Емкостной датчик: принцип работы, разновидности, схема
Емкостной датчик, как его определяет Большая Советская Энциклопедия, — измерительный преобразователь, позволяющий неэлектрические величины перевести в значения электрической емкости. Например, такие как давление, уровень жидкости, механическое усилие, влажность, и прочие. Изменения емкости оказываются пропорциональны колебаниям измеряемой величины, и это соответствие позволяет отследить ее поведение.
Как работает такой измеритель
По сути дела, подобный сенсор представляет собой конденсатор. На определении его характеристики базируется работа измерителя и контроль параметров. Поэтому вполне к месту будет вспомнить о том, что такое конденсатор.
Про конденсатор, его характеристики
Как известно, емкость конденсатора определяется формулой
С=Ɛ×Ɛ0×S/d
Где:
- Ɛ0 — диэлектрическая постоянная;
- Ɛ — относительная диэлектрическая проницаемость среды между пластинами;
- d — зазор между обкладками;
- S — площадь обкладок.
В этой формуле три переменные величины — диэлектрическая проницаемость Ɛ, площадь S обкладок конденсатора и зазор между обкладками d. Изменение любой из них приведет к изменению емкости, а отслеживание колебаний позволит контролировать характеристики среды или другого параметра.
Принцип работы емкостного измерителя
Самое простое техническое решение — включить измерительный сенсор во времязадающую цепь генератора. Не вдаваясь в тонкости схемотехники, можно сказать, что принцип работы любого емкостного датчика тем или иным образом связан с изменением параметров генератора. Это происходит из-за колебаний емкости конденсатора, что приводит к генерации им колебаний другой частоты.
Таким образом, отслеживая ее значение на выходе измерителя, можно оценивать изменения контролируемого параметра. Конечно, в каждом конкретном случае схемотехническое решение может быть разным. Во многом оно будет зависеть от параметра конденсатора, на который оказывается воздействие со стороны внешней среды.
Это может быть изменение зазора между обкладками конденсатора из-за их сближения или удаления. Или при заполнении резервуара другой средой, например водой, изменится значение диэлектрической проницаемости. Или обкладки конденсатора после внешних воздействий будут располагаться друг относительно друга по-разному.
Любое подобное воздействие вызовет изменение значения емкости конденсатора, а значит, повлияет на работу схемы. Например, емкостные датчики уровня контролируют степень заполнения резервуара или бункера. Зная зависимость между уровнем жидкости и емкостью конденсатора, можно определить, насколько заполнен бак.
Хотя надо отметить, что могут применяться и другие способы обработки сигналов датчика. Их достаточно много, выбор того или иного зависит от конкретных условий. Современный уровень развития электроники позволяет получать обработанный сигнал в виде цифрового кода.
Еще один метод измерения емкости — использование аналого-цифровых преобразователей. Микроконтроллеры вполне могут справиться подобной задачей. В этом случае значительно упрощается измерительная часть приборов на их основе.
Какие бывают датчики
Все измерители на основе ёмкостного сенсора можно разделить на:
- одноемкостные;
- двухемкостные.
Необходимо отметить, что конструктивно емкостные датчики могут быть:
- плоскими;
- цилиндрическими;
- поворотными.
Сфера применения любых из них достаточно обширна. Как пример, по функциональному назначению их можно использовать в роли:
- измерителей уровня;
- приборов контроля углового перемещения;
- датчиков перемещения;
- инклинометров;
- датчиков давления.
Этими примерами далеко не исчерпываются варианты применения емкостных измерителей. Ниже будут рассмотрены и другие возможности, предоставляемые этими приборами.
Одноемкостные датчики
Это самые простые сенсоры. По сути, они являются обычными конденсаторами переменной емкости, изменения которой отслеживаются специальной схемой. Ёмкостные измерители подобного типа подвержены сильному влиянию со стороны внешней среды. Лучше всего на их основе реализовывать различные бесконтактные варианты контроля, например приближения посторонних лиц к охраняемой зоне или движения в ней.
Как выглядят на практике подобные конденсаторы, можно понять из приведенных ниже рисунков.
Двухемкостные датчики
Позволяют уменьшить влияние внешней среды. Ёмкостный сенсор подобного типа отличается большей точностью измерения из-за того, что один конденсатор служит в качестве эталонного. Это позволяет компенсировать стороннее влияние. Двухемкостные датчики бывают дифференциальными и полудифференциальными. Схематически примеры построения подобных приборов показаны ниже.
Другой способ повысить чувствительность емкостного измерителя — использовать мостовую схему включения.
Датчики уровня
Емкостные датчики уровня — устройства, позволяющие контролировать уровень жидкого или сыпучего вещества в баке или бункере. Конечно, конструктивное исполнение вариантов измерителей для различных веществ будет разным, но принцип останется неизменным.
Фактически емкостные датчики уровня подобного типа являются двумя конденсаторами, соединенными между собой параллельно. Только у одного диэлектриком служит воздух, а у другого — жидкость или иное вещество. Таким образом, емкость каждого из них будет разная, она будет меняться и зависеть от степени заполнения бункера (бака).
Приведенный рисунок или схема емкостного датчика отличается простотой построения и универсальностью. Однако, чтобы повысить точность измерения, лучше всего, как минимум, дополнительно контролировать температуру жидкости, от нее зависит значение диэлектрической проницаемости. И в зависимости от температуры в расчетах необходимо будет использовать поправочный коэффициент.
Датчики линейного перемещения
Подобные устройства могут использоваться в самых разных целях, например для:
- контроля начала-окончания рабочего хода исполнительного устройства в автоматических станках;
- позиционирования различных объектов;
- фиксации появления стороннего объекта в системе охраной сигнализации;
- как концевой выключатель.
Датчики подобного типа могут работать на различных принципах. Ниже рассмотрим два варианта их реализации.
- На основе изменения зазора между пластинами конденсатора. В таком варианте воздействие приходится на одну из обкладок, она под приложенным усилием может смещаться, что вызывает изменение емкости конденсатора, пропорциональное воздействию.
- В представленном ниже варианте работа датчика основана на изменении диэлектрической проницаемости диэлектрика между обкладками.
Датчики углового перемещения
По своей сути подобные сенсоры похожи на датчики линейного перемещения, и чаще всего для этих целей используют приборы с изменяемой площадью. Одна из обкладок конденсатора прикреплена к валу объекта, а другая остается неподвижной. Изменение степени перекрытия пластин вызывает колебания емкости.
Для повышения точности измерения чаше всего используют многосекционные преобразователи.
Инклинометр
Принцип работы такого устройства схож с тем, как работает емкостный датчик уровня. В специальной капсуле крепится подложка, на которой располагаются два изолированных участка, которые являются одним из выводов конденсатора. Внутри капсула заполнена токопроводящей жидкостью. Она является другим электродом конденсатора. Его емкость определяется положением прибора по вертикали и не зависит от угла наклона в других направлениях.
Датчик давления
В подобном измерителе давление вызывает изменение расстояния между обкладками конденсатора. Достигается это тем, что между его пластинами располагается эластичная мембрана, на которую и оказывается воздействие. Перегородка в зависимости от давления движется в ту или иную сторону, что приводит к изменению емкости.
Емкостные датчики прикосновения
Рассматривая разнообразные типы сенсоров на основе электрической емкости, нельзя обойти вниманием такое их использования как датчики прикосновения. Самым наглядным примером подобных приборов служат смартфоны. Реализация датчиков прикосновения может быть достаточно сложной, но она базируется на некоторых простых основополагающих принципах. Работа таких устройств основана:
- на использовании собственной емкости;
- на использовании взаимной емкости.
Далее будет рассмотрен принцип работы датчиков прикосновения на основе собственной емкости.
Датчик на основе собственной емкости
Конденсатор существует не только в виде отдельного объемного элемента с выводами. Емкостью также обладают два обычных проводника, расположенные параллельно. Исходя из этого, можно получить конденсатор, основываясь на электропроводных слоях, разделенных каким-либо диэлектриком. Такой конденсатор может быть получен на основе печатной платы.
Он представлен на рисунке ниже (в двух проекциях — сверху и сбоку). Мы видим обособленный участок (сенсорная кнопка), отделенный от общего слоя меди. А так как остальные участки соединены с землей, то сенсорная площадка может быть представлена как конденсатор между ней и землей.
Емкость такого конденсатора будет мала, порядка 10 пФ. Но для различных устройств ее значение не принципиально. При контроле зачастую важна не емкость, а ее изменение. Именно на это рассчитаны те схемы, которые обрабатывают состояние сенсорной кнопки.
Как изменить состояние кнопки
Самое простое, что можно сделать, — прикоснуться пальцем. Надо сразу отметить, что никакой опасности для человека такое касание не представляет. Обычно все платы покрываются лаком, так что прямого контакта с токопроводящими элементами не произойдет. Тем не менее, изменения состояния конденсатора будут. Это возможно по двум причинам:
- из-за диэлектрической проницаемости человеческого тела;
- из-за собственной проводимости
Тело обладает собственной диэлектрической проницаемостью
Вследствие того, что диэлектрическая проницаемость тела отличается от диэлектрической проницаемости воздуха, который служит изолятором в первоначальный момент, то емкость конденсатора изменится. Здесь расчет простой — диэлектрическая проницаемость воздуха 1, а воды — 80 (человеческое тело по большей части состоит из воды). Значит, емкость сенсорной кнопки увеличится.
Для этого изменения даже не надо ее касаться. Как показали исследования ученых, порой достаточно просто поднести палец к контакту.
Тело обладает собственной проводимостью
Это давно установленный факт.
И хотя выше говорилось, что касание не несет опасности для человека, тем не менее, оно вносит свою лепту в изменение состояния сенсорной кнопки. Упрощенно можно считать, что емкость пальца подключена параллельно емкости сенсорной кнопки. Поэтому общая емкость системы, как и в предыдущем случае, увеличится. А значит, оба рассмотренных механизма (изменение диэлектрической проницаемости и собственная проводимость человеческого тела) приводят к увеличению емкости.
Использование емкостных датчиков прикосновения
Подобные сенсоры нашли широкое применение не так давно, хотя в повседневной жизни они встречаются повсеместно. Можно ожидать, что благодаря им использование механических переключателей и кнопок будет минимизировано. Самое главное — такая технология позволяет определить момент касания, а уж современная электроника его обработает без каких либо проблем.
Датчики присутствия
Другим, не менее важным и востребованным вариантом применения датчиков на основе емкости является их использование для обнаружения кого- или чего-либо в зоне контроля. Самый простой пример — включение освещения на лестничной площадке. Хотя этим далеко не исчерпываются возможности таких измерителей. Не менее востребовано применение таких сенсоров в системах охранной сигнализации. Или подсчета количества штучной продукции.
Как это работает
Выше уже отмечалось, что человеческое тело обладает определенной диэлектрической проницаемостью и проводимостью.
На рисунке представлено схематическое изображение такой системы. Имеются два электрода, подключенные к измерителю. Каждый из них обладает своей емкостью, обозначенной С1. В результате есть определенная результирующая емкость у всей системы.
При появлении в контролируемой зоне какого-то нового объекта, например человека, у системы образуются две дополнительные емкости: Са — между электродом и телом человека, и Сb — между человеком и землей. Результирующая емкость всей системы изменится, и это изменение может быть отслежено схемой контроля.
Еще один способ обнаружения присутствия
В этом случае также используется эффект увеличения емкости при появлении постороннего предмета в зоне контроля. Только в данном случае применяется механизм активного воздействия на контролируемый участок. Для этого используется схема датчика с активным излучателем.
В состав такого измерителя входят генератор сигналов, компаратор и усилитель-преобразователь. При включении схемы в пространстве перед измерителем возникает электрическое поле. Генератор настроен таким образом, чтобы при отсутствии посторонних предметов он не запускался. Достигается это тем, что свободное пространство считается развернутым конденсатором с диэлектрической проницаемостью равной 1. Значение емкости получается недостаточным для запуска генератора.
При появлении каких-либо материалов, объектов, людей перед измерителем диэлектрическая проницаемость среды изменяется (увеличивается), также растет емкость конденсатора. Это приводит к запуску генератора. Амплитуда колебаний будет зависеть от расстояния до предмета, его материала и диэлектрической проницаемости.
При достижении амплитуды колебаний определенной величины, срабатывает компаратор и выдает сигнал на усилитель. Посторонний предмет обнаружен.
Данная схема может применяться не только в системах охранной сигнализации для фиксации вторжения в закрытую зону, но и для других целей. На этом принципе может работать система подсчета количества штучного товара, например, упаковок молока, консервных банок или любых других аналогичных предметов.
Возможные сферы применения датчиков
Рассмотренные емкостные датчики уровня, давления, положения и другие типы подобных изделий, а также особенности конструкции, позволяют сделать вывод об их универсальности. А значит, они могут быть использованы в разных областях промышленности, схемах регулирования и контроля. В качестве примера можно назвать следующие области народного хозяйства, где могут применяться подобные измерители:
- нефтегазовая промышленность;
- добыча и переработка металлов;
- горнодобывающая промышленность;
- сельское хозяйство, в том числе животноводство и растениеводство;
- деревообрабатывающая промышленность;
- производство напитков и продуктов питания;
- станкостроение и роботизированные комплексы;
- целлюлозно-бумажная промышленность;
- химическая промышленность и другие.
Использование емкостных преобразователей позволяет решить самые различные задачи. Перечислить их все просто нереально, но опять же в качестве примеров можно перечислить такие варианты их использования:
- указание положения жидкости, сыпучих веществ, в том числе продуктов, в трубе или хранилище, контроль их заполнения;
- сигнализация обрыва провода, ленты, иных подобных предметов при намотке;
- подсчет количества штучных изделий;
- контроль натяжения ленты;
- использование в охранных системах для обнаружения несанкционированного вторжения.
Преимущества емкостных датчиков
Среди несомненных достоинств таких сенсоров, где бы они ни применялись, хоть в Москве, хоть в Антарктиде, стоит отметить:
- малый вес, габариты, незначительное потребление электроэнергии;
- отсутствие контактов;
- длительный срок эксплуатации;
- возможность адаптировать датчики к использованию для решения различных задач;
- незначительные усилия для перемещения подвижных частей.
- простоту изготовления, а также применение для этих целей доступных, недорогих материалов;
Недостатки датчиков
Однако для таких измерителей характерны и некоторые недостатки:
- ошибки и погрешности, порой значительные, в процессе измерений;
- необходимость использования преобразователей и измерителей, работающих на высоких частотах;
- экранирование измерительных и высокочастотных цепей;
Заключение
Различные измерители, построенные на емкостных датчиках, широко используются в самых разных отраслях промышленности, отличаются простотой в изготовлении и применении. Имеют длительный срок службы и высокую надежность.
Видео по теме
Хорошая реклама
Емкостной сенсорный датчик, электрическая схема, печатная плата
Емкостной датчик – это один из типов бесконтактных датчиков, принцип работы которого основан на изменении диэлектрической проницаемости среды между двух обкладок конденсатора. Одной обкладкой служит сенсорный датчик схемы в виде металлической пластины или провода, а второй – электропроводящее вещество, например, металл, вода или тело человека.
При разработке системы автоматического включения подачи воды в унитаз для биде возникла необходимость применения емкостного датчика присутствия и выключателя, обладающих высокой надежностью, устойчивостью к изменению внешней температуры, влажности, пыли и питающему напряжению. Хотелось также исключить необходимость прикосновения человека с органами управления системы. Предъявляемые требования могли обеспечить только схемы сенсорных датчиков, работающих на принципе изменения емкости. Готовой схемы удовлетворяющей необходимым требованиям не нашел, пришлось разработать самостоятельно.
Получился универсальный емкостной сенсорный датчик, который не требует настройки и реагирует на приближающиеся электропроводящие предметы, в том числе и человека, на расстояние до 5 см. Область применения предлагаемого сенсорного датчика не ограничена. Его можно применять, например, для включения освещения, систем охранной сигнализации, определения уровня воды и в многих других случаях.
Электрические принципиальные схемы
Для управления подачей воды в биде унитаза понадобилось два емкостных сенсорных датчика. Один датчик нужно было установить непосредственно на унитазе, он должен был выдавать сигнал логического нуля при присутствии человека, а при отсутствии сигнал логической единицы. Второй емкостной датчик должен был служить включателем воды и находиться в одном из двух логических состояний.
При поднесении к сенсору руки датчик должен был менять логическое состояние на выходе – из исходного единичного состояния переходить в состояние логического нуля, при повторном прикосновении руки из нулевого состояния переходить в состояние логической единицы. И так до бесконечности, пока на сенсорный включатель поступает разрешающий сигнал логического нуля с сенсорного датчика присутствия.
Схема емкостного сенсорного датчика
Основой схемы емкостного сенсорного датчика присутствия является задающий генератор прямоугольных импульсов, выполненный по классической схеме на двух логических элементах микросхемы D1.1 и D1.2. Частота генератора определяется номиналами элементов R1 и C1 и выбрана около 50 кГц. Значение частоты на работу емкостного датчика практически не влияет. Я менял частоту от 20 до 200 кГц и влияния на работу устройства визуально не заметил.
С 4 вывода микросхемы D1.2 сигнал прямоугольной формы через резистор R2 поступает на входы 8, 9 микросхемы D1.3 и через переменный резистор R3 на входы 12,13 D1.4. На вход микросхемы D1.3 сигнал поступает с небольшим изменением наклона фронта импульсов из-за установленного датчика, представляющего собой кусок провода или металлическую пластину. На входе D1.4, из за конденсатора С2, фронт изменяется на время, необходимое для его перезаряда. Благодаря наличию подстроечного резистора R3, есть возможность фронты импульса на входе D1.4, выставить равным фронту импульса на входе D1.3.
Если приблизить к антенне (сенсорному датчику) руку или металлический предмет, то емкость на входе микросхемы DD1.3 увеличится и фронт поступающего импульса задержатся во времени, относительно фронта импульса, поступающего на вход DD1.4. чтобы «уловить» эту задержку про инвертированные импульсы подаются на микросхему DD2.1, представляющую собой D триггер, работающий следующим образом. По положительному фронту импульса, поступающего на вход микросхемы C, на выход триггера передается сигнал, который в тот момент был на входе D. Следовательно, если сигнал на входе D не изменяется, поступающие импульсы на счетный вход C не оказывают влияния на уровень выходного сигнала. Это свойство D триггера и позволило сделать простой емкостной сенсорный датчик.
Когда емкость антенны, из за приближения к ней тела человека, на входе DD1.3 увеличивается, импульс задерживается и это фиксирует D триггер, изменяя свое выходное состояние. Светодиод HL1 служит для индикации наличия питающего напряжения, а HL2 для индикации приближения к сенсорному датчику.
Схема сенсорного включателя
Схему емкостного сенсорного датчика можно использовать и для работы сенсорного включателя, но с небольшой доработкой, так как ему необходимо не только реагировать на приближение тела человека, но и оставаться в установившемся состоянии после удаления руки. Для решения этой задачи пришлось к выходу сенсорного датчика добавить еще один D триггер, DD2.2, включенный по схеме делителя на два.
Схема емкостного датчика была немного доработана. Для исключения ложных срабатываний, так как человек может подносить и удалять руку медленно, из-за наличия помех датчик может выдавать на счетный вход D триггера несколько импульсов, нарушая необходимый алгоритм работы включателя. Поэтому была добавлена RC цепочка из элементов R4 и C5, которая на небольшое время блокировала возможность переключение D триггера.
Триггер DD2.2 работает так же, как и DD2.1, но сигнал на вход D подается не с других элементов, а с инверсного выхода DD2.2. В результате по положительному фронту импульса, приходящего на вход С сигнал на входе D изменяется на противоположный. Например, если в исходном состоянии на выводе 13 был логический ноль, то поднеся руку к сенсору один раз, триггер переключится и на выводе 13 установится логическая единица. При следующем воздействии на сенсор, на выводе 13 опять установится логический ноль.
Для блокировки включателя при отсутствии человека на унитазе, с сенсора на вход R (установка нуля на выходе триггера вне зависимости от сигналов на всех остальных его входах) микросхемы DD2.2 подается логическая единица. На выходе емкостного выключателя устанавливается логический ноль, который по жгуту подается на базу ключевого транзистора включения электромагнитного клапана в Блоке питания и коммутации.
Резистор R6, при отсутствии блокирующего сигнала с емкостного датчика в случае его отказа или обрыва управляющего провода, блокирует триггер по входу R, тем самым исключает возможность самопроизвольной подачи воды в биде. Конденсатор С6 защищает вход R от помех. Светодиод HL3 служит для индикации подачи воды в биде.
Конструкция и детали емкостных сенсорных датчиков
Когда я начал разрабатывать сенсорную систему подачи воды в биде, то наиболее трудной задачей мне казалась разработка емкостного датчика присутствия. Обусловлено это было рядом ограничений по установке и эксплуатации. Не хотелось, чтобы датчик был механически связан с крышкой унитаза, так как ее периодически надо снимать для мойки, и не мешал при санитарной обработке самого унитаза. Поэтому и выбрал в качестве реагирующего элемента емкость.
Сенсорного датчика присутствия
По выше опубликованной схеме сделал опытный образец. Детали емкостного датчика собраны на печатной плате, плата размещена в пластмассовой коробке и закрывается крышкой. Для подключения антенны в корпусе установлен одноштырьковый разъем, для подачи питающего напряжения и сигнала установлен четырех контактный разъем РШ2Н. Соединена печатная плата с разъемами пайкой медными проводниками в фторопластовой изоляции.
Сенсорный емкостной датчик собран на двух микросхемах КР561 серии, ЛЕ5 и ТМ2. Вместо микросхемы КР561ЛЕ5 можно применить КР561ЛА7. Подойдут и микросхемы 176 серии, импортные аналоги. Резисторы, конденсаторы и светодиоды подойдут любого типа. Конденсатор С2, для стабильной работы емкостного датчика при эксплуатации в условиях больших колебаниях температуры окружающей среды нужно брать с малым ТКЕ.
Установлен датчик под площадкой унитаза, на которой установлен сливной бачок в месте, куда в случае протечки из бачка вода попасть не сможет. К унитазу корпус датчика приклеен с помощью двустороннего скотча.
Антенный датчик емкостного сенсора представляет собой отрезок медного многожильного провода длинной 35 см в изоляции из фторопласта, приклеенного с помощью прозрачного скотча к внешней стенке чаши унитаза на сантиметр ниже плоскости очка. На фотографии сенсор хорошо виден.
Для настройки чувствительности сенсорного датчика необходимо после его установки на унитаз, изменяя сопротивление подстроечного резистора R3 добиться, чтобы светодиод HL2 погас. Далее положить руку на крышку унитаза над местом нахождения сенсора, светодиод HL2 должен загораться, если руку убрать, потухнуть. Так как бедро человека по массе больше руки, то при эксплуатации сенсорный датчик, после такой настройки, будет работать гарантировано.
Конструкция и детали емкостного сенсорного включателя
Схема емкостного сенсорного включателя имеет больше деталей и для их размещения понадобился корпус большего размера, да и по эстетическим соображениям, внешний вид корпуса, в котором был размещен сенсорный датчик присутствия не очень подходил для установки на видном месте. Внимание на себя обратила настенная розетка rj-11 для подключения телефона. По размерам она подходила и имела хороший внешний вид. Удалив из розетки все лишнее, разместил в ней печатную плату емкостного сенсорного выключателя.
Для закрепления печатной платы в основании корпуса была установлена короткая стойка и к ней с помощью винта прикручена печатная плата с деталями сенсорного выключателя.
Датчик емкостного сенсора сделал, приклеив ко дну крышки розетки клеем «Момент» лист латуни, предварительно вырезав в них окошко для светодиодов. При закрывании крышки, пружина (взята от кремниевой зажигалки) соприкасается с латунным листом и таким образом обеспечивается электрический контакт между схемой и сенсором.
Крепится емкостной сенсорный включатель на стену с помощью одного самореза. Для этого в корпусе предусмотрено отверстие. Далее устанавливается плата, разъем и закрепляется защелками крышка.
Настройка емкостного выключателя практически не отличается от настройки сенсорного датчика присутствия, описанного выше. Для настройки нужно подать питающее напряжение и резистором отрегулировать, чтобы светодиод HL2 загорался, когда к датчику подносится рука, и гас, при ее удалении. Далее нужно активировать сенсорный датчик и поднести и удалить руку к сенсору выключателя. Должен мигнуть светодиод HL2 и загореться красный светодиод HL3. При удалении руки красный светодиод должен продолжать с
Схема емкостного датчика на микросхеме K561TЛ1 (CD4093B)
Сегодня никого не удивишь различными по назначению и эффективности электронными устройствами превентивного предупреждения, которые оповещают людей или включают охранную сигнализацию задолго до непосредственного контакта нежелательного гостя с охраняемым рубежом (территорией). Многие из таких узлов, описанных в литературе, например в [48], по мнению автора, интересны, но усложнены.
В противовес им разработана простая электронная схема бесконтактного емкостного датчика (рис. 2.2), собрать которую по силам даже начинающему радиолюбителю. Устройство имеет высокую чувствительность по входу, что позволяет использовать его для предупреждения о приближении человека к сенсору Е1.
Принцип действия устройства основан на изменении емкости между сенсором-антенной Е1 и «землей» (общим проводом: всем тем, что соотносится к заземляющему контуру, — в данном случае это пол и стеніі помещения). При приближении человека эта емкость существенно изменяется, что оказывается достаточным для срабатывания микросхемы K561TЛ1.
Рис. 2.2. Электрическая схема бесконтактного емкостного датчика
В основе конструкции — два элемента микросхемы K561TЛ1 (DD1), включенные как инверторы. Эта микросхема имеет в своем составе четыре однотипных элемента с функцией 2И-НЕ с триггерами Шмита с гистерезисом (задержкой) на входе и инверсией по выходу.
Применение микросхемы K561TЛ1 обусловлено малым потреблением тока, высокой помехозащищенностью (до 45 % от уровня напряжения питания), работой в широком диапазоне питающего напряжения (в диапазоне 3—15 В), защищенностью по входу от статического электричества и кратковременного превышения входных уровней, и многими другими достоинствами, которые позволяют широко использовать микросхему в радиолюбительских конструкциях, не требуя каких-либо особых мер предосторожности и защиты.
Кроме того, микросхема K561TЛ1 позволяет включать свои независимые логические элементы параллельно, в качестве буферных элементов, вследствие чего мощность выходного сигнала пропорционально увеличивается. Триггеры Шмита—бистабильные схемы, способные работать с медленно возрастающими входными сигналами, в том числе с примесью помех. При этом обеспечивающие по выходу крутые фронты импульсов можно передавать в последующие узлы схемы для стыковки с другими ключевыми элементами и микросхемами. Микросхема K561TЛ (как, впрочем, и K561TЛ2) могут выделять управляющий сигнал (в том числе цифровой) для других устройств из аналогового или нечеткого входного импульса.
Зарубежный аналог К561ТЛ1 — CD4093B.
Схема включения инверторов — классическая, она описана в справочных изданиях. Особенность представленной разработки — в конструктивных нюансах. После включения питания на входе элемента DD1.1 присутствует неопределенное состояние, близкое к низкому логическому уровню. На выходе DD1.1 — высокий уровень, на выходе DD1.2 — опять низкий. Транзистор VT1 закрыт. Пьезоэлектрический капсюль НАІ (с внутренним генератором ЗЧ) не активен.
К сенсору Е1 подключена антенна — подойдет автомобильная телескопическая. При нахождении человека рядом с антенной изменяется емкость между штырем антенны и полом. От этого переключаются элементы DD1.1, DD1.2 в противоположное состояние. Для переключения узла человек среднего роста должен находиться (проходить) рядом с антенной длиной 35 см на расстоянии до 1,5 м. На выводе 4 микросхемы появляется высокий уровень напряжения, вследствие этого транзистор VT1 открывается и звучит капсюль НА1.
Подбором емкости конденсатора С1 можно изменить режим работы элементов микросхемы. Так, при уменьшении емкости С1 до 82—120 пФ узел работает иначе. Теперь звуковой сигнал звучит только, пока на вход DD1.1 воздействует наводки переменного напряжения — прикосновение человека.
Электрическую схему (рис. 2.2) можно использовать и как основу для триггерного сенсорного датчика. Для этого исключают постоянный резистор R1, экранированный провод, а сенсором являются контакты микросхемы 1 и 2.
Последовательно с R1 подключают экранированный провод (кабель РК-50, РК-75, экранированный провод для сигналов ЗЧ — подходят все типы) длиной 1—1,5 м, экран соединяется с общим проводом, центральная жила на конце соединяется со штырем антенны.
При соблюдении указанных рекомендаций и применении указанных в схеме типов и номиналов элементов, узел генерирует звуковой сигнал частотой около 1 кГц (зависит от типа капсюля НА1) при приближении человека к штырю антенны на расстояние 1,5—1 м. Триггерный эффект отсутствует. Как только объект удаляется от антенны, датчик переходит в режим охраны (ожидания).
Эксперимент проводился также с животными— кошкой и собакой: на их приближение к сенсору-антенне узел не реагирует.
Возможности устройства трудно переоценить. В авторском варианте оно смонтировано рядом с дверной коробкой; входная дверь — металлическая.
Громкость сигнала ЗЧ, излучаемого капсюлем НА1, достаточна для того, чтобы услышать его на закрытой лоджии (она сопоставима с громкостью квартирного звонка).
Источник питания— стабилизированный, с напряжением 9—15 В, с хорошей фильтрацией напряжения пульсаций по выходу. Ток потребления ничтожно мал в режиме ожидания (несколько микроампер) и увеличивается до 22—28 мА при активной работе излучателя НА1. Бестрансформаторный источник применять нельзя из-за вероятности поражения электрическим током. Оксидный конденсатор С2 действует как дополнительный фильтр по питанию, его тип — К50-35 или аналогичный, на рабочее напряжение не ниже напряжения источника питания.
При эксплуатации узла выявлены интересные особенности. Напряжение питания узла влияет на его работу: при увеличении напряжения питания до 15 В в качестве сенсора-антенны используется только обыкновенный многожильный неэкранированный электрический медный провод сечением 1—2 мм длиной 1 м; никакого экрана и резистора R1 в таком случае не надо, электрический медный провод подсоединяется непосредственно к выводам 1 и 2 элемента DD1.1. Эффект аналогичен. При изменении фазировки сетевой вилки источника питания узел катастрофически теряет чувствительность и способен работать только как сенсор (реагирует на прикосновение к Е1). Это актуально при любом значении напряжения источника питания в диапазоне 9—15 В. Очевидно, что второе назначение данной схемы — обыкновенный сенсор (или сенсор-триггер).
Эти нюансы следует учитывать при повторении устройства. Однако в случае правильного подключения, описанного здесь, получается важная составляющая охранной сигнализации, обеспечивающей безопасность жилищу, предупреждающей хозяев еще до возникновения нештатной ситуации.
Монтаж элементов осуществляется компактно на плате из стеклотекстолита. Корпус для устройства — любой из диэлектрического (непроводящего) материала. Для контроля включения питания устройство может быть снабжено индикаторным светодиодом, подключенным параллельно источнику питания.
Налаживание при точном соблюдении рекомендаций не требуется. Если экспериментировать с длиной экранирующего кабеля, длиной и площадью сенсора-антенны Е1 и изменением напряжения питания, возможно потребуется скорректировать сопротивление резистора R1 в широких пределах — от 0,1 до 100 МОм. Для уменьшения чувствительности увеличивают емкость конденсат
Схема. Емкостный датчик — Сайт радиолюбителей и радиомастеров. Схемы и сервис мануалы.
В книгах и журналах для радиолюбителей за последние 20 лет опубликовано немало описаний конструкций датчиков приближения, различающихся принципом действия, чувствительностью, сложностью и используемой элементной базой. Однако многие из них пригодны для работы лишь в условиях, близких к лабораторным, при практически неизменных температуре окружающей среды и напряжении питания.
Например, датчик, описанный в [1], выполнен на цифровой микросхеме и обладает высокой экономичностью, однако порог его срабатывания существенно зависит от напряжения питания. Устойчивость его работы при повышенной влажности из-за высокого сопротивления резистора R2 явно недостаточна и сильно зависит от длины проводов, соединяющих электронный узел с чувствительным элементом.
Мастерская по изготовлению и ремонту очков в Москве
Компания «СМ-ОЧКИ» имеет современную высокотехнологичную мастерскую по производству очков любой сложности и конфигурации. Мы можем изготовить для вас широкий спектр очков: от стандартных и простых до эксклюзивных экземпляров по сложному индивидуальному рецепту, в том числе оптические и солнцезащитные очки в модных оправах от известных брендов с мировым именем https://www.sm-ochki.ru/workshop/
Датчики, предложенные в [2], потребляют ток до нескольких миллиампер, что ограничивает возможность их применения в системах с автономным питанием. Из-за зависимости порога характеристик ОУ от температуры и напряжения питания возможна ситуация, когда такой датчик либо будет постоянно находиться в сработавшем состоянии, либо перестанет срабатывать совсем.
Предлагаемый датчик немного сложнее упомянутых выше, но отличается от них отсутствием намоточных элементов, хорошей повторяемостью, работает при напряжении питания 3…15 В, потребляя приблизительно 40 мкА (при напряжении 5 В). Для него характерны независимость порога срабатывания от температуры окружающей среды и напряжения питания, малая чувствительность к электромагнитным помехам и наводкам. Возможен точный расчет порога срабатывания, исходя из номиналов используемых элементов, или расчет этих номиналов для получения требуемого порога срабатывания.
Схема емкостного датчика показана на рис. 1. На триггере DD1.1 выполнен генератор импульсов. Их длительность (приблизительно 0,2 мс) задана цепью R1C1, а период повторения (приблизительно 1,5 мс) — цепью R2C2. Детектор понижения напряжения DA1 некоторое время после включения питания прибора удерживает напряжение на входе S триггера DD1.1 на низком логическом уровне, исключая таким образом запрещенное состояние высокого уровня на обоих установочных входах (R и S) триггера. Иначе в случае нарастания напряжения питания со скоростью менее 2…3 В/мс самовозбуждения генератора не произойдет.
Импульсы генератора одновременно запускают два одновибратора. Первый (на триггере DD2.1) формирует импульсы образцовой длительности, зависящей от номиналов элементов R4, R5, С4. Длительность импульсов второго одновибратора (на триггере DD2.2) зависит от сопротивления резистора R3 и емкости конденсатора, образованного металлическими пластинами Е1 и Е2. Разделительный конденсатор С5 предотвращает случайное попадание на вход триггера DD2.2 постоянного напряжения.
Работа датчика основана на сравнении длительности импульсов, формируемых двумя одновибраторами. Если импульс второго (измерительного) одновибратора короче импульса первого (образцового), в момент положительного перепада напряжения на инверсном выходе триггера DD2.1 (в точке 1, см. рис. 1) уровень напряжения на выходе триггера DD2.2 (в точке 2) будет низким. Триггер сравнения DD1.2, срабатывающий по положительному перепаду на входе С, перейдет в состояние низкого логического уровня на выходе. В противном случае (измерительный импульс длиннее образцового) уровень в точке 2 и на выходе триггера DD1.2 будет высоким.
Когда с приближением постороннего предмета к пластинам Е1 и Е2 емкость между ними увеличивается, низкий уровень на выводе 2 разъема Х1 сменяется высоким. Пороговое значение емкости, при превышении которого это происходит, определяют по формуле
где R4BB — введенное сопротивление подстроечного резистора R4; Свх≈6 пф — емкость входа R триггера. При указанном на схеме номинале резистора R5 с помощью R4 можно изменять порог срабатывания по емкости от 6 до 32 пф. Так как активные элементы мультивибраторов находятся внутри одной микросхемы DD2, при изменении температуры или напряжения питания их характеристики и длительности формируемых импульсов изменяются одинаково. Это обеспечивает стабильность порога срабатывания датчика в широком интервале изменения температуры и напряжения питания.
В датчике можно использовать постоянные резисторы С2-ЗЗн, МЛТ, С2-23 или аналогичные мощностью 0,125 или 0,25 Вт с допуском не хуже ±5 %. В качестве R4 желательно использовать подстроенный резистор с малым ТКС (например, СПЗ-19а, СПЗ-196). Широко распространенные резисторы СПЗ-38а по этой причине применять не рекомендуется. Конденсаторы С1—С4 — любые малогабаритные керамические (КМ-5, КМ-6, К10-17 или аналогичные импортные). Разделительный конденсатор С5 должен быть высоковольтным (например, К15-5), рассчитанным на напряжение не менее 500 В. Его емкость может лежать в пределах 1000…4700 пф. Диод VD1 — любой из серий КД103, КД503, КД521.КД522.
Микросхемы К561ТМ2 можно заменить на 564ТМ2 или их импортные аналоги. Детектор понижения напряжения (DA1) следует выбирать с пороговым напряжением, заведомо меньшим минимального напряжения питания датчика. Например, при питании напряжением 5 В подойдут детекторы КР1171СП42, КР1171СП47, при 9 В — также КР1171СП53, КР1171СП64, КР1171СП73.
Электронный блок датчика собран на плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж печатных проводников и расположения деталей показан на рис. 2. Чувствительный элемент (пластины Е1 и Е2) рекомендуется оформить в виде «развернутого» конденсатора [2], соединив его с электронным блоком проводами длиной не более 50 мм.
Налаживание датчика сводится к установке порога резисторами R4 и R5. Срабатывание можно контролировать с помощью цепи из светодиода (анодом к контакту 2 разъема Х1) и резистора номиналом 2,2…4,7 кОм (между катодом светодиода и контактом 3 разъема). Включив питание, вращением движка подстроечного резистора R4 добейтесь зажигания светодиода, а затем поворотом движка немного вправо (по схеме) — его погасания. О правильной регулировке будет свидетельствовать включение светодиода при приближении к чувствительному элементу какого-либо предмета. Если светодиод не горит даже в крайнем левом положении движка резистора R4, следует установить вместо R5 перемычку и повторить настройку.
Устройство можно использовать как датчик прикосновения человека к пластине Е2, причем ее роль может выполнять любой металлический предмет, например, дверная ручка. В этом случае от пластины Е1 можно вообще отказаться, а резисторы R4 и R5 заменить одним резистором номиналом 330 кОм.
Один из вариантов датчика, изготовленный автором, имел чувствительный элемент в виде плоского конденсатора с площадью обкладок 100 см2 и расстоянием между ними 5 мм. Он уверенно срабатывал при заполнении пространства между обкладками машинным маслом на 70 % в интервале температуры -30…+85 «С. Срабатывания, вызванные конденсацией воды, приближением рук и другими мешающими факторами, не зафиксированы.
При подобном использовании и применении в качестве чувствительного элемента плоского или цилиндрического конденсатора рекомендуется предварительно оценить требуемое значение введенного сопротивления подстроечного резистора R4 по формуле
где Спр— емкость соединительных проводов; Ск — емкость чувствительного элемента, вычисляемая по известным формулам емкости плоского или цилиндрического конденсатора.
Если вычисленное значение получилось отрицательным, следует исключить из схемы резистор R5, а если больше 200 кОм, — увеличить номинал R5 таким образом, чтобы сопротивление R4ВВ лежало в пределах 100…150 кОм. Окончательно датчик регулируют описанным выше образом.
ЛИТЕРАТУРА
1. Нечаев И. Емкостное реле. — Радио, 1988, № 1,с. 33.
2. Москвин А. Бесконтактные емкостные датчики. — Радио, 2002, № 10, с. 38, 39.
М. ЕРШОВ, г. Тула
«Радио» №3 2004г.
Post Views: 574
Схемы и методы реализации емкостных датчиков касаний
Добавлено 5 ноября 2016 в 21:30
Сохранить или поделиться
В данной статье представлены некоторые основные схемы построения емкостных датчиков прикосновений и обсуждения, как бороться с низкочастотным и высокочастотным шумом.
Предыдущая статья
Измерение изменений
Если вы читали предыдущую статью, то вы знаете, что суть емкостных датчиков прикосновений заключается в изменении емкости, которое происходит, когда объект (обычно палец человека) приближается к конденсатору. Присутствие пальца увеличивает емкость, так как:
- вводит вещество (т.е. человеческую плоть) с относительно высокой диэлектрической проницаемостью;
- обеспечивает проводящую поверхность, которая создает дополнительную емкость параллельно существующему конденсатору.
Конечно, сам факт того, что емкость изменяется, не особенно полезен. Для того, чтобы на самом деле реализовать емкостной датчик касаний, нам необходима схема, которая может измерять емкость с точностью, достаточной, чтобы идентифицировать увеличение емкости, вызванное наличием пальца. Существуют различные способы сделать это, некоторые довольно просты, другие более сложные. В данной статье мы рассмотрим два основных подхода для реализации емкостного сенсорного функционала: первый основан на постоянной времени RC (резистор-конденсатор) цепи, а второй основан на сдвигах частоты.
Постоянная времени RC цепи
Возможно, вы также испытываете чувства ностальгии по университету, когда видите экспоненциальную кривую, представляющую график напряжения во время заряда или разряда конденсатора. Возможно, кто-то при взгляде на эту кривую впервые понял, что высшая математика всё-таки имеет какое-то отношение к реальному миру, да и в век роботов, работающих на виноградниках, есть что-то привлекательное в простоте разряда конденсатора. В любом случае, мы знаем, что эта экспоненциальная кривая изменяется, когда изменяется либо резистор, либо конденсатор. Скажем, у нас есть RC цепь, состоящая из резистора 1 МОм и емкостного датчика касаний с типовой емкостью (без пальца) 10 пФ.
Сенсорный датчик касаний на базе RC цепиМы можем использовать вывод входа/выхода общего назначения (настроенный, как выход) для заряда конденсатора до напряжения, соответствующего высокому логическому уровню. Затем нам необходимо разрядить конденсатор через большой резистор. Важно понимать, что вы не можете просто переключить состояние выхода на низкий логический уровень. Вывод I/O, сконфигурированный на выход, будет управлять сигналом низкого логического уровня, то есть, он создаст низкоомное соединение выхода с землей. Таким образом, конденсатор быстро разрядится через это низкое сопротивление – так быстро, что микроконтроллер не сможет обнаружить едва заметные временные изменения, созданные небольшими изменениями емкости. Что нам здесь нужно, так это вывод с большим входным сопротивлением, что заставит почти весь ток разряда течь через резистор, а это может быть достигнуто настройкой вывода для работы, как вход. Итак, сначала вы установите вывод, как выход, выдающий высокий логический уровень, а затем этап разряда, вызывается изменением режима работы вывода на вход. Результирующее напряжение будет выглядеть примерно следующим образом:
График напряжения разряда емкостного датчика касанийЕсли кто-то прикасается к датчику и тем самым создает дополнительную емкость 3 пФ, постоянная времени будет увеличиваться следующим образом:
Изменение кривой напряжения разряда емкостного датчика касаний при прикосновении к немуПо человеческим меркам время разряда не сильно отличается, но современный микроконтроллер, безусловно, может обнаружить это изменение. Скажем, у нас есть таймер с тактовой частотой 25 МГц; мы запускаем таймер, когда переключаем вывод в режим входа. Мы можем использовать таймер для отслеживания времени разряда, настроив этот же вывод действовать, как триггер, который инициирует событие захвата («захват» означает хранение значения таймера в отдельном регистре). Событие захвата произойдет, когда напряжение разряда пересечет порог низкого логического уровня вывода, например, 0,6 В. Как показано на следующем графике, разница во времени разряда с порогом 0,6 В составляет ΔT = 5.2 мкс.
Измерение изменения времени разряда емкостного датчика касаний на уровне порогового напряженияС периодом тактовой частоты таймера 1/(25 МГц) = 40 нс, это ΔT соответствует 130 тактам. Даже если изменение емкости будет уменьшено в 10 раз, у нас всё равно будет разница в 13 тактов между нетронутым датчиком и датчиком, к которому прикоснулись.
Таким образом, идея заключается в многократном заряде и разряде конденсатора, контролируя время разряда; если время разряда превышает заданный порок, микроконтроллер предполагает, что палец вошел в «контакт» с конденсатором датчика касаний (я написал «контакт» в кавычках потому, что палец на самом деле никогда не касается конденсатора – как упоминалось в предыдущей статье, конденсатор отделен от внешней среды лаком на плате и корпусом устройства). Тем не менее, реальная жизнь немного сложнее, чем идеализированное обсуждение, представленное здесь; источники ошибок обсуждаются ниже, в разделе «Работа в реальности».
Переменный конденсатор, переменная частота
В реализации на базе изменения частоты емкостной датчик используется в качестве «С»-части в RC генераторе таким образом, что изменение емкости вызывает изменение частоты. Выходной сигнал используется в качестве входного для модуля счетчика, который подсчитывает количество фронтов или спадов, возникающих во время периода измерения. Когда приближающийся палец приводит к увеличению емкости датчика, частота выходного сигнала генератора уменьшается, и, таким образом, количество фронтов/спадов также уменьшается.
Так называемый релаксационный генератор (генератор колебаний, пассивные и активные нелинейные элементы которого не обладают резонансными свойствами) представляет собой основную схему, которая может использоваться для этой цели. Для этого в дополнение к конденсатору датчика касаний требуются несколько резисторов и компаратор. Кажется, это вызывает больше проблем по сравнению с методом заряда/разряда, который обсуждался выше, но если ваш микроконтроллер обладает встроенным модулем компаратора, это не так уж и плохо. Я не буду вдаваться в подробности схемы этого генератора, потому что, во-первых, он обсуждается во многих других местах, и, во-вторых, маловероятно, что вы захотите использовать этот метод генератора, когда есть много микроконтроллеров и отдельных микросхем, которые предлагают высокопроизводительную емкостную сенсорную функциональность. Если у вас нет другого выбора, кроме как создать свою собственную схему емкостного сенсора касаний, я думаю, что метода заряда/разряда, описанный выше более прост. В противном случае, сделайте свою жизнь немного проще, выбирая микроконтроллер со специальным аппаратным обеспечением для емкостного датчика касаний.
Примером встроенного модуля, основанного на релаксационном генераторе, является периферия емкостного датчика в микроконтроллерах EFM32 от Silicon Labs:
Сенсорный интерфейс микроконтроллеров EFM32Мультиплексор позволяет частоте колебаний управляться восьмью различными конденсаторами датчиков касаний. С помощью быстрого переключения между каналами, контроллер может эффективно контролировать одновременно восемь сенсорных кнопок, так как рабочая частота микроконтроллера очень высока по сравнению со скоростью движения пальца.
Работа в реальности
Емкостная сенсорная система будет зависеть и от высокочастотного, и от низкочастотного шума.
Влияние низкочастотного и высокочастотного шума на время разряда емкостного датчика касанийВысокочастотный шум вызывает в измерениях времени разряда или количества фронтов незначительные изменения от отсчета к отсчету. Например, схема заряда/разряда без пальца, о которой говорилось выше, может иметь время разряда 675 тактов, затем 685 тактов, затем 665 тактов, затем 670 тактов и так далее. Значимость этого шума зависит от ожидаемого изменения времени разряда при поднесении пальца. Если емкость увеличивается на 30%, то ΔT будет составлять 130 тактов. Если наши высокочастотные изменения составляют только ±10 тактов, то мы можем легко отличить сигнал от шума.
Однако, увеличение емкости на 30% находится вблизи максимального значения изменения емкости, на которое мы можем рассчитывать. Если мы получим изменение только на 3%, ΔT составит 13 тактов, что слишком близко к уровню шума. Одним из способов уменьшения влияния шума является увеличение амплитуды сигнала, и вы можете сделать это за счет уменьшения физического расстояния, разделяющего печатный конденсатор и палец. Однако, часто механическая конструкция ограничена другими факторами, и вы уже больше не можете увеличить уровень сигнала. В этом случае вам необходимо понизить уровень шума, что может быть достигнуто путем усреднения. Например, каждое новое время разряда может сравниваться не с предыдущим временем разряда, а со средним значением последних 4 или 8 или 32 результатов измерений времени разряда. Метод, основанный на сдвиге частоты и описанный выше, автоматически включает усреднение, потому что небольшие изменения около средней частоты не будут существенно влиять на количество подсчитанных циклов в течение периода измерений, который более длительный по сравнению с периодом колебаний.
Низкочастотный шум относится к долговременным изменениям емкости датчика без прикосновения пальца; эти изменения могут быть вызваны условиями окружающей среды. Этот тип помехи не может быть усреднен, потому что изменения могут сохраняться в течение очель долгого периода времени. Таким образом, единственный способ эффективно бороться с низкочастотным шумом должен быть адаптивным: порог, используемы для обнаружения присутствия пальца, не может быть фиксированным значением. Вместо этого, он должен регулярно корректироваться на основе измеренных значений, которые не показывают значительные кратковременные изменения, такие как те, что вызваны приближением пальца.
Заключение
Методы реализации, обсуждаемые в данной статье, показывают, что емкостное определение касания не требует сложного аппаратного и программного обеспечения. Тем не менее, это универсальная, надежная технология, которая предоставить значительное улучшение производительности по сравнению с механическими альтернативами.
Оригинал статьи:
Теги
RC генераторДатчикЕмкостной датчик касанияЕмкостьПаразитная емкостьПечатный конденсаторПостоянная времени RC цепиСохранить или поделиться
инструкция по использованию и примеры [Амперка / Вики]
Принцип работы
Ёмкостный датчик выполнен в виде штыря, которым погружается в грунт на расстояние до 80 мм. На штыре в виде дорожек расположены два электрода, но в отличии от резистивной модели, электроды ёмкостного сенсора защищены токоизолирующей маской и неподвержены коррозии.
Внутри ёмкостного датчика находится RC-генератор на таймере 555, частота которого зависит от ёмкости между двумя электродами, которые выполняю роль конденсатора. Изменение влажности грунта сказывается на его диэлектрических свойствах и меняет ёмкость, что приводит к повышению или понижению выходного сигнала датчика. Итоговое напряжение пропорционально степени влажности почвы.
Пример работы для Arduino и XOD
В качестве мозга для считывания показаний с датчика рассмотрим платформу из серии Arduino, например Arduino Uno.
Схема устройства
Код для Arduino IDE
Прошейте платформу Arduino скетчем приведённым ниже.
- sensor-soil-moisture-capacitive-arduino-read-data.ino
// любой GPIO пин с поддержкой АЦП constexpr auto pinSensor = A0; void setup() { // открываем Serial-порт Serial.begin(9600); } void loop() { // считываем данные с датчика влажности почвы int valueSensor = analogRead(pinSensor); // выводим данные в Serial-порт Serial.println(valueSensor); // ждём 100 мс delay(100); }
После загрузки скетча, в Serial-порт будут выводиться текущие показания сенсора в 10-битном диапазоне.
0–300: сухая почва;
300–600: влажная почва;
600–750: датчик в воде.
Патч для XOD
Создайте новый патч
Добавьте в патч ноду
analog-sensor
и установите ей в инспекторе PORT значениеA0
.Добавьте ноду
watch
и подключите её к нодеanalog-sensor
к пинуVAL
.Прошейте платформу Arduino с режимом отладки.
После загрузки прошивки, в отладочной ноде watch
будут выводиться текущие показания сенсора в диапазоне от 0 до 0,75:
0–0,3: сухая почва;
0,3–0,6: влажная почва;
0,6–0,75: датчик в воде.
Пример для Espruino
В качестве мозга для считывания показаний с датчика рассмотрим платформы из серии Espruino, например Iskra JS.
Схема устройства
Исходный код
Прошейте платформу Iskra JS скриптом приведённым ниже.
- sensor-soil-moisture-capacitive-espruino-read-data.js
// выводим показания датчика на пине A0 каждые 100 мс setInterval(function() { var valueSensor = analogRead(A0) * 100; print('Value sensor: ', Math.round(valueSensor), '%'); }, 100);
После загрузки скрипта, в консоль будут выводиться текущие показания сенсора в диапазоне от 0 до 100%.
0–35%: сухая почва;
35–70%: влажная почва;
70–100%: датчик в воде.
Пример для Raspberry Pi
В качестве мозга для считывания показаний с датчика рассмотрим одноплатные компьютеры Raspberry Pi, например Raspberry Pi 4.
Схема устройства
К сожалению в компьютере Raspberry Pi нет встроенного аналого-цифрового преобразователя. Используйте плату расширения Troyka Cap, которое добавит малине аналоговые пины.
Подключите датчик влажности почвы к Raspberry Pi через плату расширения Troyka Cap к 3
пину. Для коммуникации используйте трёхпроводной шлейф «мама-мама», который идёт в комплекте с датчиком.
Программная настройка
Исходный код
Запустите скрипт на малине приведённым ниже.
- sensor-soil-moisture-capacitive-raspberry-pi-read-data.py
# библиотека для работы со временем и задержками import time # библиотека для работы с расширителем портов GPIO Expander на плате Troyka Cap import gpioexp # создаём объект для работы с расширителем портов exp = gpioexp.gpioexp() # пин к которому подключен датчик влажности почвы # любой GPIO пин платы расширения Troyka Cap pinSensor = 3 while True: # считываем состояние датчика влажности почвы valueSensor = exp.analogRead(pinSensor) * 100 # выводим показания датчика print('Value sensor: ', round(valueSensor), ' %') # ждём 100 мс time.sleep(0.1)
После загрузки скрипта, в консоль малины будут выводиться текущие показания сенсора в диапазоне от 0 до 100%.
0–35%: сухая почва;
35–70%: влажная почва;
70–100%: датчик в воде.
Элементы платы
Измерительные электроды
Для контакта с почвой на датчике расположены два электрода, которые для проведения измерений необходимо воткнуть в измеряемую среду. Но в отличии от резистивного датчика, электроды скрыты под токоизолирующей маской и защищены от коррозии.
Сами электроды представляют из себя обкладки конденсатора, который при изменении влажности почвы меняет свою ёмкость, что приводит к повышению или понижению выходного сигнала датчика.
Генератор импульсов
Микросхема LCM555 используется для генирации импульсов высокой частоты для работы измерительной схемы сенсора.
Операционный усилитель MCP6002
По умолчанию выходной сигнал схемы ёмкостного датчика, обратно пропорционален уровню влажности почвы. Для удобства и совместимости с резистивной моделью сенсора, на плате расположен операционный усилитель, который инвертирует аналоговый сигнал. В итоге на выходе датчика сигнал прямо пропорциональный влажности почвы.
Регулятор напряжения 3V3
Линейный понижающий регулятор напряжения TPS73033DBVR обеспечивает питание микросхемы 555 и других компонентов сенсора. Диапазон входного напряжения от 3,3 до 5 вольт. Выходное напряжение 3,3 В с максимальным выходным током 200 мА.
Troyka-контакты
Датчик подключается к управляющей электронике через три провода.
Сигнальный (S) — выходной сигнал сенсора. Напряжение на выходе датчика прямо пропорционально уровню измеренной электропроводности: чем выше влажность почвы, тем выше уровень сигнала на выходе датчика и соответственно наоборот. Максимальное выходное значения 3,3 вольта. Подключите к аналоговому пину микроконтроллера.
Питание (V) — соедините с рабочим напряжением микроконтроллера.
Земля (G) — соедините с землёй микроконтроллера.
Принципиальная и монтажная схемы
Габаритный чертёж
Характеристики
Тип датчика влажности почвы: ёмкостный
Напряжение питания: 3,3–5 В
Потребляемый ток: до 6 мА
Интерфейс: аналоговый сигнал
Диапазон выходного сигнала: 0,5–3,3 В
Глубина погружения в почву: до 80 мм
Габариты: 118×20×7,6 мм
Ресурсы
MLab.org.ua — Изготовление высоковольтного емкостного датчика
Высоковольтный емкостной датчик (далее датчик) – устройство для снятия формы вторичного напряжения системы зажигания и последующей передачи его на один из входов регистрирующего оборудования.Датчик состоит из держателя, емкостной пластины, которая гальванически соединена с сигнальным проводом, экранированного кабеля и соответствующего разъема для подключения датчика к входу регистрирующего оборудования.
Важно!
Экран кабеля датчика обязательно должен быть соединен с землей регистрирующего оборудования. Экран должен представлять собой плотную металлическую оплетку, вязанную крест на крест без просветов. Чем меньше длина участка сигнального провода кабеля без экрана – тем меньше будет электромагнитных наводок с соседних ВВ проводов.
Снятие формы вторичного напряжения датчиком основано на наличии паразитной емкостной связи, возникающей между токопроводящей жилой ВВ провода и емкостной пластиной датчика.
Из чего следует:
1. Сигнал на выходе датчика будет тем больше чем ближе емкостная пластина к токопроводящей жиле ВВ провода.
2. Влияние электромагнитных наводок с соседних ВВ проводов будет тем меньше чем меньше размер емкостной пластины и чем меньше не экранированный участок сигнального провода.
3. Величина паразитной емкостной связи всегда зависит от ВВ провода (толщины токопроводящей жилы, толщины и диэлектрической проницаемости изоляции) из чего следует, что величина сигнала на выходе датчика будет разной для одного и того же истинного значения вторичного напряжения, т.е. не возможно однозначно установить соответствие 1 В на выходе датчика – 10 КВ во вторичной цепи.
4. Емкостная связь представляет собой дифференцирующую цепочку (ФВЧ) пропускающую высокочастотные колебания (область пробоя), и не пропускающую низкочастотные колебания (область горения), т.е. форма вторичного напряжения на выходе датчика будет искажена.
Сд – емкость между токопроводящей жилой ВВ провода и емкостной пластиной датчика
Rвх – входное сопротивление регистрирующего оборудования
Свх – входная емкость не учитывается, так как она фактически в данном случае ни на что не влияет
На графике красного цвета изображен исходный сигнал (меандр 1 КГц, скважность 10%, амплитуда 1 В)
На графике синего цвета изображен сигнал, полученный на выходе дифференцирующей цепочки
Сигнал с выхода датчика без использования компенсационной емкости
Для устранения искажения формы вторичного напряжения на выходе датчика, необходимо использовать дополнительную компенсационную емкость, которая с емкостью датчик-жила образует емкостной делитель:
Без учета входного сопротивления регистрирующего оборудования, коэффициент передачи емкостного делителя определяется следующим соотношением: Kп = Сд / (Сд + Ск). Как видно из соотношения, чем больше значение емкости Ск тем меньше будет значение напряжения на выходе емкостного делителя. Для идеального емкостного делителя без учета входного сопротивления регистрирующего оборудования Ск можно взять сколь угодно малое, при этом форма сигнала на выходе делителя в точности будет соответствовать форме сигнала на его входе.
При учете входного сопротивления соотношение для определения коэффициента передачи становится гораздо объемнее, но зависимость Kп от Ск остается той же. Входное сопротивление регистрирующего оборудования на прямую не влияет на Kп, оно определяет “степень вносимого искажения”.
При увеличении входного сопротивления искажения формы вторичного напряжения значительно уменьшаются. В большинстве случаев входное сопротивления практических все осциллографов используемых для автодиагностики находится в диапазоне 1 МОм, за исключением специализированных входов предназначенных исключительно для подключения ВВ датчиков. По этому при непосредственном подключении датчика к входу осциллографа (без специализированного адаптера) Rвх также можно принять за константу, и ограничится варьированием только Ск.
Примечание!
Подключение датчика к входу осциллографа просто через резистор 10 МОм приведет к увеличению входного сопротивления и соответственно уменьшению искажения формы вторичного напряжения, но при этом примерно в десять раз уменьшиться коэффициент передачи входного тракта канала. Для увеличения входного сопротивления без уменьшения коэффициента передачи необходимо использовать промежуточный буфер (повторитель – простейший адаптер) с высоким входным сопротивлением и низким выходным сопротивлением.
Для текущих Сд (точно не известно) и Rвх (обычно 1 МОм) значение Ск подбирается исходя из компромисса:
1. Чем меньше Ск тем больше амплитуда напряжения на выходе емкостного делителя
2. Чем больше Ск тем меньше степень искажения формы вторичного напряжения
Практически значение Ск возможно увеличивать до тех пор, пока “амплитуда” напряжения на выходе емкостного делителя будет достаточно выделяться на фоне шума.
Местоположение подключения Ск: в начале кабеля (ближе к емкостной пластине) или в конце кабеля (ближе к входу регистрирующего оборудования) – практически не влияет на форму и амплитуду сигнала с выхода датчика.
На графике красного цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной на входе осциллографа, на графике синего цвета изображен сигнал, полученный с ВВ датчика и Ск = 3.3 нФ подключенной непосредственно возле емкостной пластины. Как видно форма сигналов практически одинакова, а амплитуда различается в пределах разброса номинала используемых емкостей +/- 20%.
Примеры осциллограмм вторичного напряжения снятого одним и тем же датчиком с емкостной пластиной в виде круга диаметром ~10 мм при разных значениях Ск, на стенде с DIS катушки 2112-3705010 (форма вторичного напряжения несколько отличается от привычной из-за разряда на открытом воздухе).
Ск = 470 пФ. Область горения значительно проседает, но амплитуда пробоя достигает 5 Вольт.
Ск = 1.8 нФ. Область горения также значительно проседает, амплитуда пробоя уменьшилась до 2 Вольт.
Ск = 3.3 нФ. Область горения не много проседает, амплитуда пробоя уменьшилась до 1 Вольта.
Ск = 10 нФ. Область горения практически не проседает, но и амплитуда пробоя уменьшилась до 0.4 Вольт.
Как видно при Ск = 10 нФ форма вторичного напряжения практически не искажена, а шум довольно не значительный.
Для сравнения приведены осциллограммы вторичного напряжения снятые с одного и того же ВВ провода без использования адаптера и с использованием специализированного адаптера зажигания.
На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 10 нФ) непосредственно подключенного к входу осциллографа. На графике синего цвета изображен сигнал, полученный с адаптера Постоловского, к которому подключен “родной” ВВ датчик Постоловского.
Как видно форма обеих сигналов практически совпадает, но с адаптера содержащего промежуточные усилители, сигнал имеет в 3 раза большую амплитуду.
Примечание!
Все адаптеры, использующие емкостные датчики искажают форму вторичного напряжения, но при высоком входном сопротивлении и достаточной Ск, вносимое искажение крайне не значительно.
Практически в качестве высоковольтного емкостного датчика рекомендуется использовать конструкцию, которая удовлетворяет следующим требованием:
1. Высокая степень защиты от пробоя
2. Малая подверженность электромагнитным наводкам от соседних ВВ проводов
3. Удобное конструктивное исполнение для быстрого подключения датчика к ВВ проводу
Примеры конструкции ВВ емкостных датчиков:
Жестяная пластинка 20×70 мм, выгибается, так что бы плотно прижиматься к ВВ проводу.
По сути, та же пластина только в изоляции.
ВВ датчик типа “прищепка”.
ВВ датчик аналогичный одной из конструкций Бош (поставляется по цене $7 / шт).
В качестве примера рассмотрим процесс изготовления ВВ датчика на основании выше приведенной конструкции компании Бош.
Для изготовления датчика необходимо:
1. Выше рассмотренная ручка ВВ датчика.
2. Экранированный кабель 1-3 м. Желательно использовать мягкий микрофонный кабель, так как при эксплуатации он намного удобнее жесткого коаксиального кабеля. Волновое сопротивление кабеля 50 или 75 Ом, значения не имеет, так как все исследуемые сигналы находятся в области низких частот.
3. Разъемы для подключения датчика к осциллографу или адаптеру зажигания BNC-FJ / BNCP / FC-022 Переходник гнездо F / BNC под F-ку (разъем один и тот же только у разных производителей / продавцов он по-разному называется).
BNC-M / FC-001 / RG58 / F разъем
Примечание!
При покупке F разъема и кабеля обращайте внимание на соответствие диаметра кабеля к диметру разъема для накрутки на кабель, иначе либо придется срезать часть изоляции кабеля для уменьшения его диаметра, либо наматывать ленту на кабель для увеличения его диаметра.
4. Сальник / гермоввод / кабельный ввод PG-7 с дюймовой резьбой
5. Емкостная пластина “пятачок” диаметром 9-10 мм
“Пятачок” возможно либо вырезать из жести, либо использовать специальный пробойник (лучше всего использовать пробойник на 8 мм, после развальцовки получится “пятачок” диаметром чуть больше 9 мм):
Также в качестве “пяточка” возможно, использовать подходящие по диаметру канцелярские кнопки.
6. Компенсационная емкость – не полярный (лучше керамический) конденсатор номиналом от 2.2 нФ до 10 нФ на напряжение 50 Вольт (если использовать конденсатор на 1 КВ то в случае пробоя ВВ провода он все равно сгорит). Возможно использовать как выводные конденсаторы так и планарные в корпусе 1206 или 0805.
Порядок изготовления:
1. Удалить изоляцию с экранированного кабеля до оплетки, на участке 12-13 мм. Часть оплетки под снятой изоляцией вывернуть наружу и равномерно расположить вдоль кабеля. С сигнального провода снять изоляцию на участке 10-11 мм и залудить его.
2. Накрутить на кабель F разъем, так что бы он плотно держался на кабеле и хорошо контактировал с частью вывернутой оплетки. При этом сигнальный провод должен выступать на достаточную длину из F разъема для надежного контакта с центральным стержнем разъема BNC-FJ.
3. Накрутить разъем BNC-FJ на F разъем. После чего проверить наличие контакта (прозвонить тестером) между сигнальным проводом и центральным стержнем разъема BNC-FJ, между оплеткой кабеля и экраном разъема BNC-FJ и отсутствие контакта между сигнальным проводом и оплеткой кабеля.
4. Если есть сальник PG-7 то предварительно надеть его на кабель открутив с него гайку.
5. Удалить изоляцию и оплетку с противоположного конца кабеля, на участке 3-5 мм. С сигнального провода снять изоляцию на участке 2-3 мм. Припаять к залуженному сигнальному проводу емкостную пластину.
При необходимости припаять компенсационную емкость между сигнальным проводом и оплеткой.
6. Обмотать участок сигнального провода и припаеную компенсационную емкость изолентой, так что бы емкостная пластина не болталась и была поджата краем изоленты. После чего емкостную пластину обильно смазывать солидолом.
Солидол “улучшает” диэлектрическую проницаемость и устраняет скачки области горения.
На графике красного цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) без солидола. На графике синего цвета изображен сигнал, полученный с ВВ датчика (Ск = 3.3 нФ) с использованием солидола. Без использования солидола область горения иногда “подскакивает” на 20-30%.
7. Надеть ручку ВВ датчика так, что бы емкостная пластина упиралась в дно колпачка датчика. После чего зажать кабель либо с помощью сальника PG-7 либо закрепить изолентой (при этом с датчиком нужно обращаться крайне осторожно, что бы случайно не вырвать кабель из ручки датчика).
В результате должен получится высоковольтный емкостной датчик, который возможно непосредственно подключать к одному из аналоговых (с наличием Ск) или к логическому (без Ск) входов осциллографа.
Диагностика классической системы зажигания с трамблером с помощью 2-х рассматриваемых датчиков…
Емкостной датчик и преобразовательи его приложения
Что такое емкостной датчик и его применение
Что такое конденсатор?
Конденсатор — это электрический компонент, используемый для хранения энергии и, следовательно, используемый при проектировании схем. Они хранят электроны. Конденсаторы еще называют конденсаторными. Его можно найти в различных диапазонах значений. Конденсатор имеет два вывода и действует как пассивный элемент.
Конденсатор имеет две пластины из проводника с диэлектрической средой, помещенной между пластинами.Один конец вывода конденсатора хранит положительную энергию, а другой вывод — отрицательную. Конденсатор начинает заряжаться, когда к нему добавляется электрическая энергия, и разряжается, когда энергия перестает поступать в конденсатор. Это означает, что когда конденсатор накапливает ток, он заряжается, и конденсатор начинает разряжаться, когда ток разряжается. Электрический ток, накопленный в конденсаторе, выражается в единицах Фарада.
Модель конденсатора
Конструкция конденсатора
Емкостные преобразователи:
Емкостный преобразователь используется для измерения смещения, давления и многих других физических величин.Он действует как пассивный преобразователь, поэтому не требует внешнего источника питания. Как обсуждалось выше, емкостный преобразователь имеет две параллельные пластины с диэлектрической средой между пластинами. Диэлектрическая среда может быть воздухом, газом или жидкостью. Электрический заряд конденсатора используется для преобразования механического смещения в электрический сигнал.
Принцип действия:
Во время зарядки конденсатора ни на одной из пластин не будет заряда.Это приводит к нулевой напряженности электрического поля между двумя пластинами.
Q = CV
Где C — константа пропорциональности, известная как емкость конденсатора. Величина C зависит от размера пластины и диэлектрического материала, расположенного между пластинами. Это зависит от площади поверхности пластины, расстояния между двумя пластинами и диэлектрической проницаемости материала. В емкостных преобразователях значение емкости варьируется. Емкостной преобразователь в основном используется для измерения линейного смещения.Емкостной преобразователь использует следующие три эффекта.
- Изменение емкости преобразователя из-за изменения площади пластин конденсатора. → A
- Изменение емкости связано с изменением расстояний между пластинами → d
- Емкость изменяется из-за диэлектрической проницаемости. → ε
Емкость — это пропорция количества энергии, накопленной на одной из пластин, к уровню напряжения на конденсаторе.Емкость прямо пропорциональна области пластины и обратно пропорциональна их диапазону.
ε — это константа пропорциональности, которая называется проницаемостью материала, разделяющего пластины конденсатора
При использовании изоляционного материала емкость задается как
Где
- ε 0 — диэлектрическая проницаемость свободного пространства (8,85 x 10 -12 Ф / м)
- εr — диэлектрическая проницаемость изоляционной среды (εr = 1 для воздуха)
- A — площадь пластины ( м 2 )
- d — расстояние между двумя пластинами (м)
Соответствующий пост: Типы резистивных датчиков — преобразователь, потенциометр и тензодатчик
Измерение смещения с помощью емкостного датчика
Можно использовать следующие методы используется для измерения смещения с помощью емкостного преобразователя
Преобразователь с использованием изменения площади пластин
Следующее уравнение Монстра, что емкость прямо пропорциональна области пластины.Соответственно изменяется и емкость пластин. Емкостные преобразователи используются для измерения больших перемещений от 1 мм до нескольких см. Емкость и смещение области емкостного преобразователя изменяются линейно. Изначально из-за ребер в схеме происходит нелинейность. В противном случае будет дан линейный ответ.
Емкость параллельных пластин задается как
- Где x — длина пластин конденсатора
- W = ширина пластин
Чувствительность смещения постоянна, и поэтому она дает линейную зависимость между емкость и смещение.
Емкостный преобразователь, используемый для измерения углового смещения
Когда пластины полностью перекрывают друг друга, емкость будет максимальной. 180 градусов — это максимальное смещение, которое может произвести конденсатор. Угловое перемещение изменяет емкость преобразователей. Максимальное значение емкости выражается как
Емкость под углом θ выражается как,
- θ — угловое смещение в радианах
Преобразователь, использующий изменение расстояния между пластинами
Емкость преобразователя обратно пропорциональна диапазону действия пластины.Одна пластина преобразователя неподвижна, а другая пластина подвижна. Измеряемое смещение связано с подвижными пластинами. Емкость обратно пропорциональна расстоянию из-за нелинейного отклика конденсатора. Этот тип преобразователя используется для измерения крошечных смещений.
Емкость задается как температура влажности и воздуха.Отношение влажности воздуха при определенной температуре воздуха к максимальной влажности называется относительной влажностью. В поисках удобства относительная влажность становится важной переменной. Поместив тонкую полосу оксида металла между двумя электродами, емкостной датчик влажности измеряет относительную влажность. Датчики емкостного типа являются линейными и могут измерять относительную влажность от 0 до 100%.
Поскольку влажность в атмосфере изменяет свою диэлектрическую проницаемость, простой емкостный датчик относительной влажности может быть изготовлен из конденсатора, заполненного воздухом.Однако воздух как диэлектрик непригоден для практического применения. Поэтому пространство между пластинами конденсатора обычно заполняется подходящим диэлектрическим материалом (изолятором), диэлектрическая проницаемость которого изменяется при изменении влажности. Использование гигроскопической полимерной пленки в качестве диэлектрика и нанесение двух слоев электродов с каждой стороны является распространенным подходом к созданию емкостного датчика относительной влажности.
Емкостные датчики перемещения
Емкостные датчики перемещения используются в качестве эталонной системы для других датчиков диапазона для измерения диапазона при низкой температуре.Другие типичные применения включают испытания на допуск при массовом производстве, измерение вибрации, измерение деформации, измерение толщины и контроль толщины тонкой металлической фольги, измерение толщины пластиковой фольги во время производства, изгиб пластин при производстве полупроводников и многое другое.
Измерение тормозного диска
Автомобильные тормозные диски подвержены очень большим кратковременным нагрузкам . Механическое истирание и чрезмерное нагревание тормозного диска оказывает значительное влияние на микроструктуру тормозного диска.Используемый материал должен быть способен противостоять этим зарядам как можно дольше, не изменяя своей микроструктуры. При повторном приложении нагрузки мелкие трещины приводят к поломке и создают опасность для автомобиля. Для измерения деформации тормозного диска используются емкостные датчики. Очень немногие датчики подходят для работы вблизи объекта измерения из-за повышенного роста температуры. Емкостные преобразователи обнаруживают изменения в нанометровом диапазоне и оценивают износ тормозов.
Емкостные преобразователи — динамические измерения в турбинах или двигателях
Центробежные силы, действующие на лопатки турбины, приводят к расширению лопаток.Важно, чтобы в конструкции и конструкции турбинных лопаток не возникало дисбалансов, приводящих к дисбалансу системы. Емкостные преобразователи обнаруживают изменения диапазона манометра и предоставляют важную информацию для оценки FEM.
Измерение толщины
Обычное применение емкостных детекторов — измерение толщины материала бесконтактным способом. Двухканальная дифференциальная система является наиболее полезным приложением, в котором для каждой стороны измеряемого объекта используется отдельный датчик.Технология емкостных датчиков используется для измерения толщины в следующих областях: толщина кремниевой пластины, толщина тормозного ротора и толщина диска дискового накопителя
Тестирование сборки
Емкостные датчики гораздо более чувствительны к драйверам, чем непроводники. Таким образом, их можно использовать в готовых сборках для определения наличия / отсутствия металлических узлов. Примером является установкой разъема, который требует внутреннего металлического стопорного кольца, которое невозможно увидеть в окончательной сборке.Емкостный датчик в режиме онлайн может обнаружить неисправный участок и передать сигнал от линии к системе.
Связанное сообщение: PIR — Инфракрасный датчик движения Принципиальная схема, работа и применение
Преимущества и недостатки емкостных датчиков
Преимущества емкостных датчиков
- Для работы требуется внешняя сила, поэтому он очень полезен для миниатюрных устройств.
- Емкостный преобразователь очень хрупкий.
- Обеспечивает хорошую частотную реакцию для динамических исследований.
- Преобразователь имеет высокий входной импеданс и, следовательно, имеет незначительный эффект нагрузки.
- Требуется минимальная выходная мощность.
Недостатки емкостных датчиков
- Металлические компоненты преобразователя включают изоляцию.
- Рама конденсатора нуждается в заземлении, чтобы уменьшить влияние паразитного магнитного поля.
- Преобразователь иногда демонстрирует нелинейное поведение из-за краевого эффекта, регулируемого с помощью защитного кольца.
- Ошибка вызвана кабелем, подключенным к датчику.
Об авторе: Vidya.M
— Бакалавр технологий (B.Tech) в области электроники и приборостроения 2011 — Магистр технологий (M.Tech) в области биомедицинской инженерии 2014 — В настоящее время работает доцентом кафедры приборостроения и приборостроения. Control Engineering, Индия.Обновлено: Electrical Technology
Вы также можете прочитать:
.Изучены 3 простых схемы емкостных датчиков приближения
В этом посте мы подробно обсуждаем 3 основные схемы датчиков приближения со многими схемами приложений и подробными характеристиками схемы. Первые две схемы емкостных датчиков приближения используют простые концепции на основе IC 741 и IC 555, в то время как последняя немного более точна и включает в себя прецизионную конструкцию на основе IC PCF8883
1) Использование IC 741
Схема, описанная ниже, может быть сконфигурирован для активации реле или любой подходящей нагрузки, такой как водопроводный кран, как только человеческое тело или рука приближается к пластине емкостного датчика.При определенных условиях близости руки достаточно только для срабатывания выхода схемы.
Вход с высоким импедансом обеспечивается Q1, который представляет собой обычный полевой транзистор, такой как 2N3819. Стандартный операционный усилитель 741 используется в виде чувствительного переключателя уровня напряжения, который затем управляет токовым буфером Q2, биполярным транзистором pnp среднего тока, таким образом активируя реле, которое можно использовать для переключения устройства, такого как сигнализация, кран и т. Д.
В то время как схема находится в состоянии ожидания в режиме ожидания, напряжение на выводе 3 операционного усилителя фиксируется на уровне выше, чем уровень напряжения на выводе 2, путем соответствующей настройки предварительно установленного VR1.
Это гарантирует, что напряжение на выходном контакте 6 будет высоким, в результате чего транзистор Q2 и реле останутся выключенными.
Когда палец приближается к сенсорной пластине или слегка касается, уменьшение противоположного смещения VGS увеличит ток стока полевого транзистора Q1, и результирующее падение напряжения на R1 снизит напряжение на выводе 3 операционного усилителя ниже напряжения. присутствует на контакте 2.
Это приведет к падению напряжения на контакте 6 и, следовательно, включит реле с помощью Q2.Резистор R4 может быть определен для того, чтобы реле оставалось выключенным в нормальных условиях, учитывая, что крошечное положительное напряжение смещения может развиться на выходе вывода 6 операционного усилителя, даже если напряжение на выводе 3 окажется ниже, чем напряжение на выводе 2 в состояние покоя (простоя). Эту проблему можно решить, просто добавив светодиод последовательно с базой Q2.
2) Использование IC 555
В сообщении объясняется эффективная схема емкостного датчика приближения на основе IC 555, которая может быть использована для обнаружения злоумышленников вблизи ценного объекта, такого как ваш автомобиль.Идея была предложена мистером Максом Пэйном.
The Circuit Request
Hello Swagatam,
Пожалуйста, опубликуйте емкостную / телесную / чувствительную цепь, которую можно применить на велосипеде. Такое устройство замечено в автомобильной охранной системе, когда кто-то приближается к машине или простая 1-дюймовая близость, включала тревогу на 5 секунд.
Как работает этот тип сигнала тревоги: сигнал тревоги срабатывает только тогда, когда кто-то приближается (скажем, на 30 см), какой тип датчика они используют?
Принципиальная схема
Изображение схемы предоставлено: Elektor Electronics
Конструкция
Цепь емкостного датчика может быть понята с помощью следующего описания:
IC1 в основном подключен как нестабильный, но без включения настоящий конденсатор.Здесь вводится емкостная пластина, которая занимает место конденсатора, необходимого для нестабильной работы.
Следует отметить, что емкостная пластина большего размера будет обеспечивать лучший и надежный отклик схемы.
Поскольку схема предназначена для работы в качестве охранной системы оповещения о приближении к телу, сам корпус можно использовать как емкостную пластину, и ее огромный объем вполне подходит для этого приложения.
После того, как пластина емкостного датчика приближения установлена, IC555 переходит в режим ожидания для нестабильных действий.
При обнаружении «заземляющего» элемента в непосредственной близости, которым может быть рука человека, необходимая емкость создается между контактом 2/6 и землей ИС.
Вышеуказанное приводит к мгновенному увеличению частоты, когда ИС начинает колебаться в нестабильном режиме.
Нестабильный сигнал поступает на вывод 3 ИС, который соответствующим образом «интегрируется» с помощью R3, R4, R5 вместе с C3 —- C5.
«Интегрированный» результат подается на каскад операционного усилителя, который используется как компаратор.
Компаратор, сформированный вокруг IC2, реагирует на это изменение от IC1 и преобразует его в напряжение запуска, срабатывая T1 и соответствующее реле.
Реле может быть подключено к сирене или звуковому сигналу для необходимой сигнализации.
Однако практически видно, что микросхема IC1 генерирует пиковый импульс напряжения от положительного до отрицательного в момент, когда рядом с пластиной обнаруживается емкостное заземление.
IC2 реагирует исключительно на это внезапное повышение пикового напряжения для требуемого запуска.
Если емкостное тело продолжает находиться в непосредственной близости от пластины, пиковое частотное напряжение на выводе 3 исчезает до уровня, который может быть не обнаружен IC2, что делает его неактивным, то есть реле остается активным только в тот момент, когда емкостной элемент переносится или удаляется около поверхности пластины.
P1, P2 могут быть отрегулированы для получения максимальной чувствительности от емкостной пластины
Для получения фиксирующего действия выход IC2 может быть дополнительно интегрирован в схему триггера, что делает схему емкостного датчика приближения чрезвычайно точной и чувствительной
3 ) Использование IC PCF8883
IC PCF8883 спроектирован так, чтобы работать как прецизионный переключатель емкостного датчика приближения, благодаря уникальной (запатентованной EDISEN) цифровой технологии для определения мельчайших различий в емкости вокруг указанной чувствительной пластины.
Основные характеристики
Основные характеристики этого специализированного емкостного датчика приближения можно изучить, как показано ниже:
На следующем изображении показана внутренняя конфигурация ИС PCF8883
ИС не полагается на традиционный режим динамической емкости. Датчик скорее обнаруживает изменение статической емкости, применяя автоматическую коррекцию посредством непрерывной автокалибровки.
Датчик в основном представляет собой небольшую проводящую фольгу, которая может быть непосредственно интегрирована с соответствующими выводами ИС для предполагаемого емкостного измерения или, возможно, подключена на большие расстояния через коаксиальные кабели для обеспечения точных и эффективных операций дистанционного емкостного измерения приближения.
На следующих рисунках представлены детали распиновки IC PCF8883.Подробное функционирование различных выводов и встроенной схемы можно понять с помощью следующих пунктов:
Распиновка Подробная информация о IC PCF8883
Распиновка IN, которая должна быть связана с внешней емкостной чувствительной фольгой, связана с ИС внутренняя RC-сеть.
Время разряда, заданное параметром «tdch» RC-сети, сравнивается со временем разряда второй встроенной RC-сети, обозначенной как «tdchimo».
Две RC-цепи проходят периодическую зарядку от VDD (INTREGD) через пару идентичных и синхронизированных коммутационных сетей, а затем разряжаются с помощью резистора на Vss или землю.
Скорость, с которой выполняется этот зарядный разряд. регулируется частотой дискретизации, обозначенной «fs».
В случае, если разность потенциалов видно будет падать ниже заданного внутреннего опорного напряжения VM, соответствующий выходной сигнал компаратора имеет тенденцию стать низкой. Логический уровень, который следует за компараторами, идентифицирует точный компаратор, который фактически мог переключиться раньше другого.
И если определено, что верхний компаратор сработал первым, это приводит к отображению импульса на CUP, тогда как если обнаруживается, что нижний компаратор переключился раньше верхнего, тогда импульс активируется на CDN.
Вышеупомянутые импульсы участвуют в управлении уровнем заряда внешнего конденсатора Ccpc, связанного с выводом CPC. Когда на CUP генерируется импульс, Ccpc заряжается через VDDUNTREGD в течение заданного периода времени, что вызывает повышение потенциала на Ccpc.
Совершенно аналогично, когда импульс рендерится в CDN, Ccpc связывается с устройством стока тока на землю, что разряжает конденсатор, вызывая коллапс его потенциала.
Всякий раз, когда емкость на выводе IN становится выше, это соответственно увеличивает время разряда tdch, что вызывает падение напряжения на соответствующем компараторе с соответственно более длительным временем.Когда это происходит, выходной сигнал компаратора имеет тенденцию становиться низким, что, в свою очередь, создает импульс на CDN, заставляя внешний конденсатор CCP разряжаться в меньшей степени.
Это означает, что CUP теперь генерирует большую часть импульсов, что заставляет CCP заряжаться еще больше, не выполняя никаких дальнейших шагов.
Несмотря на это, функция автоматической калибровки ИС с управляемым напряжением, которая полагается на «ism» регулирования тока стока, связанного с выводом IN, пытается сбалансировать время разряда tdch, соотнося его с внутренне установленным временем разряда tdcmef.
Напряжение на Ccpg регулируется по току и становится ответственным за разряд емкости на IN довольно быстро всякий раз, когда обнаруживается, что потенциал на CCP увеличивается. Это идеально уравновешивает увеличивающуюся емкость на входном контакте IN.
Этот эффект приводит к возникновению замкнутой системы слежения, которая непрерывно отслеживает и задействует автоматическое выравнивание времени разряда tdch относительно tdchlmf.
Это помогает исправить вялые изменения емкости на выводе IN IC.В режимах быстрой зарядки, например, когда человеческий палец быстро приближается к чувствительной фольге, обсуждаемая компенсация может не проявляться, в условиях равновесия продолжительность периода разряда не отличается, вызывая поочередные колебания импульса между CUP и CDN.
Это дополнительно подразумевает, что с большими значениями Ccpg можно ожидать относительно ограниченное изменение напряжения для каждого импульса для CUP или CDN.
Следовательно, внутренний сток тока вызывает более медленную компенсацию, тем самым повышая чувствительность датчика.Напротив, когда CCP падает, чувствительность сенсора падает.
Встроенный монитор датчика
Встроенный каскад счетчика отслеживает срабатывания датчика и, соответственно, подсчитывает импульсы через CUP или CDN, счетчик сбрасывается каждый раз, когда направление импульса через CUP к CDN чередуется или изменяется.
Выходной вывод, обозначенный как OUT, активируется только при обнаружении достаточного количества импульсов через CUP или CDN. Умеренные уровни помех или медленные взаимодействия через датчик или входную емкость не оказывают никакого влияния на запуск выхода.
Микросхема учитывает несколько условий, таких как неравные схемы заряда / разряда, чтобы визуализировать подтвержденное переключение выхода и исключить ложное обнаружение.
Расширенный запуск
ИС включает в себя расширенную схему запуска, которая позволяет микросхеме довольно быстро достигать равновесия, как только на нее включается питание.
Внутренне вывод OUT сконфигурирован как открытый сток, который инициирует вывод выводов с высокой логикой (Vdd) с максимальным током 20 мА для подключенной нагрузки.В случае, если выход подвергается нагрузке более 30 мА, питание мгновенно отключается из-за функции защиты от короткого замыкания, которая мгновенно срабатывает.
Эта распиновка также совместима с CMOS и поэтому подходит для всех нагрузок или каскадов на основе CMOS.
Как упоминалось ранее, параметр частоты дискретизации «fs» относится к 50% частоты, используемой в сети синхронизации RC. Частоту дискретизации можно установить в заранее определенном диапазоне, соответствующим образом зафиксировав значение CCLIN.
Частота генератора с внутренней модуляцией на 4% через псевдорасширение
.Как работает емкостной датчик давления?
Емкостный датчик давления работает по принципу, согласно которому, если чувствительная диафрагма между двумя пластинами конденсатора деформируется из-за перепада давления, между ним и двумя пластинами возникает дисбаланс емкости.
Этот дисбаланс обнаруживается в цепи емкостного моста и преобразуется в выходной ток постоянного тока от 4 до 20 мА.
Это показано на рисунке, где движение гибкой диафрагмы относительно неподвижной пластины определяется по изменению емкости.Вторичная изолирующая диафрагма используется для защиты чувствительной диафрагмы.
Емкостной датчик давления
В другом типе конденсатора используются концентрические полые металлические цилиндры. Емкость этого типа, как и у плоского типа, пропорциональна площади.
Этот принцип может применяться к измерению перепада давления, как показано на рисунке. Давление, действующее на изолирующие диафрагмы, создает аналогичные давления в силиконовом масле, заполняющем пространство между ними.
Чистая сила, пропорциональная разнице между двумя давлениями, действует на металлическую чувствительную диафрагму и отклоняет ее в одну или другую сторону, в зависимости от того, какое входное давление больше.
Каждая пластина образует конденсатор с чувствительной диафрагмой, которая электрически соединена с преобразователем в металлическом корпусе.
Чувствительная диафрагма и конденсатор, таким образом, образуют разделительный конденсатор дифференциального переменного тока. Когда два входных давления равны, диафрагма расположена по центру и емкости равны.
Разница в двух входных давлениях вызывает смещение чувствительной диафрагмы и воспринимается как разница между двумя емкостями.
Это изменение емкости измеряется с помощью мостовой схемы для измерения сигнала эквивалентного давления.
Статьи, которые могут вам понравиться:
Манометрические водоотделители
Tank Gauging Technologies
Емкостное измерение уровня
Калибровка передатчика Fieldbus
Принцип работы вихревого расходомера
.Цепь емкостного датчикадля автоматического писсуара
кранаСхема емкостного датчика для писсуара с автоматическим смесителем
Описание продукта
Тип | Инфракрасный датчик |
Источник питания | DC 4.3 ~ 6,4 В |
Статическая мощность | ≤0,15 мВт (≤25uA) |
Диапазон датчика по умолчанию | 280 мм (кран) |
760 мм (писсуар) | |
650 мм (туалет) | |
Диапазон датчика | 180–380 мм (кран) |
400–800 мм (писсуар) | |
400–800 мм (туалет) | |
Погрешность диапазона датчика | ± 10% от номинального диапазона датчика |
Максимальный выходной ток | 800 мА |
Ширина выходного импульса | 35 мс |
Аварийный сигнал низкого напряжения | Рабочее напряжение ≤4.4 ± 0,2, сигнализация датчика |
Остановка безопасности | 60 с |
Устойчивость к ударам | Удары и удары не допускаются |
Срок службы датчика | 500 000 кругов |
Национальный патент | ZL2007200068368 |
Гарантия | Один год |
Характеристика продукта
1) На одной печатной плате / датчике есть четыре различных режима работы, включая смеситель датчика, писсуар датчика, унитаз датчика и датчик душа, которые могут автоматически переключаться с пульта дистанционного управления.
2) Регулируемое расстояние между датчиками и продолжительность промывки с помощью пультов дистанционного управления.
3) Низкое энергопотребление. Срок службы щелочных батарей 4АА составляет около 60 000, срок службы около 1,5 лет.
4) Клей для заливки с сильной влагостойкостью.
5) Высокая защита от помех и вибрации.
6) У нас есть более 50 различных сенсорных глазков и разных проводов на выбор.
Другие продукты
Характеристика
Категории продуктов
Упаковка и доставка
.