Стартерная схема включения люминесцентных ламп
Пуск без стартеров
Лампы дневного света владеют рядом преимуществ по сопоставлению с лампами накаливания. К их числу относятся большой срок службы, экономичность, отменная освещаемость. Ко всем плюсам, им присущи также и недостатки.
Это ненадежность осветительных приборов, долгий процесс зажигания (в особенности при пониженных температурах) и перегорание ламп, а конкретно нити накала. Но люди умельцы находят методы решения этих заморочек, и есть несколько схем, при помощи которых, можно обходиться для пуска ламп не только лишь без стартеров, но и с обрывами в нити накала.Приведенная схема устраняет ЛДС от ряда недостатков. Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со спаленными нитями накала).
Без стартерная схема включения ламп дневного света
C1,C2 – 0.5 mkF 400 B C3,C4 – 0.1 mkF 1000 B VD1…VD6– Любые на ток 0,1 А для ЛДС-20 и 0,2 А для ЛДС-40 и оборотное напряжение более 600 В (по последней мере для VD5, VD6).L1 – Дроссель, соответственный типу лампы. Если вы переделываете осветительный прибор промышленного производства – оставьте имеющийся. Если же вы собираете осветительный прибор с нуля, то дроссель можно поменять лампой накаливания 75…150 Вт (зависимо от мощности ЛДС).
Внимание:При зажигании лампы напряжение на выходе схемы добивается 1200 В. Будьте аккуратны при наладке схемы.Выбор сечения провода по нагреву и потерям напряжения.
Категория:Электричество на даче
Схемы включения ламп накаливания. Управление двумя лампами, присоединенными к сети, осуществляется одним однополюсным выключателем, пятью лампами —двумя выключателями, расположенными рядом (одним выключателем включают две лампы, другим — три, тремя лампами)— с помощью люстрового переключателя для попеременного изменения числа включаемых ламп.
Рис. 1.
Схемы присоединения группы ламп накаливания к осветительной сети:а — двух ламп одним выключателем; б — пяти ламп двумя выключателями; в — с помощью люстрового переключателя; г — с двух мест двумя переключателями, соединенными перемычками; д — ламп к сети, питаемой от трехпроводной системы с изолированной нейтралью; е — ламп к сети, питаемой от четырехпроводной системы с заземленной нейтральюПри первом повороте переключателя включается одна из трех ламп, при втором остальные две, но выключается первая лампа, при третьем — выключаются все лампы, при четвертом — выключаются все лампы люстры.Для независимого управления одной или несколькими лампами с двух мест применяют схему, в которой используют два переключателя, соединенных двумя перемычками. Эту схему применяют при освещении коридоров и лестничных клеток жилых домов и предприятий, а также туннелей с двумя или несколькими выходами (рис. 1).Схемы включения люминесцентных ламп.Люминесцентные лампы могут включаться в электрическую сеть по стартерной (рис.
2) или бесстартерной схемам (рис. 3) зажигания.При включении ламп по стартерной схеме зажигания в качестве стартера применяют газоразрядную неоновую лампу с двумя (подвижным и неподвижным) электродами. Включают люминесцентную лампу в электрическую сеть только последовательно с балластным резистором, ограничивающим рост тока в лампе и таким образом предохраняющим ее от разрушения.
В сетях переменного тока в качестве балластного резистора применяют конденсатор или катушку с большим индуктивным сопротивлением — дроссель.Зажигание люминесцентной лампы происходит следующим образом. При ее включении между электродами возникает тлеющий разряд, теплота которого нагревает подвижный биметаллический электрод. При нагреве до определенной температуры подвижный электрод стартера, изгибаясь, замыкается с неподвижным, образуя электрическую цепь, по которой проходит ток, необходимый для предварительного подогрева электродов лампы.
Рис. 2. Стартерное зажигание люминесцентной лампы: а — схема; б — общий вид стартера; 1 — дроссель; 2 — лампа; 3 — стартер
Рис. 3.
Схема бесстартерного зажигания двухлампового люминесцентного светильникаПри прохождении тока в цепи электродов лампы разряд в стартере прекращается, в результате чего подвижный электрод стартера остывает и, разгибаясь, возвращается в исходное положение, разрывая электрическую цепь лампы.При разрыве к напряжению сети добавляется ЭДС самоиндукции дросселя, и возникший в дросселе импульс повышенного напряжения вызывает дуговой разряд в лампе, зажигая ее. С возникновением дугового разряда напряжение на электродах лампы и параллельно соединенных с ними электродах стартера снижается настолько, что оказывается недостаточным для возникновения тлеющего разряда между электродами стартера.Если лампа не зажжется, на электродах стартера появится полное напряжение сети и весь процесс повторится.Для включения люминесцентных ламп применяют стартерные и бесстартерные пускорегулирующие аппараты (ПРА), которые представляют собой комплектные устройства, обеспечивающие надежное зажигание и нормальную работу ламп, а также повышение коэффициента мощности.Электричество на даче- Схемы включения источников светаКатегория:Электромонтажные работыСхемы включения ламп накаливания. Управление двумя лампами, присоединенными к сети, осуществляется одним однополюсным выключателем (рис.1, а), пятью лампами — двумя выключателями (рис.
1, б), расположенными рядом (одним выключателем включают две лампы, другим — три лампы), тремя лампами — с помощью люстрового переключателя (рис. 1, в) для попеременного изменения числа включаемых ламп.При первом повороте переключателя включается одна из трех ламп, при втором — остальные две, но выключается первая лампа, при третьем — выключаются все лампы, при четвертом — выключаются все лампы люстры. Для независимого управления одной или несколькими лампами с двух мест применяют схему (рис.
1, г), в которой используют два переключателя, соединенных двумя перемычками.Эту схему применяют при освещении коридоров и лестничных клеток жилых домов и предприятий, а также туннелей с двумя или несколькими выходами. Схема питания сети, питаемой от четырехпроводной системы с заземленной нейтралью ламп от трехпроводной и четырехпроводной сети показана на рис. 1, д, е.
Рис.
1. Схемы присоединения группы ламп накаливания к осветительной сети: а — двух ламп одним выключателем, 6 — пяти ламп двумя выключателями, в — с помощью люстрового переключателя, г — с двух мест двумя переключателями, соединенными перемычками, д — ламп к сети, питаемой от трехпроводной системы с изолированной нейтралью, е — лампСхемы включения люминесцентных ламп. Люминесцентные лампы могут включаться в электрическую сеть по стартерной или бесстартерной схемам зажигания.При включении ламп по стартерной схеме зажигания (рис.
2, а) в качестве стартера (рис.2, б) применяют газоразрядную неоновую лампу с двумя (подвижным и неподвижным) электродами. Включают люминесцентную лампу в электрическую сеть только последовательно с балластным резистором, ограничивающим рост тока в лампе и таким образом предохраняющим ее от разрушения. В сетях переменного тока в качестве балластного резистора применяют конденсатор или катушку с большим индуктивным сопротивлением — дроссель.
Рис. 2.
Стартерное зажигание люминесцентной лампы: а — схема, б — общий вид стартера; 1 — дроссель, 2 — лампа, 3 — стартерЗажигание люминесцентной лампы происходит следующим образом. При включении лампы между электродами возникает тлеющий разряд, теплота которого нагревает подвижный биметаллический электрод.При нагреве до определенной температуры подвижный электрод стартера, изгибаясь, замыкается с неподвижным, образуя электрическую цепь, по которой проходит ток, необходимый для предварительного подогрева электродов лампы. Подогреваясь, электроды начинают испускать электроны.
При прохождении тока в цепи электродов лампы разряд в стартере прекращается, в результате чего подвижный электрод стартера остывает и, разгибаясь, возвращается в исходное положение, разрывая электрическую цепь лампы.При разрыве к напряжению сети добавляется эдс самоиндукции дросселя и возникший в дросселе импульс повышенного напряжения вызывает дуговой разряд в лампе, зажигая ее. С возникновением дугового разряда напряжение на электродах лампы и параллельно соединенных с ними электродах стартера снижается настолько, что оказывается недостаточным для возникновения тлеющего разряда между электродами стартера. Если лампа не зажжется, на электродах стартера появится полное напряжение сети и весь процесс повторится.
Рис. 3. Схема бесстартерного зажигания двухлампового люминесцентного светильника:ООДр — основная обмотка дросселя, ДОДр — дополнительная обмотка дросселя, С — конденсатор, НТр — нахальный трансформатор, Л — люминесцентная лампаДля включения люминесцентных ламп применяют стартерные и бесстартерные пускорегулирующие аппараты ПРА, которые представляют собой комплектные устройства, обеспечивающие надежное зажигание и нормальную работу ламп, а также повышение коэффициента мощности.
Схема включения бесстартерных ПРА двухлампового люминесцентного светильника показана на рис. 3.Схемы включения ламп ДРЛ. Двухэлектродные лампы включают в электрическую сеть переменного тока напряжением 220 В через поджигающее устройство, с помощью которого (импульсом высокого напряжения) зажигается лампа (рис.
4).Для защиты выпря-напряжения служит конденсатор С1.Конденсатор СЗ необходим для устранения помех радиоприему, создаваемых поджигающим устройством при зажигании лампы. Четырехэлектродная лампа в отличие от приведенной выше схемы включения двухэлектродной лампы включается в сеть по упрощенной схеме, в которой отсутствует поджигающее устройство. Зажигание четырехэлектродной лампы происходит от питающей сети напряжением 220 В.В схеме включения в сеть четырехэлектродной лампы имеются дроссель и конденсатор, которые выполняют те же функции, что и в схеме включения двухэлектродной лампы ДРЛ.
Рис.4. Схема включения двух-электродной лампы ДРЛ: ООДр — основная обмотка дросселя, ДОДр — дополнительная обмотка дросселя, С1 — конденсатор защиты выпрямителя, С2 – зарядный конденсатор, СЗ — помехоподавляющий конденсатор, СВ – селеновый выпрямитель, R — зарядный резистор, Л — двухэлектродная лампа ДРЛ. Р – разрядникПоджигающее устройство состоит из разрядника Р, селенового выпрямителя (диода) СВ, зарядного резистора R и конденсаторов С1 и С2.
Основная обмотка дросселя в схеме служит для предотвращения резкого возрастания тока в лампе, а также стабилизации ее режима горения.Электромонтажные работы- Схемы включения электрических источников светаЛюминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).
Устройство и описание ЛЛ
Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.
Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать.
Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого – создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер – лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины.В исходном состоянии электроды разомкнуты.
Принцип работы ЛЛ
Стартерная схема включения люминесцентных ламп работает следующим образом.
На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается.
После этого проводником становится металл, и разряд прекращается.Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.
Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.
Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.
Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.
Бездроссельное включение люминесцентных ламп: схемы
Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).
Как запускается ЛЛ с ЭПРА
Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.
Достоинства электронной схемы запуска:
- возможность пуска с любой временной задержкой;не нужны массивный электромагнитный дроссель и стартер;отсутствие гудения и моргания ламп;высокая светоотдача;легкость и компактность устройства;больший срок эксплуатации.
Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.
Система ЭПРА преобразует сетевое переменное напряжение 220 Вв высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение.
При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампыможет обеспечивать холодный запускили с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.
Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.
Выпрямление напряжения осуществляется диодным мостом,после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4и пробивается динистор.Запускается полумостовой генератор на трансформаторе TR1и транзисторах Т1и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2, С3, L1, подключенного к электродам, и лампа зажигается.
В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.Преимущества современных ЭПРА следующие:плавное включение;экономичность работы;сохранение электродов;исключение мерцания;работоспособность при низкой температуре;компактность;долговечность.Недостатками являются более высокая стоимость и сложная схема зажигания.
Применение умножителей напряжения
Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам.
Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.
После выпрямления напряжение удваивается, и лампа загорается моментально.Конденсаторы С1, С2выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах.
Конденсаторы С3, С4устанавливают слюдяные на 1000 В.ЛЛ не предназначена для питания постоянным током.Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.
Бесстартерная схема включения люминесцентных ламп
Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.
Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.
Как включить сгоревшую лампу?
Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА.
Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.
Заключение
Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.
Источники:
- elektrica.info
- gardenweb.ru
- gardenweb.ru
- fb.ru
Схема включения люминесцентных ламп
Лампы дневного света с самых первых выпусков и частично до сих пор зажигаются с помощью электромагнитной пускорегулирующей аппаратуры – ЭмПРА. Классический вариант лампы выполнен в виде герметичной стеклянной трубки со штырьками на концах.
Как выглядят люминесцентные лампы
Внутри она заполнена инертным газом с парами ртути. Ее установка производится в патроны, через которые подается напряжение на электроды. Между ними создается электрический разряд, вызывающий ультрафиолетовое свечение, которое действует на слой люминофора, нанесенный на внутреннюю поверхность стеклянной трубки. В результате появляется яркое свечение. Схема включения люминесцентных ламп (ЛЛ) обеспечивается двумя основными элементами: электромагнитным балластом L1 и лампой тлеющего разряда SF1.
Схема включения ЛЛ с электромагнитным дросселем и стартером
Схемы зажигания с ЭмПРА
Устройство с дросселем и стартером работает по следующему принципу:
- Подача напряжения на электроды. Ток через газовую среду лампы сначала не проходит из-за ее большого сопротивления. Он поступает через стартер (Ст) (рис. ниже), в котором образуется тлеющий разряд. При этом через спирали электродов (2) проходит ток и начинает их подогревать.
- Контакты стартера разогреваются, и один из них замыкается, так как он выполнен из биметалла. Ток проходит через них, и разряд прекращается.
- Контакты стартера перестают разогреваться, и после остывания биметаллический контакт снова размыкается. В дросселе (Д) возникает импульс напряжения за счет самоиндукции, которого достаточно для зажигания ЛЛ.
- Через газовую среду лампы проходит ток, после запуска лампы он уменьшается вместе с падением напряжения на дросселе. Стартер при этом остается отключенным, так как этого тока недостаточно для его запуска.
Схема включения люминесцентной лампы
Конденсаторы (С1) и (С2) в схеме предназначены для снижения уровня помех. Емкость (С1), подключенная параллельно лампе, способствует снижению амплитуды импульса напряжения и увеличению его продолжительности. В результате увеличивается срок службы стартера и ЛЛ. Конденсатор (С2) на входе обеспечивает существенное снижение реактивной составляющей нагрузки (cos φ увеличивается с 0,6 до 0,9).
Если знать, как подключить люминесцентную лампу с перегоревшими нитями накала, ее можно использовать в схеме ЭмПРА после небольшого изменения самой схемы. Для этого спирали замыкают накоротко и последовательно к стартеру подключают конденсатор. По такой схеме источник света сможет проработать еще какое-то время.
Широко распространен способ включения с одним дросселем и двумя лампами дневного света.
Включение двух ламп дневного света с общим дросселем
2 лампы подключаются последовательно между собой и дросселем. Для каждой из них необходима установка параллельно подключенного стартера. Для этого используется по одному выводному штырьку с торцов лампы.
Для ЛЛ необходимо применять специальные выключатели, чтобы у них не залипали контакты от высокого пускового тока.
Зажигание без электромагнитного балласта
Для продления жизни сгоревших ламп дневного света можно установить одну из схем включения без дросселя и стартера. Для этого используют умножители напряжения.
Схема включения ламп дневного света без дросселя
Нити накала замыкают накоротко и подают на схему напряжение. После выпрямления оно увеличивается в 2 раза, и этого достаточно, чтобы светильник загорелся. Конденсаторы (С1), (С2) подбирают под напряжение 600 В, а (С3), (С4) – под 1000 В.
Способ подходит также для исправных ЛЛ, но они не должны работать с питанием постоянным током. Через некоторое время ртуть собирается вокруг одного из электродов, и яркость свечения падает. Чтобы ее восстановить, надо перевернуть лампу, тем самым изменив полярность.
Подключение без стартера
Применение стартера увеличивает время разогрева лампы. При этом срок его службы небольшой. Электроды можно подогревать без него, если установить для этого вторичные трансформаторные обмотки.
Схема подключения люминесцентной лампы без стартера
Там, где не используется стартер, на лампе есть обозначение быстрого старта – RS. Если установить такую лампу со стартерным запуском, у нее могут быстро перегореть спирали, так как для них предусмотрено большее время разогрева.
Электронный балласт
Электронная схема управления ЭПРА пришла на смену старым источникам дневного света для устранения присущих им недостатков. Электромагнитный балласт потребляет лишнюю энергию, часто шумит, выходит из строя и при этом портит лампу. Кроме того, светильники мерцают из-за низкой частоты напряжения питания.
ЭПРА представляет собой электронный блок, который занимает мало места. Люминесцентные светильники легко и быстро запускаются, не создавая шума и обеспечивая равномерное освещение. В схеме предусмотрено несколько способов защиты лампы, что увеличивает срок эксплуатации и делает ее работу безопасней.
ЭПРА работает следующим образом:
- Разогрев электродов ЛЛ. Запуск происходит быстро и мягко, что увеличивает срок службы лампы.
- Поджиг – генерирование импульса высокого напряжения, пробивающего газ в колбе.
- Горение – поддержание небольшого напряжения на электродах лампы, которого достаточно для стабильного процесса.
Схема электронного дросселя
Вначале переменное напряжение выпрямляется с помощью диодного моста и сглаживается конденсатором (С2). Следом установлен полумостовой генератор высокочастотного напряжения на двух транзисторах. Нагрузкой служит тороидальный трансформатор с обмотками (W1), (W2), (W3), две из них включены противофазно. Они поочередно открывают транзисторные ключи. Третья обмотка (W3) подает резонансное напряжение на ЛЛ.
Параллельно лампе подключен конденсатор (С4). Резонансное напряжение поступает на электроды и пробивает газовую среду. К этому времени нити накала уже разогрелись. После зажигания сопротивление лампы резко падает, вызывая снижение напряжения до достаточной величины, чтобы поддерживать горение. Процесс запуска продолжается менее 1 с.
Электронные схемы имеют следующие преимущества:
- пуск с любой заданной задержкой времени;
- не требуется установка стартера и массивного дросселя;
- светильник не моргает и не гудит;
- качественная светоотдача;
- компактность устройства.
Использование ЭПРА дает возможность установить его в цоколь лампы, которую также уменьшили до размеров лампы накаливания. Это дало начало новым энергосберегающим лампам, которые можно вворачивать в обычный стандартный патрон.
В процессе эксплуатации лампы дневного света стареют, и для них требуется увеличение рабочего напряжения. В схеме ЭмПРА напряжение зажигания тлеющего разряда у стартера уменьшается. При этом может происходить размыкание его электродов, что вызовет срабатывание стартера и отключение ЛЛ. После она снова запускается. Подобное мигание лампы приводит к ее выходу из строя вместе с дросселем. В схеме ЭПРА подобное явление не происходит, поскольку электронный балласт автоматически подстраивается под изменение параметров лампы, подбирая для нее благоприятный режим.
Ремонт лампы. Видео
Советы по ремонту люминесцентной лампы можно получить из этого видео.
Устройства ЛЛ и схемы их включения постоянно развиваются в направлении улучшения технических характеристик. Важно уметь выбирать подходящие модели и правильно их эксплуатировать.
Оцените статью:Схемы подключения люминесцентных ламп | ehto.ru
Вступление
Существует два способа подключения люминесцентных ламп: при помощи стартера и дросселя (ЭМПРА) и при помощи электронного пускового аппарата (ЭПРА). Нельзя сказать, что они отличаются принципиально, но в схемах подключения задействованы различные устройства.
Схемы подключения люминесцентных ламп при помощи ЭМПРА
ЭМПРА это электромагнитный пускорегулирующий аппарат, а по сути, обычный дроссель. В схеме подключения ЭМПРА обязательно задействуется стартер, который создает первый импульс для начала свечения люминесцентной лампы.
Читать, ЭПРА и ЭмПРА. В чем отличия пускорегулирующих аппаратов
Схема подключения люминесцентной лампы ЭМПРА
Данная схема подключения используется в большинстве стандартных одноламповых светильниках местного освещения эконом класса.
Схема индуктивная реализация
- Напряжение питания 220 Вольт;
- Дроссель (LL) подключается последовательно к проводу питания и выводу 1 лампы;
- Стартер подключается параллельно к выводам 2 и 3 лампы;
- Вывод 4 лампы подключается ко второму проводу питания;
- В схеме участвует конденсатор, который снижает импульс напряжения, увеличивает срок службы стартера и снижает радиопомехи при работе светильника.
Схема индуктивно-ёмкостная реализация
Вторая схема подключения называется индуктивно-ёмкостной. В ней дроссель и конденсатор (индуктивное и ёмкостное сопротивление схемы) включаются последовательно. Стартер по-прежнему подключен параллельно вывода 2-3 лампы.
Схема подключения 2-х люминесцентных ламп до 18 Вт (ЭМПРА)
Несколько меняются схемы подключений при двух лампах. Наиболее распространены две схемы для ламп до 18 Вт (последовательная) и ламп 36 Вт (параллельная).
В первой схеме, по-прежнему участвуют два стартера, один стартер для каждой лампы. Дроссель подключается, как в схеме с индуктивной реализацией. Мощность дросселя подбирается суммированием мощности ламп.
Важно! В данной (последовательной) схеме необходимо использовать стартеры на 127 (110-130) Вольт. Мощность ламп не может быть больше 22 Вт.
Во второй параллельной схеме, участвуют уже два дросселя (LL1 и LL2). Стартеров по-прежнему два, один стартер для каждой лампы.
Важно! В данной схеме используются стартеры на 220-240 Вольт. Мощность ламп до 80 Вт.
Важно замечание. Современные ЭмПРА выпускаются в едином корпусе. Для подключения на корпусе есть только выводы контактов. Схема подключения ламп указывается на корпусе.
Схемы подключения люминесцентных ламп при помощи ЭПРА
ЭПРА это электронное пускорегулирующие устройство. По сути это сложная электронная схема которая обеспечивает и запуск и стабильную работу люминесцентных ламп (светильников).
Отмечу, что каждый производитель ЭПРА по-своему выводит контакты для подключения к ним ламп. Схема подключения люминесцентных ламп указана на корпусе или в паспорте ЭПРА Пример на фото.
Для информации публикую подбор схем подключения различных ламп к ЭПРА различной маркировки.
Схемы подключения компактных люминесцентных ламп к нерегулируемым ЭПРА (OSRAM), марки QT-ECO
Схемы подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE, лампы 2х55, 1х10-13, 2х16-42.
Схемы подключения нерегулируемым ЭПРА QTP5 лампы 2х14-35Вт, 2х24-39Вт, 2х54Вт, 1х14-35Вт, 1х24-39Вт, 1х54Вт, 1х80.
Схемы подключения ЭПРА QT-FQ, QT-FC ламп Т5 (трубчатые)
©Ehto.ru
Еще статьи
Схемы подключения люминесцентных ламп дневного света
Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.
Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.
Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.
При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.
Схемы
При подключении люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).
Схема подключения с применением электромагнитный балласта или ЭмПРА (дросель и стартер) Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.Принцип работы: при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.
Основные недостатки
- В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
- Долгий пуск не менее 1 до 3 секунд (зависимость от износа лампы)
- Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
- Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем детали станков, вращающихся синхронно с частотой сети- кажутся неподвижными.
- Звук от гудения пластинок дросселя, растущий со временем.
Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения двох ламп применяются стартеры на 127 Вольт, они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт
Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.
Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства
А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.
или сложнее
Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него — достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)
тот же случай но уже для лампы с перегоревшей нитей накала
Схема подключения с применением электронного балласта или ЭПРА
Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного подает на лампы напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.
Основные преимущества схем с ЭПРА
- Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска.
- В сравнении с ПРА до 20% экономия электричества.
- Отсутствие в ходе работы шума и мерцания.
- Отсутствует в схеме стартер, который часто ломается.
- Особые модели выпускаются с возможностью диммирования либо регулировки яркости свечения.
Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении
Внутри такого электронного «дросселя» как правило схема на подобие етой…
Схемы включения люминесцентных ламп с электромагнитными ПРА
Разместить публикацию Мои публикации Написать9 июля 2012 в 10:00
Для поддержания и стабилизации процесса разряда последовательно с люминесцентной лампой включается балластное сопротивление в сети переменного тока в виде дросселя или дросселя и конденсатора. Эти устройства называют пускорегулирующими аппаратами (ПРА).
Напряжение сети, при котором работает люминесцентная лампа в установившемся режиме, недостаточно для ее зажигания. Для образования газового разряда, т. е. пробоя газового пространства, необходимо повысить эмиссию электронов путем их предварительного разогрева или подачи на электроды импульса повышенного напряжения. То и другое обеспечивается с помощью стартера, включенного параллельно лампе.
Рассмотрим как происходит процесс зажигания люминесцентной лампы.
Стартер представляет собой миниатюрную лампочку тлеющего разряда с неоновым наполнением, имеющую два биметаллических электрода, которые в нормальном положении разомкнуты.
При подаче напряжения в стартере возникает разряд и биметаллические электроды, изгибаясь, замыкаются накоротко. После их замыкания ток в цепи стартера и электродов, ограниченный только сопротивлением дросселя, возрастает до двухтрехкратного значения рабочего тока лампы и происходит быстрый разогрев электродов люминесцентной лампы. В это же время биметаллические электроды стартера, остывая, размыкают его цепь.
В момент разрыва цепи стартером в дросселе возникает импульс повышенного напряжения, вследствие которого происходят разряд в газовой среде люминесцентной лампы и ее зажигание. После того как лампа зажглась, напряжение на ней составляет около половины сетевого. Такое напряжение будет и на стартере, однако этого оказывается недостаточно для его повторного замыкания. Поэтому при горящей лампе стартер разомкнут и в работе схемы не участвует.
Конденсатор, включенный параллельно стартеру, и конденсаторы на входе схемы предназначены для снижения уровня радиопомех. Конденсатор, включенный параллельно стартеру, кроме того, способствует увеличению срока службы стартера и влияет на процесс зажигания лампы, способствуя значительному снижению импульса напряжения в стартере (с 8000 -12 000 В до 600 — 1500 В) при одновременном увеличении энергии импульса (за счет увеличения его продолжительности).
Недостатком описанной стартерной схемы является низкий cos фи, не превышающий 0,5. Повышение cos фи достигается либо включением конденсатора на вводе, либо применением индуктивно-емкостной схемы. Однако и в этом случае cos фи 0,9 — 0,92 в результате наличия высших гармонических составляющих в кривой тока, определяемых спецификой газового разряда и пускорегулирующей аппаратурой.
В двухламповых светильниках компенсация реактивной мощности достигается при включении одной лампы с индуктивным, а другой с индуктивно-емкостным балластом. В этом случае cos фи = 0,95. Кроме того, такая схема ПРА позволяет сгладить в значительной степени пульсации светового потока люминесценых ламп.
Схема включения люминесцентных ламп с ПРА с расщепленной фазой
Наибольшее распространение для включения люминесцентных ламп мощностью 40 и 80 Вт получила у нас двухламповая импульсная схема стартерного зажигания с применением балластных компенсированных устройств 2УБК-40/220 и 2УБК-80/220, работающих по схеме «расщепленной фазы». Они представляют собой комплектные электрические аппараты с дросселями, конденсаторами и разрядными сопротивлениями.
Последовательно с одной из ламп включается только дроссель-индуктивное сопротивление, что создает отставание тока по фазе от приложенного напряжения. Последовательно со второй лампой, помимо дросселя, включается конденсатор, емкостное сопротивление которого больше индуктивного сопротивления дросселя примерно в 2 раза, создающий опережение тока, в результате чего суммарный коэффициент мощности комплекта получается порядка 0,9 -0,95.
Кроме того, включение последовательно с дросселем одной из двух ламп специально подобранного конденсатора обеспечивает такой сдвиг фаз между токами первой и второй ламп, при котором глубина колебаний суммарного светового потока двух ламп будет существенно уменьшена.
Для увеличения тока подогрева электродов последовательно с емкостью включается компенсирующая катушка, которая отключается стартером.
Бесстартерные схемы включения люминесцентных ламп
Недостатки стартерных схем включения (значительный шум, создаваемый ПРА при работе, возгораемость при аварийных режимах и др.), а также низкое качество выпускаемых стартеров привели к настойчивым поискам бесстартерных экономически целесообразных рациональных ПРА с тем, чтобы в первую очередь применить их в установках, где достаточно просты и дешевы.
Для надежной работы бесстартерных схем которых рекомендуется применять лампы с нанесенной на колбы токопроводящей полосой.
Наибольшее распространение получили трансформаторные схемы быстрого пуска люминесцентных ламп в которых в качестве балластного сопротивления используется дроссель, а предварительный подогрев катодов осуществляется накальным трансформатором либо авт отрансформатором.
В настоящее время расчетами установлено, что стартерные схемы для внутреннего освещения более экономичны, и поэтому они имеют преимущественное распространение. В стартерных схемах потери энергии составляют примерно 20 — 25%, в бесстартерных — 35%
В последнее время схемы включения люминесцентных ламп с электромагнитными ПРА постепенно вытесняются схемами с более функциональными и экономичными электронными пускорегулирующими аппаратами (ЭПРА).
Сегодня, в 10:14 15
13 октября в 17:53 100
13 октября в 17:18 24
13 октября в 15:51 18
13 октября в 14:33 30
13 октября в 13:26 87
13 октября в 11:17 21
13 октября в 01:54 45
11 октября в 19:17 33
4 июня 2012 в 11:00 202409
12 июля 2011 в 08:56 44633
28 ноября 2011 в 10:00 34554
16 августа 2012 в 16:00 20246
21 июля 2011 в 10:00 19955
29 февраля 2012 в 10:00 18193
24 мая 2017 в 10:00 16144
14 ноября 2012 в 10:00 14032
25 декабря 2012 в 10:00 12152
31 января 2012 в 10:00 11349
Схема люминесцентной лампы, электрическая схема и принцип действия лампы дневного света.
Лампы дневного света довольно широко распространены в использовании, поскольку обладают некоторыми преимуществами перед лампами накаливания. А именно, они экономнее в потреблении электроэнергии, поскольку меньше расходуют энергии на образование тепла, так же у них более рассеянный свет и имеется возможность выбирать свечение с определённым цветом, хотя наиболее популярные и ходовые всё же являются с белым свечением. Ну, а что касается специфики их работы, то скажу следующее: для любой люминесцентной лампы или лампы дневного света, необходимы определённые условия. То есть, поскольку в них содержится инертный газ с парами ртути, а как известно, газы являются плохими проводниками электрического тока. И для их зажигания требуется высокое напряжение пробоя.
Так же, для облегчения этого зажигания, делаются внутри люминесцентной лампы спиральки, которые при подачи напряжения накаляются и тем самым облегчают выход электронов из металла электродов. Учитывая данные условия, простое подключение к контактам лампы дневного света сетевого напряжения не пойдёт. Для этого однажды придумали очень простую схему на дросселе. В ней сочетаются все благоприятные условия для осуществления зажигания и дальнейшего горения люминесцентной лампы. Дроссель, как Вы должны знать, при подаче на него переменного напряжения способен ограничить силу тока, за счет индуктивного сопротивления. Это нам понадобится для дальнейшего поддержания непосредственного горения люминесцентной лампы.
Ещё дроссели умеют выдавать большие ЭДС, за счет внутренней самоиндукции, но для этого необходимо создать в цепи питания кратковременное прерывания, в виде замыкания и размыкания. Это и обеспечивает ещё один элемент схемы, под названием стартёр. Итак, на вход схемы лампы дневного света подается сетевое напряжение 220в. Оно проходит через дроссель и поступает на первую спиральку лампы, с неё переходит на стартёр и с него идёт во вторую спиральку, с которой поступает на вторую клемму сетевого напряжения. Первым срабатывает стартёр.
Напряжение зажигания тлеющего разряда стартера меньше напряжения сети, но больше рабочего напряжения лампы. Его внутренние контакты нагреваются и замыкаются, тем самым обеспечивая прохождение тока через спиральки лампы, нагревая их до температуры 800-900 градусов. Это позволяет легче проходить запуску лампы. После, контакты стартера остывают и размыкаются, что даёт кратковременный импульс на дроссель, а он выдаёт выброс высокого напряжения на электроды люминесцентной лампы, обеспечивая тем самым пробой и дальнейшее горение. Что касается подключённой емкости на входе. Это сетевой фильтр для гашения реактивной мощности, которую вырабатывает дроссель. Без ёмкости конечно лампа то же будет работать, но при этом потребляя больше энергии.
В первом варианте схемы происходит включение одной лампы. В этом случае элементы схемы будут такими: если лампа на 40Вт, то и дроссель на 40Вт, а стартер на напряжение 220в (если лампа одна). При подключении двух ламп к одному дросселю, общая схема уже имеет вид варианта 2, на нашем рисунке. В этом случае, дроссель на 40 Вт, а лампы на 20Вт и стартера, напряжением по 127в каждый. Ну а конденсатор, в первом и втором варианте можно поставить на напряжение не меньше сетевого, а лучше с запасом и емкостью около 0.22мкФ. На этом данная тема, схема люминесцентной лампы электрическая принципиальная, закончена. До следующих статей и удачи.
Видео по этой теме:
P.S. Это простейшие дроссельные схемы люминесцентных ламп, но имеется множество без дроссельных схем, которые мы рассмотрены в дальнейшем.
Подключение люминесцентных ламп — схема и варианты монтажа
Отличительный принцип схемы подключения люминесцентных светильников заключается в необходимости включения в нее приборов пускового типа, от них зависит длительность эксплуатации.
Для того чтобы разбираться в схемах необходимо понимать принцип работы данных светильников.
Технические характеристики люминесцентных ламп
Устройство светильника люминесцентного типа – это герметичный сосуд, наполненный особой консистенцией из газа. Расчёт смеси производился с целью растрачивания меньшей энергии ионизации газов в сравнении с обычными лампами, за счет этого можно хорошо сэкономить на освещении дома или квартиры.
Для постоянного освещения необходимо удержание тлеющего разряда. Этот процесс обеспечивается с помощью подачи нужного напряжения. Проблема заключается лишь в следующей ситуации — такой разряд появляется от подающего напряжения, которое выше рабочего. Но и эта задача была решена производителями.
На двух сторонах лампы устанавливаются электроды, которые принимают напряжение, и поддерживают разряд. Каждый электрод имеет два контакта, с которыми происходит соединение источника тока. За счет этого происходит нагревание зоны, которая окружает электроды.
Светильник загорается впоследствии нагрева каждого электрода. Происходит это за счет воздействия на них высоковольтных импульсов и последующей работы напряжения.
При воздействии разряда газы находящиеся в емкости лампы активизируют излучение ультрафиолетового света, который не воспринимается глазом человека. Для того чтобы зрение человека различало это свечение колба внутри покрыта люминофорным веществом, которое смещает частотный интервал освещения в видимый интервал.
Изменяя структуру данного вещества происходит изменение гаммы цветовых температур.
Важно! Нельзя попросту включить светильник в сеть. Дуга появится после обеспечения прогревания электродов и импульсного напряжения.
Специальные балласты помогают обеспечить такие условия.
Подключение через электромагнитный балласт
Нюансы схемы подключения
Цепь данного вида должна включать в себя наличие дросселя и стартера.
Стартер выглядит как небольшой по мощности источник неонового освещения. Для его питания необходима электросеть с переменным значением тока, также он оснащен некоторым количеством биметаллических контактов.
Подключение дросселя, стартерных контактов и электродных нитей происходит последовательно.
Другой вариант возможен при замещении стартера на кнопку от входного звонка.
Напряжение будет осуществляться удержанием кнопки в состоянии нажатия. Когда светильник зажжётся ее необходимо отпустить.
1-й способ подключения люминесцентных ламп
- подключенный дроссель сохраняет электромагнитную энергию;
- с помощью стартерных контактов поступает электричество;
- перемещение тока осуществляется с помощью вольфрамовых нитей нагревания электродов;
- нагрев электродов и стартера;
- затем размыкаются контакты стартера;
- энергия, которая аккумулируется с помощью дросселя освобождается;
- светильник включается.
Для того чтобы увеличить показатель полезного действия, уменьшить помехи в модель схемы вводятся два конденсатора.
Плюсы данной схемы:
— простота;
— демократичная цена;
— она надежна;
Недостатки схемы:
— большая масса устройства;
— шумная работа;
— лампа мерцает, что не хорошо сказывается на зрении;
— потребляет большое количество электроэнергии;
— включается устройство около трех секунд;
— плохое функционировании при минусовых температурах.
Очередность подключения
Подключение с помощью вышеописанной схемы происходит со стартерами. Рассматриваемый ниже вариант имеет модель стартера S10 мощностью 4-65Вт., лампу на 40Вт и такую же мощность у дросселя.
Этап 1. Подключение стартера к штыревым контактам лампы, которые имеют вид нитей накаливания.
Этап 2. Остальные контакты подключается к дросселю.
Этап 3. Конденсатор подключается к контактам питания параллельным образом. За счет конденсатора компенсируется уровень реактивной мощностью, и происходит уменьшение количества помех.
Подключение люминесцентных ламп через электронный балласт
Особенности схемы подключения
За счет электронного балласта лампе обеспечивается долгий период функционирования и экономия затрат электроэнергии. При работе с напряжением до 133 кГц свет распространяется без мерцания.
Микросхемами обеспечивается питание светильников, подогрев электродов, тем самым повышается их продуктивность и увеличиваются сроки эксплуатации. Имеется возможность совместно с лампами данной схемы подключения использовать диммеры – это устройства, которые плавно регулируют яркость свечения.
Электронный балласт преобразует напряжение. Действие постоянного тока трансформируется в ток высокочастотного и переменного вида, который переходит на нагреватели электродов.
Повышается частота за счет этого происходит уменьшение интенсивности нагревания электродов. Использование электронного балласта в схеме подключения позволяет подстроиться под свойства светильника.
Плюсы схемы данного вида:
- большая экономия;
- лампочка плавно включается;
- отсутствует мерцание;
- бережно прогреваются электроды лампы;
- допустимая эксплуатация при низких температурах;
- компактность и маленькая масса;
- долговременный срок действия.
Минусы схемы данного вида:
- усложненность схемы подключения;
- большая требовательность к установке.
Порядок подключения ламп
Светильник подключается в три этапа:
— происходит прогревание электродов, за счет чего аккуратно и размеренно запускается устройство;
— создается мощный импульс, который требуется для поджигания;
— рабочее напряжение балансируется и подается на лампу.
Подключение люминесцентных ламп последовательно
Очередность подключения
Этап 1. Параллельное подсоединение стартера к каждой лампе.
Этап 2. Последовательное подсоединение с помощью дросселя свободных контактов к сети.
Этап 3. Параллельное подсоединение конденсаторов к контактам лампы. За счет этого происходит снижение помех, а также компенсирование реактивной мощности.
Видео — Подключение люминесцентных ламп
Поделитесь если вам понравилось:
Похожие материалы
Принцип работы люминесцентной лампы и схема подключения
Привет, на этой странице мы обсудим люминесцентные лампы. Люминесцентная лампа — это тип лампы, работающей на явлении люминесценции. Люминесцентные лампы дают большой световой поток по сравнению с лампами накаливания. он возник в 19 веке. Эти лампы дают свет белого цвета за счет фосфорного покрытия на внутренней поверхности стеклянной трубки.Принципиальная схема
Эти лампы состоят из нескольких основных частей:- Балласт или (электрический дроссель)
- Стартер
- Электроды
- Лампа
рабочая схема
При включении питания переменного тока (переменного тока). Эти источники питания достигли электродов, но это мгновенное питание также поступает к пускателю через электрический дроссель (балласт).Этот стартер содержит биметаллический контакт. Когда напряжение достигает стартера, он вызывает короткое замыкание и нагревает биметаллическую полосу. Из-за нагрева биметаллическая полоса изгибается в сторону контакта и замыкает цепь. Напряжение на пускателе уменьшается, поскольку ток вызывает падение напряжения на катушке индуктивности (балласт). При пониженном или нулевом напряжении на пускателе больше не происходит газового разряда, и, таким образом, биметаллическая полоса охлаждается и размыкает контакт. В момент размыкания контактов пускателя ток прерывается, и, следовательно, большой скачок напряжения проходит через индуктор (балласт).Это высокое напряжение создает в трубке смесь газов. Смесь аргона и ртути создает ультрафиолетовый свет, невидимый человеческим глазом. Из-за покрытия порошка фосфора на внутренней поверхности трубки. Этот ультрафиолетовый свет излучает белый свет, видимый человеческим глазом. СвязанныеЛюминесцентная лампа и принцип работы люминесцентной лампы
Что такое люминесцентная лампа?
Люминесцентная лампа — это легковесная лампа на парах ртути, в которой используется флуоресценция для излучения видимого света.Электрический ток в газе возбуждает пары ртути, которые доставляют ультрафиолетовое излучение через процесс разряда, а ультрафиолетовое излучение заставляет люминофорное покрытие внутренней стенки лампы излучать видимый свет. Люминесцентная лампа преобразовала электрическую энергию в полезную световую энергию гораздо эффективнее, чем лампы накаливания. Нормальная световая способность каркасов люминесцентных осветительных приборов составляет от 50 до 100 люмен на ватт, что в несколько раз больше, чем у ламп накаливания с эквивалентной светоотдачей.
Как работает люминесцентная лампа?
Прежде чем перейти к принципу работы люминесцентной лампы, сначала покажем схему люминесцентной лампы, другими словами схему лампового света.
Здесь мы подключаем один балласт, один выключатель и питание последовательно, как показано. Затем подключаем к ней люминесцентную лампу и стартер.
- При включении питания полное напряжение поступает на лампу, а также на стартер через балласт.Но в этот момент не происходит разряда, т.е. нет выхода люмена из лампы.
- При этом полном напряжении сначала в пускателе возникает тлеющий разряд. Это связано с тем, что зазор между электродами неоновой лампы стартера намного меньше, чем у люминесцентной лампы.
- Затем газ внутри стартера ионизируется за счет этого полного напряжения и нагревает биметаллическую ленту. Это приводит к изгибу биметаллической полосы для соединения с неподвижным контактом. Теперь через стартер начинает течь ток.Хотя потенциал ионизации неона больше, чем у аргона, но все же из-за небольшого межэлектродного зазора в неоновой лампе появляется высокий градиент напряжения, и, следовательно, тлеющий разряд запускается первым в стартере.
- Как только ток начинает течь через прикоснувшиеся контакты неоновой лампы стартера, напряжение на неоновой лампе уменьшается, поскольку ток вызывает падение напряжения на катушке индуктивности (балласт). При пониженном или нулевом напряжении на неоновой лампе стартера газовый разряд больше не будет, и, следовательно, биметаллическая полоса охлаждается и отрывается от неподвижного контакта.В момент размыкания контактов в неоновой лампе стартера ток прерывается, и, следовательно, в этот момент на катушку индуктивности (балласт) попадает большой скачок напряжения.
- Это высокое импульсное напряжение проходит через электроды люминесцентной лампы (лампы накаливания) и попадает в смесь газов (смесь газообразного аргона и паров ртути).
- Процесс газового разряда начинается и продолжается, и, следовательно, ток снова проходит через саму трубку люминесцентной лампы (ламповый светильник).Во время разгрузки газовой смеси сопротивление газа ниже, чем сопротивление стартера.
- Разряд атомов ртути производит ультрафиолетовое излучение, которое, в свою очередь, заставляет порошковое покрытие люминофора излучать видимый свет.
- Стартер становится неактивным во время свечения люминесцентной лампы (лампового света), потому что в этом состоянии через стартер не проходит ток.
Физика за люминесцентной лампой
Когда на электроды подается достаточно высокое напряжение, создается сильное электрическое поле.Небольшой ток через нити электродов нагревает катушку накала. Поскольку нить накала покрыта оксидом, создается достаточное количество электронов, и они устремляются от отрицательного электрода или катода к положительному электроду или аноду из-за этого сильного электрического поля. Во время движения свободных электронов налаживается разрядный процесс.
Основной процесс разряда всегда состоит из трех этапов:
- Свободные электроны выводятся из электродов и ускоряются приложенным электрическим полем.
- Кинетическая энергия свободных электронов преобразуется в энергию возбуждения атомов газа.
- Энергия возбуждения атомов газа преобразуется в излучение.
В процессе разряда образуется одиночная ультравысокая спектральная линия 253,7 нм при низком давлении паров ртути. Для генерации ультравысокого луча с длиной волны 253,7 нм температура баллона поддерживается в пределах от 105 до 115 o F.
Отношение длины к диаметру трубки должно быть таким, чтобы фиксированная потеря мощности происходила на обоих концах.Место, где происходит потеря мощности или свечение электродов, называется областью катодного и анодного падения. Эта потеря ватт очень мала.
Катоды снова должны быть покрыты оксидом. Горячий катод обеспечивает обилие свободных электронов. Горячие катоды означают те электроды, которые нагреваются циркулирующим током, и этот циркулирующий ток обеспечивается дросселем или управляющим механизмом. Некоторые лампы также имеют холодный катод. Холодные катоды имеют большую эффективную площадь, и на них подается более высокое напряжение, например 11 кВ, для получения ионов.Из-за этого высокого напряжения начинает выделяться газ. Но при 100-200 В катодное свечение отделяется от катода, это называется катодным падением. Это обеспечивает большой запас ионов, которые ускоряются к аноду для образования вторичных электронов при ударе, которые в конечном итоге производят больше ионов. Но катодное падение в разряде с горячим катодом составляет только 10 В.
История и изобретение люминесцентной лампы
- В 1852 году сэр Джордж Стокс открыл преобразование ультрафиолетового излучения в видимое излучение.
- С этого времени и до 1920 года проводились различные эксперименты по развитию электрических разрядов низкого и высокого давления в парах ртути и натрия. Но все разработанные схемы оказались неэффективными для преобразования ультравысокого луча в видимый луч. Это было потому, что; электроды не могли испускать достаточно электронов, чтобы установить явление дугового разряда. И снова многие электроны столкнулись с атомами газа, и это было упруго. Таким образом, возбуждение не создавало спектральную линию, которую можно было бы использовать.Но с люминесцентными лампами работ было сделано очень мало.
- Но в 20-е годы произошел крупный прорыв. Обнаружен факт, что смесь паров ртути и инертного газа при низком давлении эффективна на 60% для преобразования входной электрической мощности в единую спектральную линию на длине волны 253,7 нм.
Ультра-нарушенный луч преобразуется в лучи видимого света с помощью соответствующего флуоресцентного материала внутри лампы. С этого времени люминесцентные лампы стали применяться в повседневной жизни людей. - Позже д-р В. Л. Энфилд в 1934 г. получил отчет от д-ра А. Х. Кромптона об использовании лампы с люминесцентным покрытием. Сразу же в Энфилде была создана исследовательская группа, которая приступила к созданию коммерческой люминесцентной лампы. В 1935 году их команда создала прототип зеленой люминесцентной лампы с КПД около 60%.
- Спустя два с половиной года на рынке были представлены люминесцентные лампы белого и шести других цветов. Различные смеси порошка люминофора используются для получения люминесцентных ламп разных цветов.Первая лампа была представлена мощностью 15, 20 и 30 Вт и длиной 18 дюймов, 25 дюймов и 36 дюймов.
- Вскоре после того, как T12 мощностью 40 Вт, была представлена 4-футовая лампа, которая широко использовалась в офисном, школьном и промышленном освещении. Ранние лампы давали свет несколько желтоватым до 3500K. Позже лампы дневного света 6500K были разработаны таким образом, что они излучают свет, имитирующий средний северный свет неба на пасмурном небе.
- Обычно в 1940 году на рынке были доступны 4-футовые лампы диаметром 1,5 дюйма и мощностью 40 Вт.Но постепенно дизайн был изменен в сторону лучшего использования. В дуге изменена разрядная часть ламп. Но аргон по-прежнему используется, хотя давление несколько меньше предыдущего. Пары ртути поддерживаются при том же давлении, что и предыдущий. Для этой лампы требуется 425 мА при падении напряжения от 100 до 105 В.
Электропроводка балласта — электрическая 101
Для работы люминесцентных ламп требуется балласт.Схема люминесцентной лампы включает балласт, провода, патроны и лампы.
Лампа против лампы
Электрики обычно называют лампочку лампой. Производители лампочек используют термин «лампа», когда относятся к люминесцентным лампам. На этой странице мы будем называть люминесцентную лампу лампой или трубкой.
Отдельные и общие провода балласта
Каждый провод индивидуального балласта подключается к патрону на одной стороне каждой трубки.Общий провод (а) подключается ко всем патронам на другой стороне трубок.
Цвета проводов балласта
Цвета проводов для отдельных и общих соединений на люминесцентных балластах будут различаться в зависимости от типа балласта, марки и количества поддерживаемых ламп. Балласты имеют определенные цвета для отдельных проводов к патронам и другие цвета для общих проводов к патронам.
Магнитные балласты и электронные балласты
Старые магнитно-люминесцентные балласты обычно быстро запускаются и подключаются последовательно.Новые электронные балласты — это мгновенный запуск (подключенные параллельно), быстрый запуск (подключенные последовательно), запрограммированный запуск (подключенные последовательно —
Быстрый запуск против балластов мгновенного запуска
Когда балласт быстрого запуска (соединенный последовательно) работает с несколькими лампами и одна лампа выходит из строя, цепь размыкается, и другие лампы не загораются.
Когда балласт мгновенного пуска (включенный параллельно) управляет несколькими лампами в цепи, лампы работают независимо друг от друга.Если одна лампа выходит из строя, другие могут продолжать работать, поскольку цепь между ними и балластом остается непрерывной.
При использовании некоторых пусковых балластов с 3 и 4 лампами
- ПРА для быстрого пуска можно подключать только последовательно в соответствии со схемой на пускорегулирующем аппарате.
- ПРА с мгновенным запуском можно подключать параллельно только в соответствии со схемой на ПРА.
- Изменение проводки люминесцентного светильника с быстрого запуска на мгновенное включает изменение проводки с последовательного на параллельное.
1 Схема балласта для быстрого запуска лампы
1 Схема балласта для быстрого запуска 1 лампы
Заземление балласта
Заземление балласта очень важно. Заземление обычно происходит автоматически, если светильник заземлен должным образом.
Заземляющий провод от источника питания должен быть подключен к осветительной арматуре.Металлический балласт, установленный на металлической осветительной арматуре, автоматически заземляет балласт.
Если балласт имеет клемму заземления, к ней должен быть подключен заземляющий провод.
Как работают люминесцентные лампы
Основное средство преобразования электрической энергии в энергию излучения в люминесцентной лампе основано на неупругом рассеянии электронов, когда падающий электрон сталкивается с атомом в газе.
Если (падающий) свободный электрон имеет достаточно кинетической энергии, он передает энергию внешнему электрону атома, заставляя этот электрон временно подпрыгивать на более высокий энергетический уровень.Столкновение «неупругое», потому что происходит потеря кинетической энергии.
Это состояние с более высокой энергией нестабильно, и атом будет излучать ультрафиолетовый фотон, когда электрон атома возвращается на более низкий, более стабильный энергетический уровень.
Большинство фотонов, испускаемых атомами ртути, имеют длины волн в ультрафиолетовой (УФ) области спектра, преимущественно на длинах волн 253,7 и 185 нанометров (нм). Они не видны человеческому глазу, поэтому их нужно преобразовывать в видимый свет.Это делается с помощью флуоресценции.
Ультрафиолетовые фотоны поглощаются электронами в атомах внутреннего флуоресцентного покрытия лампы, вызывая аналогичный скачок энергии, а затем ее падение с испусканием следующего фотона. Фотон, испускаемый в результате этого второго взаимодействия, имеет меньшую энергию, чем тот, который его вызвал.
Химические вещества, входящие в состав люминофора, выбраны таким образом, чтобы эти испускаемые фотоны имели длину волны, видимую человеческим глазом. Разница в энергии между поглощенным ультрафиолетовым фотоном и испускаемым фотоном видимого света идет на нагрев покрытия люминофора .
Когда включается свет, электроэнергия нагревает катод настолько, что он испускает электроны (термоэлектронная эмиссия). Эти электроны сталкиваются и ионизируют атомы благородного газа внутри колбы, окружающей нить, с образованием плазмы в процессе ударной ионизации. В результате лавинной ионизации проводимость ионизированного газа быстро возрастает, позволяя более высоким токам проходить через люминесцентную лампу.
Заполняющий газ помогает определить рабочие электрические характеристики лампы, но не излучает свет.Заполняющий газ эффективно увеличивает расстояние, которое электроны проходят через трубку, что дает электрону больше шансов на взаимодействие с атомом ртути.
Атомы аргона, возбужденные до метастабильного состояния под действием электрона, могут передать эту энергию нейтральному атому ртути и ионизировать его, что описывается как эффект Пеннинга .
Это позволяет снизить пробивное и рабочее напряжение люминесцентной лампы по сравнению с другими возможными наполняющими газами, такими как криптон.
Люминесцентные лампы — Принцип работы и применение люминесцентных ламп
Что такое люминесцентные лампы?
Люминесцентные лампы — это лампы, в которых свет возникает в результате движения свободных электронов и ионов внутри газа. Типичная люминесцентная лампа состоит из стеклянной трубки, покрытой люминофором и содержащей пару электродов на каждом конце. Он заполнен инертным газом, обычно аргоном, который действует как проводник, а также состоит из жидкой ртути.
Люминесцентная лампа
Как работает люминесцентная лампа?
Когда электричество подводится к трубке через электроды, ток проходит через газовый проводник в форме свободных электронов и ионов и испаряет ртуть.Когда электроны сталкиваются с газообразными атомами ртути, они выделяют свободные электроны, которые перескакивают на более высокие уровни, а когда они возвращаются на исходный уровень, излучаются фотоны света. Эта излучаемая световая энергия находится в форме ультрафиолетового света, невидимого для человека. Когда этот свет попадает на люминофор, нанесенный на трубку, он возбуждает электроны люминофора на более высокий уровень, и когда эти электроны возвращаются к своему исходному уровню, излучаются фотоны, и эта световая энергия теперь находится в форме видимого света.
Запуск люминесцентной лампы
В люминесцентных лампах ток течет через газовый проводник, а не через твердотельный проводник, где электроны просто текут от отрицательного конца к положительному. Должно быть много свободных электронов и ионов, чтобы позволить потоку заряда через газ. Обычно в газе очень мало свободных электронов и ионов. По этой причине необходим специальный пусковой механизм, чтобы ввести в газ больше свободных электронов.
Два пусковых механизма для люминесцентной лампы
1.Один из методов заключается в использовании выключателя стартера и магнитного балласта для обеспечения протекания переменного тока к лампе. Выключатель стартера требуется для предварительного нагрева лампы, поэтому требуется значительно меньшее количество напряжения для запуска образования электронов на электродах лампы. Балласт используется для ограничения силы тока, протекающего через лампу. Без выключателя стартера и балласта большое количество тока будет протекать непосредственно к лампе, что уменьшит сопротивление лампы и, в конечном итоге, нагреет лампу и разрушит ее.
Люминесцентная лампа с магнитным балластом и выключателем стартераИспользуемый выключатель стартера представляет собой обычную лампу, состоящую из двух электродов, так что между ними образуется электрическая дуга, когда через лампу протекает ток. В качестве балласта используется магнитный балласт, который состоит из катушки трансформатора. Когда через катушку проходит переменный ток, создается магнитное поле. По мере увеличения тока магнитное поле увеличивается, и это в конечном итоге препятствует прохождению тока. Таким образом ограничивается переменный ток.
Первоначально для каждого полупериода сигнала переменного тока ток течет через балласт (катушку), создавая вокруг него магнитное поле. Этот ток, проходя через нити трубки, медленно нагревает их, вызывая образование свободных электронов. Когда ток проходит через нить накала к электродам колбы (используется в качестве выключателя стартера), между двумя электродами колбы образуется электрическая дуга. Поскольку один из электродов представляет собой биметаллическую полосу, он изгибается при нагревании, и в конечном итоге дуга полностью гаснет, а поскольку ток не течет через стартер, он действует как размыкающий выключатель.Это вызывает коллапс магнитного поля на катушке, и в результате возникает высокое напряжение, которое обеспечивает необходимое срабатывание для нагрева лампы, чтобы произвести необходимое количество свободных электронов через инертный газ, и в конечном итоге лампа загорится.
6 причин, почему магнитный балласт не считается удобным?
- Потребляемая мощность довольно высокая, порядка 55 Вт.
- Они большие и тяжелые
- Они вызывают мерцание при работе на более низких частотах
- Долго не живут.
- Потери от 13 до 15 Вт.
2. Использование электронного балласта для включения люминесцентных ламп
Электронные балласты, в отличие от магнитных балластов, подают переменный ток в лампу после увеличения частоты сети примерно с 50 Гц до 20 кГц.
Электронный балласт для запуска люминесцентной лампыТипичная схема электронного балласта состоит из преобразователя переменного тока в постоянный, состоящего из мостов и конденсаторов, которые преобразуют сигнал переменного тока в постоянный и отфильтровывают пульсации переменного тока для выработки постоянного тока.Это постоянное напряжение затем преобразуется в высокочастотное прямоугольное напряжение переменного тока с помощью набора переключателей. Это напряжение приводит в действие резонансный контур LC-резервуара, чтобы создать отфильтрованный синусоидальный сигнал переменного тока, который подается на лампу. Когда ток проходит через лампу с высокой частотой, он действует как резистор, образуя параллельную RC-цепь с цепью резервуара. Первоначально частота переключения переключателей снижается с помощью схемы управления, что приводит к предварительному нагреву лампы, что приводит к увеличению напряжения на лампе.В конце концов, когда напряжение на лампе достаточно увеличивается, она загорается и начинает светиться. Имеется устройство для измерения тока, которое может определять величину тока, протекающего через лампу, и соответственно регулировать частоту переключения.
6 причин, по которым предпочтение отдается электронным пускорегулирующим устройствам больше
- Имеют низкое энергопотребление, менее 40 Вт
- Убыток незначительный
- Мерцание устранено
- Они легче и больше подходят для мест
- Они служат дольше
A Типичное применение с люминесцентной лампой — автоматическое переключение света
Вот вам полезная домашняя схема.Эта автоматическая система освещения может быть установлена в вашем доме для освещения помещения с помощью КЛЛ или люминесцентных ламп. Лампа автоматически включается около 18:00 и гаснет утром. Таким образом, эта схема без выключателя очень полезна для освещения помещений в доме, даже если заключенных нет дома. Обычно автоматические огни на основе LDR мерцают при изменении интенсивности света на рассвете или в сумерках. Поэтому КЛЛ нельзя использовать в таких схемах. В автоматических осветительных приборах с симисторным управлением возможна только лампа накаливания, поскольку мерцание может повредить цепь внутри КЛЛ.Эта схема преодолевает все подобные недостатки и мгновенно включается / выключается при изменении заданного уровня освещенности.
Как это работает?
IC1 (NE555) — это популярная микросхема таймера, которая используется в схеме в качестве триггера Шмитта для получения бистабильного действия. Действия установки и сброса IC используются для включения / выключения лампы. Внутри микросхемы два компаратора. Компаратор с верхним порогом срабатывает при 2/3 В постоянного тока, в то время как компаратор с нижним триггером срабатывает при 1/3 В постоянного тока. Входы этих двух компараторов связаны вместе и соединены на стыке LDR и VR1.Таким образом, напряжение, подаваемое LDR на входы, зависит от интенсивности света.
LDR — это разновидность переменного резистора, сопротивление которого меняется в зависимости от интенсивности падающего на него света. В темноте LDR предлагает очень высокое сопротивление, достигающее 10 Мегаомов, но при ярком свете оно уменьшается до 100 Ом или меньше. Таким образом, LDR — идеальный датчик света для автоматических систем освещения.
В дневное время LDR имеет меньшее сопротивление, и ток течет через него к пороговому (контакт 6) и триггеру (контакт 2) входам IC.В результате напряжение на пороговом входе превышает 2/3 Vcc, что сбрасывает внутренний триггер, и выход остается низким. В то же время триггерный вход получает более 1/3 В постоянного тока. Оба условия поддерживают низкий уровень выходного сигнала IC1 в дневное время. Транзистор драйвера реле подключен к выходу IC1, так что реле остается обесточенным в дневное время.
Электрическая схема автоматического переключения светаНа закате сопротивление LDR увеличивается, и ток, протекающий через него, прекращается.В результате напряжение на входе компаратора пороговых значений (вывод 6) падает ниже 2/3 В постоянного тока, а напряжение на входе компаратора триггера (вывод 2) — менее 1/3 В постоянного тока. Оба эти условия приводят к тому, что выходной сигнал компараторов становится высоким, что устанавливает триггер. Это изменяет выход IC1 на высокий уровень и запускает T1. Светодиод указывает на высокий выход IC1. Когда T1 проводит, реле активируется и замыкает цепь лампы через общий (Comm) и NO (нормально разомкнутый) контакты реле.Это состояние продолжается до утра, и IC сбрасывается, когда LDR снова подвергается воздействию света.
Конденсатор C3 добавлен к базе T1 для чистого переключения реле. Диод D3 защищает Т1 от обратного ЭДС при выключении Т1.
Как установить?
Соберите схему на общей печатной плате и поместите в противоударный корпус. Коробка адаптера вставного типа — хороший выбор для размещения трансформатора и цепи. Разместите блок в местах, где в дневное время доступен солнечный свет, предпочтительно вне дома.Перед подключением реле проверьте выход с помощью светодиодного индикатора. Отрегулируйте VR1, чтобы светодиод загорелся при определенном уровне освещенности, например, в 18:00. Если все в порядке, подключите реле и соединения переменного тока. Фаза и нейтраль могут быть отведены от первичной обмотки трансформатора. Возьмите фазный и нейтральный провода и подключите к патрону. Вы можете использовать любое количество ламп в зависимости от номинального тока контактов реле. Свет от лампы не должен попадать на LDR, поэтому установите лампу соответствующим образом.
Осторожно : Во время зарядки контакты реле находятся под напряжением 230 В. Поэтому не прикасайтесь к цепи, когда она подключена к сети. Используйте хорошую оплетку для контактов реле, чтобы избежать удара.
Фото:
- A Люминесцентная лампа от wikimedia
- Запуск люминесцентной лампы с использованием магнитного балласта и выключателя стартера от wikimedia
Некоторые измерения флуоресцентной лампы и ее магнитного балласта
Некоторые измерения флуоресцентной лампы и ее магнитного балластаВведение
Люминесцентные лампы повсюду; они надежны и энергоэффективны.Даже если сегодня (2017) светодиоды заменяют многие источники света, лампы все еще остаются рентабельны и имеют почти такой же хороший КПД, если не лучше. Старый магнитный (индуктивный) балласт в настоящее время часто заменяют на электронный для большей эффективности, но есть еще очень много старых балласты, которые я думаю, стоит взглянуть на этот простой и эффективная схема.
Подземный паркинг с большим количеством люминесцентных ламп (нажмите для увеличения).
Найти подробные данные о люминесцентных лампах очень сложно и удивительно. достаточно, поисковые системы в Интернете мало помогают. Несмотря на то, что подавляющее большинство электронных компонентов производители детально указывают все электрические характеристики, для люминесцентных ламп трудно найти какое-либо техническое описание с более чем номинальная мощность и механические размеры. Поэтому очень сложно ответить на такие вопросы, как: что бросается в глаза? Напряжение? Какое напряжение горения лампы? Как выглядит ток при включенной лампе? Эти вопросы были у меня в голове много лет, пока я не решил подключить лампу к пробнику высоковольтного осциллографа и сам посмотрю, что происходит.
Чтобы выполнить эти измерения с помощью осциллографа, некоторые необычные оборудование чрезвычайно полезно (если не обязательно), например, высокое напряжение дифференциальный зонд и токовый зонд. Поскольку не у всех есть доступ к этим инструментам, я решил поделиться своими измерения на этой странице, потому что я думаю, что они могут быть интересны.
Прямое подключение осциллографа к сети крайне плохое и опасная идея, всегда используйте подходящие и безопасные пробники высокого напряжения.
На этой странице вы не найдете никаких ракетостроительных технологий, а только некоторые измерения и некоторые мысли о люминесцентных лампах, пускателях и их старые индуктивные балласты.
Здесь обсуждаются только люминесцентные лампы с «горячими электродами»; эти лампы в основном используются для освещения. У них есть две клеммы с каждой стороны, чтобы ток мог циркулировать в электроды для их нагрева. С другой стороны, трубки с «холодными электродами», также называемые CCFL (Cold Катодные люминесцентные лампы) вроде тех, что используются в «неоновых вывесках». имеют только одну клемму с каждой стороны: у них разные электрические характеристики, требуют другой системы питания и не обсуждается на этой странице.
Базовая схема
Базовая схема показана на схеме ниже. Его поведение много раз описывалось в литературе и в Интернете. поэтому здесь я дам лишь краткий обзор, чтобы прояснить, о чем я говорю о.
Принципиальная схема.
Схема очень проста и состоит только из люминесцентной лампы, стартер и индуктивный балласт.
Важно отметить, что данная схема типична для сети 230 В. В сети 120 В пиковое напряжение обычно недостаточно велико, чтобы лампы горения и балласты часто проектируются как автотрансформаторы с немного другая схема. Соображения относительно напряжения и тока лампы, вероятно, все еще будут применяться, но схема, балласт и возможно также характеристики стартера разные. Поскольку у меня никогда не было возможности поиграть с люминесцентным оборудованием на 120 В, Я не буду обсуждать это здесь, а все соображения на этой странице только действительно для сети 230 В.
В этой схеме отсутствует фазирующий конденсатор и она будет иметь значительную индуктивную реактивное сопротивление. Это было сделано специально, чтобы измерить его cos (φ) . Конечно, в нормальных ситуациях добавляется подходящая схема для компенсация и приведение cos (φ) очень близко к 1. Часто бывает достаточно конденсатора, подключенного параллельно к сети.
Светильник
Люминесцентная лампа обычно состоит из стеклянной трубки с низким смесь газов под давлением, обычно паров ртути и некоторого количества аргона.Давление составляет порядка 5 мбар. Добавление небольшого количества благородного газа к ртути значительно снижает поражающее напряжение (эффект Пеннинга). На концах трубки две вольфрамовые нити, похожие на нити обычных лампы накаливания, которые действуют как электроды для передачи тока в газ и часто называются катодами. Нити часто покрываются веществами с высоким коэффициентом излучения электронов, такими как соединения бария. Ток, протекающий в этих нитях, будет нагревать их, увеличивая их способность испускать электроны еще больше и, следовательно, снижение напряжения требуется для ионизации газа и зажигания лампы.Вот почему эти элкотроды есть два терминала. Когда лампа включена, нити накаливания остаются достаточно горячими, даже если лампа включена. ток, и нет необходимости форсировать дополнительный ток, поэтому другой конец каждой нити накала можно отсоединить.
Внутренняя структура люминесцентной лампы хорошо видна в
эта маленькая прозрачная УФ-лампа (нажмите, чтобы увеличить).
Внимательно посмотрев на большую версию изображения, можно заметить, что маленькие капельки
ртуть на внутренней стенке стакана хорошо видна, особенно в
близость электродов.
Ток, протекающий через газ, — очень сложное явление, но вкратце Короче говоря, если газ не ионизирован, он ведет себя как изолятор. Если между электродами приложить достаточно большое напряжение, газ ионизируется. и ток течет из-за свободных электронов и положительных ионов (атомов, потерявших один электрон) подпрыгивает. Препятствия между электронами, ионами и нейтральными атомами передают часть кинетической энергия атомам, которые «возбуждаются».Затем энергия переизлучается в виде фотонов, когда они расслабляются вскоре после этого. Активным газом практически любых обычных люминесцентных ламп являются пары ртути: излучает невидимый и вредный свет в ультрафиолетовом (УФ) диапазоне для наших глаз и кожи. Покрытие из флуоресцентных материалов внутри трубки поглощает УФ-свет и преобразует его в видимый свет. Тщательно подобрав подходящее флуоресцентное покрытие, можно получить практически любой цвет свет можно получить.Кроме того, стекло, из которого состоит трубка, непрозрачно для ультрафиолета. радиации и не дает ей выйти наружу.
Трубка, использованная для этих тестов, IBV L36W 4200K, (щелкните, чтобы увеличить).
Для этих измерений я использовал трубку IBV T8 (Ø25,4 мм), 4 фута. (1,2 м) в длину, 36 Вт, холодный белый. В этой конкретной лампе сопротивление постоянному току двух нитей нити равно 5,9 Ом и 5,3 Ом в холодном состоянии. Я также измерил кучу других трубок и нашел аналогичные значения: несколько Ω.
Два следующих графика показывают напряжение и ток в горящем напольная лампа. Это трубка IBV 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт. Конечно, индуктивный балласт включен последовательно. Обратите внимание, что эта лампа уже горит и ее нити горячие (из-за ток лампы).
На первом графике, где представлены напряжение и ток отдельно интересно отметить, что оба находятся в фазе, даже если не идеально синусоидальной формы.Это показывает, что лампа эффективно поглощает активную мощность. Также стоит отметить, что напряжение близко к прямоугольной. Это типично для газоразрядных трубок, поведение которых очень похоже на поведение газоразрядных трубок. Стабилитрон, где напряжение примерно постоянное независимо от тока. Присмотревшись, можно увидеть, что на самом деле напряжение немного падает, так как ток увеличивается (прямоугольная волна не совсем плоская, но немного понижается посередине, когда ток максимален).Это показывает поведение отрицательного сопротивления, еще одну типичную характеристику газоразрядная трубка. В нормальном резисторе при увеличении тока падение напряжения также увеличивается; здесь все наоборот.
Напряжение лампы (Ch2) и ток лампы (Ch3) горящей трубки 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт.
В конце каждого полупериода ток падает до нуля и лампа гаснет.Как только это произойдет, лампа снова загорится, импульс противоположной полярности появляется на графике, и цикл повторяется. Этот импульс не из-за индуктивного балласта (поскольку ток уже был ноль), это просто напряжение сети, которое повторно пробивает лампу: это работает потому что нити еще горячие (подробнее здесь).
Форма волны напряжения не идеально гладкая: есть небольшие колебания колебания, в данном случае около 20 В pp при 4 кГц.Это еще одно типичное поведение отрицательного сопротивления и газа. разрядная трубка. Даже если я не буду проводить никаких дальнейших измерений, это не должно быть проблема для этой схемы как амплитуда и частота колебания достаточно низки, чтобы беспокоить электромагнитные совместимость.
То же измерение может быть показано в режиме XY (ниже), где по оси X есть напряжение лампы, а по оси Y — ток лампы.Точка с нулевым напряжением и нулевым током находится в центре сетки. Когда лампа горит, напряжение составляет около 100 В (положительное или отрицательное). Также видны паразитные колебания.
Следует отметить один интересный факт: ток лампы немного увеличивается. еще до того, как загорится лампа. На сюжете не идеально горизонтальная линия, а скорее наклонная. «S»: при увеличении напряжения небольшой ток течет прямо прочь.Я не уверен в этом, но я думаю, что это из-за горячих электродов и газ все еще частично ионизирован, что позволяет протекать току. Затем, конечно, когда загорается лампа, ток внезапно увеличивается, и напряжение падает примерно на 100 В.
Зависимость тока лампы (по вертикали) от напряжения (по горизонтали) горящей трубки 4 ‘(1,2 м) T8 (Ø25,4 мм) 36 Вт.
Было бы интересно провести такие же измерения с холодной лампой и посмотрите, что нужно, чтобы ударить по нему без предварительного нагрева нитей.К сожалению, у меня нет подходящего источника переменного тока высокого напряжения, достаточного для зажгите лампу.
Индуктивный балласт
Индуктивный балласт — это просто большой индуктор, намотанный на многослойный железный сердечник. Он выполняет две функции: ограничивает ток и генерирует высокое напряжение для зажгите лампу. Люминесцентные лампы имеют отрицательные характеристики сопротивления и, следовательно, нельзя напрямую подключать к сети.Другими словами, если ток в лампе увеличивается, эквивалент сопротивление уменьшается, дополнительно увеличивая ток. Балласт ограничивает ток и предотвращает самоуничтожение лампы.
Индуктивные балласты являются индукторами и поэтому зависят от частоты. Балласт, рассчитанный на 50 Гц, будет иметь слишком большое реактивное сопротивление при 60 Гц. наоборот.
В лампах малой мощности (несколько ватт) можно также использовать простой резистор; в этом случай, когда импульс высокого напряжения возникает из-за сбоя в электросети индуктивность.Как ни странно, это работает. Обратной стороной является то, что резистор преобразует в тепло примерно такое же количество тепла. мощность как у лампы, что приводит к очень плохому КПД.
Емкостные балласты будут иметь значительно меньшие потери, но из-за нелинейное поведение лампы, это приведет к очень высоким пикам в лампе. Текущий. Кроме того, конденсаторы не могут генерировать пик высокого напряжения, необходимый для зажгите лампу. Емкостные балласты используются только (и часто) в высокочастотной электронике. балласты.
Изображение индуктивного балласта, используемого здесь, IBV 230 В переменного тока 50 Гц 40/36 Вт (2 × 18) 0,43 А (щелкните, чтобы увеличить).
Используемый здесь балласт рассчитан на 230 В, 50 Гц, 40/36 Вт, 0,43 А. Я измерил индуктивность 1,097 Гн и последовательное сопротивление 36,8 Ом в холодном состоянии.
С этим сопротивлением, если короткое замыкание в сети (предполагается, что 230 В 50 Гц), этот балласт будет ограничивать ток на уровне 0.66 А рассеивающий 16,2 Вт. Это выходит за рамки технических характеристик и может перегреться, но наверняка этого не произойдет. мертвая коротышка.
Стартер
Куча старых стартеров. Здесь для тестирования используется тот, который находится на
внизу слева, FZ FS-U 180-250V ~ 4-65W (щелкните, чтобы увеличить).
Стартер представляет собой небольшую стеклянную трубку, заполненную смесью низких благородные газы под давлением, обычно аргон, неон и гелий под давлением порядка 50 мбар.Внутри трубки два биметаллических электрода, которые изгибаются навстречу друг другу. когда жарко. В холодном состоянии два электрода находятся близко друг к другу, но не соприкасаются. При приложении достаточно высокого напряжения газ ионизируется, ток около 30 мА начинает течь, и газ светится. Примерно через полсекунды тепло, выделяемое свечением, мягко сгибает электроды, которые соприкасаются, закорачиваются вместе, и свечение гаснет. В горячем состоянии стартер ведет себя как при коротком замыкании.Так как закороченный стартер больше не светится, он остывает и контакты снова размыкаются примерно через полсекунды.
Посмотрите фильм, показывающий, как стартер светится, а электроды замыкаются:
светящийся-стартер.mp4
(1870811 байт, 14 с, h364,
640 × 480, 15 кадров в секунду).
С помощью стартера и лампочки можно сделать очень красивый и грубый мигалка.
Используемый здесь стартер — FZ FS-U, мощностью 180-250 В ~ 4-65 Вт.Чтобы лучше понять характеристики стартера, его ток как функция приложенного напряжения было измерено и видно на графике ниже:
Зависимость тока стартера (по вертикали) от напряжения (по горизонтали) для пускателя FZ FS-U.
По горизонтальной оси отложено приложенное напряжение, по вертикальной оси — результирующий ток. Ноль для обеих осей находится в центре экрана.Начиная с нуля, по мере увеличения напряжения (в положительном или отрицательном отрицательное направление), ток через пускатель не течет, в результате горизонтальная линия. Как только напряжение станет достаточно высоким (скажем, +220 В или –240 В в этом случае) газ ионизируется и становится проводником; напряжение падает на около 50 В и начинает течь ток (наклонные сегменты). Если теперь напряжение уменьшается, ток также уменьшается до минимума. напряжение горения пересекается (скажем, ± 180 В в этом случае), где ток падает до нуля (снова на горизонтальной линии).
Для выполнения этого измерения вы должны действовать быстро: как только стартер горячий, он замкнется, и вы будете измерять только вертикальную линию. Вы должны сделать снимок экрана, пока стартер еще светится (нагрев вверх).
Поведение этого (и почти любого стартера, которое мне удалось измерить) является не симметричный. Пороговые напряжения и динамическое сопротивление (наклон наклонных участков) не одинаковы для положительной и отрицательной полярностей.Думаю, из-за несимметричной формы электродов.
Очень часто конденсатор из полистирола подключается параллельно к стартер, который помогает снизить коммутационный шум. К сожалению, я никогда не видел маркировки на этих конденсаторах, но они обычно измеряют около 5 или 6 нФ. Для проведения вышеуказанного измерения этот конденсатор был временно удален, в противном случае сегменты больше похожи на эллипсы.
Поразительная последовательность
Газ в лампе обычно является изолятором.Чтобы включить его, электроды предварительно нагревают в течение нескольких секунд, затем Импульс напряжения ионизирует газ внутри трубки и запускает лампу. Этот процесс состоит из следующих шагов:
Шаг нулевой
Выключатель питания SW1 разомкнут, лампа выключена и холодная. И лампа LN1, и стартер ST1 не ионизируются и ведут себя как изоляторы. Пока не очень интересно … Теперь мы замыкаем SW1 и подаем питание на схему.
Шаг первый
SW1 замыкается и через балласт L1 появляется напряжение сети. лампа и стартер, которые работают параллельно (через нагреватель нити). Напряжение в сети недостаточно велико для ионизации газа в лампе, который по-прежнему ведет себя как изолятор, но этого достаточно, чтобы ионизировать газ внутри стартер, который ведет себя примерно как неоновое свечение напольная лампа. Теперь в цепи протекает небольшой ток, который нагревает стартер.Это часто можно наблюдать, поскольку стартер обычно светится слабым синим светом. свет.
Стартер светится при разогреве (нажмите для увеличения).
На этом этапе был измерен ток 38,5 мА. Слишком низкий для предварительного нагрева электродов в трубке, которые остаются темными; только стартер светится. Из-за индуктивности балласта этот ток является реактивным: cos (φ) из 0.79 было измерено, что соответствует углу φ 38 °. При сетевом напряжении 237 В полная полная мощность составляет 9,1 ВА. а активная мощность — 7,2 Вт.
Продолжительность этой фазы непостоянна и зависит от многих факторов, таких как напряжение в сети, температура окружающей среды, возраст стартера и т. д., но это полсекунды диапазона. Измеренная здесь длительность составила 550 мс.
Напряжение и ток лампы (стартера) при разогреве стартера
(светится).
Кривые выше показывают напряжение на пускателе (и, следовательно, также поперек лампы) на этом этапе. Сбои в синусоиде напряжения указывают на каждом цикле, когда именно стартер начинает светиться и при выключении. Здесь стартер ионизируется примерно при 230 В и деионизируется примерно при 180 В. Конечно, каждую половину цикла переменного тока напряжение падает до нуля, и газ в стартер деионизируется. Он снова будет ионизироваться в следующем полупериоде, как только напряжение станет высоким. достаточно.График тока (синий) показывает, что проводимость стартера не нарушена. симметричный: положительные пики имеют больший ток, чем отрицательные. Я не знаю точно, почему это происходит, полагаю, это из-за несимметричная форма электродов внутри стартера. В любом случае этот ток небольшой и используется только для нагрева стартера: он не обязательно быть симметричным.
Шаг второй
Стартер нагревается, и биметаллический переключатель внутри него в конце концов замыкается.Теперь у стартера произошло короткое замыкание, он перестает светиться и начинает остывать. Когда стартер замыкается, через нити лампы протекает больший ток, который теперь подключены последовательно через закороченный стартер и нагреваются. Нагревание электродов трубки значительно снижает напряжение зажигания лампы. Кстати, по этой причине запускать холодные лампы в холодную среду не рекомендуется. намного сложнее, чем повторно зажигать горячие лампы. Итак, нити теперь раскалены докрасна, и этот красноватый свет часто может быть наблюдается на концах трубки во время этой фазы.Из-за высокой излучательной способности электродов (белое) свечение Также часто наблюдается флуоресцентное покрытие концов трубок.
Во время этой фазы ток составляет 589 мА. Было измерено cos (φ) 0,23, что соответствует углу φ 77 °. При сетевом напряжении 236 В полная полная мощность составляет 139 ВА. Общая активная мощность 31,5 Вт.
Напряжение и ток лампы при нагреве (короткое замыкание стартера), измеренные
через обе нити последовательно.
Обе нити теперь включены последовательно и имеют одинаковый ток и половину Напряжение. Среднеквадратичное значение напряжения на каждой нити накала составляет около 11 В. Каждая нить накала получает около 6,5 Вт, поэтому из 31,5 Вт 13 Вт нагревают электроды, а 18,5 Вт теряется в балласте. Ток и напряжение в нити совпадают по фазе, низкий общий cos (φ) возникает только из-за реактивного сопротивления балласта.
Как и раньше, продолжительность этой фазы также в какой-то степени неустойчива и зависит от много факторов, но он также находится в диапазоне полсекунды.Измеренная здесь длительность составила 400 мс.
Шаг третий
Когда стартер остывает, биметаллический переключатель снова размыкается, прерывая Текущий. Поскольку катушки индуктивности не «любят» резкие перепады тока, балласт отвечает на это прерывание с помощью всплеска высокого напряжения, который возможно, ионизируйте лампу и зажгите ее. Поскольку точным моментом открытия стартера в этой контура (определяется охлаждением стартера, его возрастом, общим температура ,…), это может произойти в неподходящий момент цикла переменного тока, когда ток уже довольно низкий; произойдет скачок низкого напряжения и лампа может не ударить. В этом случае на пускателе снова появится полное сетевое напряжение. и весь процесс начнется снова с первого шага. Старые и холодные лампы также требуют более высокого напряжения, и их сложнее забастовка.
Пусковой импульс высокого напряжения (–2,78 кВ).
Некоторые паразитные импульсы высокого напряжения также видны до того, как лампа загорится и
возникают из-за плохих контактов стартера.
Яркие плюсы очень разнообразны. Они не всегда попадают в лампу, могут быть положительными или отрицательными и сильно зависят от времени фазового соотношения при открытии, которое является термомеханическим процесс и не синхронизирован с частотой сети. Другими факторами, влияющими на амплитуду импульсов, являются скорость, с которой биметаллические электроды ломаются, газ, заполняющий стартер, его возраст и возможно другие.Показанный здесь — –2,78 кВ, но импульсы от 1 до 3 кВ, как положительные, так и отрицательные стороны наблюдались с помощью одной и той же установки (лампа, стартер и балласт).
Шаг четвертый
Когда загорается лампа, напряжение на ней падает, и именно в этом Трубка держит напряжение около 100 В. Каждую половину цикла переменного тока ток падает до нуля, и лампа должна снова загореться. каждый раз. Из-за фазового сдвига, вносимого индуктивным балластом, когда ток пересекает ноль и меняется на противоположное, напряжение не равно нулю, так что лампа может немедленно возобновить зажигание только с помощью сетевого напряжения, пока лампа горячий и газ не деионизируется слишком долго, нет дополнительного высокого напряжения необходимы импульсы.Если лампу выключить, электроды остынут и почти все ионы в газе рекомбинируют: теперь требуется новая последовательность запуска, чтобы снова зажгите лампу.
Напряжение на стартере (а также на лампе) и ток лампы при включенной лампе.
Кривая на рисунке выше показывает, что ток лампы и напряжение лампы находятся в фаза, что имеет смысл, поскольку лампа потребляет активную мощность.Напряжение в сети здесь не показано (к сожалению, у меня нет двух высоких датчики напряжения), но не в фазе из-за реактивного сопротивления балласта. Другими словами, ток лампы и напряжение лампы совпадают по фазе, но из-за балласта, тока лампы и сетевого напряжения нет. Каждый раз, когда лампы выключаются (ток падает до нуля), напряжение сразу же подскакивает до значения более 300 В при противоположной полярности. Это просто напряжение сети, которое появляется на лампе.Из-за значительного фазового сдвига балласта сетевое напряжение составляет близко к своему пику, когда это происходит, что объясняет внезапный всплеск. Поскольку трубка сейчас горячая (и, вероятно, также имеет более низкое напряжение зажигания, чем стартер) он сработает первым, быстро вернув напряжение к напряжение горения (около 100 В) и предотвращение накала стартера.
Если лампа погаснет, напряжение повысится, и стартер ионизируется. начиная с первого шага.Вот что происходит со старыми или поврежденными лампами, которые постоянно мерцают. «надежда» снова включиться в один прекрасный день.
Напряжение и ток сети при включенной лампе. Фазовый сдвиг хорошо виден.
При сетевом напряжении 236 В общий ток составляет 385 мА и cos (φ) составляет 0,49, что соответствует углу φ 60 °. Полная мощность составляет 90,9 ВА, а активная мощность — 44.9 Вт. Мощность, теряемая в балласте, составляет 5,5 Вт, а трубка поглощает 39,4 Вт. приводит к КПД 88%: неплохо для такой простой схемы. Более высокая эффективность может быть достигнута с помощью лучшего индуктивного балласта (встроенный с большим количеством меди и большего количества железа, чтобы минимизировать его потери) или с электронным балласт. Конечно (и к сожалению) лампа не может преобразовать всю энергию в свет.
Резюме поразительной последовательности
Теперь, когда мы прошли все этапы поразительной последовательности, давайте резюмируйте это и посмотрите, что происходит, в более общем плане.На графике ниже видно напряжение на пускателе:
Напряжение на стартере (а также на лампе) при всех пусках
процесс.
Поскольку это измерение проводится на стороне запуска нитей,
напряжение нагрева не видно и появляется как короткое замыкание.
Хорошо видны разные шаги. На нулевом шаге (лампа не горит) нет напряжения. Когда SW1 замкнут (первый шаг), стартер ионизируется и начать нагреваться.Примерно через полсекунды закорачивает стартер (шаг два) и электроды лампы начинают нагреваться, пока стартер остывает вниз. Поскольку лампа закорочена стартером, напряжение на стороне стартера нити, измеренные здесь, показывают ноль. Конечно, на нити накала, которые сейчас светятся, есть напряжение, но они не могут соблюдать здесь. Еще через полсекунды стартер снова остывает и открывается. (шаг 3) генерирование скачка высокого напряжения, который зажигает и включает лампу (шаг четвертый).
Также интересно посмотреть напряжение на балласте (внизу), где эти же шаги можно наблюдать снова. Обратите внимание, что это измерение было проведено на том же оборудовании, но несколько минут спустя, поэтому продолжительность различных шагов будет другой.
Напряжение на балласте во время всего процесса пуска.
Амплитуда этого напряжения дает приблизительное представление о токе, протекающем в схема.
Присутствуют паразитные импульсы, когда предполагается, что стартер закорочен. Это означает, что его контакты не совсем надежны, и иногда он открывается для крошечная доля секунды. Даже если эти импульсы достаточно сильны, чтобы поразить лампу, этого не происходит. потому что при повторном замыкании контактов лампа закорачивается и не может включиться. Он включится только после последнего импульса, когда стартер наконец откроется. и остается открытым.Блуждающие импульсы не вредят, и схема работает нормально.
Посмотрите фильм, в котором показана полная поразительная последовательность:
люминесцентная лампа.mp4
(3781910 байт, 11 с, h364,
960 × 540, 24 кадра в секунду).
Прочие соображения
До сих пор мы обсуждали, как запускается лампа и ее электрические характеристики. Давайте теперь посмотрим на некоторые другие соображения, такие как коэффициент мощности или спектр света.
Фазирующий конденсатор
Из-за индуктивности балласта эта схема имеет плохое питание. коэффициент: я измерил cos (φ) , равный 0,49. Поскольку все нагрузки, подключенные к сети, должны иметь cos (φ) как как можно ближе к 1, необходимо что-то улучшить. Есть несколько разных решений этой проблемы, но самый простой. (и единственное, что здесь обсуждается) — просто подключить подходящий конденсатор в параллельно с электросетью.
Чтобы узнать необходимую емкость, нам сначала нужно рассчитать реактивную мощность, которую нам нужно компенсировать. Ранее мы обнаружили, что полная мощность S составляет 90,9 ВА, в то время как активная мощность P составляет 44,9 Вт. Если вам интересно, как их измерить, определение кажущейся мощности довольно просто: просто измерьте среднеквадратичный ток сети (здесь I = 385 мА ) и напряжения (здесь U = 236 V ) мультиметром и умножьте их вместе: S = U · I = 90.9 ВА . Определить активную мощность сложнее: если у вас есть измеритель мощности переменного тока, он сразу выдаст вам P , и это то, что я сделал. В противном случае вы можете измерить фазовый угол φ либо с помощью осциллографом (как и я) или кософиометром (если он у вас есть) и затем вычислить P = S · cos (φ) . Но если у вас нет этого модного оборудования, вы все равно можете использовать метод трех вольтметров.
Зная S и P , можно рассчитать реактивную мощность Q по формуле ниже.Жалко, что в электронике le буквенное обозначение Q используется как для реактивная мощность цепи переменного тока и добротность цепи LC: на этой странице Q — реактивная мощность.
Это не что иное, как теорема Пифагора, где S — это гипотенуза и P и Q — две другие стороны правой треугольник. Со значениями S и P , которые были измерены ранее, мы находим Q = 79.0 var .
Напоминаем, что активная мощность P измеряется в ваттах (Вт), полная мощность S измеряется в вольт-амперах (ВА), а реактивная мощность Q измеряется в реактивных вольт-амперах (вар). Это просто для того, чтобы различать их и избежать путаницы, даже если физически все эти три единицы имеют измерение силы.
Чтобы компенсировать эту индуктивную реактивную мощность, мы вводим равное количество емкостная реактивная мощность, с конденсатором, включенным параллельно сети.Реактивное сопротивление X , создающее такую реактивную мощность, определяется как:
Где U — напряжение сети. Находим X = 705 Ом . Наконец, с определением необходимой емкости C со следующими уравнение:
Где f — частота сети (в данном случае 50 Гц). Находим 4,5 мкФ. Этот конденсатор должен быть рассчитан на прямое подключение к сети: используйте только конденсаторы класса X (или Y).
ПРА прочие
Доступны не только индуктивные балласты. Индуктор простой серии работает только при напряжении сети 230 В. В странах с сетевым напряжением 120 В, в зависимости от длины трубки и мощность, напряжение может быть слишком низким, чтобы лампа продолжала гореть, поэтому балласты немного отличается и работает как автотрансформатор для увеличения напряжения и ограничить ток в то же время.
Некоторые балласты автотрансформаторного типа могут также работать без стартера, с или без подогрева электродов.Импульс высокого напряжения, необходимый для зажигания лампы, может генерироваться резонансный контур, состоящий из дополнительного конденсатора. Дополнительные обмотки в балласте могут использоваться для предварительного нагрева нитей, если требуется. Запуск трубки без предварительного нагрева нитей возможен, но чем выше требуемое напряжение обычно вызывает разбрызгивание электродов, которое изнашивается преждевременно.
В настоящее время электронные балласты заменяют старые индуктивные, особенно из-за их более высокой эффективности, лучших пусковых характеристик и возможность приглушить свет.Кстати, диммирование люминесцентных ламп индуктивным балластом возможно. до некоторой степени, но когда яркость ниже заданного порога, основной ток слишком низкий, чтобы нити оставались достаточно горячими, и дополнительный ток нагрева должны циркулировать в электродах, например, с дополнительным трансформатор. К сожалению, снижение яркости до 0% невозможно.
Взгляд на спектр света
Как объяснялось выше, свет, излучаемый флуоресцентными трубки обычно преобразуются из ультрафиолетового в видимое излучение за счет сочетания флуоресцентные пигменты.При наблюдении с помощью светового спектрометра излучаемый спектр не меняется. непрерывен, как лампа накаливания, но состоит из несколько пиков, каждый из которых более или менее соответствует определенному пигменту. Это объясняет, почему некоторые объекты при флуоресцентном освещении выглядят другого цвета. осветительные приборы.
Спектр излучаемого света, пики различных флуоресцентных материалов
хорошо видны.
Свет выглядит холодно-белым, его температура составляет 4 200 К.
По горизонтальной оси отложена длина волны в нанометрах, по вертикальной оси. интенсивность света в произвольной, но линейной единице. Эта конкретная трубка имеет холодное белое покрытие и рассчитана на цветовая температура 4’200 тыс.
Заключение
Некоторые измерения и рекомендации по люминесцентным лампам (с горячим катодом) были представлены.На этой странице нет ракетостроения, но есть только некоторые необычная электрическая информация о люминесцентных лампах и их свечении закуски. Надеюсь, вы сочтете это полезным.
Библиография и дополнительная литература
[1] | А. Даешлер, Г. Кампоново. Elettrotecnica. Edizioni Casagrande SA, Беллинцона, 1974 г., sezione 11.3. |
[2] | Техническое руководство по применению — люминесцентные лампы. Philips Lighting, 2006 г. |
[3] | Руководство для начинающих. OSRAM GmbH, 2010 г. |
Все, что вам нужно знать о светодиодных лампах
Замена люминесцентных ламп на светодиодные может быть запутанным и пугающим процессом.Мы составили это руководство, чтобы прояснить все тонкости замены люминесцентных ламп на светодиодные ламповые.1) Преимущества светодиодных трубок над люминесцентными лампами
Многие преимущества светодиодных трубок перед люминесцентными лампами описаны довольно подробно, поэтому мы не будем углубляться в подробности, но три основных преимущества:
- Более высокая эффективность , экономия энергии (до 30-50%)
- Более длительный срок службы (обычно 50 тыс. часов)
- Без ртути
2) Размеры люминесцентных ламп и модернизация светодиодных ламп
Поскольку люминесцентные светильники устанавливаются часто в потолок и подключены непосредственно к электросети, они относительно дороги и их трудно заменить полностью.
В результате часто бывает наиболее экономичным просто использовать тот же люминесцентный светильник, но заменить люминесцентную лампу на светодиодную лампу.
Таким образом, важно понимать, какие типы люминесцентных ламп были разработаны, чтобы правильно установить светодиодную лампу на место.
За прошедшие годы производители люминесцентных ламп разработали множество различных размеров и типов.
- T8 4 фута: 4-футовые люминесцентные лампы T8 сегодня являются наиболее часто используемым типом.Их длина составляет 48 дюймов, а диаметр лампы — 1 дюйм.
- T12 4 фута: 4-футовые люминесцентные лампы T12 менее эффективны по сравнению с лампами T8. Они такой же длины, как лампы T8, но имеют больший диаметр лампы на 1,5 дюйма.
- T5 4 фута: 4-футовые люминесцентные лампы T5, как правило, являются наиболее эффективными, а также одними из новейших типов ламп, представленных в 2000-х годах в США. Они обычно обозначаются T5HO (высокая мощность) и обеспечивают большую яркость, чем их аналоги T8.Они немного короче четырех футов (45,8 дюйма). Лампы T5 бывают различной длины, например, 1 фут, 2 фута и 3 фута, и обычно используются в непотолочных светильниках, таких как настольные лампы.
Трубки T8 и T12 также доступны с другой длиной, например, 8-футовые трубы, но 4-футовые трубы остаются наиболее распространенными типами. Светодиодные ламповые лампы
повторяют механические размеры, чтобы гарантировать, что они могут быть настоящей заменой при модернизации, и имеют те же названия форм-факторов (например,грамм. 4-футовый светодиодный трубчатый светильник T8).
Крепления T8 и T12 обычно имеют одинаковую длину и используют одни и те же штыри, поэтому механически они обычно перекрестно совместимы.
Светильники T5 НЕ совместимы с лампами T8 и T12 из-за их различных размеров штырей и фактической длины.
3) Люминесцентные балласты и модернизация светодиодных ламп.
Во всех люминесцентных лампах используется устройство, называемое балластом, для регулирования яркости лампы по мере ее нагрева. Эти устройства необходимы для люминесцентных ламп и отличаются от ламп накаливания, которые можно подключать непосредственно к электросетям.
В светильниках люминесцентных ламп обычно находится балласт внутри светильника, и доступ к нему без снятия светильника с потолка невозможен. Переделку балласта люминесцентных ламп должны производить только те, кто хорошо разбирается в электромонтажных работах.
Source
Люминесцентные лампы T5, T8 и T12 работают немного по-разному и, следовательно, имеют разные типы люминесцентных балластов.
Светодиодные лампы, с другой стороны, работают иначе, чем люминесцентные лампы, и не используют балласт (но используют электронные компоненты, составляющие драйвер светодиода).
Ранние светодиодные ламповые лампы требовали удаления или обхода люминесцентного балласта. Теперь многие светодиодные ламповые лампы совместимы с люминесцентными балластами, что позволяет легко заменить люминесцентную лампу без повторного подключения проводки. Ниже мы обсудим общие термины, используемые для каждой из этих конфигураций.
3A) Светодиодная трубка UL типа A — Совместимость с балластом
Обычно конструкция «UL Type A» — эти светодиодные трубчатые лампы совместимы с люминесцентными балластами.Они наиболее просты в использовании, поскольку не требуют переналадки люминесцентного светильника.
Светодиодная трубка UL типа A по существу ведет себя так же, как люминесцентная лампа, и ее легко заменить.
Идеально подходит для: Потребителей, которым неудобно или которые предпочитают избегать электромонтажных работ, осветительных установок с высокими затратами на оплату труда электриков
Недостатки : люминесцентные балласты могут выйти из строя, требуя постоянного обслуживания и возможной замены или обхода балласта; потенциальные проблемы с совместимостью люминесцентных балластов; более низкий общий электрический КПД из-за балласта.
3B) Светодиодные трубчатые лампы UL типа B — байпас балласта
Светодиодные трубчатые лампы со спецификацией «UL типа B» несовместимы с люминесцентными балластами. Они не могут использоваться с люминесцентным балластом и должны быть подключены непосредственно к электросети. Однако светодиодный драйвер встроен в саму светодиодную трубку.
Светодиодные трубки UL типа B можно разделить на одно- и двухсторонние.
В односторонней конфигурации используются только два контакта на одном конце трубки (один контакт = ток, один контакт = нейтраль), а два контакта на другом конце электрически не работают и используются только для удерживая лампу на месте.
Для несимметричных конфигураций важно направление установки лампы — неправильная конфигурация может привести к тому, что лампа не загорится, или к потенциально опасному возгоранию. В односторонних конфигурациях на одном конце трубки обычно имеется наклейка с надписью «AC INPUT» или аналогичной. Некоторые несимметричные конфигурации могут принимать питание с любого конца.
В двусторонней конфигурации два контакта на каждой стороне трубки имеют одинаковую полярность.Поэтому патроны на одном конце трубки должны быть подключены к [нейтрали], а другой — к [плюсу].
Идеально подходит для: инсталляций, в которых возможно изменение электропроводки; более высокая эффективность и более низкие затраты на обслуживание.
Недостатки : требуется комфорт и знания в области электропроводки и электробезопасности.
3C) Светодиодная трубка UL типа C — дистанционный драйвер
Светодиодные трубки UL типа C относительно редки, но обеспечивают наибольшую гибкость и эффективность для системы освещения.В отличие от светодиодных трубок UL типа B, в них отсутствует светодиодный драйвер, встроенный в светодиодную трубку, и поэтому требуется отдельное устройство светодиодного драйвера, которое должно быть подключено между светодиодной трубкой и электросетью.
Идеально для: минимальных затрат на обслуживание, поскольку драйверы светодиодов можно заменить без замены всей светодиодной трубки; дополнительные параметры драйвера светодиодов, такие как регулировка яркости 0-10 В и другие возможности подключения к Интернету вещей.
Недостатки : Требуется больше всего электромонтажных работ, так как люминесцентный балласт необходимо удалить, а затем заменить драйвером светодиода.
3D) Шунтированные и нешунтированные надгробия
Надгробия — это «розетки» или патроны, в которые будут устанавливаться светодиодные ламповые лампы, обеспечивающие как механическую поддержку, так и электрический ток.
Надгробные плиты имеют два электрических контакта, соответствующих двум штырям люминесцентной / светодиодной лампы. Два электрических контакта могут быть:
i) не подключены к какому-либо источнику электроэнергии
ii) один подключен к току, другой подключен к нейтрали
iii) оба подключены к фазе или нейтрали
Сценарий ii) называется без -shunted, в то время как сценарий iii) называется shunted.«Шунтирование» относится к объединению двух отдельных цепей в одну. В результате шунтирования оба контакта надгробного камня соединяются с одинаковой электрической полярностью.
В общем, люминесцентные светильники, которые никогда не были изменены для светодиодов или балластов с мгновенным запуском , имеют нешунтированные надгробные плиты , в то время как те, которые были заменены на светодиоды или балласты с мгновенным запуском , могут иметь шунтированные надгробные плиты .
Иногда надгробные плиты шунтируются снаружи, как показано на фотографии выше, где вводы проводов открыты только с одной стороны.Однако в некоторых случаях надгробные плиты можно шунтировать изнутри, когда вводы проводов с обеих сторон открыты, но соединены внутри надгробия.
Поскольку некоторые надгробия изнутри шунтированы, визуальная проверка надгробий не дает окончательного результата. Мы настоятельно рекомендуем проверить два контакта надгробия с помощью вольтметра, чтобы определить, существует ли замкнутая или разомкнутая цепь. Замкнутая цепь укажет на шунтированные надгробные плиты.
3E) Определите, совместим ли ваш светодиодный трубчатый светильник с шунтированной или нешунтированной конфигурацией надгробий.
Если ваш светодиодный трубчатый светильник является несимметричным, он НЕ совместим с шунтированными надгробиями.Это связано с тем, что каждый из двух контактов в надгробной плите должен иметь противоположную полярность, чтобы однотактный светодиодный ламповый светильник работал. Однако в случае шунтированного надгробия это невозможно из-за внутреннего короткого замыкания.
Если у вас шунтированные надгробия, вам нужно будет перемонтировать или заменить их и соединить в соответствии со схемой проводки производителей односторонних светодиодных трубок.
Если ваш светодиодный трубчатый светильник двусторонний, он, вероятно, совместим как с шунтированными, так и с шунтированными надгробиями.Причина в том, что два контакта на каждом конце светодиодной трубки имеют одинаковую полярность, поэтому, шунтируются они или нет, не должно влиять на окончательную результирующую схему.
Имейте в виду, что в этом разделе обсуждается, является ли само надгробие шунтированным или не шунтируемым — обязательно правильно подключите провода к надгробной плите, чтобы они соответствовали электрической схеме производителя, чтобы обеспечить безопасную установку.
3F) Что делать, если вы не хотите обо всем этом беспокоиться?
Установка светодиодной трубки неправильного типа может привести к преждевременному отказу и потенциально опасным коротким замыканиям и пожару.
Мы рекомендуем искать светодиодные лампы, которые совместимы с любой из возможных электрических конфигураций люминесцентного светильника — например, светодиодные лампы 3-в-1 Waveform Lighting T8.
Обычно называемые совместимыми 3-в-1, эти светодиодные трубки совместимы с любой из следующих конфигураций:
i) Без удаления люминесцентного балласта (UL типа A / совместимость с балластом)
ii) С удалением или обходом люминесцентного балласт (UL тип B / байпас балласта) и шунтированные или нешунтированные надгробные плиты (двусторонние)
iii) с удалением или обходом флуоресцентного балласта (UL тип B / байпас балласта) и нешунтированные надгробные плиты (односторонние)
4) Фотометрические характеристики светодиодных ламп — цветовая температура (CCT), люмены и индекс цветопередачи (CRI)
Обычно называемые основными фотоэлектрическими характеристиками, также важно, чтобы качество излучаемого света было таким же или превышало качество вашего текущего освещения люминесцентными лампами.
Коррелированная цветовая температура (CCT)
Большинство люминесцентных ламповых ламп имеют коррелированную цветовую температуру (CCT) 4000K или 5000K, поскольку они считаются наиболее подходящими для розничной торговли и офисных помещений соответственно. Однако за последние годы многие разработки люминесцентных ламп позволили использовать широкий диапазон цветовых температур.
Точно так же доступны светодиодные трубчатые лампы с широким диапазоном цветовых температур. Как правило, внешний вид светодиодной трубки и люминесцентной лампы с одинаковым рейтингом цветовой температуры будет одинаковым.
Световой поток
Световой поток, измеряемый в люменах, измеряет общее количество света, излучаемого лампой, и является наилучшей мерой для определения яркости лампы.
Лучший способ сравнить яблоки с яблоками — это сравнить значение светового потока люминесцентной лампы со светодиодной трубкой. Обычно люминесцентная лампа T8 мощностью 35 Вт излучает около 2500 люмен.
В светодиодных ламповых лампах следует отметить то, что они имеют тенденцию направлять свет вниз, а не на полные 360 градусов в люминесцентных лампах.Следовательно, при установке в потолочный светильник светодиодный трубчатый светильник может обеспечить более полезный световой поток, поскольку свет направлен вниз, а не обратно в светильник, как в люминесцентной лампе.
Индекс цветопередачи (CRI)
Индекс цветопередачи (CRI) измеряет степень, в которой цвета объектов выглядят истинными и точными под источником света. Большинство люминесцентных ламп имеют индекс цветопередачи около 80, и большинство светодиодных ламп также имеют индекс цветопередачи около 80. 80 CRI приемлем для большинства приложений, но для улучшенного качества цвета и сред, где цветовое восприятие важно, ищите более высокий рейтинг CRI в светодиодной трубке.
5) Стоимость и финансирование светодиодных трубок
Наконец, мы немного поговорим о расходах, которые необходимо учитывать при покупке светодиодных трубок. В последние годы цена на светодиодные трубчатые лампы снизилась до уровня, позволяющего конкурировать с люминесцентными лампами, поэтому закупочная цена ламп делает светодиодные ламповые лампы очень привлекательным вариантом.
Однако, если выбранная вами светодиодная трубка не является лампой UL типа A, вы понесете затраты на ремонт электрической проводки. Для крупной или коммерческой установки эти затраты могут быть значительными в зависимости от сложности изменения проводки, необходимой для люминесцентного светильника.Как правило, на каждый 4-ламповый люминесцентный светильник у квалифицированного электрика может уйти 15-25 минут.
Если предположить, что электрику, заряжающему 100 долларов в час, требуется час, чтобы завершить перемонтаж трех люминесцентных светильников с 4 лампами, мы можем рассчитать затраты на рабочую силу более 8 долларов на лампу. Вы можете увидеть, как затраты на рабочую силу быстро увеличивают первоначальную стоимость проекта, добавляя привлекательности светодиодных ламповых светильников, совместимых с UL типа A.
Подсчитайте, сколько затрат на электроэнергию и техническое обслуживание сэкономят светодиодные ламповые лампы, и определите срок окупаемости.Как правило, чем короче, тем лучше!
Также учитывайте гарантийные условия производителя. В идеале период окупаемости короче гарантии, так как таким образом вы застрахованы от любых преждевременных отказов продукта, которые ставят под угрозу экономию затрат при использовании светодиодных ламп.
.