Site Loader

Содержание

Esr метр своими руками схема — Moy-Instrument.Ru

Как сделать ESR метр своими руками

Чаще всего, если современная радиоэлектронная аппаратура выходит из строя, то виноваты электролитические конденсаторы. Дополнительные сложности в поиске сломавшихся конденсаторов возникают из-за того, что сложно измерить их емкость, поскольку показатель емкости в дефектном конденсаторе может быть почти таким же, как и номинал, а вот ESR будет высоким. По этому, в данном материале и пойдет речь, как сделать ESR метр своими руками.

Чаще всего, именно из-за высокого значения ESR, правильная работа радиоаппаратуры не может быть реализована в полной мере.

Для облегчения поиска неисправной детали – мы займемся изготовлением простого аналогового ESR метра. Устройство работает по следующему принципу: проверяется значение сопротивления в конденсаторе, когда значение частоты = 100 кГц. Конденсаторы, емкость которых превышает несколько микрофарад, будут обладать величиной, приблизительно равной ЭПС.

Существует мнение, что ESR метру не нужна очень высокая точность, на практике проверенно, что ЭПС в неисправном конденсаторе в разы больше чем в работающем элементе.

Процесс изготовления устройства начинается с того, что моделируется схема в LTspice. Названия основных функциональных узлов, вы можете наблюдать на схеме.

Результатом моделирования является вот такая диаграмма, на которой видно, на какое расстояние отклониться стрелка в микроамперметре, с учетом показателей ESR.

Взяв за основу результаты схемы LTspice, можно построить принципиальную схему в OrCAD. Питание прибора осуществляется при помощи подачи 9 В, а для стабилизации напряжения пользуемся микросхемой LM7805. Кроме этого, для того, чтобы сделать ESR метр своими руками, придется воспользоваться транзисторами 2N3904 (n-p-n) и 2N3906 (p-n-p), однако, нормальная работа схемы будет обеспечиваться при помощи любых распространенных транзисторов. В выборе диодов остановимся на 1N5711. Ток измерительной головки – 50 мкА.

Значение максимального напряжения на контактах измеряемого конденсатора не более 100 мВ, что дает возможность для использования прибора при внутрисхемном (без выпаивания конденсатора) тестировании.

Здесь вы можете наблюдать внешний вид разводки платы, у нее одна сторона, и в ней отсутствуют перемычки. Стараемся использовать SMD элементы, хотя, некоторые крепежные отверстия все равно понадобятся.

Изготовление печатной платы осуществлялось на ЧПУ станке, проводилась фрезеровка дорожек, однако, вполне можно пользоваться ЛУТ-ом либо фоторезист.ом

На изображении показана плата, на которую уже напаяны компоненты:

Замер значений на шкале выполняется методом практического использования, при помощи подключения прецизионных резисторов, имеющих различное сопротивление в диапазоне 0,1 — 10 Ом. Рисовка шкалы производиться при помощи CorelDraw, после чего шкала распечатывается с использованием фотобумаги.

Процесс сборки на стадии завершения. На изображении видно внутреннюю сторону ESR метра.

А вот и готовый прибор:

Прежде чем приступать к измерениям следует произвести разрядку конденсаторов. При токе подачи 26 мА, если питаться от батареи «Крона», то непрерывная работа прибора может производиться в течение суток.

Ну, вот и все! Теперь вы можете сделать ESR метр своими руками. Нужно лишь немного терпения и минимум инструментов.

ESR метр своими руками — измеритель емкости конденсаторов. Схема и описание

ESR метр своими руками. Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический конденсатор. Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.

Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.

Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность импульсных источников питания, приводя к сгоранию дорогих микросхем и транзисторов.

Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.

Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать ESR метр конденсаторов своими руками.

Описание ESR метра для конденсаторов

Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.

Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.

Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.

Радиодетали ESR метра расположены на печатной плате, которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.

Настройка устройства

После окончания монтажа и проверки, необходимо проверить осциллографом частоту на щупах X1 и X2. Она должна быть в пределах 120…180 кГц. Если это не так, то путем подбора резистора R1 добиваются нужной частоты. Далее необходимо подготовить набор резисторов следующих номиналов:

1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.

К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.

Esr метр своими руками схема

То, что такой измеритель необходим радиолюбителю не только узнал от других, но и сам прочувствовал, когда взялся ремонтировать старинный усилитель — тут нужно достоверно проверить каждый электролит стоящий на плате и найти пришедший в негодность или произвести 100% их замену. Выбрал проверку. И чуть не купил через интернет разрекламированный приборчик под названием «ESR – mikro». Остановило то, что уж больно здорово хвалили – «через край». В общем, решился на самостоятельные действия. Так как на микроконтроллерные устройства замахиваться не хотелось — выбрал самую простую, если не сказать примитивную схему, но с очень хорошим (тщательным) описанием. Вник в информацию и имея некоторую склонность к рисованию принялся разводить свой вариант печатной платы. Чтобы помещалась в корпус от толстого фломастера. Не получилось – не все детали входили в планируемый объём. Одумался, нарисовал печатку по образу и подобию авторской, протравил и собрал. Собрать получилось. Всё вышло очень продумано и аккуратно.

Вот только работать пробник не захотел, сколько с ним не бился. А мне не захотелось отступать. Для лучшего восприятия схемы перечертил её на «свой лад». И так «родная» (за две недели мытарств), стала она и более понятной визуально.

Схема ESR метра

А печатную плату доделал по-хитрому. Стала она «двухсторонней» — со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества — пробник нужен.

Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой – далеко не миниатюрный.

Обратная сторона – плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал — способны на контакт с электролитическим конденсатором любого размера.

Всё поместил в импровизированный корпус, место крепления – резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.

И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем – соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.

А 10 Ом соответствует 49 мВ.

Исправный конденсатор, соответствует примерно 0,1 Ом.

Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:

А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее — враг хорошего» трогать его не позволил – сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении. Про свои хлопоты и радости поведал Babay.

ESR (ЭПС) измеритель — приставка к цифровому мультиметру

↑ Начало

↑ Мой вариант схемы измерителя ESR

Я внес минимальные изменения. Корпус — от неисправного «электронного дросселя» для галогеновых ламп. Питание — батарея «Крона» 9 Вольт и стабилизатор 78L05 . Убрал переключатель — измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема 74HC132N, транзисторы 2N7000 (to92) и IRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов.
При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В.

Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение — так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.

Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1 — перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.

↑ Наладка

Наладка очень проста и заключается в установке чувствительности с помощью R4 при подключенном резисторе 2…5 Ом и установке нуля цифрового вольтметра на диапазоне 200mV.
Операции надо повторить несколько раз, далее можно убедиться в точности измерителя, подключая резисторы 0,1…5 Ом. Настраивать надо со штатными шнурами, плату хорошенько промыть, конденсатор С3 должен быть термостабилен.

↑ К вопросу о точности вообще

Начиная с 10 Ом, точность примерно 3% и ухудшается примерно до 6% при 20 Ом (200мВ), но точность при измерениях бракованных элементов не важна. Поскольку измерения проводятся при комнатной температуре, термонестабильность будет мала, испытаний на эту тему я не проводил.
При измерениях ESR конденсаторов в компьютерных блоках питания и на материнских платах, я пришел к выводу, что конденсаторы от 1000 мкФ с сопротивлением 0,5 Ом надо срочно выпаивать и отправлять в ведро, нормальное ESR 0,02…0,05 Ом. Попутно обнаружил, что у исправных конденсаторов ESR очень сильно зависит от температуры, так у конденсатора 22 мкФ ESR уменьшалась от тепла пальцев на 10%. Это объясняет, почему некоторые фанатичные лампадные конструкторы специально делают подогрев конденсаторов в катодных цепях с помощью проволочных обогревателей. По этой причине, а также по причине имеющегося сопротивления контактов считаю, что в измерения тысячных долей Ом нет особой необходимости.

На первом фото ЭПС конденсатора 0,03 Ом.

Желающие подробнее ознакомиться с принципом работы данного устройства могут прочитать оригинальную статью на стр. 19, 20 «Радио» №8 за 2011 год.

↑ Моя печатная плата

↑ Итого

Данный прибор работает у меня около месяца, его показания при измерениях конденсаторов с ESR в единицы Ом совпадают с прибором по схеме Ludens.
Он уже прошёл проверку в боевых условиях, когда у меня перестал включаться компьютер из-за емкостей в блоке питания, при этом не было явных следов «перегорания», а конденсаторы были не вздувшимися.

Точность показаний в диапазоне 0,01…0,1 Ом позволила отбраковать сомнительные и не выбрасывать старые выпаянные, но имеющие нормальную ёмкость и ESR конденсаторы. Прибор прост в изготовлении, детали доступны и дёшевы, толщина дорожек позволяет их рисовать даже спичкой.
На мой взгляд, схема очень удачна и заслуживает повторения.

↑ Файлы

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Оригинальная статья в журнале «Радио» № 8 за 2011 год:
 ▼ radio-8-2011-esr-meter.7z 🕗 13/08/16 ⚖️ 1,09 Mb ⇣ 55

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.


Спасибо за внимание!
Игорь Котов, главный редактор журнала «Датагор»

Как сделать ESR-метр конденсаторов своими руками

При ремонте техники специалисты-радиомеханики сталкиваются с различными проблемами — повреждённые дорожки на платах, окисление, выгоревшие элементы, вздувшиеся конденсаторы. Эти неисправности прекрасно видны при первичном осмотре аппаратуры и устранить их с помощью самых базовых инструментов любого инженера не составляет труда. Но есть случаи, в которых визуального осмотра недостаточно.

Конденсаторы бывают разной ёмкости, как очень большой (4000, 10000 мкФ), так и очень малой (0,33 мкФ, например, такие детали активно используются при сборке комплектующих различной оргтехники). И если вздутие верхней крышки первых отлично заметно из-за их размеров, то со вторыми выявление их неисправности может доставить немало проблем.

В этом поможет простой прибор для проверки конденсаторов — ESR-метр. Своими руками его изготовить несложно, имея достаточные познания в схемотехнике. Он может быть как самостоятельным устройством, так и выполнен в виде приставки к цифровому мультиметру. С его помощью можно легко установить такие неисправности, как пробой и высыхание.

Что такое ESR

Электролитические конденсаторы имеют ряд параметров, важных для их правильной работы в схеме устройства. Это и его ёмкость, и сопротивление диэлектрика между выводами и корпусом, и собственная индуктивность, эквивалентное последовательное сопротивление или, на американский манер, Equivalent Series Resistance. ESR — это сопротивление обкладок конденсатора и его ножек, которыми он припаивается к плате, выводов.

Существуют специальные формулы для расчёта этого показателя, но ими в реальной практике никто не пользуется. Гораздо проще собрать прибор для его измерения, и полученные результаты сверять с таблицей ESR электролитических конденсаторов, в которой приведены показатели в миллиомах, в зависимости от характеристик деталей — ёмкости и поддерживаемого напряжения.

Примеры проблем, связанных с ESR

Конденсаторы используются практически повсюду. Ни одна схема устройства, обладающего хоть минимальной сложностью, не обходится без них.

В персональных компьютерах они встречаются в блоках питания, мониторах, около важных узлов материнских плат — сетевых и звуковых микросхем, в системе питания процессора, южного и северного мостов, оперативной памяти.

В акустических системах и сетевом оборудовании (роутерах, коммутаторах, например) они встречаются около усилителей и LAN-портов. Все они обеспечивают стабильное питание этих элементов, а малейшие проблемы с питанием, как известно, могут привести как к проблемам в работе — зависаниям, торможению, так и к банальному отказу работать.

Высохшие и пробитые конденсаторы невозможно обнаружить простым осмотром, поэтому именно измеритель ESR, может установить причину неисправности. Для этого детали, на которые пало подозрение, выпаиваются с платы и проверяются прибором. Проверять их без выпаивания не рекомендуется — показатели в этом случае могут быть слишком неточными. Если показатель сопротивления слишком высок, компонент должен быть заменён аналогом с наиболее низким ESR.

Основные элементы устройства

В основе схемы ESR-метра лежит микросхема генератора импульсов типа К561ЛН2, работающая на частоте до 120 кГц. Для дополнительного удобства саму микросхему можно не впаивать напрямую в плату, а использовать специальную панель с необходимым количеством ножек. Это позволит оперативно сменить вышедшую из строя деталь и заменить её без дополнительных операций с паяльником и отсосом припоя. В качестве аналога этого генератора можно использовать похожий по характеристикам К1561ЛН2.

Настройка частоты выполняется цепью, состоящей из резистора и конденсатора. Регулировка и настройка измерения ESR осуществляется подстроечным резистором.

В качестве питания используется либо стандартная CR2032, выдающая напряжение до 3 вольт, либо, если этого не хватает для работы, аккумуляторная батарейка на 9 вольт, подключаемая через специальную клемму (такие можно найти в некоторых часах с автономным питанием, например, или в старых батарейках типа Крона). В состав измерителя переменного напряжения входит мультиметр, который необходимо перевести в соответствующий режим, и германиевые диоды.

Сборку тестера конденсаторов можно производить как на макетной плате размером примерно 4 на 6 сантиметров, так и на специальных печатных платах. Второй вариант получится немного дороже, но его преимуществом является наличие на плате обозначений всех нужных элементов и дорожек, их соединяющих.

Печатные платы изготавливаются из фольгированного текстолита и перед проведением монтажа элементов контакты на них необходимо залудить припоем.

При использовании макетных плат, размещение элементов и их соединение производится самостоятельно. Для создания схемы используются провода достаточной толщины с фторопластовой изоляцией, чтобы предотвратить их повреждение при тепловом воздействии.

В качестве щупов можно использовать как покупные, так и самодельные. Во втором случае необходимо самостоятельно позаботиться о хорошей проводящей способности используемого материала и достаточной толщине провода, идущего к мультиметру. Использовать длинные провода, более 10 сантиметров, не рекомендуется.

Возможные недостатки и замечания по работе этого устройства:

  1. При нестабильном питании от батарейки возможны сильные отклонения по точности измерений, следует не забывать периодически проверять батарейку мультиметром и не допускать её разряда больше, чем на 1 вольт.
  2. Даже при полностью исправной батарейке, прибор, выполненный таким образом, не претендует на звание высокоточного. Его можно использовать как некий индикатор работоспособности элементов и определить подойдёт ли конденсатор для установки или замены.

Первый и второй недостатки имеют общее решение — достаточно установить в схему стабилизатор, питающийся напрямую от батарейки, и два конденсатора. Это повышает надёжность и точность прибора, что даёт возможность отбрасывать ситуации, при которых, если у измеряемого элемента сопротивление было слишком малым, мультиметр сигнализировал о коротком замыкании вместо ожидаемого значения.

Порядок калибровки прибора

После монтажа устройства на плате и первичных тестов, его необходимо откалибровать. Для этого понадобится осциллограф и набор резисторов для подстройки номиналом от 1 до 80 Ом. Порядок калибровки:

  1. Измеряем осциллографом частоту на щупах. Она должна быть в пределах 120—180 кГц. При более низкой или более высокой частоте она корректируется подбором резистора из набора.
  2. Подсоединяем мультиметр к щупам, выбираем режим измерения в милливольтах.
  3. Резистор в 1 Ом подключаем к щупам. С помощью подстроечного резистора в схеме выставляем на мультиметре значение напряжения в 1 милливольт.
  4. Подключаем следующий по номиналу резистор, не меняя значение, и записываем показания мультиметра. Повторяем со всем набором и составляем табличку.

После калибровки прибором можно пользоваться. Он поможет в обнаружении неисправностей, связанных с реактивным сопротивлением. Их невозможно диагностировать другим способом.

Esr метр своими руками схема

Измеритель LOW ESR конденсаторов

Автор: Simurg
Опубликовано 17.08.2012
Создано при помощи КотоРед.

Всё гениальное – просто!

Что такое ЭПС, или по английскому ESR все знают. Существуют множество пробников по выявлению неисправных или некачественных конденсаторов (если покупаете на рынке). А вот как определить некачественный конденсатор с низким внутренним сопротивлением LOW ESR, которые все чаще устанавливаются в различной технике, компьютерах, и т д.? Очень часто неисправности плат возникают из-за повышенных пульсаций питающего напряжения, а в цепях питания почти всегда присутствуют электролитические конденсаторы. Именно они в первых рядах имеют самую низкую надежность. Практика показывает, что большинство материнских плат, работающих с внезапными перезагрузками и выключениями, а также нестабильностью работы, связаны в большинстве случае неисправностью электролитических конденсаторов. Например, глючит видеокарта, вы снимаете её ставите заведомо исправную и все работает. Тогда начинаете ближе разбираться с неисправной в надежде возобновить исправную работу. Визуально все нормально, конденсаторы все как новые ровные, не надутые. Но ведь даже у визуально не вспухшего конденсатора может быть недопустимо высокий ESR — 0,10 ом! Такой конденсатор ощутимо разогревается, и может протечь на плату, попортив переходные отверстия электролитом. Для работы в ШИМ-преобразователях он просто не годится. Предельно допустимое значение для LOW ESR конденсаторов в ответственных и нагруженных цепях — 0,04 Ом, а лучше до 0,03 и менее.

Внешний вид устройства. В данный момент на фото запечатлен найденный неисправный конденсатор, который, если очень внимательно рассмотреть слегка надут в отличие от рядом стоящего.

Это и была настоящая неисправность, из-за которой видеокарту подвергли не нужному прогреву чипа, накручиванию большого радиатора и, в конце концов, она была доломана и отдана мне на детали (но было уже поздно, на платформе чипа прокрутили саморезом дорожки, при установке еще большего радиатора на не греющийся чип : ) )…..

А это показания исправного конденсатора:

Общий вид измерителя

Цели, которые достигались при проектировании измерителя:

— измерение на частоте 100 — 110 кГц

— измерение низким напряжением (до 0,2 вольт)

— растянутая шкала в диапазоне до 0,5 Ома

— работа от одного аккумулятора напряжением 1,2 вольта

— длительная работа без зарядки аккумулятора

— отсутствие неудобных проводов витой пары

— мощные щупы для пробивания окислов и лака

— минимум корректирующих настроек

Было собрано несколько вариантов измерителей. Варианты, когда схема с измерителем и микроамперметром находятся в коробке, а щупы выведены проводами крайне не удобна, так как провода необходимо плотно скручивать вместе, и они не могут быть длинными. При частоте 100 кГц даже слегка раскрутившийся провод, дает ухудшение показаний и исправный конденсатор может быть ошибочно забракован, а реальная неисправность не найдена. Фото старого варианта исполнения измерителя:

Решено было перенести схему с высокочастотной частью и питанием в отдельный блок в виде пинцета, а микроамперметр отдельно. Так как микроамперметр питается постоянным напряжением, то провода к нему не нужно скручивать и они могут быть любой длинны.

Для особо пугливых к трансформаторам, то предупрежу заранее, ничего мотать не придется, просто берутся готовые трансформаторы ТМС, со старых CRT мониторов, которые сейчас все выбрасывают (про трансы расскажу дальше).

Схема измерителя безупречно проста, и полностью соответствует цели, которая была поставлена в начале статьи.

Приведу структурную схему устройства для более понятного назначения каждого компонента:

Схема состоит из автоколебательного блокинг – генератора,

собранного на транзисторе VTI, выпаянном из серверной материнки:

Но можно и любой другой например аналог КТ3102 в smd корпусе.

Генератор выполнен по традиционной и хорошо зарекомендовавшей себя на практике схеме «индуктивной трехточки». Имеет эмиттерную RC-цепочку, задающую режим работы транзистора по постоянному току. Для создания обратной связи в генераторе от катушки индуктивности есть отвод (из-за того что трансы готовые, то он сделан от середины). Нестабильность работы генераторов на биполярных транзисторах обусловлена заметным шунтирующим влиянием самого транзистора на колебательный контур. При изменении температуры и/или напряжения питания свойства транзистора заметно изменяются, поэтому частота генерации незначительно меняется. Но нам для наших нужд данный момент не страшен.

Далее идет мост сопротивлений или Мост Уинстона (мост Уитстона, мостик Витстона) через развязывающий конденсатор (он же резонансный, входит в контур), устройство для измерения электрического сопротивления, предложенное в 1833 Самуэлем Хантером Кристи, и в 1843 году усовершенствованное Чарльзом Уитстоном. Принцип измерения основан на взаимной компенсации сопротивлений двух звеньев, одно из которых включает измеряемое сопротивление. В качестве индикатора обычно используется чувствительный гальванометр, показания которого должны быть равны нулю в момент равновесия моста. Работает как на постоянном токе, так и на переменном.

Далее идет согласующий трансформатор повышающий сопротивление и выходное напряжение для работы удвоителя и микроамперметра.

В схеме используются трансформаторы типа ТМС (трансформатор межкаскадный строчный) используемый в CRT мониторах, коих великое множество пошло на разбор и детали.

Стоит он обычно около выходного строчного транзистора

Довольно часто он собран на Ш-образном железе. Он то нам и надо. Только вот у него по схеме включения нет отвода от середины. Нужно выбрать для ТР1 такой, у которого этот отвод есть, но вывод укорочен и не используется в самом мониторе. Его необходимо подпаять до нормальной длинны.

Для ТР2 можно ставить без выведенного отвода (таких большинство).

Наконечники пинцета выполнены из латунного клемника от счетчика электроэнергии, и заточены на наждаке.

При проверке конденсаторов, для лучшего контакта необходимо с усилием надавливать на наконечники, поэтому они сделаны с обратной стороны широкими, что бы было удобно нажимать пальцами, и не соскальзывал пинцет.

Некоторые фото проведенных измерений:


Установка в ноль проводится замыканием пинцета с усилием, для обеспечения хорошего контакта.

Шкалу не затирал, а просто дописал значения выше. Фото шкалы.

Заключается в установке режимов работы по постоянному току и устойчивому возбуждению на 100 кГц, а не на 2-3 мГц.

Для этого вместо R1, R2 впаиваем переменное сопротивление (только не проволочное) сопротивлением 4,7к или 10к. бегунок на базу, 1 конец на + 1,2 в, 2 конец на -1,2 вольта. Выставляем на середину. Замыкаем пинцет, (запаиваем проволочку). Подключаем микроамперметр. Резистор установки 0 в минимальное сопротивление. Включаем вместо включателя миллиамперметр на предел 200мА. далее вращая переменное сопротивление в сторону уменьшения части, которая относилась к R1 и смотрим за потребляемым током и отклонением микроамперметра. Показания будут расти, а затем падать, а ток потребления расти, а потом резко увеличится. Выставить такое положение когда показания почти на максимуме, но немного меньше, то есть не переходят за порог их уменьшения. Ток при этом примерно будет 50 — 70 мА. Теперь резисторы замерять и впаять постоянные. Далее настроим С2 по максимуму отклонения стрелки микроамперметра. Всё, далее настраиваем 0 и берем низкоомные сопротивления, и тарируем деления на шкале. Использовать магазин сопротивлений нельзя, также нельзя использовать проволочные сопротивления. Если нет микроамперметра на 50 мкА, то можно использовать на 100 мкА, но питание надо поднять до 2,4 вольт, (от двух аккумуляторов) и провести настройку на данное напряжение заново как написано выше.

Сигналы на эмиттере могут принимать самые причудливые формы. Но на выходе пинцета будет такой или похожий почти всегда.

Как видно амплитудное напряжение не превышает 0,2 вольт. Поэтому никакой полупроводник не откроется, и измерения можно проводить вполне безопасно.

Также было проведено испытание на устойчивость к заряженному от сеи конденсатору.

Была небольшая искра, потом измерение. Током не бьет, хотя держу руками контакты площадок. Диоды VD1, VD2 защищают вход схемы и ваши пальцы.

Желаю побольше отремонтированных вами устройств с помощью данного измерителя, и больше прибыли, а также больше свободного времени, которое поможет высвободить данный пинцетик!

P.S. Так же не забывать про «черный список» (GSC, G-Luxon, Licon (или Li-con, или Lycon), Jackcon, JPcon, D.S VENT, Chssi, OST) конденсаторов, которые надо менять не зависимо от их состояния всегда, что бы устранить проблемы в будущем.

Плату еще оптимизирую, и выложу на форум. (хотя она очень простая).

Простой измеритель ESR на микроконтроллере PIC


Что такое ESR?Эквивалентное последовательное сопротивление (ESR) — это исключительно важный параметр электролитического конденсатора, характеризующий его работоспособность, качество и степень старения. С точки зрения ремонта электронной техники этот параметр даже более важен, чем емкость. Если, например, мы измерили емкость конденсатора номиналом 1000 микрофарад и она оказалась 650 микрофарад, конденсатор еще может долгое время работать в устройстве практически без заметного ухудшения характеристик (это конечно сильно зависит от конкретной схемы), в случае, если его ESR остается в приемлемых рамках. С другой стороны, если у конденсатора сильно выросло ESR, то во многих схемах, особенно в импульсных блоках питания, такой конденсатор уже не сможет выполнять своих функций даже если у него сохранилась номинальная емкость. Однако на практике такое бывает не часто, так как емкость и ESR — параметры взаимосвязанные и при росте ESR очень часто уменьшается и емкость конденсатора. Обычно ESR возрастает по мере высыхания электролита конденсатора.

В чем же смысл параметра ESR и почему он так важен? SER (Equivalent Series Resistance) или эквивалентное последовательное сопротивление — это паразитное сопротивление, которое можно представить себе как резистор, включенный последовательно с идеальным конденсатором. То есть  это дополнительное сопротивление, которое имеет место быть в любом реальном конденсаторе, которое ухудшает качество этого конденсатора. Иными словами — это параметр, который показывает насколько наш конденсатор не идеален. Таким образом, чем больше ESR, тем хуже конденсатор.
     


Нужно сказать, что допустимое ESR — это параметр не постоянный, он зависит от емкости и рабочего напряжения конденсатора. Поэтому сделать вывод о пригодности конденсатора после измерения его ESR можно с помощью специальной таблицы максимально допустимых значений ESR. Вы можете ее увидеть на фотографии прибора на его лицевой панели. Я распечатал таблицу и приклеил ее на панель прибора:
      


  
Как измерить ESR?
Эквивалентное последовательное сопротивление, так  же, как и обычное сопротивление, измеряется в Омах. В отличие от обычного омметра, прибор, измеряющий ESR, производит измерения не на постоянном токе, а на переменном токе сравнительно высокой частоты, обычно в районе 100 килогерц. На такой частоте емкость конденсатора практически не оказывает влияния на сопротивление конденсатора, поэтому измеряется именно последовательное эквивалентное сопротивление, а не емкость конденсатора. Фактически это главное и единственное отличие измерителя ESR от простого омметра.   

В общем виде метод измерения ESR показан на схеме ниже:
 


Большинство измерителей работают именно по этому принципу. У нас есть генератор переменного  напряжения G, резистор известного сопротивления R и измеряемый конденсатор Cx. Этот резистор совместно с измеряемым конденсатором образуют делитель напряжения. Дальше идет детектор, преобразующий переменное напряжение в постоянное и узел индикации этого постоянного напряжения, пересчитанного в Омы. Это может быть аналоговая или цифровая схема индикации, суть от этого не меняется.
 
   

Схема измерителя ESR (кликните чтобы увеличить)
  
Прибор собран на основе микроконтроллера  PIC16F873. Микроконтроллер измеряет выпрямленное напряжение, пересчитывает его значение в сопротивление в Омах. Кроме того микроконтроллер генерирует переменное напряжение прямоугольной формы частотй 100 кГц, которое используется для проведения измерений.

Для того, чтобы было возможно измерять ESR конденсаторов, не выпаивая их из схемы, измерительное напряжение должно быть достаточно низким, обычно 0,2-0,4 вольта, то есть меньше порога открывания pn — переходов полупроводниковых приборов.

Фактичекски представляет собой цифровой омметр работающий на переменном напряжении частотой 100кГц и позволяющий измерять сопротивления  от 0 до 25,5Ом.

Узел формирования образцового напряжения 2.5 В для АЦП контроллера в оригинальной схеме собран на микросхеме TL431. В то время, когда я собирал этот измеритель у меня такой микросхемы не было и я заменил его стабилитроном на 3.3 В и подстроечным резистором на 10 К. Подстроечником я установил на ножке 5 контроллера требуемое напряжение 2.5 В.

Сейчас TL431 — это очень распространенная и дешевая микросхема и проблем с ее приобретением нет. Так что если вы будете использовать мою печатную плату, то установите TL431. Подстроечник в таком случае устанавливать не нужно.

Блок питания  собран на  сетевом трансформаторе T1, диодном мостике и стабилизаторе напряжения LM7805 (K142ЕН5А).  В своей версии прибора я отказался от трансформатора, оставив, тем не менее, диодный мостик на печатной плате. Я использовал малогабаритный импульсный сетевой блок питания (адаптер) на напряжение 12 вольт,


который, благодаря наличию диодного мостика, можно подключать в любой полярности или вообще использовать адаптер с переменным напряжением на выходе (просто трансформатор).

В принципе можно избавиться вообще от блока питания, если использовать пяти-вольтовый адаптер — зарядку от смартфона.
 
Меандр с частотой 100кГц снимается с ножки RC2 микроконтроллера и через резистор R3 подается на усилитель тока, собранный на транзисторах  VT1,VT2. Я использовал КТ3102 и КТ3107. Хорошей идеей здесь будет использовать современные транзисторы BC547 и bc557.  Нагрузкой усилителя служит резистор R1 и диоды VD5,VD7, включенные встречно-параллельно  для ограничения амплитуды на измеряемом конденсаторе. Далее переменное напряжение, через конденсатор С1 и измеряемый конденсатор Cx поступает на первичную обмотку повышающего трансформатора Т2. далее импульсы снимаются со вторичной обмотки и выпрямляются диодом VD6, после чего полученное пульсирующее напряжение сглаживается конденсатором  С3. Далее сформированное постоянное напряжение через подстроечный резистор  R4 поступает на вход аналого-цифрового преобразователя микроконтроллера D3. Конденсатор С9 устраняет возможные высокочастотные помехи.

Информация отображается на трехразрядном семи-сегментном ЖК индикаторе. Транзисторы VT3, VT4, VT5 — ключи коммутации ЖК индикаторов (используется принцип динамической индикации.

Сетевой трансформатор (если вы решите его использовать) со вторичной обмоткой на 9-12 вольт. Повышающий трансформатор Т2 намотан на ферритовом кольце марки М2000НМ и размером К10х6Х3 (можно использовать кольцо других размеров, не сильно отличающихся от указанных. Это не критично). Первичная обмотка намотана проводом диаметром 0,26мм, и состоит из 42 витков. Вторичная обмотка содержит 700витков провода диаметром 0,08мм.

Налаживание устройства. Подключаем к щупам измерителя резистор известного сопротивления в диапазоне 1 .. 5 Ом и подстроечным резистором добиваемся корректных показаний на дисплее. После такой настройки мой прибор при соединенных вместе щупах показывал сопротивление отличное от нуля, поэтому я еще слегка подкорректировал положение движка резистора таким образом чтобы на дисплее были нулевые показания при замкнутых щупах.

Печатная плата устройства когда-то была разведена в программе PCAD2006, а в последствии я импортировал файл платы в программу DIPTRACE.
  
  


Прошивка (программа) для микроконтроллера PIC16F873 написана на ассемблере. Архив с прошивкой и чертежом печатной платы вы можете скачать по ссылке а конце этой статьи.

Я разрабатывал печатную плату, когда у меня еще не было в наличии светодиодных 7-сегментных индикаторов, поэтому индикатор я установил на отдельной плате. Эта плата — кусок обычной макетной платы, куда были припаяны индикаторы. То есть, печатную плату для индикатора я не разводил.
  
  

Со стороны лицевой панели индикатор закрыт куском оргстекла синего цвета. Это улучшает контрастность дисплея.  
  


   
Провода щупов измерителя желательно выполнить из толстого многожильного провода, чтобы их сопротивление было как можно меньше. Сами щупы я сделал из толстых стальных швейных игл, такими щупами очень удобно измерять ESR конденсаторов непосредственно на печатных платах.
  
  


Перед измерением ESR конденсатора обязательно убедитесь что конденсатор разряжен. Остаточное напряжение на конденсаторе может вывести микроконтроллер из строя.

Ссылка для скачивания архива с прошивкой и печатной платой измерителя ESR
  
  

ESR-метр (0…75)Ом с индикацией утечки

РадиоКот >Схемы >Аналоговые схемы >Измерения >

ESR-метр (0…75)Ом с индикацией утечки

           В статье описан простой портативный аналоговый ESR-метр с расширенным диапазоном измерения до 75 Ом и с функцией индикации короткого замыкания или утечки по постоянному току. В качестве индикаторной головки использован стрелочный микроамперметр от старого кассетного магнитофона.

           В практике ремонта различной аппаратуры незаменимым помощником является измеритель внутреннего эквивалентного сопротивления электролитических конденсаторов – ESR-метр. В радиолюбительской литературе описано множество неплохих и несложных в повторении ESR-метров, однако лишь немногие из них способны измерять ESR вплоть до 75 Ом, что часто бывает необходимо при проверке электролитических конденсаторов малой ёмкости (1 мкФ, 0.47 мкФ, 0.33 мкФ). А ведь такие электролиты тоже существуют и их надо как-то проверять.Также автор не встречал ни одного ESR-метра, который бы позволял дополнительно определять проверяемый конденсатор на утечку или пробой. Так, например, при коротком замыкании проверяемого конденсатора обычный ESR-метр, осуществляющий измерение на переменном токе, покажет малое внутреннее сопротивление, и пробитый конденсатор будет ошибочно принят за исправный.

           Оба этих требования были учтены при разработке собственного ESR-метра, фото которого показано на фото ниже.

           А на этом фото прибор показан со сложенными щупами внутрь корпуса.

Прибор следующие технические характеристики:

— предел измерения ESR, Ом………………………………………..0…75;

— частота измерения, кГц…………………………………………….80;

— амплитуда проверяемого напряжения, мВ……………………..<30;

— пределы индикация утечки по постоянному току, Ом……….0…100;

— напряжение питания  (CR2032), В……………………………….2,2…3,6;

— потребляемый ток, мА………………………………………………8;

— габаритные размеры со слеженными щупами, мм……………..71х53х30;

— вес, г……………………………………………………………………65;

— индикация разряда батареи питания;

— съёмные щупы, убираемые внутрь корпуса при транспортировке.

 

           Схема разработанного ESR-метра приведена ниже:

           Питание прибора осуществляется от литиевого элемента GB1 CR2032. Резистор R1 предназначен для ограничения начального броска тока через незаряженные ёмкости конденсаторов C1, C4 при включении питания. Диод VD1 1N4007 служит для защиты от подачи питающего напряжения в обратной полярности. На микросхеме DA1 LP2951CM выполнен стабилизатор напряжения +2 В, от которого питается основная часть схемы. Эта микросхема представляет собой микромощный регулируемый стабилизатор напряжения Low Drop с максимальным выходным током 100 мА.

            Задающий генератор частотой около 80 кГц собран на микросхеме DD1 74HC04D, четыре инвертора которой запараллелены для увеличения выходного тока. Прямоугольные импульсы с выхода генератора размахом 2 В подаются на делитель R5, R6, уменьшающий размах тестирующего напряжение до 30 мВ, что позволяет проводить измерения непосредственно в схеме, не опасаясь, что откроются p-n переходы присутствующих в ней  полупроводниковых приборов. С нижнего плеча делителя ограниченные по амплитуде импульсы подаются на одну из обкладок тестируемого конденсатора. Вторая обкладка через резистор R7 соединяется с общим проводом схемы. На этом резисторе выделяется падение напряжения, обратно пропорциональное внутреннему сопротивлению проверяемого конденсатора. Диоды VD2…VD6 служат для защиты прибора от повышенного напряжения при проверке заряженного конденсатора. Переменная составляющая напряжения с R7 подаётся на инвертирующий усилитель DA2.1 с коэффициентом усиления по переменному напряжению около 8 (определяется в основном отношением сопротивлений резисторов R14/R8). Неинвертирующий вход DA2.1 подключен к виртуальной земле, сформированной при помощи R13, VD7, VD8, C10, C11. Усиленное переменное напряжение с выхода DA2.1 через разделительный конденсатор C12 поступает на двухполупериодный выпрямитель, выполненный на второй части ОУ DA2.2. В качестве нагрузки выпрямителя использована стрелочная головка микроамперметра PA1 М68501 от старого кассетного магнитофона. Головка имеет внутреннее сопротивление около 500 Ом  и ток полного отклонения 250 мкА. Средний ток через головку определяется отношением средневыпрямленного значения входного напряжения к сопротивлению Rос=R16+R20 [1]. Диоды моста VD9…VD12 – диоды Шоттки для уменьшения падения напряжения. Подстроечный резистор R16 предназначен для установки стрелки прибора на нулевое деление шкалы.

            Детектор утечки по постоянному току выполнен на компараторе DA3.1 LM393D. Исправный проверяемый конденсатор не пропускает через себя постоянную составляющую подаваемых на него прямоугольных импульсов. Переменная составляющая отфильтровывается ФНЧ R9, C7, поэтому на инвертирующем входе компаратора DA3.1 присутствует нулевое напряжение. На неинвертирующем входе DA3.1 присутствует некоторое положительное пороговое напряжение, заданное делителем R11, R12, поэтому на выходе компаратора высокий уровень и сигнальный светодиод HL1 не светится. При наличии утечки в проверяемом конденсаторе на инвертирующем входе появится напряжение, величина которого будет пропорциональна току утечки. При превышении на инвертирующем входе порога, заданного делителем R11, R12, на выходе компаратора установится низкий уровень, и светодиод HL1 своим свечением просигнализирует о наличии утечки.

            Индикатор состояния элемента питания выполнен на второй части компаратора — DA3.2. На инвертирующий вход компаратора подано опорное напряжение +1В с делителя R17, R18. На неинвертирующий вход – напряжение элемента питания GB1 через делитель R21, R22. При напряжения на GB1 более 2,2 В на неинвертирующем входе DA3.2 напряжение будет выше, чем на инвертирующем, поэтому на выходе компаратора будет присутствовать высокий уровень и красный светодиод HL2 будет погашен. Зелёный ультраяркий светодиод HL3 будет при этом светиться, указывая на включенное питание. Это помогает не забыть выключить питание после проведения измерений. Использование ультраяркого светодиода на 6 Cd позволило снизить ток его потребления до 30…35 мкА при приемлемой яркости свечения. По мере снижения напряжения GB1 яркость свечения зелёного светодиода уменьшается и после разрядки батареи ниже 2,2 В на выходе компаратора DA3.2 установится низкий уровень. Это приведёт к открыванию красного светодиода HL2, который своим переходом зашунтирует зелёный светодиод HL3 вместе с добавочным резистором R24, в результате чего зелёный светодиод погаснет.

            Изготовление прибора.

            Устройство выполнено на печатной плате из одностороннего фольгированного стеклотекстолита с габаритными размерами 63х49 мм, внешний вид которой со стороны выводных элементов и со стороны печати и SMD-элементов показан на рисунках ниже:

            Печатная плата разрабатывалась под покупной пластмассовый корпус габаритными размерами 68х53х29 мм. Корпус состоит из двух половинок с защёлками, без саморезов. Названия на корпусе не было, лишь изображение колокольчика. Как сообщил продавец в магазине, данный корпус предназначен для монтажа разводки стационарных телефонов.

            Под измерительную головку в верхней крышке корпуса вырезано прямоугольное окно. Индикатор закреплён при помощи двухстороннего скотча.

            Вид прибора изнутри со щупами в рабочем положении показан на фото:

           Вид прибора изнутри со щупами в в транспортировочном положении показан на фото:

            Плата крепится к нижней крышке корпуса при помощи одного винта по центру.

            Конструкция щупов показана на фото ниже:

            Для изготовления щупов использовались две стальные швейные иголки. Крепление щупов выполнено при помощи резьбового соединения. У латунного винта М2,5 в торце просверлено отверстие под диаметр иголки, на винт накручена стальная гайка, после чего иголка была зафиксирована в отверстии припоем. Шляпка винта аккуратно откушена, край сточен надфилем, а немного исковерканная резьба восстановлена при помощи накрученной гайки. После этого гайка была выкручена на середину резьбового соединения и зафиксирована небольшим расплющиванием ударами молотка. Второй щуп изготовлен аналогично. На иголки надета термоусаживающаяся трубка. Общая длина щупа получилась равной 55 мм.

            Держатели щупов изготовлены из латунных винтов М4х10. Внутри винта просверлено сквозное отверстие и нарезана резьба М2.5. Шляпка обточена надфилем.

            Для измерительной головки сделана новая наклейка со шкалой, отснятой экспериментально с набором точных резисторов. Для удобства пользования прибором на шкалу снизу дополнительно нанесены примерные значения ёмкости, соответствующие внутреннему сопротивлению исправных электролитических конденсаторов, взятые из [2].

 

            Настройка прибора.

            Настройка  прибора заключается в установке стрелки индикатора на нулевое деление шкалы при замкнутых щупах подстроечным резистором R16. Для настройки индикатора утечки к щупам необходимо подключить резистор сопротивлением 100 Ом (или другим требуемым номиналом, ниже которого будет загораться красный светодиод HL1), и подстроечным резистором R12 добиться сначала засвечивания HL1, а затем плавным поворотом движка R12 в обратную сторону погасания HL1.

         

Литература:

1). Гутников В.С. Интегральная электроника в измерительных устройствах.–Л.:Энергия. Ленингр.отд-ние, 1980. – 248 с., ил.

2) Чулков В. Прибор для проверки ESR электролитических конденсаторов. “Ремонт электронной техники” №6, 2002.

Файлы:
Плата в Layout
Перечень элементов
Наклейки

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

Простой ESR (ЭПС) измеритель быстрого приготовления

ESR-метр или прибор для измерения ЭПС — эквивалентного последовательного сопротивления.
Как выяснилось, работоспособность (электролитических — частности) конденсаторов, особенно тех, которые работают в силовых импульсных устройствах, влияет в значительной степени внутреннее эквивалентное последовательное сопротивление переменному току. Различные производители конденсаторов по разному относятся к значениям частоты, на которой должна определяться величина ЭПС, но частота эта не должна быть ниже 30кГц.

Величина ЭПС в какой-то степени связана с основным параметром конденсатора — емкостью, но доказано, что конденсатор может быть неисправным из-за большого собственного значения ЭПС, даже при наличии заявленной емкости.
В технической литературе и на страничках технических сайтов описано немало случаев полной неработоспособности устройств из-за завышенной величины ЭПС электролитических конденсаторов.
В различных электронно-технических журналах и страничках сайтов, посвященных электронике, приводятся схемы приборов различной сложности и функциональности для определения величины ЭПС конденсаторов.

Предлагаю свой вариант прибора, не отличающегося от многих прочих, похожих на него, по принципу работы, но, быть может, еще более простого…
Схема прибора потребляет от двух 3-хвольтовых батареек, соединенных последовательно, 6,5мА при разомкнутых щупах и 10мА — при замкнутых. Схема прибора выглядит так:

В качестве генератора использована микросхема КР1211ЕУ1 (частота при номиналах на схеме около 70кГц), трансформаторы могут быть применены фазоинверторные от БП АТ/АТХ — одинаковые параметры (коэффициенты трансформации в частности) практически от всех производителей. Внимание!!! В трансформаторе Т1 используется лишь половинка обмотки.

Головка прибора имет чувствительность 300мкА, но возможно использование других головок. Предпочтительно использование более чувствительных головок.
Шкала этого прибора растянута на треть при измерении до 1-го Ома. Десятая Ома легко отличима от 0,5 Ома. В шкалу укладываются 22 Ома.
Растяжку и диапазон можно варьировать с помощью добавления витков к измерительной обмотке (с щупами) и/или к обмоткам III того или иного трансформатора.
Удачи!

Камрад, смотри полезняхи!

Константин (riswel)

Россия, г. Калининград

C детства — музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, — для интереса, — и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. — электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все — такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

 

Простой ESR-метр | Ремонт торговой электронной техники

Возникла необходимость ускорить время «тонких» ремонтов, а фактически собрать прибор для измерения ESR конденсаторов. Самым простым показался ESR-метр от GO, с сайта http://pro-radio.ru/measure/3288. Материал является копипастом данной ссылки. Однако в отличии от оригинала, более удобен для чтения.

Все фото и схемы — это только оригинальный конструктив GO. Другие варианты исполнения предложенные в на ветке форума не рассматриваютя.
  1. Параметры.
  2. Внешний вид.
  3. «Железо».
  4. Настройка (калибровка).
  5. Отладка.

 

 Параметры.

Измеряемая емкость 1-150 000 мкФ
Измеряемое ESR до 10 Ом
Ток потребления от 19 до 24 мА при замкнутых щупах потребляемый ток возрастает до 36мА

Достоинства:
Удобством ESR-метра является то, что почти во всех случаях можно проверить конденсаторы без выпаивания! Это возможно потому, что хороший конденсатор на высоких частотах почти подобен короткому замыканию, и любые другие компоненты, подключенные в параллели, окажут минимальное влияние на измерение.

Недостатки:

Несколько неудобное отображении конденсаторов выше 1000мкФ. Отличие в разделителе, точка или запятая.

Показания дисплея ESR-метра при измерении конденсатора 2,2 мкФ, в качестве разделителя используется ТОЧКА. Показания дисплея ESR-метра при измерении конденсатора 2200 мкФ, в качестве разделителя используется ЗАПЯТАЯ.

 

Внешний вид.

Рис. Внешний вид ESR-метра.

Рис. Внешний вид ESR-метра с снятой крышкой.

Рис. Плата ESR-метра с собранном виде.

Рис. Плата ESR-метра без дисплея.

Рис. Корпус ESR-метра.

 

«Железо».

Схема.

Рис. Схема ESR-метра в формате GIF.

Схема в формате SPL  (Скачать). Для открытия требуется установить sPlan 6.0 (Скачать русский sPlan 6.0).

Печатная плата в формате LAY (Скачать). Для открытия требуется скачать Layout 5, инсталяция не требуется (Скачать русский Layout 5.0).

Ниже приведены печатные платы в формате gif, рисунки для сборки и проверки качества травления, на тот случай если под рукой нет Layout 5, а печатную плату необходимо посмотреть.

Рис. Печатная плата

Рис. Печатная плата вид со стороны SMD компонентов

Рис. Печатная плата вид со стороны DIP компонентов

Процессор.

Сердцем устройства является прошитый прцессор PIC16F873(A), PIC16F876(A).

Прошивка для для процессора PIC16F873(A) в формате HEX (Скачать), исходники (Скачать).

Прошивка для для процессора PIC16F876(A) в формате HEX (Скачать), исходники (Скачать).

Внимание! Процессора PIC16F873(A), PIC16F876(A) отличаются прошивками. Будте внимательны при программировании. Биты конфигурации для процессора лежат в HEX файле, либо в исходниках, для bin прошивки;
CP_OFF ;
BODEN_OFF;
HS_OSC;
WRT_OFF ;
WDT_OFF ;
PWRTE_ON;
DEBUG_OFF ;
CPD_OFF;
LVP_OFF

Даташит для процессора PIC16F873(A), PIC16F876(A) на английском (Скачать), на русском (Cкачать)

Фактически даташит для процессора не нужен, все и так хорошо работает. Но все же на этапе покупки возникают вопросы с маркировкой и заменой. Из всего даташита требуется только предпоследняя страница.

Рис. Необходимые параметры, на которые надо обратить внимание при покупке процессора для ESR-метра.

Для рассматриваемого конструктива требуется процессор в корпусе DIP28, с поддерживаемой рабочей частотой до 20мГц.

И конечно, чем отличается PIC16F873 от PIC16F873A.  В случае с ESR- метром — ничем, покупайте тот, который дешевле и сможете купить.

Внимание! Алгоритмы программирования (точнее стирания) у PIC16F873 от PIC16F873A разные, поэтому в программаторе необходимо точно (согласно литере) выставлять тип программируемого процессора.

Немного теории. Чем отличается PIC16F873 от PIC16F873A расписано в даташите (Скачать).

Основные отличия:
1. изменена спецификация программирования (обратить внимание на программатор)
2. добавлены компараторы, которые после ресета выключены.
3. изменен принцип записи в память программ — запись по 4 слова.
4. изменены биты конфигурации — защита кода, запрещение записи в память программ.

Остальные элементы.

Список резисторов, по номиналам — для закупки, по наименованию — для монтажа.

Список конденсаторов, по номиналам — для закупки, по наименованию — для монтажа.

Список Диоды, Микросхемы, Кварц, Транзисторы.

DA1, DA2 (TL082)
Комментарий:
Из обязательных требований к ОУ:
— полевые тр-ры на входе
— работа при питании +/- 5V
— при питании +/- 5V максимальное положительное Uвых >= 3.8V
Ну а дальше, как обычно — Uсм поменьше, быстродействие побольше, и чтобы нагрузку потянул.
TL082 конечно не самый лучший вариант на свете, но распространен достаточно широко.

Дисплей FDC1602C. Подойдет ЖКИ модуль на основе контроллера HD44780 с организацией 16 символов, 2 строки.

Встречаются варианты исполнения с перепутанными ногами 1 и 2 — земля и питания необходимо  проверить визуально, как там на самом деле разведено.

Щупы. Чтобы скомпенсировать падение напряжения на проводах, тестируемый конденсатор лучше подключать по 4-х проводной схеме Кельвина, поэтому и разъем для подключения щупов 4-х контактный, а провода объединяются вместе уже на крокодилах. Токовые провода — неэкранированные 45 см сечение 0.75 кв.мм , и обратно от крокодилов МГТФ-0,2 для напряжения.

Неоригинальный вариант. Возможно использовании экранированных проводов — оплетка для тока, центральная жила — для напряжения, работало вроде нормально.

 

Настройка (калибровка).

 

Первое включение .
Проверяем наличие +5V после 78L05 и -5V (4.7V) на выходе DA4.
Подбором R31 добиваемся нормальной контрастности на индикаторе.

Включение прибора при нажатой кнопке Set переводит его в режим установки корректирующих коэффициентов. Их всего три — для каналов 1 Ом, 10 Ом и для емкости. Изменение коэффициентов кнопками + и -, запись в EEPROM и перебор -той же кнопкой Set.

Отладочный режим.
В этом режиме на индикатор выводятся измеренные значения без обработки — для емкости — состояние таймера (примерно 15 отсчетов на 1 мкФ) и оба канала измерения ESR (1 шаг АЦП=5V/1024). Переход в отладочный режим — при нажатой кнопке «+»

Установка нуля.
Для этого замыкаем вход, нажимаем и удерживаем кнопку «+» и с помощью R4 добиваемся минимальных показаний (но не нулевых!) одновременно по обоим каналам. Не отпуская кнопку «+», нажимаем Set — на индикатор выведется сообщение о сохранении U0 в EEPROM.

Далее измеряем образцовые сопротивления 1 Ом (или меньше), 10 Ом и емкость (которой доверяете), определяем поправочные коэффициенты. Прибор выключаем, включаем при нажатой кнопке Set и устанавливаем коэффициенты соответственно результатам измерений.

Поправочные коэффициенты устанавливаются один раз при первоначальной настройке прибора.

 

Отладка.

 

Итак собранное устройство не заработало или заработало с ошибками.

Внимание! В схеме, в печатной плате, в прошивках  ошибок нет. Проверено неоднократной сборкой. Если после сборки устройство не работает ищите ошибку, в монтаже, в непротравленных местах платы, ошибочно установленных элементах, дефектных деталях, несоответствии прошивке процессору.

1. При подключении емкости-Сх—
Это значит, что за отведенное для измерения время, микроконтроллер не дождался сигнала срабатывания компараторов. Проверьте компараторы DA 3.1, DA3.2 (LM393) и их обвязку.

2. При подключении сопротивления 10 Ом на индикаторе ESR 4,507
Отличие ESR в два раза в меньшую сторону говорит о том, что необходимо заменить TL431, причем поискать м/с от другого производителя.

3. При подключении резисторов от 1 до 10 Ом пишет ESR 0.000
Если корректирующие коэффициенты для каналов 1 и 10 Ом случайно не равны нулю (проверьте), то проблему следует искать в монтаже/деталях в районе DD2. Если все нормально — поменять CD4066 на другого производителя.

4. Разводка «холодного» кабеля к конденсатору
— токовый провод (черный толстый на фотографии) от конденсатора к земле в район истока транзистора VT2 и двух защитных диодов VD1, VD3;
— провод для напряжения (тонкий) от конденсатора в точку соденинения С1, С2 и выв.1 DD2.2.

ESR (ЭПС)-метр своими руками | Каталог самоделок

Неисправность электролитических конденсаторов чаще всего является причиной дефектов в радиоэлектронных аппаратах. При этом ёмкостный показатель неисправного конденсатора может совсем немного отличаться от его нормального значения, а ЭПС быть больше. Поэтому зачастую найти поломку в электролитическом конденсаторе с помощью измерителя ёмкости бывает крайне сложно.

В связи с этим именно увеличенный показатель ЭПС является единственным признаком ненормальной работы конденсатора в радиоаппаратуре.

В поиске увеличенного значения ЭПС может помочь специальный прибор, который называется ЭПС-метр. Его можно сделать самостоятельно.

Этот прибор измеряет сопротивление, которое выдаёт конденсатор при частоте в 100 кГц.

Плюсом этого прибора является то, что он не требует абсолютной точности в измерениях, ведь показатель ЭПС дефектного конденсатора обычно в разы превышает установленную норму.

Конструирование ЭПС-метра должно начинаться с составления схемотехнического рисунка в системе LTspice. В итоге должен получиться график, демонстрирующий отклонение стрелки амперметра в зависимости от показателя ЭПС.

ESR (ЭПС)-метр своими руками

По результатам схемотехнического рисунка, который был составлен ранее, можно спроектировать схему в программе OrCAD.

ESR (ЭПС)-метр своими руками

ESR (ЭПС)-метр своими руками

Известно, что в приборе установлено 9-вольтовое питание и регулятор напряжения, за основу которого берётся схема LM 7805. Также для прибора нужны транзисторные приёмники, которые можно выбрать на своё усмотрение, но всё же лучше подойдут 2N3904 (n-p-n) и 2N3906 (p-n-p). Ещё в приборе применимы диоды 1N5711 и измерительная головка с силой тока в 50 мкА.

Небольшое напряжение в конденсаторе, позволяет использовать устройство без его снятия.

В итоге получается разводка односторонней платы без перемычек. Для платы использовались чип-компоненты и проделывались отверстия для крепления деталей, которые позже нужно припаять.

ESR (ЭПС)-метр своими руками

Плата изготавливается с помощью фоторезистора, ЛУТ или ЧПУ.

ESR (ЭПС)-метр своими руками

Для создания шкалы прибора, необходимо произвести практические замеры, которые позже переносится в программу и распечатывается. После этого можно производить сборку всех компонентов.

ESR (ЭПС)-метр своими руками

В заключении, стоит заметить, что перед тем, как измерять показатель ЭПС с помощью самодельного прибора, его необходимо полностью разрядить.

ESR (ЭПС)-метр своими руками

ESR (ЭПС)-метр своими руками

 

Автор: Орлов Александр, Москва.

 


Самодельный измеритель ESR/C/R. Схема, прошивка, печатная плата, инструкция.


Как-то в интернете наткнулся на схему интересного измерительного устройства, которое способно измерять если не все, то очень многое. Данный мультиметр состоит из модулей, которые подключаются к основному блоку, т.е. каждый может собирать не схему полного функционала, а только ту часть, которая ему необходима.


В данной статье приведен пример сборки базового блока, который измеряет емкость электролитических конденсаторов, эквивалентное последовательное сопротивление (ESR) и просто сопротивление резисторов. К данному базовому блоку можно подключать остальные модули. Сразу выражу огромную благодарность автору данного устройства R2-D2 и пользователям форума, которые четко и емко описывают ответы на вопросы, связанные с конструкцией и сборкой данного измерителя. Привожу ССЫЛКУ на первоисточник.


В основе устройства ESR/C/R измерителя находится микроконтроллер PIC18F2520, отображение информации производится на экране от мобильного телефона NOKIA 3310. Последнюю (19ю) прошивку для МК мультиметра можно скачать ЗДЕСЬ. Прошивку производил программатором EXTRA-PIC+, программой WinPic800. В базовую схему мной были внесены некоторые незначительные изменения, связанные с тем, что не все радиодетали были мне доступны. Схему с изменениями в формате *.spl7 можно скачать ЗДЕСЬ. Печатная плата разводилась под имеющиеся детали, а в качестве корпуса использовался пластиковый бокс от канцелярских евро кнопок. Разводку печатной платы в формате *.lay можно скачать ЗДЕСЬ. Подробную инструкцию по данному универсальному измерительному устройству, а также технологию его отладки можно скачать ЗДЕСЬ или на сайте первоисточника.



Базовый блок по информации автора должен измерять емкость конденсаторов от 0,2 мкФ до 300 000 мкФ, но у меня минимальной емкостью, которую «схватил» измеритель, было 0,33 uF, а максимальную, которая была под рукой – 2200 uF. Также автор указывает, что данный ESR/C/R измеритель может замерять сопротивление с разрешением 0,001 Ом в пределах от 0 до 20 Ом, но у меня получается вполне удачно измерять сопротивления до 50 Ом, что отчетливо видно на фото.



Показания могут плыть в момент включения прибора, но ровно до того времени, пока не прогреются детали, т.е. в течение пары минут. Если Вы решите повторить данный прибор, рекомендую производить отладку минут через пять после его включения.


Если кажется, что в данной статье информации о ESR/C/R измерительном устройстве и его модулях по существу мало, то загляните в инструкцию, ее там предостаточно, а самое главное, она написана доступным языком даже для начинающих.


Ниже привожу фотографии тестов измерения емкости и внутреннего сопротивления электролитических конденсаторов разных емкостей.





Пара фотографий базового блока мультиметра со сторон разъемов.




alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *