широкая, с двумя контактами для нашей проволоки с кольцом, припаянная к резистору, средняя для закрепления в корпусе ручки и самая узкая, чтобы припаять провода питания.

Паяльник для микросхем своими руками
Приступим к сборке паяльника в одно целое. Сначала оденем проволоку с кольцом на резистор со стороны отверстия, предварительно залудив эти части, припаиваем их.
Паяльник для микросхем своими руками
Припаиваем контакты для питания к нашей печатной плате.
Теперь нужно жало для паяльника, в этом поможет медная проволока перед ее установкой нужно в корпусе резистора поместить какой либо кусочек, например, той же керамики, чтобы жало не замыкало резистор с его вторым контактом.
Паяльник для микросхем своими руками
Жало можно сделать любой формы, удобной для использования, нужно всего лишь изогнуть его так как нужно вам, для контактов микросхем побольше можно сплющить жало.

Паяльник почти готов, осталось закрутить корпус на плате и припаять провода к источнику питания, им может послужить любой 15 вольтовый блок с силой тока 1 Ампер. Пайка таким паяльником намного удобнее, чем большегабаритным, он удобно сидит в руке такое чувство, что пишешь ручкой, на самом же деле в руке паяльник, в его преимущества входят как мелкий размер жала и самого паяльника, так и его вес, по сравнению с обычным он легче примерно в три раза. Всем удачных самоделок и повторений, сделанных автором.


Источник Паяльник для микросхем своими руками Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Индикатор уровня без транзисторов, без микросхем и без платы

Индикатор уровня без транзисторов без микросхем и без платы
Это очень простой индикатор уровня, который невероятно прост в изготовлении, не содержит транзисторов и микросхем. Собран за 10 минут навесным монтажем и отлично работает.
Подключается устройство напрямую к динамику и отображает уровень звука. Может запросто использоваться как светомузыкальное оформление любой колонки или сабвуфера.

Понадобится



Изготовление индикатора уровня


Из куска деревянной подложки сделаем простой шаблон. Для этого разметим его по линии на равномерные отрезки, просверлим отверстия под светодиоды.
Индикатор уровня без транзисторов без микросхем и без платы
Вставляем светодиоды так, чтобы их минусовой вывод был у всех на одной стороне.
Индикатор уровня без транзисторов без микросхем и без платы
Загибаем минусовой вывод с соседним светодиодом и спаиваем в линейку все контакты.
Индикатор уровня без транзисторов без микросхем и без платы
Плюсовой контакт сгибаем и обрезаем до минимума.
Индикатор уровня без транзисторов без микросхем и без платы
Берем резисторы и с одной стороны обрезаем контакты. Припаиваем по порядку к светодиодам.
Индикатор уровня без транзисторов без микросхем и без платы
Далее берем стабилитроны, подрезаем их выводы и припаиваем. Обратите внимание на положение катода и анода.
Индикатор уровня без транзисторов без микросхем и без платы
В начало включаем два конденсатора, соединенные последовательно.
Индикатор уровня без транзисторов без микросхем и без платы
Припаиваем диоды.
Индикатор уровня без транзисторов без микросхем и без платы
Индикатор готов к работе.
Индикатор уровня без транзисторов без микросхем и без платы
Индикатор уровня без транзисторов без микросхем и без платы
Припаиваем провода к связке диодов, а затем к связке конденсаторов.
Индикатор уровня без транзисторов без микросхем и без платы
Подключается индикатор напрямую к динамической головке.
Индикатор уровня без транзисторов без микросхем и без платы
И отлично работает.
Индикатор уровня без транзисторов без микросхем и без платы
Индикатор уровня без транзисторов без микросхем и без платы

Принцип работы


На диодах и конденсаторах построен удвоитель напряжения, который выпрямляет и удваивает входное напряжение. Далее все идет на линейку со светодиодами, своеобразная лесенка, где ступеньками являются стабилитроны, добавляющие к каждому уровню включения светодиода + 0,6 В. Да, хоть и стабилитроны рассчитаны на напряжение стабилизации 20 В, включены они обратным методом и работают как диоды с большим обратным напряжением. Их вполне можно заменить на 2 обычных диода, включенных последовательно, но тогда их понадобилось бы больше.
В итоге во время работы каждое значение напряжения на входе «доходит» до своего светодиода.

Смотрите видео


В видео ролике вы отчетливо можете посмотреть работу индикатора.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *