Site Loader

Содержание

Набор для сборки простой электронной нагрузки 150 Ватт

Некоторое время назад товарищ, который занимается разными аккумуляторами, попросил меня придумать ему некий стенд для тестирования аккумуляторных сборок и одной из важных функций данного стенда является операция разряда этих сборок. Изначально планировалось все сделать самому, но выяснилось что в Китае продается дешевый и неплохой набор для сборки и в некоторых ситуациях выгоднее использовать его, чем делать все с нуля.

Вообще у меня уже довольно много обзоров разных электронных нагрузок, есть также обзор простой, полностью самодельной и я сегодня буду неоднократно к нему обращаться, так как данный набор во многом очень с ней похож.

Как я написал в предисловии, нагрузка понадобилась для разряда аккумуляторных сборок, в планах сделать прибор для тестирования и балансировки сборок до 19S и потому данный обзор будет далеко не последним.
Ток разряда большой не нужен, мощность планируется порядка 120-130 Ватт что вписывается в заявленные производителем 150 Ватт.

Кроме того в данном обзоре я объясню как вообще работает простая электронная нагрузка и почему мне понравился именно данный набор.

Для начала о продавце. На странице товара можео выбрать несколько вариантов:
1. Только печатная плата, цена около 1.6 доллара
2. Печатная плата и набор компонентов без силовых транзисторов — 3.8 доллара
3. Печатная плата и все компоненты включая силовые транзисторы — 4.9 доллара
4. Ампервольтметр — 2.2 доллара.

Кроме того в характеристиках заявлено — 150 Вт 15 В 0-10A / 72V 0-2A, т.е. предполагается наличие двух вариантов исполнения и об этом, а также о моей ошибке я расскажу позже.

К упаковке вопросов не возникло, как к магазинной, так и посредника. Комплект состоит из печатной платы и пакета с компонентами.

Я заказывал полный комплект, т.е. печатная плата, все компоненты и транзисторы. Ампервольтметр не стал заказывать так как мне он для проекта не нужен.

Размеры печатной платы 100х100мм, присутствуют дополнительные отверстия для крепления радиатора и самой платы в корпусе устройства.

Часть силовых дорожек вынесена на нижнюю сторону печатной платы, я рекомендую продублировать их медным проводом и припоем или хотя бы припоем.

Качество изготовления печатной платы отличное, помимо того что она легко паялась без дополнительного флюса (использовал только тот что в припое), так еще есть нормальная шелкография где обозначены места под компоненты, их порядковый номер и номинал. Фактически для сборки не нужна даже схема.

Список компонентов
Резисторы
1 кОм — 12шт
4.7 кОм — 4шт.

10 кОм — 1шт
20 кОм — 1шт
220 кОм — 4шт
0.22 Ома 5 Ватт — 4шт
Переменный резистор 4.7 кОм — 1шт

Конденсаторы
1 нФ — 4шт
100 нФ — 1шт
22мкФ 25 Вольт — 1шт
220 мкФ 16 Вольт — 1шт
1000мкФ 16 Вольт — 2шт

Диоды 1N5408 — 4шт
Транзисторы 110N8F6 — 4шт
Микросхема TL431A
Микросхема LM324N

Разные разъемы, выключатель и прочие мелочи.

Все резисторы кроме мощных, прецизионные, это хорошо, электролитические конденсаторы самые дешевые, но они на параметры не влияют.

На странице товара была принципиальная схема данной электронной нагрузки, но на мой взгляд она не очень информативна, потому ниже я разложу ее на составляющие части для более простого восприятия. Кроме того дам пояснения как можно увеличить мощность или изменить параметры и вообще какие элементы за что отвечают и как это все работает.

Сильно упрощенная схема электронной нагрузки обеспечивающей стабилизацию тока состоит из всего нескольких компонентов:
1. Переменного резистора
2. Операционного усилителя
3. Транзистора
4. Шунта.

С переменного резистора на вход операционного усилителя подается некое напряжение, операционный усилитель подает напряжение на полевой транзистор и через него начинает течь ток нагрузки, при этом ток попутно течет через шунт. На шунте падает некое напряжение, которое подается на второй вход операционного усилителя. Как только напряжение на входах операционного усилителя станет одинаковым, он выставит на своем выходе напряжение при котором транзистор будет открыт насколько чтобы поддерживать напряжение на шунте одинаковым с установленным при помощи переменного резисторе.

А так как напряжение падения на шунте напрямую зависит от тока через него, то в итоге схема будет поддерживать ток.

При этом получается, что ток нагрузки зависит от напряжения на входе.

Например с переменного резистора подали 0.4 Вольта, шунт имеет сопротивление 1 Ом, соответственно ток будет 0,4/1=0.4 Ампера.
Усложним пример, шунт сопротивлением 0.15 Ома, напряжение с переменного резистора 0.45 Вольта, 0.45/0.15=3 Ампера.

На точность поддержания тока влияют в основном две вещи:
1. Стабильность задающего напряжения
2. ТКС (зависимость сопротивления от температуры) шунта.

Показанная выше схема скорее всего будет работать, но делать это она будет неустойчиво, потому в более полном виде схема выглядит несколько больше.

Небольшое отступление, позиционные номера компонентов не соответствуют таковым на печатной плате и приведены просто для примера.

Здесь видны те же компоненты что я показывал выше, но к ним добавились еще некоторые, поясню их назначение.
Резистор R1, нужен для развязки нескольких каналов и для улучшения стабильности работы.
Резистор R2, ограничивает ток заряда затвора полевого транзистора защищая операционный усилитель.
Конденсатор С1, резистор R3 и R4 обеспечивают защиту от самовозбуждения схемы, чтобы нагрузка не превратилась в генератор.
Резистор R5 закрывает транзистор когда операционный усилитель обесточен, а кроме того обеспечивает небольшой ток нагрузки для выхода операционного усилителя и цепи защиты от самовозбуждения.

Так как нагрузка четырехканальная, то просто «дорисовываем» еще три канала и получаем почти полный вид обозреваемой платы.
Синим цветом я выделил четыре канала, видно что они абсолютно идентичны и соответственно можно их количество увеличивать и дальше. Общим для всех каналов является только счетверенный операционный усилитель.
Оранжевым выделена цепь управления, красный и черный соответственно силовые цепи.

В моей мощной электронной нагрузке именно так все и реализовано, только я делал 8 каналов и использовал двухканальные операционные усилители.

Но как я писал выше, на точность поддержания тока влияет точность стабилизации задающего напряжения и для этого в схеме есть источник опорного напряжения, выполненный на базе регулируемого стабилитрона TL431, его основное напряжение 2.5 Вольта.
А так как 2.5 Вольта это несколько многовато и если на шунтах будет падать такое напряжение то:
1. Будет большая рассеиваемая мощность
2. Минимальное напряжение нагрузки составит 2.5 Вольта + падение на транзисторах.

То последовательно с переменным резистором включен постоянный резистор R8 сопротивлением 22 кОм, вместе они образуют делитель примерно 1:5.5 и после переменного резистора напряжение меняется уже в диапазоне около 0-0.45 Вольта.
Меняя номиналы дополнительного резистора можно изменять диапазон регулировки без замены шунта, но такой способ имеет и свой минус — операционным усилителям при однополярном питании проще работать с большим напряжением, чем с меньшим и лучше сильно не снижать задающее напряжение.
Резистор R7 ограничивает ток питания стабилитрона.

Узел питания содержит диодный мост и четыре конденсатора, судя по всему изначально планировался стабилизатор питания операционного усилителя но его упразднили, а конденсатор емкостью 220 мкФ, который стоял после него, оставили. Ничем другим я не могу объяснить причину параллельного включения двух конденсаторов 1000мкФ и одного 220мкФ.

Также от этого диодного моста идет питание на разъемы подключения вентиляторов и ампервольтметра.

С теорией думаю понятно, перейдем к практике, а точнее — к сборке. Данная часть будет спрятана под спойлер, так как больше будет интересна только начинающим, хотя в процессе я буду пояснять нюансы использования тех или иных компонентов, а также их возможной замены.

Комплектующие и сборка.

В комплекте были постоянные резисторы, при этом все маломощные резисторы дали прецизионные, хотя в данном случае это не особенно важно, так как на точность поддержания тока влияют в основном только два из них.

Больше всего было резисторов номиналом 1 кОм, аж 12 штук, потому рекомендую начать именно с них.

После них устанавливаем остальные, это номиналы 220 кОм (4шт), 4.7 кОм (4шт) и по одному 22 и 10 кОм.

С одним из резисторов делителя возникла небольшая заминка, в комплекте дали 20 кОм вместо 22. Как я писал выше, данный резистор совместно с переменным резистором образуют делитель напряжения. Если номинал переменного резистора неизменен, то увеличение сопротивления этого резистора приведет к уменьшению максимального тока, соответственно уменьшение к увеличению тока.

Все резисторы установлены согласно номиналам, вместо 22 кОм поставил 20, который дали в комплекте.

Вторая заминка, на этот раз более серьезная. Один из конденсаторов 1 нФ был поврежден, скол около вывода и его емкость была около 150 пФ. Не знаю когда он повредился, при доставке или до того, но в итоге пришлось взять другой конденсатор того же номинала.

Не знаю зачем, но в комплекте дали диоды 1N5408, которые рассчитаны на ток 3 Ампера, а в мосте итого больше. Дело в том, что этот диодный мост питает пару вентиляторов, ампервольтметр и операционный усилитель, реальный общий ток думаю не более чем 500мА и вполне хватило бы 1N4007.
Попутно сразу устанавливаем TL431. На плате есть маркировка как устанавливать, хотя по большому счету в в данном случае это не имеет значения так как крайние выводы у нее соединены и даже если вы вставите ее наоборот, то работать будет также 🙂

Конденсаторы и панелька. Ну думаю что по поводу конденсаторов ошибиться трудно, на плате закрашенная часть маркировки — минус (короткий вывод), а разное расстояние между выводами и подписи не дадут ошибиться.

К операционному усилителю даже дали панельку в комплекте, устанавливаем ее так чтобы вырез совпадал с меткой на печатной плате. Я как-то однажды случайно установил панельку наоборот, потом в итоге чуть спалил микросхему, так как вставлял согласно ключу на панельке, будьте внимательны.

Куда устанавливать мощные резисторы думаю понятно, но я поясню некоторые нюансы замены.
Я писал что изменением номинала делителя можно изменить диапазон регулировки тока, но более корректно делать это изменением номинала шунта.
Нагрузка четырехканальная, в комплекте дали четыре резистора номиналом 0.22 Ома. При этом декларируется ток нагрузки 10 Ампер, т.е. по 2.5 Ампера на канал.
Если нам надо настроить нагрузку на 5 Ампер (в два раза меньше), то просто увеличиваем номинал этих резисторов в два раза, например 0.43 Ома, соответственно при увеличении тока пропорционально уменьшаем номинал.

Учтите. что резисторы могут сильно нагреваться и при их замене следует это учитывать. При этом нагрев напрямую зависит от номинала резистора (в данном включении).
Например при резисторах 0.22 Ома и токе 2.5 Ампера на канал мощность будет
0.22х2.5= 0.55 (падение при макс токе).
0.55х2.5=1.375 Ватта (мощность на резисторе)

Если поставить резисторы в два раза больше номиналом, то мощность на них снизится в два раза.

Для подключения вентиляторов и переменного резистора используются одинаковые разъемы, такие же как стоят на материнских платах. Разъем питания думаю также многим знаком.
Разъем питания неправильно установить не получится, а разъемы вентиляторов будут видны на следующем фото.

Плата рассчитана на установку транзисторов в корпусах ТО-220 или ТО-247, соответственно имеется 8 мест.
Разъемы вентиляторов размещены по краям платы ближе к радиатору, что вполне логично.

А вот здесь я поясню в чем была моя ошибка при заказе.
В описании товара указаны две версии набора, 15 Вольт 10 Ампер или 72 Вольта 2 Ампера. В обоих случаях общая мощность не превышает 150 Ватт. Но скорее всего надо было предварительно написать продавцу что надо именно 72 Вольта 2 Ампера, чего я не сделал.
В итоге еще на этапе установки низкоомных резисторов подумал — что-то не то. А когда дошел до транзисторов, то понял что именно «не то». Дело в том что в комплекте дали транзисторы 110N8F6, которые имеют максимальное напряжение всего в 80 Вольт, а кроме того шунты должны быть номиналом около 1 Ома, придется менять.

Теперь по поводу транзисторов и их замены.
Данная электронная нагрузка понравилась тем, что транзисторы управляются независимо, это является корректным решением. В подобных схемах транзисторы параллельно соединять нельзя так как из-за разброса характеристик работать они нормально не будут.
При этом не обязательно стремиться что бы в каждом канале были одинаковые транзисторы, можно спокойно применять с разными характеристиками, каждый канал подстроится «автоматически». Главное чтобы транзисторы были с запасом по напряжению.

Большинство полевых транзисторов больше ориентированы на ключевой режим работы (открыт/закрыт) и потому в линейном режиме их нельзя эксплуатировать «на полную мощность» ограничивая ее примерно на уровне 30 Ватт на корпус TO-220 и 50 Ватт на ТО-247. Собственно потому при применении транзисторов в корпусе ТО-247 нагрузка будет уже не 150, а 200 Ватт.
Здесь же транзисторы работают с небольшим перегрузом так как они в корпусе ТО-220, а на них рассеивается до 37.5 при рекомендованных 30.

Слева родные транзисторы, справа они же в сравнении с транзисторами в корпусе ТО-247.

А так выглядит установка радиатора на плате совместно с транзисторами в разных корпусах. К сожалению есть пара недоработок:
1. При установке транзисторов в корпусе ТО-220 радиатор смещается дальше от края платы и надо прокладывать изоляцию между ним и печатной платой.
2. Если крепить радиатор в штатные отверстия печатной платы, то он уходит от плоскости транзисторов примерно на 7 мм и придется выгибать выводы транзисторов, причем что с ТО-220, что с ТО-247.

Альтернативный вариант от китайского продавца, как по мне, то колхоз какой-то.

Хотя нет, если выше просто колхоз, то здесь скорее жесть 🙂

Радиатор я взял первый более менее подходящий по размерам, у меня уже был как-то его обзор. На самом деле радиатор должен быть немного другой конфигурации, например хорошо использовать радиаторы от процессоров, но стоит учитывать, что 150 Ватт тепла это довольно много, я бы рекомендовал использовать два радиатора а транзисторы расположить попарно.
Кроме того, будьте внимательны при разметке, транзисторы на плате расположены не совсем симметрично по отношению к ширине платы. Размеры не привожу так как размечать лучше «по месту».

Переходим к последним этапам, установке транзисторов.

Хоть данные транзисторы и получаются впритык если рассчитывать на 72 Вольта, заявленных в описании, мне они не подходят вообще так как планируемое напряжение составляет не менее 80 Вольт, а так как нужен еще и запас, то я планирую применить потом транзисторы рассчитанные на 150-200 Вольт.
Но попробовать хочется уже сейчас потому установил их в порядке эксперимента, как и радиатор, который потом будет заменен на более подходящий.

Радиатор временный, потому крепиться к плате будет только в одной точке, благо хоть она совпала с крепежными отверстиями радиатора 🙂
На плату в районе радиатора наклеил скотч, хотя конечно лучше что-то более прочное, а под единственный винт проложил картонную шайбу.
Небольшой нюанс, на фланцах транзисторов будет потенциал равный входному напряжению, потому есть два варианта монтажа:
1. Изолировать радиатор от корпуса
2. Изолировать транзисторы от радиатора.

На мой взгляд из-за большого тепловыделения правильнее использовать первый вариант, хотя он конечно добавляет некоторые сложности при монтаже. Есть правда еще третий вариант — переделать схему так, чтобы на фланцах транзисторов была земля, но это очень неудобно схемотехнически.

Получился такой вот временный вариант, для тестирования думаю будет достаточно.

В комплекте был и переменный резистор, у меня подобный уже участвовал в одном известном обзоре, но сопротивлением 10 кОм.
Если коротко, регулирует хорошо, 10 оборотов, проволочный.
Для подключения используем комплектный провод с разъемом, цвета получаются так: красный-плюс, черный-минус, желтый-регулировка, подключаем так как на фото, тогда регулировка будет корректная.

Но вот комплектная ручка приятно удивила, мне раньше такие не попадались. Дело в том, что у нее верхняя часть съемная (изначально это незаметно), а сам механизм реализован по принципу цанги, т.е никакие винты наружу не торчат. При этом ручка отлично центруется на валу резистора, 5 баллов однозначно!

Последний шаг, устанавливаем операционный усилитель внимательно контролируя положение ключа.

Вот собственно и все. Реально собрать всю конструкцию примерно за час без спешки даже для новичка, все компоненты ставтся как надо, все отмечено на плате и собирается интуитивно.

В итоге у меня еще остались компоненты:
1. Выключатель
2. Разъем питания
3. Неисправный конденсатор.

Второй разъем питания видимо дается в комплекте на случай если он выносится на крышку корпуса, выключатель скорее всего также используется для включения питания, но в моем варианте его паять некуда, ну а неисправный конденсатор, да просто звезды так сошлись.

На одну из сторон платы вынесены контактные площадки для подключения входа, амперметра, вольтметра и выход питания.
В принципе можно поставить клеммники, а можно просто припаять провода, кому как удобно, но есть некоторые нюансы подключения.

Подключать можно разными способами, попробую рассказать обо всех.
1. Просто плата без измерителей, разъемов и прочего.
2. То же самое, но если хочется поставить разъем, то скорее всего придется ставить перемычку вместо выхода на амперметр.
3. Подключение независимых амперметра и вольтметра, плюс — красный, минус — синий.
4. Если хочется установить цифровой ампервольтметр, то подключаем так:
Черный — общий силовой
Желтый — вход измерения тока
Красный — вход измерения напряжения
Красный тонкий — питание ампервольтметра.

Цветовая маркировка проводов подключения цифрового ампервольтметра дана соответственно тому, что я уже применял и в принципе может отличаться, потому лучше перепроверить перед подключением, обычно черный все таки это минус, а вход измерения тока звонится накоротко с черным.

Как вариант можно поставить и такой ампервольтметр, он более «продвинутый» но его подключение отличается.
Черный толстый — общий силовой
Красный толстый — Вход измерения тока
Желтый — вход измерения напряжения.
Красный тонкий — питание ампервольтметра.

Плюс у такого варианта есть термодатчик, что может быть очень полезным в устройстве с таким тепловыделением.

Оба этих ампервольтметра использовались в небольшой электронной нагрузке, хотя второй используется и сейчас.

И конечно немножко экспериментов.
Подключаем плату к регулируемому блоку питания, выставляем для пробы 32 Вольта и задаем ток нагрузки 5 Ампер, плата без проблем осилила 160 Ватт, но это уже предельный режим.

Проверил уход установки тока в зависимости от прогрева, не очень большой, но есть. По мере прогрева ток падает.

Вроде недолго экспериментировал, но уже почувствовал жар, измерил температуру и увидел что транзисторы прогрелись примерно до 110 градусов. Такого допускать ни в коем случае нельзя, например у моей мощной нагрузки защита от перегрева установлена на 90 градусов на радиаторе или около 95 на транзисторах.
Увеличение температуры транзисторов резко снижает надежность работы, особенно в линейном режиме.

Часто в комментариях вижу упоминание обычных резисторов в качестве нагрузки. Да, конечно их тоже можно применять, но при помощи резисторов труднее добиться например того, что показано на этих фото.
Здесь я понижал напряжение от 40 до 1 Вольта и смотрел как меняется ток нагрузки. В указанном диапазоне колебания составили 2.017-2.026 Ампера, что на мой взгляд довольно неплохо с учетом простой схемотехники.

Хотя и не планирую применять обычный ампервольтметр, но решил все таки проверить работу с ним. Для начала стоит сказать, что его подключение немного отличается от того, что я использовал в простой самодельной нагрузке.

Провода ампервольтметра подключены согласно порядку —
Черный
Желтый
Красный.

Провод питания подключен только один, черный пришлось отключить так как он влиял на результат измерений. Дело в том, что у моей электронной нагрузки ампервольтметр подключался последовательно с токоизмерительным шунтом, потому общий провод амперметра соединялся с общим проводом схемы. Здесь он включается последовательно с проверяемым источником и на мой взгляд это менее корректно.

В процессе написания обзора мне задали вопрос по поводу замены транзисторов, попробую пояснить отдельно.
1. Транзисторы выбираем исходя из типа корпуса и требуемой мощности, 30 Ватт ТО-220, 50 Ватт ТО-247.
2. Транзисторы по сути можно применять не только почти любые, а и разные одновременно.
3. Главным при выборе транзистора в основном является напряжение на которое он рассчитан, желательно чтобы оно было минимум в два раза больше входного.
4. Сопротивление в открытом состоянии почти ни на что не влияет, если разве что не поставить совсем высоковольтные транзисторы где оно идет уже на единицы Ом.
5. Лучше применять транзисторы в не изолированном корпусе и не изолировать их от радиатора.

Почему такие ограничения в плане мощности. Подавляющее большинство современных полевых транзисторов рассчитаны на ключевой режим работы и плохо работают в линейном режиме. Вернее работают они нормально, но с большими ограничениями по температуре, мощности, напряжению и току. Существуют полевые транзисторы которые нормально работают в таком режиме, но они настолько редки, что нет смысла их искать.

Также меня спрашивали, а на что их можно еще заменить.
Ну для начала можно применить транзисторы IGBT, по сути гибрид полевого и биполярного транзистора, но они стоят дороже. Кстати существует и обратный гибрид, биполярного с полевым.

Но никто не мешает применять биполярные транзисторы (собственно потому и хорошо подходят IGBT), у которых максимальная паспортная рассеиваемая мощность обеспечивается и в линейном режиме.
Включить в данной схеме их можно просто вместо полевого, но нужен транзистор с большим коэффициентом усиления, так как в отличии от полевого биполярные управляются током, а не напряжением.
Либо применить составную схему включения транзисторов (схема Дарлингтона), тогда общий коэффициент усиления будет произведением усиления первого и второго. Т.е. если у первого усиление 200, а у второго 70, то общий будет около 14000.

Пожалуй единственный недостаток биполярных (особенно составных) транзисторов — сложности при работе с малыми напряжениями, ниже чем 1.5-2 Вольта. Если вы не планируете тестировать источники с таким напряжением, то можно применить биполярные, в противном случае используем полевые.

Отлично подойдут известные транзисторы КТ827, но у меня их почти нет потому на фото их комплементарная пара КТ825. Они могут рассеивать до 125 Ватт.

Когда-то я даже использовал их в комплекте с такими радиаторами, как раз их размерчик 🙂 Правда они больше все таки под пассивный режим.

Внутри у них находится два транзистора включенные по схеме Дарлингтона плюс дополнительные компоненты.

Кстати подобные транзисторы также отлично подходят для линейных блоков питания и меня часто спрашивают о вариантах замены их на импортные. Я немного полазил по интернету и набрал список замен.
Практически полные аналоги транзистора КТ827: 2N6057, BDX87
КТ827А: BDX65A, BDX67, BDX87C, MJ3521, MJ4035
КТ827Б 2N6058, 2N6283, BDX63, BDX65, BDX67, BDX85B, BDX87B, MJ3001, MJ4034
КТ827В: 2N6057, 2N6282, BDX85, BDX85A, BDX87, BDX87A, MJ3000, MJ3520, MJ4033

Кстати продавец может высылать с разными транзисторами, при этом есть вариант с транзисторами в корпусе TO-247 (IRFP250. IRFP260), но скорее всего за дополнительные деньги. Как по мне, такой вариант был бы куда более интересен.

Ну и попутно поясню по поводу замены остальных компонентов.
Мелкие резисторы не критичны, главное примерно попасть в номинал, то же самое касается и конденсаторов.
Низкоомные резисторы которые выполняют функцию токоизмерительного шунта лучше выбирать с запасом по мощности так как тогда они будут меньше греться а следовательно у них будет меньше изменяться сопротивление и по мере прогрева ток не будет «убегать». Можно поставить более точные и качественные резисторы, но они стоят дорого.
Операционный усилитель также можно заменить на практически любой дешевый, например я применял LM358, но он двухканальный и их надо в два раза больше, но проще применить тот же LM324 благо стоит он копейки.

Питать нагрузку можно как от постоянного, так и от переменного тока, но важно следить чтобы напряжение питания операционного усилителя не превышало 20 Вольт. Сам по себе ОУ выдерживает спокойно до 30-35 Вольт, но напряжение на затворе полевого транзистора не должно быть выше 18-20 Вольт, а лучше до 15 потому я бы ограничил на этом уровне. Как вариант, питать эту цепь от небольшого стабилизатора.

В процессе тестов я все таки спалил один из транзисторов, произошло это случайно, я подал 40 Вольт и выставил ток нагрузки 5 Ампер получив при этом мощность в 200 Ватт. В итоге блок питания просто перешел в защиту от КЗ и на этом все закончилось.
Кроме этого выяснил что наводки на переменный резистор могут заметно влиять на установленный ток. Например когда я держал резистор в руках, ток был 4.1 Ампера, положил на стол, ток стал 4 Ампера. Неприятность может проявляться, а может нет, зависит как от БП самой нагрузки, так и от проверяемого.

Обозревая нагрузка в сравнении с моей старенькой самоделкой, которая со, рана на базе той же TL431, LM358 и одного транзистора. правда у меня есть стабилизатор питания операционного усилителя.

Какие доработки можно провести:
1. Управление вентиляторами от температуры, хотя бы при помощи простейшего термореле.
2. Уменьшить в два раза сопротивление шунтов и изменить номиналы делителя переменного резистора так, чтобы напряжение менялось в диапазоне 0—0.25 Вольта, шунты будут греться в два раза меньше.
3. Добавить режим CV при помощи второго ОУ, но здесь есть проблема с защитой от перегрузки.
4. Добавить стабилизатор напряжения для ОУ, например 7808 или 7809.
5. В моей нагрузке после TL431 стоит буферный операционный усилитель, на мой взгляд такое решение лучше, но добавлять сюда его очень неудобно.
6. Объединить две-три подобные платы для увеличения мощности, при этом одна плата будет ведущей, остальные ведомыми.

В корпусе показать пока не могу, так как его еще нет в наличии, он будет подбираться исходя из общих размеров всего комплекта. Кроме того я буду использовать с более продвинутым ампервольтметром, где будет контроль нижнего/верхнего напряжения и т.п.

С описанием вроде все, постарался ничего не забыть и теперь можно подвести итоги.
Как по мне, то вариант весьма неплохой, цена небольшая, собирается легко и самое главное, после сборки работает 🙂
Не обошлось и без нюансов, например поврежденный конденсатор или не очень удобное расположение отверстий для крепления радиатора.
В описании заявлено 150 Ватт, на мой взгляд это максимальная мощность, я бы рекомендовал не нагружать больше 120 Ватт длительно без замены транзисторов на какие нибудь в корпусе TO-247 и обязательно использовать хорошее охлаждение.

Если планируется применять при напряжениях до 30-40 Вольт, то вполне можно покупать в комплекте с транзисторами. Но если планируете тестировать источники с большим напряжением, то я бы купил все кроме транзисторов, а вместо родных поставил что-то более высоковольтное.
Как вариант, можно просто купить печатную плату, компоненты применены не дефицитные и при желании можно найти их и дома.
Один комплект заказывать наверное будет не очень выгодно, лучше купить сразу несколько, тогда общая цена будет выгоднее.

Спонсором обзора выступил посредник yoybuy.com, который взял на себя оплату доставки, стоимость с доставкой по Китаю около 6.8 доллара, общая стоимость доставки зависит от страны. Точную стоимость услуг посчитать не могу, так как в посылке было 4 товара от четырех продавцов.

На этом все, буду рад вопросам, комментариям и советам.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Простая аналоговая электронная нагрузка » Журнал практической электроники Датагор (Datagor Practical Electronics Magazine)


Все, кто хоть как-то сталкивался с изготовлением, ремонтом блоков питания задавался вопросом – где взять подходящую нагрузку, чтобы в полной мере оценить характеристики конструкции?

Содержание / Contents

Обычно для этого используется первое, что попадется под руку – мощные лампы, обрезки высокоомного провода и т.д. Но не все имеющиеся нагрузки подходят по сопротивлению и по мощности. Как назло каждый раз один из этих параметров нам не подходит dash . Как только не приходиться исхитряться: применять последовательное и параллельное соединение резисторов, топить нагрузку в стакане с водой (для увеличения рассеиваемой мощности).
Когда запасы мощных нагрузок превращаются в залежи, приходит время поменять их на одну универсальную. взята классическая с небольшими усовершенствованиями.

Собственно роль нагрузки выполняют переходы КЭ двух мощных транзисторов, представляющих собой управляемый ключ. При этом сопротивление переходов транзисторов имитируют активную нагрузку, подобно мощному резистору. Система подключается параллельно источнику напряжения и работает практически в режиме КЗ, поэтому вольность в обращении с регуляторами тока недопустима.
Выпрямитель VDS1 с конденсатором С1 служат для прогрузки источников переменного напряжения (об этом позже). Диод VD1 предназначен для развязки между конденсатором С1 и цепями постоянного тока электронной нагрузки, чтобы последний не влиял на выходную характеристику испытуемого БП. Мощные резисторы R1, R2 выравнивают токи через переходы транзисторов VT2, VT3.

R9, R10 – добавочные резисторы для измерительной головки указателя напряжения, R10 и R11 – токоизмерительные шунты амперметра. Переключатели S1 и S2 позволяют расширить пределы измерения вольтметра и амперметра.

Резистор R8 исключает сквозные токи через переходы БЭ мощных транзисторов. Для увеличения крутизны характеристики (больший ток при меньшем напряжении) следует уменьшать сопротивление резистора R8, а лучше перераспределять его между коллектором и эмиттером VT1. В идеале диоды VD1 и VDS1 — Шотки.

Для более эффективного теплоотвода устройство снабжено кулером. Стабилизатор VR1 ограничивает рабочее напряжение кулера на уровне 12В, на участке входных напряжений 12…30В. Двигатель кулера начинает работать уже при 6В на входе нагрузки, причем потребляемый кулером ток тоже включен в общий бюджет нагрузки и отображается амперметром.

Входное постоянное напряжение = 1,5..30В
Входное переменное напряжение = 1…25В
Входной ток = 0,08…10А
Рассеиваемая мощность = 200Вт
Разумеется, параметры могут меняться как в лучшую, так и худшую сторону в зависимости от применяемых деталей и схемотехники. В данном случае входные напряжения ограничены характеристиками стабилизатора VR1.Главное в электронной нагрузке что? Правильно, радиаторы и транзисторы! Они трудятся в поте лица, т.к. их главная задача перевести всю подводимую мощность в тепло (КПД наоборот 😎 ).
Радиаторы у меня оказались такие (мало точно не покажется).
dash
Мощные транзисторы выбираем в соответствии с нашими хотелками поставленными задачами. Это могут быть КТ837, КТ818, КТ8102 и подобные, подходящие по току, напряжению и мощности.
В качестве корпуса используем старый добрый БП АТХ.
dash
Измерители тока и напряжения изготовлены из индикаторов уровня записи от старых магнитофонов.
dash
Шкала у них нелинейная, поэтому при градуировке используется 75-80% рабочей шкалы. Несмотря на всю примитивность, удалось достигнуть точности измерения не хуже 1,5%. Передняя панель выпиливается из текстолита и крепится при помощи длинных винтов к корпусу.
dash
dash
dash
dash
Как еще можно использовать электронную нагрузку? Например, для регулировки тока в цепях переменного и постоянного напряжения. Достаточно включить электронную нагрузку последовательно с объектом регулирования и все это подключить к источнику напряжения (при зарядке аккумуляторов, управлении двигателем, нагревателем и пр.).У меня долгое время лежало несколько силовых трансформаторов с известными выходными напряжениями и неизвестными нагрузочными характеристиками. Определить диаметры проводов вторичных обмоток без вскрытия не представлялось возможным. И я проделал такой эксперимент: с помощью электронной нагрузки нагружал номинальным (паспортным) током вторичные обмотки трансформаторов известных марок ТА и ТС.

Выяснилось, что под нагрузкой напряжения на вторичных обмотках уменьшаются на 10-15 % по отношению к напряжению холостого хода. Потом тоже самое проделал с неизвестными трансформаторами и методом от обратного вычислил допустимый ток вторичных обмоток.

Подключаемся к источнику напряжения, при этом регуляторы тока должны быть выведены в минимум (нижнее по схеме положение).
Далее не спеша, вращаем регулятор «ток грубо» в сторону увеличения тока, пока стрелка амперметра чуть-чуть не отойдет от начального положения, можно сказать «дрогнет в положении нуль». Это значит, что ключи выведены из зоны нечувствительности. Если нам нужен ток до 1А дальше пользуемся регулятором « ток плавно», если более 1А, то продолжаем крутить регулятор «ток грубо» дальше. Плавно выводим ток на требуемый уровень, при этом на индикаторах в режиме, так сказать, «on line», наблюдаем Вольт-амперную характеристику тестируемого БП.
Картину дополнит осциллограф, подключенный к выходным клеммам БП. По нему можно будет определить уровень пульсаций выходного напряжения при различных режимах загруженности.

При эксплуатации нагрузки необходимо помнить о максимальной рассеиваемой мощности, которая вычисляется по известной формуле P=U2/R.

Камрад, смотри полезняхи!

dash

Сергей (metrolog)

г. Нижнекамск, РТ

Исследователь по натуре. Люблю повозиться с железками, собрать что-нибудь новое.
Сюда пришел пообщаться с грамотными людьми, узнать больше о микроконтроллерах, акустике и ламповых усилителях.

 

схема. Самодельная электронная нагрузка на полевом транзисторе

С целью проверки блоков питания существует электронная нагрузка. Данное устройство работает по принципу генерации сигнала. К основным параметрам модификаций стоит относить пороговое напряжение, допустимую перегрузку, а также коэффициент рассеивания. Существует несколько типов устройств. Для того чтобы разобраться в нагрузках, в первую очередь рекомендуется ознакомиться со схемой прибора.

Схема модификации

Стандартная схема нагрузки включается в себя резисторы, выпрямитель и порты модулятора. Если рассматривать устройства небольшой частоты, то у них используются трансиверы. Данные элементы работают на открытых контактах. Для передачи сигнала используются компараторы. В последнее время популярными считаются нагрузки на стабилизаторах. В первую очередь их разрешается применять в сети постоянного тока. У них быстро происходит процесс преобразования. Также стоит отметить, что неотъемлемым элементом любой нагрузки считается усилитель и регулятор. Данные устройства замыкаются на обкладке. У них довольно высокая проводимость. За процесс генерации у моделей отвечает именно модулятор.

нагрузка электронная

Типы модификаций

Различают импульсные и программируемые устройства. В отдельную категорию выделены лабораторные, которые подходят для мощных блоков питания. Также модификации отличаются по частоте, с которой они работают. Низкочастотные нагрузки оснащаются транзисторами с канальным переходником. Они используются в сети переменного тока. Модели высокочастотного типа изготавливаются на базе открытого тиристора.

Импульсные устройства

Как делается импульсная электронная нагрузка? В первую очередь для сборки эксперты рекомендуют подобрать хороший тиристор. При этом модулятор подходит только на две фазы. Специалисты говорят о том, что расширитель должен работать попеременно. Рабочая частота у него обязана составлять примерно 4000 кГц. Трансивер в нагрузку устанавливается через модулятор. После пайки конденсаторов стоит заняться усилителем.

Для стабильной работы нагрузки потребуется три фильтра канальной направленности. Для проверки прибора применяется тестер. Сопротивление должно составлять примерно 55 Ом. При средней загруженности самодельная электронная нагрузка выдает номинальное напряжение в районе 200 Вт. Для поднятия чувствительности применяются компараторы. При замыканиях системы стоит проверять цепь от конденсатора. Если сопротивление на контактах занижено, значит, трансивер нужно менять на емкостный аналог. Многие специалисты указывают на возможность использования волновых фильтров, у которых хорошая проводимость. Регуляторы для этих целей применяются на триоде.

электронная нагрузка схема

Программируемые модели

Электронная программируемая нагрузка собирается довольно просто. С этой целью применяется расширительный трансивер на 230 В. Для передачи сигнала используется три контактора, которые отходят от транзистора. Для контроля процессом преобразования применяются регуляторы. Наиболее часто используются именно линейные аналоги. Триод применяется с изолятором. В данном случае потребуется паяльная лампа. Непосредственно резистор фиксируется на трансивере.

Для модели однозначно не подойдут обычные компараторы, у которых низкий коэффициент рассеивания. Также стоит отметить, что многие допускают ошибку, когда устанавливают один фильтр. Для нормальной работы приора используются только емкостные аналоги. Номинальное напряжение на выходе должно составлять примерно 200 В при сопротивлении на уровне 40 Ом. Если собирать устройства на однопереходном расширителе, то линейные модели не подходят.

В первую очередь прибор не будет работать из-за большой перегрузки тиристора. Также стоит отметить, что для модели потребуется строчный модулятор с низкой чувствительностью. Некоторые специалисты при сборке используют стабилизаторы. Если рассматривать простую модификацию, то подойдет регулируемый тип. Однако чаще всего используют именно инвертирующие элементы.

Лабораторные модификации

Собирается лабораторная электронная нагрузка своими руками с мощным тиристором. Резисторы применяются с емкостью от 40 пФ. Специалисты говорят о том, что конденсаторы можно применять только расширительного типа. Особое внимание при сборке стоит обращать на модулятор. Если использовать проводной аналог, то для нагрузки потребуется три фильтра. Простая электронная нагрузка имеет модулятор фазового типа с проводимостью от 30 мк. Сопротивление составляет примерно 55 Ом. Также стоит отметить, что нагрузки часто складываются на базе коммутируемого трансивера. Основная особенность таких устройств кроется в высокой пульсации. При этом проводимость обеспечивается на отметке 30 мк.

электронная нагрузка своими руками

Устройство на полевом транзисторе

Электронная нагрузка на полевом транзисторе делается только на базе компаратора, а тиристор используется регулируемого типа. При сборке в первую очередь стоит подобрать конденсаторный блок, который играет роль генератора импульсов. Всего для модификации потребуется три фильтра. Резистор устанавливается за обкладками. Специалисты говорят о том, что электронная нагрузка на полевом транзисторе выдает сопротивление 40 Ом.

Если проводимость сильно повышается, значит, устанавливается емкостный конденсатор. Непосредственно трансивер рекомендуется использовать на два контакта. Реле устанавливается стандартно с регулятором. Номинальное напряжение у нагрузок данного типа составляет не более 400 Вт. Специалисты утверждают, что обкладка должна фиксироваться за резистором. Если рассматривать высокочастотную модель для блоков питания на 300 В, то модулятор потребуется волнового типа. При этом за тиристором устанавливается тетрод.

Модель с плавной регулировкой тока

Схема электронной нагрузки с плавной регулировкой тока включает в себя один тиристор. Конденсаторы для модели потребуются расширительного типа с низкой проводимостью. Также стоит отметить, что в нагрузку ставится один усилитель. Наиболее часто применяются волновые аналоги, у которых имеется фазовый переходник. Непосредственно регулятор устанавливается за модулятором, а номинальное напряжение должно составлять около 300 Вт.

Простая электронная нагрузка с плавной регулировкой тока имеет два контактора для подключения. Тиристоры иногда могут использоваться на обкладках. Компараторы в устройствах устанавливаются со стабилизаторами и без них. В данном случае многое зависит от рабочей частоты. Если этот параметр превышает 300 кГц, то лучше не устанавливать стабилизатор. В противном случае значительно повысится коэффициент рассевания.

Устройство на базе TL494

Электронная нагрузка на базе TL494 собирается довольно просто. Резисторы для модификаций подбираются строчного типа. Как правило, у них высокая емкость. И они способны работать в сети постоянного тока. При сборке модели тиристор применяется на две обкладки. Электронная импульсная нагрузка на базе TL494 работает с расширителем фазового либо импульсного типа.

Наиболее часто встречается первый вариант. Номинальное напряжение у нагрузок стартует от 220 Вт. Фильтры используются полного типа, а проводимость равняется не более 4 мк. При установке регулятора важно оценить выходное сопротивление. Если данный параметр не является постоянным, то для модели используется усилитель. Контакторы устанавливаются с переходниками и без них. Выходное напряжение в цепи составляет у нагрузок примерно 300 Вт. При включении приборов часто повышается ток. Происходит это за счет нагрева модулятора. Избежать данной проблемы пользователь способен за счет понижения чувствительности.

Модели на 100 Вт

Электронная нагрузка (схема показана ниже) на 100 Вт предполагает применение двух канальных тиристоров. Транзистор у моделей довольно часто используется на расширительной основе. У него проводимость составляет около 5 мк. Также стоит отметить, что существуют нагрузки на реле. Они больше всего подходят для мощных блоков питания. Для самостоятельной сборки дополнительно применяются волновые компараторы. Самодельные устройства выдают напряжение не более 300 В, а рабочая частота стартует от 120 кГц.

схема электронной нагрузки с плавной регулировкой тока

Устройства на 200 Вт

Нагрузка электронная на 200 Вт включает в себя две пары тиристоров, которые соединяются попарно. У многих моделей используются проводные компараторы низкой частоты. Также стоит отметить, что для сборки модификации потребуется модулятор. Для ускорения процесса генерации сигнала используются усилители. Данные элементы способны работать только от проводных фильтров.

Трансивер стоит устанавливать за обкладками. В данном случае напряжение нагрузки равняется примерно 400 В. Специалист говорят о том, что плохо работают устройства на проводниковых трансиверах. У них низкая проводимость, есть проблемы и с перегревом. Если наблюдаются скачки напряжения, стоит поменять компаратор. Еще проблема может заключаться в резисторе.

Как сделать устройство на 300 Вт?

Нагрузка электронная на 300 Вт предполагает применение двух тиристоров фазового типа. Номинальное напряжение устройств равняется примерно 230 Вт. Показатель перегрузки в данном случае зависит от проводимости компаратора. При самостоятельной сборке этого устройства потребуется модулятор канального типа. Для установки элемента применяется паяльная лампа.

Регуляторы часто используются с переходником. Реле устанавливается низкоомного типа. Коэффициент рассеивания у самодельной модификации составляет примерно 80%. Также стоит отметить, что контакторы используются низкой чувствительности. Как проверить нагрузку перед включением? Сделать это можно при помощи тестера. Выходное напряжение у самодельных устройств, как правило, равняется 50 Ом. Если рассматривать модели с одним компаратором, то у них этот параметр может быть занижен.

Модели для блоков на 10 А

Нагрузка электронная для блока питания на 10 А собирается при помощи расширительного тиристора. Транзисторы довольно часто применяются на 5 пФ, у которых низкая проводимость. Также стоит отметить, что специалисты не советуют использовать линейные аналоги. У них малая чувствительность. Они сильно повышают коэффициент рассеивания. Для подключения к блоку применяются контакторы. Модуляторы довольно часто используются с переходниками.

Если рассматривать схему на конденсаторном блоке, то у них частота в среднем равняется 400 кГц. При этом чувствительность может меняться. Контакторы довольно часто фиксируются за модулятором. Стабилизаторы следует использовать на две обкладки. Также стоит отметить, что для сборки модификации потребуется полюсный резистор. Он сильно помогает увеличивать скорость генерации импульса.

самодельная электронная нагрузка

Устройства для блоков на 15 А

Наиболее распространенными считаются нагрузки для блоков на 15 А. У них используются открытые резисторы. При этом трансиверы применяются разной полярности. Кроме того, они отличаются по чувствительности. В среднем напряжение приборов равняется 320 В. Модели между собой отличаются по проводимости. С целью самостоятельной сборки применяются компараторы на регуляторах. Перед началом их установки крепятся стабилизаторы.

Специалисты говорят о том, что расширители можно устанавливать только через обкладку. Проводимость на входе обязана составлять не более 6 мк. При установке регулятора тщательно зачищается компаратор. Если собирать простую модель, то модулятор можно использовать инверторного типа. При этом сильно повысится коэффициент рассеивания. Пороговое напряжение в среднем равняется 200 В. Допустимый параметр мощности составляет не более 240 Вт. Также стоит отметить, что для нагрузки применяются фильтры разных типов. В данном случае многое зависит от проводимости компаратора.

Схема устройств для блоков на 20 А

Электронная нагрузка (схема показана ниже) для блоков на 20 А производится на базе двоичных резисторов. У них поддерживается стабильная высокая проводимость. Чувствительность при этом равняется примерно 6 мВ. Некоторые модификации выделяются высоким параметром перегрузки. Реле у моделей используются на волновых транзисторах. Для решения проблем с преобразованием используются компараторы. Расширители часто встречаются фазового типа. И у них может быть несколько переходников. При необходимости устройство можно собрать самостоятельно. Для этого применяется конденсаторный блок.

Номинальное напряжение у самодельных нагрузок стартует от 300 Вт, а частота в среднем составляет 400 кГц. Специалисты не советуют применять переходные компараторы. Регуляторы используются с обкладками. Для установки компаратора потребуется изолятор. Если рассматривать нагрузки на двух тиристорах, то там используются фильтры. В среднем емкость модуля равняется 3 пФ. Показатель рассеивания у самодельных моделей стартует от 50%. При сборке устройства особое внимание стоит уделять переходнику для подключения к блоку питания. Контакторы побираются полюсного типа. Они должны выдерживать большие перегрузки и не перегреваться.

простая электронная нагрузка

Устройства компании AMETEK

Нагрузки данной торговой марки выделяются низкой проводимостью. Они замечательно подходят для блоков питания на 15 А. Среди моделей данной фирмы имеется множество импульсных модификаций. Продельная перегрузка у них не высокая, но обеспечивается высокая скорость генерации импульса. Специалисты в первую очередь отмечают хорошую защищенность элементов. У них используется несколько фильтров. Они справляются с фазовыми помехами, которые искажают сигналы.

Если рассматривать модели высокой частоты, то у них имеется несколько тиристоров. Также стоит отметить, что на рынке представлены модификации на проводных компараторах. На базе обычной нагрузки данной торговой марки можно собрать отличный прибор для разных блоков питания. У моделей отличные стабилизаторы и очень чувствительные транзисторы.

Особенности устройств серии Sorensen

Стандартная нагрузка электронная данной серии включает в себя тиристор и линейный компаратор. Многие модели производятся с полюсными фильтрами, которые способны работать при высокой частоте. Также стоит отметить, что на рынке представлены лабораторные модификации. У них достаточно низкий коэффициент рассеивания. Модели довольно часто применяются коммутируемого типа. Показатель перегрузки в среднем равняется 20 А. Системы защиты используются разных классов. На прилавках магазинов есть импульсные модели. Они хорошо подходят для тестирования компьютерных блоков питания. Расширители в устройствах применяются с обкладками.

Модели серии ITECH

Нагрузки данной серии выделяются высокой проводимостью. У них хорошая защищенность. В этом случае используется несколько трансиверов. Электронная нагрузка для блока питания в среднем работает при частоте 200 кГц. Перегрузка при этом равняется 4 А. Усилители в устройствах применяются с контактными переходниками. Тиристоры используются фазового либо кодового типа. Среди моделей данной серии встречаются программируемые модификации. Они хорошо подходят для тестирования компьютерных блоков питания. Трансиверы можно встреть с расширителями и без них.

Нагрузки на базе IRGS4062DPBF

Делается электронная нагрузка своими руками на базе этого транзистора довольно просто. Стандартная схема модели включает в себя два конденсаторных блока и один расширитель. Сразу стоит отметить, что модели этого класса хорошо подойдут для блоков питания на 10 А. Параметр напряжение у нагрузок равняется 200 Вт. Фильтры для устройств подбираются низкой частоты. Они способны работать при больших нагрузках.

В первую очередь при сборке устанавливается тиристор, а компаратор можно использовать разного типа. Непосредственно транзистор устанавливается при помощи паяльника. Если проводимость у него превышает 5 мк, то стоит устанавливать дипольный фильтр вначале цепи. Специалисты говорят о том, что электронная нагрузка на транзисторе IRGS4062DPBF может делаться с переходными компараторами. Однако у них высокий коэффициент рассеивания.

электронная нагрузка на базе tl494

Также стоит отметить, что модели этой серии подходят только для цепей постоянного тока. Допустимый параметр перегрузки приборов равняется 5 А. Если рассматривать устройства на импульсных компараторах, то у них имеется масса преимуществ. В первую очередь в глаза бросается высокая частота. При этом сопротивление приборы показывают на уровне 50 Ом.

У них нет проблем с проводимостью и резкими скачками напряжения. Стабилизаторы разрешается применять разных типов. Однако они должны работать в цепи постоянного тока. Еще на рынке представлены модификации без конденсаторов. Коэффициент рассеивания у них равняется примерно 55%. Для устройств данного класса это очень мало.

Устройства на базе KTC8550

Нагрузки на базе данных транзисторов очень ценятся среди профессионалов. Модели замечательно подходят для тестирования блоков небольшой мощности. Показатель допустимой перегрузки, как правило, равняется 5 А. У моделей могут использоваться разные системы защиты. При сборке модификации разрешается применять двоичные модуляторы с проводимостью 4 мк. Таким образом, устройства будут выдавать большую частоту на уровне 300 кГц.

Если говорить про недостатки, то стоит отметить, что модификации не способны работать с блоками питания на 10 А. В первую очередь возникают проблемы с импульсными скачками. Перегрев конденсатора также даст о себе знать. Чтобы решить данную проблему, на нагрузки устанавливаются расширители. Триоды, как правило, применяются с двумя обкладками и изолятором.

Электронная токовая нагрузка | 2 Схемы

Вот самодельная регулируемая электронная нагрузка мощностью до 500 ватт для тестирования БП, ЗУ и прочих устройств. Всё что для её сборки надо — это Arduino Nano, датчик тока, ЖК-дисплей, поворотный энкодер и несколько других дополнительных компонентов. В итоге всего за вечер собираем регулируемую стабильную и мощную токовую нагрузку. Она может обрабатывать до 30 В и 20 А, если конечно радиатор справится мощностью пол киловатта. Приступим к сборке.

Принципиальная схема нагрузки

Список деталей для схемы

  • Модуль Arduino Nano
  • Дисплей 16X2 I2C LCD
  • Поворотный энкодер
  • Драйвер МОП-транзистора TC4420
  • Транзистор IRFZ44N MOSFET
  • Датчик тока ACS712
  • 20 A предохранитель и его держатель

Далее идут фотографии готовой собранной схемы. Можно всё монтировать на универсальной плате — дорожек там не много.

По ссылке можете скачать код для проекта. Загрузите его в Arduino Nano через Arduino IDE.

После испытаний нагрузки в деле осталось установить все компоненты внутри подходящего корпуса.

Устройство готово и теперь можно различные зарядки, блоки питания (от ПК) и другую подобную технику, после сборки или ремонта подвергать (для настройки) близкими к реальным испытаниям, не боясь испортить подключаемые девайсы. Скачать прошивку можно тут

Универсальная электронная нагрузка 150W

Далеко не новинка, но когда представилась возможность потестировать эту нагрузку, естественно, её использовал, так как имеющейся в наличии 3-амперной резистивной нагрузки за $2 сейчас явно не хватает, чтобы полноценно провести оценку качества кабелей, БП и повербанков. Если вкратце, задумка интересная, но со своими нюансами.

Технические характеристики
Максимальная мощность — 150Вт
Максимальное входное напряжение — 200В
Максимальный ток — 20А
Напряжение питания 6-12В
Скорость измерения: 1 раз в 2 секунды
Режим сигнализации перенапряжения и перегрузки по току
Настройка напоминания о низком напряжении: 0 ~ 190 в
Тип дисплея: ЖК
Размер платы: 156 мм х 96 мм х 58 мм
Рабочая температура:-10 ~ + 60 градусов Цельсия
Рабочая влажность: 10 ~ 80%
Рабочее давление: 80 ~ 106 кПа

Внешний вид

Упаковка блистер. Всё это было изначально помещено в картонную коробку

Сопутствующая комплектация такова:

— блок питания 9В/1А
— короткий кабель USB — «крокодилы»
— ещё два коротких кабеля «крокодила» с оголёнными концами
— переходник с плоской вилку на евро
— инструкция



Нагрузка имеет массивные размеры (156х96х58 мм), это если сравнивать с массовыми нагрузками на 35Вт, выполнена на зелёной плате (в продаже могут попадаться на жёлтой плате). Лепестки радиатора довольно мягкие и были помяты во время доставки. Пришлось выпрямлять, чтобы лопасти охлаждающего кулера не цеплялись за лепестки.

Нагрузка рассчитана на работу с постоянным током и напряжением.
Её предназначение: тестирование различных аккумуляторов, повербанков, качества кабелей, блоков и иных источников питания. Указанная стоковая рассеиваемая мощность — 150Вт, правда с нюансами. В сети есть информация про разгон до безумных 300Вт. Кулер установлен на 775-м сокете. Заметил небольшое улучшение по сравнению с нагрузками рассматриваемыми в других прошлых обзорах — дисплей таки приклеили, он уже не болтается, а нежный шлейф усилили изолентой. Мелочь, и на том спасибо.

Обратная сторона платы. Всё тоже самое, что и на жёлтой версии — массивные полигоны и сквозная перфорация в районе кулера. FUN JACK — это 3-контактный разъём для подключения дополнительного кулера для охлаждения. По углам установлены пластиковые стойки.

Разъёмы
Это задняя сторона, расположенная за кулером. Здесь два входа — для подключения напряжения, необходимого для питания самой платы нагрузки (дисплей, кулер, работы схемы). Слева круглый разъём 5.5х2.5, правее электрически параллельный ему microUSB-разъём. Диапазон входных напряжений 6-12В, и поскольку в комплекте положили блок питания на 9В, в отзывах нередко отмечают глюки при работе от этих 9В и рекомендуют для нормальной работы использовать все 12В. Поэтому наличие здесь microUSB-разъёма, который обычно работает на 5В, не совсем понятно. Кроме того, можно заметить, что из-за установленного кулера плата искривлена — стало быть крепёжные отверстия под сокет 775 были рассверлены не совсем точно.

Боковая сторона платы.
Здесь виден перечень различных запараллеленных USB разъёмов для подключения тестируемых источников: USB C, microUSB, miniUSB, а также USB A (жен. крайний слева), который задуман под подключение триггеров и других тестеров, например для просмотра напряжения на сигнальных линиях D+/D-, так как сама нагрузка этого не умеет.

Круглый разъём 5.5×2.5mm и контактная колодка для подключения «крокодилов» либо просто проводов — находятся уже на другой силовой шине, — под них на плате разведены намного более широкие дорожки. С USB-разъёмами они, логично, не прозваниваются.

Противоложная сторона. Здесь выходной круглый разъём 5.5х2.5мм, предназначенный для подключения внешней нагрузки вроде мощных резисторов, ламп накаливания, канталовой или нихромовой проволоки, а сама плата (естественно с повёрнутыми до нулевого положения крутилками) уже выступает в роли вольтметра/амперметра и омметра, мерящим сопротивление источника.
Этот выходной разъём работает только, если источник питания подаётся на мощные разъёмы — 5.5х2.5мм и контактную зажимную колодку, которые выше уже показывал.

C переднего края только заклеенный шлейф и кнопка.

По видимой элементной базе слева-направо:
— ss5200 — диод Шоттки для защиты от переплюсовки на входных разъёмах
— 00SB807 — управляющий МК
— ATHYC532 — EEPROM-память, там сохраняются настройки
— MC34063A — DC-DC-преобразователь напряжения (ШИМ)
— 6203A — линейный стабилизатор напряжения

И сразу по органам управления. Две крутилки — переменные резисторы, один для грубой регулировки тока нагрузки, второй следовательно — для точной настройки. А всё остальное управление проделывается с помощью… всего одной тактовой кнопки.

Хотя плата голая, но до главного элемента — нагрузочного транзистора, добраться таки надо.

Под радиатором находится нагрузочный мосфет, смазанный термопастой, левее два диода Шоттки STPS41h200C6.

Маркировка мосфета IRFP260 в корпусе TO-247

Экран. Меню. Настройки.
Сразу после подачи питания на плату, появляется надпись Welcome и главный экран с пока нулевыми показаниями, но на китайском языке. По однократному нажатию на тактовую кнопку произойдёт переход на следующий экран — он буквально точно такой же, но уже на английском языке.
Из показаний присутствуют строки с:

— напряжением
— током
— счётчик ёмкости (Ампер/час)
— счётчик энергии (Ватт/час)
— счётчик прошедшего времени
— показание температуры мосфета
— OFF (?)

Следующая страница, кроме компоновки, ничем не отличается

А здесь добавилось отображения внутреннего сопротивления подключенного аккумулятора

Подсветка. Сейчас включено, но доступна регулировка времени.

Далее пойдут скрины установок порогов отсечки тока, напряжения и предел мощности.
Как уже сказал, управление сделано всего от одной кнопки. И чтобы вносить изменения, придётся поиграть в «морзянку». Итак,

Увеличение значения: быстро нажать кнопку 2 раза и не отпускать её — побегут циферки и значение начнёт увеличиваться.
Уменьшение значения: быстро нажать кнопку 3 раза и не отпускать её — циферки побегут в сторону уменьшения значения.

После установки требуемого значения — просто подождать, оно само сохранится.

PS. если просто быстро нажать кнопку 2 или 3 раза и отпустить её, то число изменится только на 0.1В, поэтому рекомендую быстро нажимать с удерживанием кнопки на последнем нажатии.


Отсечка по максимальному напряжению (по умолчанию 300В).

Отсечка по минимальному напряжению (по умолчанию 0В).
Когда вольметр нагрузки упирается в это напряжение, разряд аккумулятора прекращается. Можно, например поставить 2.75-3В для лития.

Пределы по току и мощности. Величина в 300Вт намекает про возможный разгон нагрузки, но тут придётся производить хардварный апгрейд.

Сервисное меню
Чтобы в него попасть, нужно подключить питание к нагрузке с зажатой клавишей. Здесь открывается дополнительное меню калибровки амперметра и вольметра. Предварительно отключить всякую нагрузку от портов, крутилки выставить в минимальное положение. Значение вольтметра и амперметра нужно сбросить в 0.
Здесь управление уже несколько иное. Нужно быстро 2 раза нажать на кнопку. Цифры замигают и тогда можно менять значения: быстрое двухкратное с удержанием — это увеличение. Однократное удержание кнопки с удержанием — уменьшение.

Следующие экраны это отсечки по напряжению/мощности/току — скрины дублировать не буду, они есть выше. Из нового — только непонятный коэффициент и информация о плате:

Тесты электрические


Разбег показаний вольтметра оказался нелинейным, но колеблется в пределах 0.02-0.10В. Показания представлены для ознакомления, так как соединительные провода не лучшего качества и измерения на высокую точность не претендуют.

ЛБП 1В/0.54А — нагрузка 0.97В, тестер 0.99В, темп 25С
ЛБП 1В/1.03А — нагрузка 0.90В, тестер 0.97В, темп 26С

Дополнительная информация

ЛБП 5В1.02А — нагрузка 4.89В, тестер 4.92В, темп 28С
ЛБП 5В/2.05А — нагрузка 4.82В, тестер 4.87В, темп 29С
ЛБП 5В/3.04А — нагрузка 4.74В, тестер 4.83В, темп 32С
ЛБП 5В/5.08А — нагрузка 4.67В, тестер 4.74В, темп 34С (вентиль ускоряется)

Дополнительная информация

ЛБП 10В/0А — нагрузка 9.94В, тестер 9.99В, темп 26С
ЛБП 10В/1.03А — нагрузка 9.87В, тестер 9.94В, темп 28С
ЛБП 10В/2.02А — нагрузка 9.79В, тестер 9.86В, темп 32С
ЛБП 10В/3.05А — нагрузка 9.72В, тестер 9.81В, темп 32С
ЛБП 10В/4.05А — нагрузка 9.72В, тестер 9.77В, темп 33С
ЛБП 10В/5.08А — нагрузка 9.64В, тестер 9.72В, темп 36С

Дополнительная информация

ЛБП 20В/5.04А — нагрузка 19.60В, тестер 19.69В, темп 50С
ЛБП 25В/5.02А — нагрузка 24.70В, тестер 24.60В, темп 54С

Дополнительная информация

Разбег показаний амперметра не такой размашистый. Провода плохие, на них падает напряжение, но в этом тесте не его меряем, а ток.

ЛБП 5В/1.04А — нагрузка 1.020А, тестер 1.024А
ЛБП 5В/2.03А — нагрузка 1.990А, тестер 1.998А
ЛБП 5В/3.04А — нагрузка 2.990А, тестер 2.996А
ЛБП 5В/5.09А — нагрузка 5.02А, тестер 5.01А

Дополнительная информация

ЛБП 20В/5.04А — нагрузка 4.97А, тестер 4.96А
ЛБП 25В/5.03А — нагрузка 4.97А, тестер 4.95А

Дополнительная информация

Установил нижний порог отсечки 3В

На ЛБП понизил убавил напряжение ниже предела, срабатывает отсечка и сопровождается писклявым сигналом. Ток при этом нагрузка качать перестаёт.

Тесты кабелей, БП, повербанка


Современный кабель средней паршивости microUSB Earldom, 1метр

Без нагрузки — 5.12В
1А — 4.89В
2А — 4.59В
3А — 4.37В

microUSB-кабель Nokia, 1метр
Кабель Nokia — мой лично обнаруженный эталон. Кабелю скоро будет 10 лет, поэтому оболочка начала разваливаться, но посмотрите какие характеристики у него. Многим сегодняшним китайским кабелям даст фору.

Без нагрузки — 5.12В
1А — 4.97В
2А — 4.82В
3А — 4.59В

Эталон современности — кабель microUSB Huawei, 1.5метра, с USB-C-переходником

Без нагрузки — 5.12В
1А — 4.97В
2А — 4.82В
3А — 4.67В

Пример плохого microUSB-кабеля, 1метр
Это безымянные кабели, которые обычно кладут в комплекте к разным околоподвальным гаджетам. Используя эти кабели для зарядки телефонов, часто удивляются, почему заряд идёт дольше, чем через «другой» кабель.

Без нагрузки — 5.12В
1А — 4.59В
2А — 4.07В
3А — 3.54В

Кабель USB C из комплекта от нагревательных очков Xiaomi, 1 метр

Без нагрузки — 5.12В
1А — 4.89В
2А — 4.74В
3А — 4.59В

miniUSB, 0.5м, из комплекта к видеорегистратору за $120
Хороший толстый кабель

Без нагрузки — 5.12В
1А — 4.97В
2А — 4.89В
3А — 4.67В

Блок питания ThinkPlus 65Вт (суббренд Lenovo ThinkPad)
Но кабели-кабелями, их в принципе можно и обычной дешёвкой нагрузкой потестить. А обозреваемая — мощная. У меня нашёлся компактный блочок питания ThinkPlus с нетипичной для таких размером мощностью 65Вт. Блок поддерживает PD-протоколы зарядки ноутбуков, — собственно свой ноутбук я им и заряжаю, а также запитываю паяльник TS100. Поэтому блок уже проверен, но под регулируемой нагрузкой потестить было интересно.

Для подключения к нагрузке использовал двусторонний USB C кабель, который шёл в комплекте с БП ThinkPlus + триггер-переходник USB C -> 5.5×2.5мм.

Без нагрузки — 20.5В (триггер работает)
1А — 20.2В
2А — 20В
3А — 19.8В
3.3А — 19.7В
>3.3A — уход в защиту


PD-режим у повербанка Xiaomi 3 Pro
Этот повербанк, который поддерживает протокол PD 20В, я подключил посредством двустороннего кабеля USB C и переходника USB C -> 5.5×2.5мм к нагрузке, дабы проверить его выходные возможности. Оказалось на уровне заявленного.

Без нагрузки — 19.9В (триггер работает)
1А — 19.7В
2А — 19.4В
>2A — уход в защиту


Итоги.
Из минусов в плане пользования отметил бы неудобное управление, которое сводится всего к одной кнопке, нереализованную функцию измерения напряжения на сигнальных линиях USB, не обозначены ± на контактной колодке.
В остальном, инструмент устраивает, использовать в дальнейшем буду, но по-хорошему требуется доработка. Если заниматься «разгоном», то придётся городить несколько таких транзисторов и организовывать раздельное управление каждым из них и обновить систему охлаждения. В стоковом виде нагрузкой можно пользоваться, но максимум на половину мощности до 75Вт — для моих задач, например, этого вполне хватит. Если же использовать нагрузку за пределами 100Вт, то мосфет гарантированно начнёт перегреваться и деградировать, а в дальнейшем выйдет из строя, хотя на первый взгляд, даже если поднять мощность на максимальные 150Вт, виузально будет казаться, что всё в порядке.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Электронная нагрузка 60 Вт.

Здравствуйте. В этом обзоре речь пойдет о электронной нагрузке.

У нее довольно неплохие характеристики для довольно демократичной цены в $21.

На данном ресурсе обзора этой штуки я не нашел, поэтому решил сделать.

Довольно подробный обзор есть вот тут:
shopper.life/elektronnaya-nagruzka-tester-akkumulyatorov-60-vt-0-30-v-0-999-a-7428.html
Честно говоря, как раз после этого обзора, на который я по случайности наткнулся в одном из комментариев на этом форуме, я решил заказать такую же. Постараюсь дополнить информацию к предыдущему обзору.

Основные параметры :
Напряжение питания: 12 В / 0,5А
Тестируемое напряжение: до 30 В
Задаваемый ток: до 10 А
Максимальная мощность: до 60 Вт

Начнем с достоинств :
1. Мощность разряда 60 Вт. На ее фоне мой Imax B6 mini выглядит как детская игрушка.

На радиаторе стоит монстроидальный транзистор w60ne10 имеющий просто дикий запас по мощности и диод Шоттки STPS3045CT. Так же прикреплен датчик температуры. В зависимости от нагрева регулируются обороты кулера. Регулируются они довольно странно.

2. Возможность мерить не только емкость в Ah, но и запасенную энергию в Wh. Почему это так принципиально? Большинство нагрузок ведет себя не как тупой резистор. И в целом потребляют не столько ток, сколько мощность. В следствие чего, при более низком напряжении с аккумулятора (в нагрузке) чтобы забрать с него ту же мощность, которая нужна ус-ву, оно увеличивает ток потребления.
Вот поэтому, имея одинаковую емкость в Ah, аккумулятор низкого качества проработает меньше, чем аккумулятор с такой же емкостью, но лучшего качества. Наглядно это можно увидеть при построении нагрузочной хар-ки (графика разряда) в каком-нибудь Imax-е.
Для примера проведу тестирование мало использованного 4х летнего аккумулятора Sanyo и практически нового ноунейм китайца, снятого с повербанка.


Емкость 2,26 Аh, энергоемкость 8,16 Втч. Итого, среднее напряжение разряда 3,61 В.


Емкость 2,35 Аh, энергоемкость 8,70 Втч. Итого, среднее напряжение разряда 3,70 В. Таким образом, если бы емкость была одинаковой, Sanyo проработали бы дольше за счет увеличенной энергоемкости.

3. Наличие доп. разъема для замера точного напряжения напрямую с аккумулятора.

Тут можно подключать тонкими проводами даже мощную нагрузку, т.к. при замере Енергоемкости напряжение через доп. разъем будет сниматься прямо с аккумулятора, а при замере Емкости сопротивление проводов (и падение напряжения на них) будет учитываться самой нагрузкой, т.к. схема включения «нагрузка+провода+ИП» получается последовательной и ток будет одинаков во всей цепи. Кстати говоря, напряжение он меряет и с силовых контактов, но, т.к. при протекании тока на проводах падает напряжение, то тут он меряет не столько напряжение на аккумуляторе, сколько на самой нагрузке. И это реально работает. Замеры примерно совпадают с мультиметром. Чем больше ток и чем тоньше провода тем заметнее получаются результаты замеров через встроенный шунт и с использованием доп. разъема.

4. Со слов обзорщика, ус-во должно быть довольно точным. Тоже не маловажный критерий, т.к. мой Imax B6 mini довольно сильно врет. При заданном минимальном токе 100 mA, он реально устанавливает порядка 150mA. При токах 0,2-1,5 А точность уже выше, но все равно значения на 5-10% отличаются заданных и от показаний мультиметра. Про то, что напряжение Imax mini меряет с ужасной точностью и говорить не стоит, но это не бросается в глаза, т.к. энергию он не меряет (для этого у него есть графики).
Значения выставленные с нагрузки примерно совпадают с измеренными мультиметром. Тут сложно сказать кто из них врет: то ли мультиметр, то ли нагрузка.





На больших токах различия уже значительнее, но опять таки мое оборудование не позволяет определить что тут врет: мультиметр или нагрузка.

Напряжение определяется верно. А если подключать толстые провода, то доп. контактами для замера напряжения можно пренебречь, т.к. встроенный шунт настроен точно т различий с мультиметром в 2 разрядах после запятой не замечено.

5. По размерам он оказался намного меньше, чем я его себе представлял. 110*70 мм. Примерно как мой Imax mini.

Так, теперь о недостатках :

1. Не рисует графики. Вот это самый ощутимый недостаток. Хотя если бы девайс это умел, стоил он бы совершенно других денег и я бы его не смог себе позволить. Вот пара аналогов:
1.1 mysku.ru/blog/china-stores/37393.html
Схожий по хар-кам и умеет рисовать графики, но больно бьет по карману. Да и размеры внушительные.
1.2 mysku.ru/blog/aliexpress/37353.html
Тоже умеет рисовать графики, но мощность разряда печальная, всего 25 Вт. К тому же, нет клемм и нет доп. входа для замера напряжения. Размеры радиатора тоже удручают.

2. Нагрузке требуется доп. питание 12В. К сожалению, у меня не было лишнего(не занятого) БП, поэтому решил поднапрячь мозг для решения проблемы. Замеры показали, что в независимости от режима схема потребляет примерно 1,5 Вт. Немного поразмыслив, я придумал простое и очень удобное решение. Для этого нам понадобится USB кабель, «повышайка» и штекер. Благо все это уже было прикуплено заранее для различных самоделок. В итоге это выглядит так:


Собрав и подключив этот кабель, устройство выдало ошибку питания. Поведя анализ было выяснено, что при старте нагрузка потребляет значительный ток. И чтобы она запустилась нужен был как минимум БП на 1А. Более слабые БП на 700мА просто проседали по напряжению, при этом повышающий преобразователь жутко писчал. Сначала я попробовал поднять выходное напряжение до 13В, но это не помогло. Попробовал подключить конденсаторы, чтобы сгладить просадку на старте, но старт слишком долгий и конденсаторы не могли удержать напряжение на должном уровне. Потом меня осенило. Чтобы снизить стартовую нагрузку на 5В БП нужно уменьшить повышающее напряжение. Методом тыка было обнаружено оптимальное напряжение 11В, при котором плата стартовала стабильно. При этом требования к току с USB зарядника понизилось и нагрузка стала работать с БП на 0,5А а так же с USB портов ноутбука и ПК. На 10В плата уже не стала стартовать выдавая ошибку даже бес писка преобразователя. На фото выше вы как раз видите как нагрузка работает через 500mA адаптер и через USB доктора. В холостом ходе и в работе ток по линии 5В невелик.

3. Нечитаемый индикатор. Проблема была решена наклеиванием на него изоленты. На фото видна разница, но в реальности разница намного ощутимей и индикатор читается при любом освещении.




4. Кулер хоть и не особо шумный, но все-же ощутимо шумит даже если нагрузка невелика и только чуть-чуть нагревает радиатор. Сбоку я «приколхозил» переключатель а сзади закрепил сопротивление примерно 30 Ом. При этом на слабой нагрузке он вообще не крутится, а как только радиатор разогреется как следует вентилятор включается. Актуально при тестировании аккумуляторов невысоким током ночью, чтобы шуршание кулера не раздражало. При более высокой нагрузке с этим резистором обороты кулера тоже поднимаются, так что автоматическая регулировка оборотов работает.

5. Кривоватый регулятор. На работоспособность не влияет.

В итоге получился довольно приятный на внешний вид приборчик, который занимает совсем немного места. Работать с ним одно удовольствие. Сначала меня посещали мысли заколхозить его в корпус, но эту идею я отбросил, т.к. ухудшится охлаждение, размеры получатся более габаритные, нужно будет думать как и куда подключать провода. Легче просто хранить его в какой-нить небольшой коробочке, например в той, в которой он и приехал.

***************************************************
UPDATE 19.10.16:

Т.к. ссылка на предыдущий обзор товара не доступна, то добавлю несколько моментов:
1. Данная нагрузка может работать как тестер аккумуляторов считая емкость и энергоемкость (продемонстрировалось выше), при этом напряжение меряется автоматически схемой (за вычетом падения на проводах подключения) или автоматически переключается на измерение с помощью дополнительного провода (если он подключен). Во время измерения нагрузка показывает на нижнем индикаторе текущий ток, а на верхнем ( переключаясь емкость и энергоемкость к данному моменту ). По окончанию можно просмотреть оба параметра.
2. Так же она может работать в режиме только нагрузки. Плюс данного режима в том, что она показывает ток на нижнем индикаторе и напряжение на верхнем (при этом на верхнем индикаторе показывается только напряжение), что довольно удобно наблюдая просадку напряжения при изменении тока. Вот только тут есть один коварный «минус». В таком режиме она не меряет реальное напряжение на нагрузке через дополнительный кабель, а только напряжение, попадающее на схему нагрузки через подключаемые провода, т.о. напряжение меряется не точно, учитывая падение на подключаемых проводах. Вот это, конечно, довольно ощутимый недостаток. Хотя никто нам не мешает подключить дополнительно вольтметр для точного замера напряжения.
3. Переключение режимов осуществляется зажатием кнопки «старт» при включении.
4. Требования к источнику питания ограничиваются мощностью встроенного вентилятора. При старте нагрузка раскручивает его на максимум. Если напряжение просядает ниже положенного, то выводится ошибка. Поэтому нужен БП 12В выдающий минимум 0,2А-0,3А иначе нагрузка не стартанет. Хотя в работе при минимальных оборотах кулера ей надо намного меньше.
5. Ток задается от 0,2А до 10А с шагом либо 0,1 либо 0,01 (шаг выбирается нажатием на ручку).
6. Мощность автоматически ограничивается снижением тока нагрузки.

*****

После некоторого времени использования у меня «зачесались» руки и я доработал свою нагрузку путем увеличения мощности.

Принцип доработки основан на следующем : мощность программно ограничена 60 Вт. Причем контроллер вычисляет ее умножая напряжение на задаваемый ток. Уменьшив сопротивление шунта (железной перемычки) например в 2 раза реальный ток будет в 2 раза больше, чем тот, что вы устанавливаете с помощью ручки и отображается на нагрузке. Вот только показания будут измеряться для тока в 2 раза меньшего, поэтому их в конце нужно будет умножить на 2.

Предлагаю вам свой вариант относительно простой доработки:

Мощность можно увеличить хоть на сколько раз. Приведу пример самого простого варианта для увеличения мощности, к примеру в 4 раза. Для этого не нужны никакие сложные расчеты, и глубокие познания в радиоэлектронике. Для этого нужно:

1. Модификация шунта.
ВАЖНО: Стандартный шунт рассчитан на 10А, если по нему гонять больший ток, ничего хорошего из этого не выйдет, поэтому нужно будет устанавливать свой шунт. И тут появляется проблема: при том же сопротивлении на большем токе будет выделяться НАМНОГО больше тепла. И тут 2 пути решения проблемы:
первый вариант: Просто уменьшаем сопротивление шунта в 4 раза. Сложность в том, чтобы добиться точно такого-же номинала сопротивления деленного на 4, иначе будет погрешность установки тока (в %).
второй вариант (более предпочтителен ) : Оставляем номинал шунта как есть, но увеличиваем его мощность. Я сделал просто — взял прямоугольный кусок текстолита и процарапал вдоль его изолирующую канавку. Припаял параллельно смд резисторов, чтобы они имели в сумме номинал шунта. Таким образом площадь рассеивания тепла значительно увеличилась и нам не составляет труда опытным путем точно подобрать сопротивление шунта, просто допаивая или отпаивая резисторы. Почему этот вариант более выгоден? А потому что на выходе можно через переключатель поставить вручную задаваемый резистивный делитель, которым можно устанавливать множитель задаваемого тока нагрузки по своему желанию х2, х3, х4 и т.д. Лично я в своей доработанной нагрузки так и сделал. Для увеличения тока в 4 раза (х4) ставим на выходе шунтирующего резистора «резистивный делитель» снижающий напряжение в 4 раза, например 30 кОм + 10 кОм. Значения взяты с потолка, но не рекомендую брать соотношения на слишком малых и слишком больших номиналах.

2. Рассчитать максимальную мощность нагрузки и исходя из нее выбрать необходимое кол-во транзисторов. Например, вы хотите рассеивать 40А на 12В = 480Вт. Прикинем, что каждый транзистор будет рассеивать нам по 60Вт, тогда надо 480/60=8 транзисторов.
НЕ МАЛОВАЖНЫЙ НЮАНС : транзисторы должны быть максимально идентичными и из одной партии, в противном случае (т.к. схема подключения параллельная) может получиться так, что при одном управляющем напряжении на всех затворах один из транзисторов откроется значительно шире всех остальных и вся мощность осядет на нем и он сгорит, вместо того, чтобы мощность распределялась на всех равномерно.

3. Подключаем все транзисторы параллельно,
НО И ТУТ ЕСТЬ ОДИН НЮАНС , который я на практическом опыте заметил. Затвор каждого транзистора подключается через отдельный резистор (я брал 1кОм, опять таки взял с потолка) к контакту, идущему на затвор от управляющего контроллера. Если резисторы не ставить, управляющая электроника не сможет ими рулить, т.к. в виду нелинейности ВАХ и параллельном подключении будут всевозможные глюки. И тут не важно разные это транзисторы или подобранные по идентичным параметрам из одной серии.

Теперь при установке, к примеру 1А, (8 транзисторов нагрузки) установят вам ток 4А.
Так же нужно учесть еще один нюанс: т.к. ток будет больше, то нужно будет вместо 1 поставить 2 и более диода шоттки, которые защищают от переполюсовки подключаемой нагрузки.
PS: Если будет время, желание и просьбы от читателей я как-нибудь добавлю фото получившегося у меня экземпляра.

UPDATE :
Существует версия этой нагрузки с проблемой неточной установки тока и постоянно вращающимся вентилятором. Проблему решил вот тут:
mysku.ru/blog/discounts/46663.html

Электронная нагрузка

Надоело собирать нагрузку для тестов из мощных резисторов, решил приобщится к техническому прогрессу и прикупить электронный резистор. На али, нашлось два типа на 15W и на 20W. Берем на на 20W.

Товар пришел достаточно быстро, в таком вот виде

открываем

вот такая штука

из описания продавца
20 Вт промышленного класса Электронные нагрузки резистор USB интерфейс разряда батареи тест емкости вентилятор с регулируемой ток

Технические параметры:
Напряжение: 3.7-13 В регулируемый ток: 0.15-«3.00a
Мощность: 15 Вт (непрерывной работы) вентилятор Рабочая температура: 40°c
Вентилятор: шариковый подшипник вентилятора

Дополнительная информация


Уже при 11 w металлизированный текстолит под транзистором, очень сильно нагревается

Было принято решение поставить доп радиатор
Кому интересно можно изучить элементную базу, вскрытие )

Сначала я хотел поставить радиатор под вентилятор, но это к сожалению результата не принесло, да и неудобно туда. Поэтому поставил под плату, транзистор теплоотводом как раз там припаян и прогревает текстолит очень сильно, температуру к сожалению не мерил.
Получалось так

Вентилятор стал включатся позже, транзистору полегче.
В итоге хочу сказать, что конечно нужно собирать нагрузку самостоятельно этак на 100-150 W
для полноценных тестов, но оперативно оценить блок питания до 5 А или емкость пувер банка, а также отдельных липолек в прямоугольном форм-факторе, это устройство вполне подойдет.

Спасибо за внимание, это мой первый обзор, прошу помидорами не закидывать )

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *