2.06. Транзисторный источник тока
ГЛАВА 2. ТРАНЗИСТОРЫ
НЕКОТОРЫЕ ОСНОВНЫЕ ТРАНЗИСТОРНЫЕ СХЕМЫ
Подразделы: 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09
Хотя источники тока не столь известны, они не менее полезны и важны, чем источники напряжения. Источники тока представляют собой прекрасное средство для обеспечения смещения транзисторов, и кроме того, незаменимы в качестве активной нагрузки для усилительных каскадов с большим коэффициентом усиления и в качестве источников питания эмиттеров для дифференциальных усилителей. Источники тока необходимы для работы таких устройств, как интеграторы, генераторы пилообразного напряжения. В схемах усилителей и стабилизаторов они обеспечивают широкий диапазон напряжений. И наконец, источники постоянного тока требуются в некоторых областях, не имеющих прямого отношения к электронике, например в электрохимии, электрофорезе.
Рис. 2.20.
Подключение резистора к источнику напряжения. Схема простейшего источника тока показана на рис. 2.20. При условии что Rн » R (иными словами, Uн » U), ток сохраняет почти постоянное значение и равен приблизительно I = U/R. Если нагрузкой является конденсатор, то, при условии что Uконд » U, он заряжается с почти постоянной скоростью, определяемой начальным участком экспоненты, характерной для данной RC-цепи.
Простейшему резистивному источнику тока присущи существенные недостатки. Для того чтобы получить хорошее приближение к источнику тока, следует использовать большие напряжения, а при этом на резисторе рассеивается большая мощность. Кроме того, током этого источника трудно управлять в широком диапазоне с помощью напряжения, формируемого где-либо в другом узле схемы.
Упражнение 2.6. Допустим, нам нужен источник тока который бы обеспечивал точность 1% в диапазоне изменения напряжения на нагрузке от 0 до +10 В. Какой источник напряжения нужно подключить последовательно к резистору?
Упражнение 2.7. Допустим, что в предыдущем упражнении требуется получить от источника ток 10 мА. Какая мощность будет рассеиваться на резисторе? Какая мощность передается нагрузке?
Рис. 2.21. Транзисторный источник тока: основная идея.
Какая мощность передается нагрузке? Транзисторный источник тока. Очень хороший источник тока можно построить на основе транзистора (рис. 2.21). Работает он следующим образом: напряжение на базе Uб > 0,6 В поддерживает эмиттерный переход в открытом состоянии: Uэ = Uб — 0,6 В. В связи с этим Iэ = Uэ/Rэ = (Uэ — 0,6/Rэ. Так как для больших значений коэффициента h21эIэ ≈ Iк, то Iк ≅ (Uб — 0,6 В)/Rэ независимо от напряжения Uк до тех пор, пока транзистор не перейдет в режим насыщения (Uк > Uэ + 0.2 В).
Смешение в источнике тока. Напряжение на базе можно сформировать несколькими способами. Хороший результат дает использование делителя напряжения, если он обеспечивает достаточно стабильное напряжение. Как и в предыдущих случаях, сопротивление делителя должно быть значительно меньше сопротивления схемы со стороны базы по постоянному току h21эRэ. Можно воспользоваться также зенеровским диодом и использовать для смещения источник питания Uкк, а можно взять несколько диодов, смещенных в прямом направлении и соединенных последовательно, и подключить их между базой и соответствующим источником питания эмиттера. На рис. 2.22 показаны примеры схем смещения. В последнем примере (рис. 2.22,6) транзистор p-n-p — типа питает током заземленную нагрузку (он — источник тока). Остальные примеры (в которых используются транзисторы n-р-n — типа.) правильнее было бы называть «поглотителями» тока, но принято называть все схемы такого типа источниками тока. [Название «поглотитель» и «источник» связано с направлением тока; если ток поступает в какую-либо точку схемы, то это источник, и наоборот]. В первой схеме сопротивление делителя напряжения составляет приблизительно 1,3 кОм и очень мало по сравнению с сопротивлением со стороны базы, составляющим ≅100кОм (для h21э = 100). Любое изменение коэффициента β, связанное с изменением напряжения на коллекторе, не повлияет существенным образом на выходной ток, так как соответствующее изменение напряжения на базе совсем мало. В двух других схемах резисторы в цепи смещения выбраны так, чтобы протекающий ток составлял несколько миллиампер, — этого достаточно, чтобы диоды были открыты.
Рабочий диапазон. Источник тока передает в нагрузку постоянный ток только до определенного конечного напряжения на нагрузке. В противном случае источник тока был бы способен генерировать бесконечную мощность. Диапазон выходного напряжения, в котором источник тока ведет себя как следует, называется рабочим диапазоном. Для рассмотренных только что транзисторных источников тока рабочий диапазон определяется из того, что транзистор должен находиться в активном режиме работы. Так, в первой схеме напряжение на коллекторе можно понижать до тех пор, пока не будет достигнут режим насыщения, т. е. до +12 В. Вторая схема, с более высоким напряжением на эмиттере, сохраняет свойства источника лишь до значения напряжения на коллекторе, равного приблизительно + 5,2 В.
Во всех случаях напряжение на коллекторе может изменяться от значения напряжения насыщения до значения напряжения питания. Например, последняя схема работает как источник тока в диапазоне напряжения на нагрузке, ограниченном значениями 0 и +8,6 В. Если в нагрузке используются батареи или собственные источники питания, то напряжение на коллекторе может быть больше, чем напряжение источника питания. При использовании такой схемы рекомендуется следить за тем. чтобы не возник пробой транзистора (напряжение Uкэ не должно превышать значение Uкэпроб — напряжение пробоя перехода коллектор-эмиттер) и не рассеивалась излишняя мощность (определяемая величиной произведения IкUкэ). В разд. 6.07 вы увидите, что для мощных транзисторов область безопасной работы определяется специально.
Упражнение 2.8. В схеме имеются два стабилизированных источника напряжения: +5 и 15 В. Разработайте схему источника тока на основе транзистора n-р-n — типа, которая бы обеспечивала ток +5 мА. В качестве источника напряжения для базы используйте источник +5 В. Чему равен рабочий диапазон в такой схеме?
В источнике тока напряжение на базе не обязательно должно быть фиксированным. Если предусмотреть возможность изменения напряжения Uб, то получим программируемый источник тока. Если выходной ток должен плавно отслеживать изменения входного напряжения, то размах входного сигнала uвх (напоминаем, что строчными буквами мы договорились обозначать изменения) должен быть небольшим, таким, чтобы напряжение на эмиттере никогда не уменьшалось до нуля. В таком источнике тока изменение выходного тока будет пропорционально изменениям входного напряжения.
Недостатки источников тока. Как сильно отличается транзисторный источник тока от идеального? Иными словами, изменяется ли ток в нагрузке при изменении, скажем напряжения, т.е. имеет ли источник тока эквивалентное сопротивление конечной величины (Rэкв
1. При заданном токе коллектора и напряжение Uбэ, и коэффициент h21э (эффект Эрли) несколько изменяются при изменении напряжения коллектор-эмиттер. Изменение напряжения Uбэ, связанное с изменением напряжения на нагрузке, вызывает изменение выходного тока, так как напряжение на эмиттере (а следовательно, и эмиттерный ток) изменяется, даже если напряжение на базе фиксировано. Изменение значения коэффициента h21э приводит к небольшим изменениям выходного (коллекторного) тока при фиксированном токе эмиттера, так как Iк = Iэ — Iб; кроме того, немного изменяется напряжение на базе в связи с возможным изменением сопротивления источника смешения, обусловленного изменениями коэффициента h21э (а следовательно, и тока базы). Эти изменения незначительны. Например, изменение выходного тока для схемы, представленной на рис. 2.22, a, составляет приблизительно 0,5% для транзистора типа 2N3565. В частности, при изменении напряжения на нагрузке от 0 до 8 В эффект Эрли обусловливает изменение тока на 0,5%, а нагрев транзистора — на 0,2%. Изменение коэффициента вносит дополнительный вклад в изменение выходного тока — 0,05% (для жесткого делителя напряжения). Все эти изменения приводят к тому, что источник тока работает хуже, чем идеальный: выходной ток немного зависит от напряжения и, следовательно, его сопротивление не бесконечно. В дальнейшем вы узнаете, что есть методы, которые позволяют преодолеть этот недостаток.
2. Напряжение Uбэ и коэффициент h21э зависят от температуры. В связи с этим при изменении температуры окружающей среды возникает дрейф выходного тока. Кроме того, температура перехода изменяется при изменении напряжения на нагрузке (в связи с изменением мощности, рассеиваемой транзистором) и приводит к тому, что источник работает не как идеальный. Изменение напряжения и Uбэ в зависимости от температуры окружающей среды можно скомпенсировать с помощью схемы, показанной на рис. 2.23. В этой схеме падение напряжения между базой и эмиттером транзистора Т2 компенсируется падением напряжения на эмиттерном переходе Т1 который имеет такие же температурные характеристики. Резистор R3 играет роль нагрузки для Т1, необходимой для задания втекающего тока базы транзистора Т2.
Рис. 2.23. Один из методов температурной компенсации источника тока.
Улучшение характеристик источника тока. Вообще говоря, изменение напряжения Uбэ, вызванное как влиянием температуры (относительное изменение составляет приблизительно -2 мВ/°С), так и зависимостью от напряжения Uбэ (эффект Эрли оценивается величиной ΔUбэ ≈ -0,001 ΔUкэ), можно свести к минимуму, если установить напряжение на эмиттере достаточно большим (по крайней мере 1 В), тогда изменение напряжения Uбэ на десятые доли милливольта не приведет к значительному изменению напряжения на эмиттерном резисторе (напомним, что схема поддерживает постоянное напряжение на базе). Например, если Uэ = 0,1В (т. е. к базе приложено напряжение 0,7 В), то изменение напряжения Uбэ на 10 мВ вызывает изменение выходного тока на 10%, если же Uэ = 1,0 В, то такое же изменение Uбэ вызывает изменение тока на 1%. Однако, не стоит заходить слишком далеко. Напомним, что нижняя граница рабочего диапазона определяется напряжением на эмиттере. Если в источнике тока, работающем от источника питания +10 В, напряжение на эмиттере сделать равным +5 В, то диапазон выхода будет равен немного менее 5 В (напряжение на коллекторе может изменяться от Uэ + 0,2 В до Uкк, т. е. от 5,2 до 10 В).
Рис. 2.24. Каскодный источник тока, обладающий повышенной устойчивостью к изменениям напряжения на нагрузке.
На рис. 2.24 показана схема, которая существенно улучшает характеристики источника тока. Источник тока Т1 работает, как и прежде, но напряжение на коллекторе фиксируется с помощью эмиттера Т2. Ток, текущий в нагрузку, такой же, как и прежде, так как коллекторный (для Т2) и эмиттерный токи приблизительно равны между собой (из-за большого значения h21э). В этой схеме напряжение Uкэ (дая Т1) не зависит от напряжения на нагрузке, а это значит, что устранены изменения напряжения Uбэ, обусловленные эффектом Эрли и температурой. Для транзисторов типа 2N3565 эта схема дает изменение тока на 0,1% при изменении напряжения на нагрузке от 0 до 8 В; для того чтобы схема обеспечивала указанную точность, следует использовать стабильные резисторы с допуском 1%. (Кстати, эту схему используют в высокочастотных усилителях, где она известна под названием «каскод»). В дальнейшем вы познакомитесь со схемами источников тока, в которых используются операционные усилители и обратная связь, и в которых также решена задача устранения влияния изменений Uбэ на выходной ток.
Влияние коэффициента h21э можно ослабить, если выбрать транзистор с большим значением h21э, тогда ток базы будет вносить незначительный вклад в ток эмиттера.
Рис. 2.25. Транзисторный источник тока с использованием напряжения Uбэ в качестве опорного.
На рис 2.25 показан еще один источник тока, в котором выходной ток не зависит от напряжения питания. В этой схеме напряжение Uбэ транзистора Т1, падая на резисторе R1, определяет выходной ток независимо от напряжения Uкк
Uвых = Uбэ/R2U2.
С помощью резистора R1 устанавливается смещение транзистора Т2 и потенциал коллектора Т1, причем этот потенциал меньше, чем напряжение Uкк, на удвоенную величину падения напряжения на переходе; тем самым уменьшается влияние эффекта Эрли. В этой схеме нет температурной компенсации; напряжение на R2 уменьшается приблизительно на 2,1 мВ/°С и вызывает соответствующее изменение выходного тока 0,3%/°С).
Подразделы: 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09
Модель Эберса-Молла для основных транзисторных схем
Источники тока. Электрическая цепь | Физика
В 1786 г. итальянский анатом и физиолог Луиджи Гальвани решил изучить действие атмосферного электричества на мышцы лягушки. Для этого он прикрепил к нерву лапки свежепрепарированной лягушки медный крючок, после чего подвесил лапку к железной решетке, окружавшей висячий садик его дома. Однако никакого действия атмосферы не последовало. И лишь тогда, когда под порывами ветра лапка случайно коснулась решетки забора, ее мускулы резко содрогнулись. Гальвани решил повторить опыты дома. Положив лапку на железную дощечку, он снова обнаружил конвульсивные сокращения мышц. После четырех лет всестороннего исследования открытого им явления Гальвани сообщил о своих наблюдениях в книге, которая называлась «Трактат о силах электричества при мышечном движении».
Появление этой книги вызвало огромный интерес в среде ученых. Опыты с лягушачьей лапкой стали повторять и физики, и химики, и философы, и врачи. Но лишь одному из них — итальянскому ученому Алессандро Вольта удалось понять истинную причину наблюдаемого эффекта.
Лапка сокращается не потому, что в лягушке сосредоточено какое-то особое «животное» электричество (как считал Гальвани), а потому, что через нее проходит электрический ток, возникающий благодаря контакту двух проводников из разных металлов, — к такому выводу пришел Вольта после тщательных исследований этого явления. По мнению Вольта, лягушка в этих опытах нужна лишь как «электрометр, в десятки раз более чувствительный, чем даже самый чувствительный электрометр с золотыми листочками». Поэтому тот же ток можно получить и без использования лягушки, если только позаботиться о том, чтобы разнородные металлы соприкасались с жидкостью, способной проводить электричество. И Вольта подтверждает свой вывод опытом на самом себе: соединив одни концы серебряной и оловянной проволочек между собой, он прикасается их противоположными концами к своему языку. Появившийся при этом кисло-горький вкус означал, что по языку пошел ток. Если бы источником электричества была сама мышца языка, то вкус должен был бы ощущаться и тогда, когда металлы одинаковые; этого, однако, не происходило.
Вольта продолжает опыты. Он берет две монеты из разного вещества и одну из них кладет себе на язык, а другую — под него. Соединив монеты проволочкой, он снова ощущает специфический вкус.
Наконец, в 1800 г. Вольта берет несколько десятков пар круглых пластин (из цинка и серебра) и, проложив между ними кружочки картона, смоченные соленой водой, располагает их в виде столба. Подсоединив к верхней и нижней пластинам столба провода, Вольта получает первый источник постоянного тока (вольтов столб).
На демонстрации вольтова столба перед французскими учеными присутствовал Наполеон Бонапарт. Опыты Вольта произвели на присутствующих очень сильное впечатление. Поэтому неудивительно, что за свои исследования Вольта получил титул графа и стал рыцарем Почетного легиона.
В последующие годы источники тока непрерывно совершенствовались и в конце концов приобрели тот вид, к которому мы все привыкли (рис. 22).
Конструкции современных источников разнообразны. Те из них, которые работают за счет химических реакций, называют химическими источниками тока. К ним относятся гальванические элементы (или просто элементы) и аккумуляторы.
Гальванические элементы (названные так в честь Л. Гальвани) являются источниками тока, как правило, разового пользования. Аккумуляторы же можно использовать многократно, периодически заряжая их.
У любого из этих источников имеются два полюса — положительный (+) и отрицательный (–). Разные заряды этих полюсов обусловлены химическими реакциями, протекающими внутри источника на проводниках (электродах), погруженных в специальный раствор.
Если с помощью проводов к источнику тока подключить какие-либо устройства, потребляющие электроэнергию, то под действием электрического поля, создаваемого источником, через них пойдет ток.
Соединенные друг с другом источник тока, провода и потребители электроэнергии (лампы, электроплитки, электро- и радиоаппаратура) образуют электрическую цепь.
Для того чтобы в цепи мог идти постоянный ток (т. е. ток, не изменяющийся с течением времени), электрическая цепь должна быть замкнутой. Если же где-то появится обрыв, то ток в цепи прекратится. На этом основано действие кнопок, рубильников, ключей и других устройств, позволяющих включать и выключать в цепи ток. Некоторые из этих выключателей, применяемые в школьных опытах, показаны на рисунке 23. На рисунке 24 изображен клавишный выключатель, используемый в помещениях для замыкания и размыкания скрытой электропроводки.
Для подключения электрооборудования или бытовой техники к сети используют специальные соединители, например штепсельные розетку (рис. 25, а) и вилку (рис. 25, б).
При замыкании цепи электрическое поле источника со скоростью 300000 км/с распространяется вдоль проводников, и свободные заряженные частицы в них практически одновременно приходят в упорядоченное движение — в цепи появляется ток.
За направление тока в цепи принимают то направление, в котором должны были бы двигаться по цепи положительные заряды, т. е. направление от положительного полюса источника тока к отрицательному. Такое соглашение было принято в первой половине XIX в. и с тех пор учитывается во всех правилах и законах теории электрического тока.
В металлических проводниках ток создается отрицательно заряженными частицами (электронами), которые движутся по цепи от отрицательного полюса источника к положительному. Направление тока и направление движения носителей тока в этом случае противоположны.
В растворах кислот, солей и щелочей (электролитах) носителями тока являются положительные и отрицательные ионы. Первые из них движутся в направлении от «+» источника к его «–», вторые — от «–» к «+».
Чертежи, на которых изображают электрические цепи, называют схемами. Каждый элемент цепи на схемах обозначают специальным условным знаком. Некоторые из этих условных обозначений приведены в таблице 2 и на форзаце.
Примеры электрических схем представлены на рисунке 26. На каждой из этих схем две лампы. Однако способ их включения различен. Соединение ламп, изображенное на рисунке 26, а, называют последовательным, а соединение ламп, изображенное на рисунке 26, б, — параллельным.
??? 1. Кто и когда изобрел первый источник тока? 2. Какие химические источники тока вы знаете? 3. Из чего состоит электрическая цепь? 4. Какой должна быть цепь, чтобы в ней мог существовать постоянный электрический ток? 5. Какое направление в цепи выбирают за направление тока? Совпадает ли оно с направлением движения свободных электронов? 6. Зачем в электрической цепи нужен источник тока?
Экспериментальное задание. Возьмите лимон, яблоко или соленый огурец и воткните в него два проводника. Одним из них может быть медный провод, а другим — железный гвоздь. Принесите изготовленный таким образом источник тока в школу и, подсоединив его проводами к гальванометру, убедитесь, что источник работает. (Гальванометром называют прибор для регистрации и измерения слабых токов. Школьный демонстрационный гальванометр изображен на рисунке 27.)
Что такое источник тока?
Прочитав ваши комментарии, я дам несколько иной ответ на этот вопрос.
Что такое источник тока? Ничего, или, лучше сказать, просто математическая модель. Тот, который вы описываете, не существует, как не существует источника напряжения.
Я думаю, что основная проблема здесь заключается в следующем утверждении: например, батарея, которая имеет постоянную разность потенциалов на концах независимо от изменений в цепи, к которой она подключена
, что неверно. Это поведение идеальной батареи, которая реальна как идеальный источник тока и, как и идеальный источник тока, не существует. На выход (и внутреннее состояние) каждой реальной батареи влияет схема, к которой она подключена.
Итак, почему у нас есть источники напряжения и тока? Ну, идея в том, что работа инженера состоит в том, чтобы в основном построить устройство, которое делает что-то довольно хорошо, и, как оказалось, для этого полного понимания того, как каждый компонент, используемый в устройстве, не нужен. Вот почему у нас есть такие вещи, как идеальные источники тока и напряжения.
Давайте еще раз вернемся к примеру с батареей. Вот простой эксперимент, который я провел с имеющимся у меня литий-полимерным аккумулятором: Сначала я полностью зарядил аккумулятор. Поскольку это двухэлементная батарея, ее напряжение при полной зарядке составляло 8,4 В, хотя номинальное напряжение 7,4 В. Затем я подключил к батарее резистор \$ 100 \mbox{ } k\Omega\$. Его напряжение осталось 8,4 В, и из этого я, возможно, мог сделать вывод, что батарея действительно является идеальным источником напряжения, так как я подключил к ней нагрузку, но ее напряжение не изменилось. Затем я взял имеющийся у меня электродвигатель, подключил его к аккумулятору и снова измерил напряжение аккумулятора. На этот раз оно составило 8,2 В. Очевидно, двигатель повлиял на батарею, и она больше не является идеальным источником напряжения, хотя это та же батарея, что и раньше. Поэтому я отключил двигатель и снова подключил резистор, и снова напряжение на аккумуляторе было 8,4 В.
Что здесь происходит? Является ли батарея идеальным источником напряжения или нет? Ну, мы знаем, что это не так, потому что я так сказал в начале ответа, но здесь я объясню, почему иногда кажется, что это так, а иногда кажется, что это не так. Как я уже сказал, источник напряжения представляет собой математическую модель. Когда внешняя цепь не оказывает большого влияния на работу батареи, я могу ее использовать, а когда внешняя цепь оказывает большое влияние на батарею, я не могу ее использовать. Итак, мы используем простую модель для представления поведения реальной схемы. Другой моделью может быть использование идеального источника напряжения с резистором, включенным последовательно на его выходе. Когда я подключаю внешнюю нагрузку к этой цепи, на внутреннем резисторе будет падать некоторое напряжение, а внешний резистор будет видеть более низкое напряжение на выходе. Это позволяет мне еще раз использовать идеальный источник напряжения для представления батареи, а поскольку я использую внутренний резистор вместе с идеальным источником напряжения, вывод будет более точно представлять поведение реальной батареи. Если мне нужно больше точности, я мог бы использовать более сложную модель и получить более точные результаты.
Важным моментом в электротехнике является изучение того, когда использовать правильную модель для представления чрезвычайно сложного компонента реальной схемы (и даже скромный резистор при детальном анализе является шедевром современной науки). Но чтобы сделать это, мы начнем с простых схем, чтобы понять, как на самом деле работают простейшие математические модели.
Когда мы приступим к анализу более сложных компонентов схемы, таких как, например, транзистор или диод, мы разобьем их на простую схему, состоящую из таких элементов, как резисторы и идеальные источники тока и напряжения. Это позволит нам упростить поведение более сложного компонента и избежать детального анализа его работы, если для наших нужд достаточно простой модели.
Совершенно та же история работает и с источниками тока, но я решил не рассказывать ее здесь, поскольку, как вы можете видеть из других ответов, схемы, которые можно смоделировать как идеальные источники тока, слишком сложны для вашего понимания на данный момент.
Итак, подведем итог: не существует реальных объектов, которые можно использовать для представления идеальных источников напряжения и тока, но есть некоторые объекты, которые могут быть (в некоторых случаях довольно точно) представлены идеальными источниками напряжения и тока. Лучшее, что вы можете сделать сейчас, это правильно запомнить определения идеальных источников напряжения и тока и не путать их с реальными объектами. Таким образом, вы не будете удивлены, если батарея не обеспечивает номинальное напряжение или если схема, обозначенная как идеальный источник тока, начнет дымить в какой-то момент, хотя она должна быть полностью невосприимчива к внешним изменениям в цепи.
В качестве примечания рассмотрим, что происходит с идеальным источником напряжения, когда его выходы замкнуты накоротко, и что происходит с идеальным источником тока, когда его выходы разомкнуты? И что происходит, когда вы закорачиваете батарею, и почему все батареи имеют предупреждение не закорачивать выходные контакты?
Анализ цепи. Это причина, по которой мы можем позволить источнику тока быть подключенным к заземлению?
Спросил
Изменено 2 года, 6 месяцев назад
Просмотрено 292 раза
\$\начало группы\$
В этом вопросе кто-то показывает мне, что эти две схемы эквивалентны. Я хочу убедиться, что моя идея о том, почему эти две схемы эквивалентны, верна.
Внутренний резистор идеального источника тока равен бесконечности, и какой ток этот источник тока обеспечивает в цепи, сколько будет обратная связь цепи с источником тока, я имею в виду, если ток \$x\$ A течет от источника тока, тогда этот \$x\$ ток будет течь в тот же источник тока, поэтому мы можем позволить источнику тока быть прикрепленным к земле.
Итак, если я подключу резистор рядом с источником тока, эквивалентная схема будет следующей:
Верно ли я думаю?
- анализ цепей
- ток
\$\конечная группа\$
2
\$\начало группы\$
Внутренний резистор идеального источника тока равен бесконечности, и какой ток этот источник тока подает в цепь, сколько будет обратная связь цепи с источником тока, я имею в виду, если ток \$x\$ A течет от источника источник тока, то \$x\$ Ток будет течь в тот же источник тока, поэтому мы можем позволить источнику тока быть прикрепленным к земле.
Нет. Это правда, что тот же самый ток, выходящий из источника тока, должен снова войти в него. Итак, в приведенной ниже схеме \$I_X=I_0+I_1 = x\$ A. Но это не причина, по которой вы можете заземлить источник тока. Как узнать, какое значение имеют \$I_0\$ и \$I_1\$, и сделать вывод, что можно просто подключить источник тока к земле?
смоделируйте эту схему – Схема создана с помощью CircuitLab0003 Теорема о суперпозиции утверждает, что в линейной цепи с несколькими источниками ток и напряжение для любого элемента цепи представляют собой сумму токов и напряжений, создаваемых каждым источником, действующим независимо. Итак, имитация этой схемы \$\конечная группа\$ 7
В этом вопросе кто-то показывает мне, что эти две цепи эквивалент.
Я не говорил, что это эквивалентно — я сделал упрощение, которое позволило мне найти ток через R4, который затем позволяет найти ток через R2. Однако его можно сделать эквивалентным одной дополнительной функцией (разделение источника тока): —
В своем исходном вопросе вы хотели найти текущий \$I_0\$. Итак, мой метод оказался вполне верным. Однако, если вам интересно узнать ток, протекающий от источника напряжения V1, вам нужно воспроизвести источник тока следующим образом (I3 в красном поле): —
Вышеприведенное будет «истинным» эквивалентом схема.
I3 (4 мА) теперь правильно берется из V1, но не влияет на \$I_0\$, и поэтому в исходной задаче я не удосужился включить его, поскольку вы решали только \$I_0\$.
Что касается вашего второго вопроса, если вас интересует мощность, рассеиваемая на резисторе R10, то вы должны включить его последовательно с источником тока, а если источник тока перемещается (для облегчения анализа), то и добавленный резистор тоже перемещается.