Site Loader

Сварочный инвертор своими руками

Вашему вниманию представлена схема сварочного инвертора, который вы можете собрать своими руками. Максимальный потребляемый ток — 32 ампера, 220 вольт. Ток сварки — около 250 ампер, что позволяет без проблем варить электродом 5-кой, длина дуги 1 см, переходящим больше 1 см в низкотемпературную плазму. КПД источника на уровне магазинных, а может и лучше (имеется в виду инверторные).

На рисунке 1 приведена схема блока питания для сварочного.


Рис.1 Принципиальная схема блока питания

Трансформатор намотан на феррите Ш7х7 или 8х8
Первичка имеет 100 витков провода ПЭВ 0.3мм
Вторичка 2 имеет 15 витков провода ПЭВ 1мм
Вторичка 3 имеет 15 витков ПЭВ 0.2мм
Вторичка 4 и 5 по 20 витков провода ПЭВ 0.35мм
Все обмотки необходимо мотать во всю ширину каркаса, это дает ощутимо более стабильное напряжение.


Рис.2 Принципиальная схема сварочного инвертора

На рисунке 2 — схема сварочника. Частота — 41 кГц, но можно попробовать и 55 кГц. Трансформатор на 55кгц тогда 9 витков на 3 витка, для увеличения ПВ трансформатора.

Трансформатор на 41кгц — два комплекта Ш20х28 2000нм, зазор 0.05мм, газета прокладка, 12вит х 4вит, 10кв мм х 30 кв мм, медной лентой (жесть) в бумаге. Обмотки трансформатора сделаны из медной жести толщиной 0.25 мм шириной 40мм обернутые для изоляции в бумагу от кассового аппарата. Вторичка делается из трех слоев жести (бутерброд) разделенных между собой фторопластовой лентой, для изоляции между собой, для лучшей проводимости высоко- частотных токов, контактные концы вторички на выходе трансформатора спаяны вместе.

Дроссель L2 намотан на сердечнике Ш20х28, феррит 2000нм, 5 витков, 25 кв.мм, зазор 0.15 — 0.5мм (два слоя бумаги от принтера). Токовый трансформатор – датчик тока два кольца К30х18х7 первичка продетый провод через кольцо, вторичка 85 витков провод толщиной 0.5мм.

Сборка сварочного

Намотка трансформатора

Намотку трансформатора нужно делать с помощью медной жести толщиной 0. 3мм и шириной 40мм, ее нужно обернуть термобумагой от кассового аппарата толщиной 0.05мм, эта бумага прочная и не так рвется как обычная при намотке трансформатора.

Вы скажите, а почему не намотать обычным толстым проводом, а нельзя потому что этот трансформатор работает на высокочастотных токах и эти токи вытесняются на поверхность проводника и середину толстого провода не задействует, что приводит к нагреву, называется это явление Скин эффект! 

И с ним надо бороться, просто надо делать проводник с большой поверхностью, вот тонкая медная жесть этим и обладает она имеет большую поверхность по которой идет ток, а вторичная обмотка должна состоять из бутерброда трех медных лент разделенных фторопластовой пленкой, она тоньше и обернуты все эти слои в термобумагу. Эта бумага обладает свойством темнеть при нагреве, нам это не надо и плохо, от этого не будет пускай так и останется главное, что не рвется.

Можно намотать обмотки проводом ПЭВ сечением 0.5…0.7мм состоящих из нескольких десятков жил, но это хуже, так как провода круглые и состыкуются между собой с воздушными зазорами, которые замедляют теплообмен и имеют меньшую общую площадь сечения проводов вместе взятых в сравнении с жестью на 30%, которая может влезть окна ферритового сердечника.

У трансформатора греется не феррит, а обмотка поэтому нужно следовать этим рекомендациям.

Трансформатор и вся конструкция должны обдуваться внутри корпуса вентилятором на 220 вольт 0.13 ампера или больше.

Конструкция

Для охлаждения всех мощных компонентов хорошо использовать радиаторы с вентиляторами от старых компьютеров Pentium 4 и Athlon 64. Мне эти радиаторы достались из компьютерного магазина делающего модернизацию, всего по 3…4$ за штуку.

Силовой косой мост нужно делать на двух таких радиаторах, верхняя часть моста на одном, нижняя часть на другом. Прикрутить на эти радиаторы диоды моста HFA30 и HFA25 через слюдяную прокладку. IRG4PC50W нужно прикручивать без слюды через теплопроводящую пасту КТП8.

Выводы диодов и транзисторов нужно прикрутить на встречу друг другу на обоих радиаторах, а между выводами и двумя радиаторами вставить плату, соединяющею  цепи питания 300вольт с деталями моста.

На схеме не указано нужно на эту плату в питание 300V припаять 12…14 штук конденсаторов по 0. 15мк 630 вольт. Это нужно, чтобы выбросы трансформатора уходили в цепь питания, ликвидируя резонансные выбросы тока силовых ключей от трансформатора.

Остальная часть моста соединяется между собой навесным монтажом проводниками не большой длины.

Ещё на схеме показаны снабберы, в них есть конденсаторы С15 С16 они должны быть марки К78-2 или СВВ-81. Всякий мусор туда ставить нельзя, так как снабберы выполняют важную роль:
первая — они глушат резонансные выбросы трансформатора  
вторая —  они значительно уменьшают потери IGBT  при выключении так как IGBT открываются быстро, а вот закрываются гораздо медленнее и во время закрытия емкость С15 и С16 заряжается через диод VD32 VD31 дольше чем время закрытия IGBT,  то есть этот снаббер перехватывает всю мощь на себя не давая выделяться теплу на ключе IGBT  в три раза чем было бы без него.
Когда IGBT быстро открываются, то через резисторы R24 R25 снабберы плавно разряжаются и основная мощь выделяется на этих резисторах.  

Настройка

Подать питание на ШИМ 15вольт и хотя бы на один вентилятор для разряда емкости С6 контролирующую время срабатывания реле. 

Реле К1 нужно для замыкания резистора R11, после того, когда зарядятся конденсаторы С9…12 через резистор R11 который уменьшает всплеск тока при включении сварочного в сеть 220вольт.

Без резистора R11 на прямую, при включении получился бы большой БАХ во время зарядки емкости 3000мк 400V, для этого эта мера и нужна.

Проверить срабатывание реле замыкающие резистор R11 через 2…10 секунд после подачи питания на плату ШИМ.

Проверить плату ШИМ на присутствие прямоугольных импульсов идущих к оптронам HCPL3120 после срабатывания обоих реле К1 и К2.

Ширина импульсов должна быть шириной относительно нулевой паузе 44% нулевая 66%

Проверить драйвера на оптронах и усилителях ведущих прямоугольный сигнал амплитудой 15вольт убедится в том, что напряжение на IGBT затворах не превышает 16вольт.

Подать питание 15 Вольт на мост для проверки его работы на правильность изготовления моста.

Ток потребления при этом не должен превышать 100мА на холостом ходу.

Убедится в правильной фразировке обмоток  силового трансформатора и трансформатора тока с помощью двух лучевого осциллографа .

Один луч осциллографа на первичке, второй на вторичке, чтобы фазы импульсов были одинаковые, разница только в напряжении обмоток.

Подать на мост питание от силовых конденсаторов С9…С12 через лампочку 220вольт 150..200ватт предварительно установив частоту ШИМ 55кГц подключить осциллограф на коллектор эмиттер нижнего IGBT транзистора посмотреть на форму сигнала, чтобы не было всплесков напряжения выше 330 вольт как обычно.

Начать понижать тактовую частоту ШИМ до появления на нижнем ключе IGBT маленького загиба говорящем о перенасыщении трансформатора, записать эту частоту на которой произошел загиб поделить ее на 2 и результат прибавить к частоте перенасыщения, например перенасыщение 30кГц делим на 2 = 15 и 30+15=45, 45 это и есть рабочая частота трансформатора и ШИМа.

Ток потребления моста должен быть около 150ма и лампочка должна еле светиться, если она светится очень ярко, это говорит о пробое обмоток трансформатора или не правильно собранном мосте.

Подключить к выходу сварочного провода длиной не мене 2 метров для создания добавочной индуктивности выхода.

Подать питание на мост уже через чайник 2200ватт,  а на лампочку установить силу тока на ШИМ минимум R3 ближе к резистору R5, замкнуть выход сварочного проконтролировать напряжение на нижнем ключе моста, чтобы было не более 360вольт по осциллографу, при этом не должно быть ни какого шума от трансформатора. Если он есть — убедиться в правильной фазировке трансформатора -датчика тока пропустить провод в обратную сторону через кольцо.

Если шум остался, то нужно расположить плату ШИМ и драйвера на оптронах подальше от источников помех в основном силовой трансформатор и дроссель L2 и силовые проводники.

Еще при сборке моста драйвера нужно устанавливать рядом с радиаторами моста над IGBT транзисторами и не ближе к резисторам R24 R25 на 3 сантиметра. Соединения выхода драйвера и затвора IGBT  должны быть короткие. Проводники идущие от ШИМ к оптронам не должны проходить рядом с источниками помех и должны быть как можно короче.

Все сигнальные провода от токового трансформатора и идущие к оптронам от ШИМ должны быть скрученные, чтобы понизить уровень помех и должны быть как можно короче.

Дальше начинаем повышать ток сварочного с помощью резистора R3 ближе к резистору R4 выход сварочного замкнут на ключе нижнего IGBT, ширина импульса чуть увеличивается, что свидетельствует о работе ШИМ. Ток больше — ширина больше, ток меньше — ширина меньше.

Ни какого шума быть не должно иначе выйдут из строя IGBT.

Добавлять ток и слушать, смотреть осциллограф на превышение напряжения нижнего ключа, чтобы не выше 500вольт, максимум 550 вольт в выбросе, но обычно 340 вольт.

Дойти до тока, где ширина резко становиться максимальной говорящим, что чайник не может дать максимальный ток.

Все, теперь на прямую без чайника идем от минимума до максимума, смотреть осциллограф и слушать, чтобы было тихо. Дойти до максимального тока, ширина должна увеличиться, выбросы в норме, не более 340вольт обычно.

Начинать варить, в начале 10 секунд. Проверяем радиаторы, потом 20 секунд, тоже холодные и 1 минуту трансформатор теплый, спалить 2 длинных электрода 4мм трансформатор горечеватый 

Радиаторы диодов 150ebu02 заметно нагрелись после трех электродов, варить уже тяжело, человек устает, хотя варится классно, трансформатор горяченький, да и так уже не кто не варит. Вентилятор, через 2 минуты трансформатор доводит до теплого состояния и можно варить снова до опупения.

Ниже вы можете скачать печатные платы в формате LAY и др. файлы

Евгений Родиков (evgen100777 [собака] rambler.ru). По всем возникшим вопросам при сборке сварочника пишите на E-Mail.

Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Блок питания
Линейный регулятор

LM78L15

2Поиск в магазине ОтронВ блокнот
AC/DC преобразователь

TOP224Y

1Поиск в магазине ОтронВ блокнот
ИС источника опорного напряжения

TL431

1Поиск в магазине ОтронВ блокнот
Выпрямительный диод

BYV26C

1Поиск в магазине Отрон
В блокнот
Выпрямительный диод

HER307

2Поиск в магазине ОтронВ блокнот
Выпрямительный диод

1N4148

1Поиск в магазине ОтронВ блокнот
Диод Шоттки

MBR20100CT

1Поиск в магазине ОтронВ блокнот
Защитный диод

P6KE200A

1Поиск в магазине ОтронВ блокнот
Диодный мост

KBPC3510

1Поиск в магазине ОтронВ блокнот
Оптопара

PC817

1Поиск в магазине ОтронВ блокнот
C1, C2Электролитический конденсатор10мкФ 450В2Поиск в магазине ОтронВ блокнот
Электролитический конденсатор100мкФ 100В2
Поиск в магазине ОтронВ блокнот
Электролитический конденсатор470мкФ 400В6Поиск в магазине ОтронВ блокнот
Электролитический конденсатор50мкФ 25В1Поиск в магазине ОтронВ блокнот
C4, C6, C8Конденсатор0. 1мкФ3
Поиск в магазине Отрон
В блокнот
C5Конденсатор1нФ 1000В1Поиск в магазине ОтронВ блокнот
С7Электролитический конденсатор1000мкФ 25В1Поиск в магазине ОтронВ блокнот
Конденсатор510 пФ2Поиск в магазине ОтронВ блокнот
C13, C14Электролитический конденсатор10 мкФ2Поиск в магазине ОтронВ блокнот
VDS1Диодный мост600В 2А1Поиск в магазине ОтронВ блокнот
NTC1Терморезистор10 Ом1Поиск в магазине ОтронВ блокнот
R1Резистор

47 кОм

1Поиск в магазине ОтронВ блокнот
R2Резистор

510 Ом

1Поиск в магазине ОтронВ блокнот
R3Резистор

200 Ом

1Поиск в магазине ОтронВ блокнот
R4Резистор

10 кОм

1Поиск в магазине ОтронВ блокнот
Резистор

6. 2 Ом

1Поиск в магазине ОтронВ блокнот
Резистор

30Ом 5Вт

2Поиск в магазине ОтронВ блокнот
Сварочный инвертор
ШИМ контроллер

UC3845

1Поиск в магазине ОтронВ блокнот
VT1MOSFET-транзистор

IRF120

1Поиск в магазине ОтронВ блокнот
VD1
Выпрямительный диод

1N4148

1Поиск в магазине ОтронВ блокнот
VD2, VD3Диод Шоттки

1N5819

2Поиск в магазине ОтронВ блокнот
VD4Стабилитрон

1N4739A

1Поиск в магазине ОтронВ блокнот
VD5-VD7Выпрямительный диод

1N4007

3Для понижения напряженияПоиск в магазине ОтронВ блокнот
VD8Диодный мост

KBPC3510

2Поиск в магазине ОтронВ блокнот
C1Конденсатор22 нФ1Поиск в магазине ОтронВ блокнот
C2, C4, C8Конденсатор0. 1 мкФ3
Поиск в магазине Отрон
В блокнот
C3Конденсатор4.7 нФ1Поиск в магазине ОтронВ блокнот
C5Конденсатор2.2 нФ1Поиск в магазине ОтронВ блокнот
C6Электролитический конденсатор22 мкФ1Поиск в магазине ОтронВ блокнот
C7Электролитический конденсатор200 мкФ1Поиск в магазине ОтронВ блокнот
C9-C12Электролитический конденсатор3000мкФ 400В4Поиск в магазине ОтронВ блокнот
R1, R2Резистор

33 кОм

2Поиск в магазине ОтронВ блокнот
R4Резистор

510 Ом

1Поиск в магазине ОтронВ блокнот
R5Резистор

1. 3 кОм

1Поиск в магазине ОтронВ блокнот
R7Резистор

150 Ом

1Поиск в магазине ОтронВ блокнот
R8Резистор

1Ом 1Ватт

1Поиск в магазине ОтронВ блокнот
R9Резистор

2 МОм

1Поиск в магазине ОтронВ блокнот
R10Резистор

1.5 кОм

1Поиск в магазине ОтронВ блокнот
R11Резистор

25Ом 40Ватт

1Поиск в магазине ОтронВ блокнот
R3Подстроечный резистор2. 2 кОм1Поиск в магазине ОтронВ блокнот
Подстроечный резистор10 кОм1Поиск в магазине ОтронВ блокнот
K1Реле12В 40А1Поиск в магазине ОтронВ блокнот
K2РелеРЭС-491Поиск в магазине ОтронВ блокнот
 
Q6-Q11IGBT-транзистор

IRG4PC50W

6Поиск в магазине ОтронВ блокнот
MOSFET-транзистор

IRF5305

8Поиск в магазине ОтронВ блокнот
D2, D3Диод Шоттки

1N5819

2Поиск в магазине ОтронВ блокнот
VD17, VD18Выпрямительный диод

VS-HFA30PA60CPBF

2Поиск в магазине ОтронВ блокнот
VD19-VD22Выпрямительный диод

VS-150EBU02

4Поиск в магазине ОтронВ блокнот
VD31, VD32Выпрямительный диод

VS-HFA25PB60PBF

2Поиск в магазине ОтронВ блокнот
VD36-VD41Стабилитрон

1N4744A

12Поиск в магазине ОтронВ блокнот
Оптопара

HCPL-3120

2Поиск в магазине ОтронВ блокнот
C13, C21Электролитический конденсатор10 мкФ2Поиск в магазине ОтронВ блокнот
C15-C18Конденсатор6. 8 нФ4К78-2 или СВВ-81Поиск в магазине ОтронВ блокнот
C20, C22Электролитический конденсатор47мкФ 25В2Поиск в магазине ОтронВ блокнот
L2Катушка индуктивности35 мкГн1Поиск в магазине ОтронВ блокнот
R12, R13, R50, R54Резистор

1 кОм

4Поиск в магазине ОтронВ блокнот
R14, R15Резистор

1.5 кОм

2Поиск в магазине ОтронВ блокнот
R17, R51Резистор

10 Ом

2Поиск в магазине ОтронВ блокнот
R24, R25Резистор

30Ом 20Ватт

2Поиск в магазине ОтронВ блокнот
R26Резистор

2. 2 кОм

1Поиск в магазине ОтронВ блокнот
R27, R28Резистор

5Ом 5Ватт

2Поиск в магазине ОтронВ блокнот
R36, R46-R48, R52, R42-R44Резистор

5 Ом

8Поиск в магазине ОтронВ блокнот
R45, R53Резистор

1.5 Ом

2Поиск в магазине ОтронВ блокнот
Добавить все

Скачать список элементов (PDF)

Теги:
  • Sprint-Layout
  • Сварка

Сварочный инвертор своими руками: схема, видео — Asutpp

Конструктор и знаменитый ученый Юрий Негуляев в свое время изобрел практически незаменимое устройство – сварочный инвертор. Предлагаем рассмотреть, как своими руками сделать сварочный инвертор с применением импульсного трансформатора и мощных MOSFET транзисторов.

Самая важное при конструировании или ремонте покупного или самодельного инвертора — его принципиальная электрическая схема. Её мы для изготовления своего инвертора взяли именно из проекта Негуляева.

Принципиальная электрическая схема сварочного инвертора

Изготовление трансформатора и дросселя

Для работы нам понадобится следующее оборудование:

  1. Ферритовый сердечник.
  2. Каркас для трансформатора.
  3. Медная шина или провод.
  4. Скоба для фиксации двух половинок сердечника.
  5. Термостойкая изоляционная лента.

Для начала нужно запомнить простое правило: обмотки наматываются только на полную ширину каркаса, при такой конструкции трансформатор становится более устойчив к перепадам напряжения и внешним воздействиям.

Качественный импульсный трансформатор наматывается медной шиной или пучком проводов. Алюминиевые провода такого же сечения не способны выдержать достаточно большую плотность тока в инверторе.

В этом варианте исполнения трансформатора, вторичную обмотку нужно наматывать в несколько слоев, по принципу бутерброда. Пучок проводов сечением 2 мм, скрученных вместе, будет служить вторичной обмоткой. Они должны быть изолированы друг от друга, например, лаковым покрытием.

Кольца обмоток

Между первичной и вторичной обмоткой изоляции должно быть в два или три раза больше, чтобы на вторичную обмотку не попало сетевое напряжение, которое в выпрямленном виде составляет 310 вольт. Для этого лучше всего подходит фторопластовая термостойкая изоляция.

Трансформатор можно выполнить и не на стандартном сердечнике, применив для этих целей 5 трансформаторов от строчной развертки неисправных телевизоров, объединенных в один общий сердечник. Так же необходимо помнить и про воздушный зазор между обмотками и сердечником трансформатора, это облегчает его охлаждение.

Важное замечание, бесперебойная работа устройства напрямую зависит не только от величины постоянного тока, но и от толщины провода вторичной обмотки трансформатора. То есть, если намотать обмотку толще, чем 0,5 мм, мы получим скин-эффект, который не очень хорошо сказывается на режиме работы и тепловых характеристиках трансформатора.

Так же на ферритовом сердечнике изготавливается и трансформатор тока, который после будет закреплен на положительном силовом проводе, выводы с этого трансформатора приходят на плату управления для отслеживания и стабилизации выходного тока.

Для уменьшения пульсации на выходе аппарата и меньшему количеству выбросов помех в сеть питания используется дроссель. Его так же наматывают на ферритовом каркасе произвольного исполнения, проводом или шиной, толщина которого соответствует толщине провода вторичной обмотки.

Конструкция сварочного аппарата

Рассмотрим, как в домашних условиях сконструировать достаточно мощный импульсный сварочный инвертор.

Если повторять конструкцию по системе Негуляева, то транзисторы прикручиваются к радиатору специально вырезанной для этого пластиной, таким образом улучшается передача тепла от транзистора к радиатору. Между радиатором и транзисторами необходимо проложить термопроводящую, не пропускающую ток прокладку. Это обеспечивает защиту от короткого замыкания между двух транзисторов.

Выпрямительные диоды крепятся к алюминиевой пластине толщиной 6 мм, крепление осуществляется таким же способом, как и крепление транзисторов. Их выходы соединяться между собой неизолированным проводом сечением 4 мм. Следует соблюдать осторожность, провода не должны соприкасаться.

Дроссель к основанию сварочного аппарата крепится железной пластиной, размеры которой повторяют форму самого дросселя. Для уменьшения вибрации, между дросселем и корпусом прокладывают резиновый уплотнитель.

Видео: сварочный инвертор своими руками

Все силовые проводники внутри корпуса инвертора нужно развести в разные стороны, иначе существует возможность короткого замыкания. Вентилятор охлаждает несколько радиаторов одновременно, каждый из которых предназначен для своей части схемы. Такая конструкция позволяет обойтись всего одним вентилятором, установленным на задней стенке корпуса, что значительно экономит место.

Для охлаждения самодельного сварочного инвертора можно использовать вентилятор от компьютерного корпуса, он оптимально подходит как по габаритам, так и по мощности. Так как вентиляция вторичной обмотки играет большую роль, это следует учитывать при его расположении.

Схема: разобранный сварочный инвертор

Вес такого инвертора будет колебаться от 5 до 10 кг, при этом его сварочный ток может быть в пределах от 30 до 160 ампер.

Инвертор из компьютера

Как настраивать работу инвертора

Сделать самодельный сварочный инвертор, это не так уж и сложно, тем более что это почти полностью бесплатное изделие, если не считать расходы на некоторые детали и материалы. Но для настройки собранного устройства может понадобиться помощь специалистов. Как это можно сделать самому?

Инструкция облегчающая самостоятельную настройку сварочного инвертора:

  1. Для начала нужно подать сетевое напряжение на плату инвертора, после чего блок начнет издавать характерный писк импульсного трансформатора. Также напряжение подается на охлаждающий вентилятор, это не даст перегреваться конструкции и работа аппарата будет намного стабильнее.
  2. После того, как силовые конденсаторы полностью зарядились от сети, нам нужно замкнуть токоограничивающий резистор в их цепи. Для этого нужно проверить работу реле, убедившись, что напряжение на резисторе равно нулю. Помните, если провести подключение инвертора без токоограничивающего резистора, то может случиться взрыв!
  3. Применение такого резистора значительно уменьшает скачки тока во время включения сварочного аппарата в сеть 220 вольт.
  4. Наш инвертор способен вырабатывать ток свыше 100 ампер, это значение зависит от конкретной схемы, примененной в разработке. Узнать данное значение не сложно при помощи осциллографа. Нужно замерить периодичность поступающих импульсов на трансформатор, они должны составлять соотношения 44 и 66 процентов.
  5. Режим сварки, проверяется непосредственно на блоке управления, подключив вольтметр к выходу усилителя оптрона. Если инвертор маломощный, среднее амплитудное напряжение должно составлять около 15 вольт.
  6. Затем проверяется правильность сборки выходного моста, для этого на вход инвертора подается напряжение 16 вольт от любого подходящего блока питания. На холостом ходу блок потребляет ток около 100 мА, это необходимо учитывать при проведении контрольных замеров.
  7. Для сравнения можно проверить работу промышленного инвертора. При помощи осциллографа измеряют импульсы на обоих обмотках, они должны соответствовать друг другу.
  8. Теперь необходимо проконтролировать работу сварочного инвертора с подключенными силовыми конденсаторами. Меняем напряжение питания с 16 вольт на 220 вольт, подключая аппарат непосредственно к электрической сети. При помощи осциллографа, подключенного к выходным MOSFET транзисторам, контролируем форму сигнала, она должна соответствовать испытаниям на пониженном напряжении.

Видео: сварочный инвертор на ремонте.

Сварочный инвертор – это очень популярный и необходимый аппарат, в любой деятельности, как на промышленных предприятиях, так и в домашнем хозяйстве. Кроме того, за счет применения встроенного выпрямителя и регулятора тока, с помощью такого сварочного инвертора можно добиться лучших результатов сварки по сравнению с результатами, которых можно достичь при пользовании традиционными аппаратами, трансформаторы которых выполнены из электротехнической стали.

Как сделать схему инвертора

Фарва Навази 8 171 просмотр

Введение

Существует несколько способов создания инвертора, когда инженеру необходимо преобразовать постоянный ток в переменный. Поэтому мы решили попробовать создать инвертор из 12-вольтовой батареи. Мы можем получить 220 В переменного тока на выходе всего 12 вольт. В результате для схемы может потребоваться большое количество компонентов для повышения напряжения. Нет, схема настолько проста, что требуется всего несколько компонентов. Но как это сделать? Ответ на этот вопрос мы узнаем по мере прохождения схемы. В результате в этом уроке мы увидим, как сделать схему инвертора.

Основной функцией инвертора является преобразование электроэнергии постоянного тока в мощность переменного тока. Коммунальное предприятие может поставлять электроэнергию переменного тока в дома и компании; системы переменного тока или цепи батарей хранят только энергию постоянного тока. Кроме того, практически все бытовые приборы, а также другое электрическое оборудование могут работать от сети переменного тока.

Получите купон на 50 долларов для заказа печатных плат и печатных плат: от изготовления до сборки, от 1 до 14 слоев, PCBGOGO обладает достаточным опытом, чтобы удовлетворить все ваши потребности. Прототип печатной платы на PCBGOGO прямо сейчас, попробуйте.

Купон на 50 долларов PCBGoGo

Компоненты оборудования

Следующие компоненты необходимы для изготовления схемы инвертора Значение Кол-во 1 IC CD4047 1 2 МОП-транзистор IRFZ44 2 3 Трансформатор с центральным отводом 12-0-12 В 1 4 Потенциометр 100 кОм 1 5 900 41 Светодиод 1 6 Конденсаторы 1000 мкФ, 10 нФ 1 7 1, 1, 2 2 1 9 1

CD4047 Схема контактов

Подробное описание схемы контактов, размеров и технических характеристик загрузите в техпаспорт CD4047

Схема инвертора

Описание работы 9000 9

Микросхема CD 4047 настроена на это 12 В для Инвертор на 220 вольт с помощью нескольких компонентов, таких как потенциометр, конденсаторы и резисторы. Контакты 10 и 11 используются для сбора выходных данных. Вы можете получить переменный диапазон выходного импульса на контактах 10 Q и 11 Q’, регулируя значение переменного резистора. N-канальные полевые МОП-транзисторы, стоковые выводы которых подключены к трансформатору, получают этот выходной сигнал. Когда проводные полевые МОП-транзисторы управляются чередующимися прямоугольными импульсами, вторичная обмотка толкается, создавая переменное магнитное поле. Это магнитное поле теперь индуцируется в основной обмотке трансформатора, что приводит к высокому переменному напряжению.

Применение и использование

  • Для любых цепей переменного тока, требующих преобразования низкого напряжения постоянного тока
  • Эта цепь также может использоваться в системах освещения.
  • Вы можете использовать это в различных схемах индикации, работающих от сети переменного тока.

Похожие сообщения:

Самодельный инвертор Схема таймера arduino 555 своими руками

0.

0 Базовое введение

Что случилось, друзья, с возвращением. Сегодня мы рассмотрим очень простую схему, но также довольно интересную. Если вы увлекаетесь электроникой, держу пари, вы слышали об инверторах. У нас есть выпрямители, которые преобразуют переменное напряжение в постоянное, а затем инверторы, которые преобразуют постоянное напряжение в переменное. Инвертор мощности или инвертор — это электронное устройство или схема, которая преобразует постоянный ток (DC) в переменный ток (AC). Входное напряжение, выходное напряжение и частота, а также общая потребляемая мощность зависят от конструкции конкретного устройства или схемы. Инвертор не производит никакой мощности; питание обеспечивается источником постоянного тока. Инвертор мощности может быть полностью электронным или может представлять собой комбинацию механических эффектов (например, вращающегося устройства) и электронных схем. Статические инверторы не используют движущиеся части в процессе преобразования.

Итак, сегодня мы увидим, как работает инвертор и как получить выходное переменное напряжение от 12-вольтовой батареи. Так, например, если вы находитесь в машине и вам нужно 220 В для зарядки ноутбука, это будет очень полезная схема, поскольку она даст вам 220 В переменного тока из 12 В постоянного тока. Итак, давайте начнем.

1.0 Что нам нужно?

Расскажу немного обо всех компонентах. У вас есть фото ниже с некоторыми компонентами. Для более подробной информации перейдите на страницу полного списка деталей. Там вы найдете все компоненты, цены и различные варианты.

Полный список запчастей смотрите здесь:

Как дела, друзья, с возвращением. Несколько месяцев назад я купил приведенный ниже инвертор в местном магазине. Давайте откроем его и посмотрим, что внутри. Как я уже догадался, у нас есть трансформатор и несколько МОП-транзисторов. На вход подаю 12В как напряжение автомобильного аккумулятора и на выход подключаю осциллограф. Как и ожидалось, у меня есть выход переменного тока 220 В и 60 Гц, а также, как и ожидалось, это не идеальная синусоидальная волна, которую дает обычная домашняя розетка. Это означает, что здесь происходит какое-то прямоугольное переключение, поэтому я решил попробовать свой собственный проект инвертора, поэтому я попробовал несколько схем, которые нашел в Интернете. Давайте отложим это в сторону и начнем урок.


1.0 Инвертор Arduino

Сначала я объясню вам, как работает базовый инвертор. Затем мы смоделируем схему с помощью Arduino и, наконец, сделаем ее постоянной с помощью схемы таймера 555.
Прежде чем мы начнем, примите к сведению. Даже эта схема будет маломощной, она все равно будет находиться под высоким напряжением, которое может навредить вам. Поэтому, если вы в чем-то не уверены или не используете подходящие инструменты, не подавайте питание на схему. Дважды проверьте соединения перед подачей питания и никогда, никогда не прикасайтесь к выходу переменного тока. Я уже сделал это за вас, так что вам не нужно этого делать. Боль безумная.

Итак, давайте посмотрим, как работает инвертор. Мы изучим базовую схему инвертора только с двумя переключателями, в данном случае с двумя N-канальными МОП-транзисторами, поэтому выходное напряжение не будет идеальным синусоидальным переменным напряжением, как в домашней розетке, а будет больше похоже на прямоугольную волну. Так что не используйте этот инвертор с высокотехнологичной электроникой, которой нужна идеальная синусоида. Эта схема полезна для зарядных устройств для мобильных устройств и ноутбуков, маломощных лампочек и так далее, как из-за малой мощности, так и из-за отсутствия идеального синусоидального выхода.


Итак, у нас есть постоянное напряжение 12 В на одной стороне, и мы хотим, чтобы на выходе были 220 вольт и 60 герц. Для этого мы будем использовать трансформатор, подобный приведенному выше, с одной катушкой на выходе и другой на входе, но катушка на входе разделена пополам таким образом, что средний контакт будет основным входом, и тогда мы иметь два выхода.
Итак, давайте теперь представим, что на каждом выходе мы добавляем переключатель, так как кнопка подключена к земле, а средний контакт подключен к 12В. Если мы замкнем верхний ключ, ток будет проходить только через первую первичную обмотку. Итак, магнитный поток индуцируется в одном направлении. Сердечник трансформатора будет передавать этот магнитный поток на вторичную катушку, и, как мы все знаем, выходное напряжение трансформатора будет определяться следующей формулой, где N — количество витков каждой катушки.


Но мы также знаем, что трансформаторы не будут работать с постоянным напряжением, поэтому ток на выходе будет индуцироваться только при изменении магнитного потока.
Статический магнитный поток, подобный этому, который мы применяем прямо сейчас, не будет индуцировать ток в катушке. Только вначале при нажатии на кнопку в катушке будет индуцироваться ток в течение короткого промежутка времени. Таким образом, мы обязательно должны будем замыкать и размыкать ключ, чтобы получить переменное напряжение на выходе. Таким образом, включение и выключение этих двух переключателей, перевернутых друг относительно друга, создаст хороший колеблющийся магнитный поток внутри сердечника трансформатора. Этот магнитный поток индуцирует ток во вторичной обмотке, как гласит закон Фарадея. Итак, если у нас есть ток, у нас есть падение напряжения.
Используя приведенную выше формулу, мы можем узнать количество витков для каждой катушки. Мы знаем, что на входе будет 12 В от батареи, и давайте сделаем первичную катушку 100 витков. Если мы хотим 220 на выходе, нам понадобится вторичка на 1833 витка.

1.1 Схема

Вот и все. Все, что нам нужно сделать, это быстро переключить эти два переключателя, чтобы получить напряжение переменного тока с помощью трансформатора. Как быстро вы говорите? Обычно напряжение в домашней розетке составляет от 50 до 60 герц. Это означает, что мы должны включать и выключать каждый переключатель около 120 раз в секунду и получать частоту 60 герц.
Хорошо, конечно, в схеме не будет таких переключателей. Вместо этого мы будем использовать МОП-транзисторы. Подайте напряжение на его затвор, и он будет активирован как переключатель, позволяющий току проходить от стока к истоку, в случае этого IRFZ44 N-канального МОП-транзистора.


Для первого теста мы будем использовать Arduino для подачи прямоугольного сигнала на затвор каждого полевого МОП-транзистора. Мы знаем, что два сигнала должны быть инвертированы друг относительно друга, поэтому, когда один высокий, другой низкий, и наоборот.
Мы также знаем, что МОП-транзисторы будут работать при напряжении 12 В, а Arduino работает при напряжении 5 В. Итак, если мы хотим также подать 12 В на затвор MOSFET, нам придется использовать драйвер MOSFET. В этом случае самым простым драйвером MOSFET будет BJT NPN-транзистор, подобный тому, что на схеме у затвора каждого MOSFET. Подтягивающий резистор подключен к 12 В, поэтому, когда транзистор NPN (BC547) закрыт, напряжение на затворе будет 12 В. Но когда мы активируем транзистор NPN, напряжение упадет до земли. Таким образом, мы могли легко получить прямоугольную волну со значениями от 0 до 12 вольт и подать ее на затвор MOSFET.

1.2 Тест

Я смонтирую следующую схему на одну из моих макетных плат для тестов. Подсоедините базу двух NPN-транзисторов к контактам 3 и 5 Arduino с резистором 100 Ом к каждому. Не забудьте разделить землю между Arduino и схемой.


Вот оно. Два N-канальных полевых МОП-транзистора IRFz44, драйверы BJT с подтяжкой до 12 вольт, трансформатор, большая входная емкость, чтобы обеспечить стабильный вход, здесь Arduino и конденсатор на 400 В на выходе для сглаживания прямоугольного сигнала. Я загружаю следующий небольшой код в Arduino. Как мы видим, у нас есть два контакта, цифровые контакты 3 и 5, определенные как выходы. Я устанавливаю высокий уровень для одного вывода и низкий уровень для другого, а через 8 мс делаю обратное и добавляю еще одну задержку 8 мс. Это даст мне прямоугольный сигнал 62 Гц на этих контактах, как мы можем видеть здесь на моем осциллографе.

См. пример кода здесь:

У меня есть трансформатор от старых зарядных устройств на 12 В, которые были у меня в мастерской. Вы можете намотать свой собственный трансформатор, если хотите. Поскольку вы, вероятно, захотите возить эту схему в своей машине, вы захотите использовать небольшие трансформаторы, но в моем случае, для этого примера, у меня есть большой и также с металлическим сердечником. Для большей эффективности попробуйте использовать ферритовый сердечник.


Так или иначе, я сделал все подключения, загрузил код и подключил на выходе люминесцентную лампочку на 15 Вт. Для этой лампочки требуется напряжение 220 В и 60 Гц, поэтому давайте посмотрим, работает ли наша схема.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *