Самодельная цветомузыкальная (ЦМУ) приставка на светодиодах
Хочу представить вашему вниманию цветомузыкальную приставку, собранную на двух синхронных двоичных счетчиках-делителях (каждый счетчик основан на четырех D-триггерах), она же микросхема К561ИЕ10.
Данная конструкция легко доступна для повторения, микросхему К561ИЕ10 еще пока что можно купить в радиомагазине, да и у радиолюбителей наверняка найдется в наличии. Конечно же эта схема не может соперничать с цветомузыкальными установками (ЦМУ) на тех же микроконтроллерах, но тем не менее работает вполне достойно.
Рис. 1. Принципиальная схема цветомузыкальной установки на микросхемах и светодиодах.
Схема состоит из входного буфера, счетчика и выходных транзисторов, в нагрузке которых установлены светодиоды.
Входной буферный усилитель нужен для согласования выхода звукового устройства и цифрового счетчика. В его основе лежит сдвоенный ОУ LM358 включенный по схеме с не инвертирующим входом.
С помощью резисторов R2 и R6 подстраивают чувствительность ЦМУ. Входной сигнал через усилитель поступает на входы двоичного счетчика-микросхемы К561ИЕ10, который переключает транзисторы VT1 — VT8. Из-за переменчивости звукового сигнала и инертности светодиодов присутствует эффект беспорядочности, переключение нагрузок не повторяется и хаотично.
Еще одним достоинством или недостатком данного цветомузыкального устройства является то, что при отсутствии сигнала все равно будут светится светодиоды на которых сигнал прервался, в отличии от ЦМУ в основе которых лежат различные аналоговые фильтры.
Далее с выходов счетчика сигналы подаются через разделительные резисторы на транзисторы VT1 — VT8. В случае применения индикаторных светодиодов ток которых до 20мА, можно исключить эти транзисторы и светодиоды через ограничительный резистор подключать непосредственно на выходы IC1.
В процессе сборки и проверки, а также в поисках альтернативы микросхеме LM358 я остановил свой выбор на операционном усилителе (ОУ) TL072. Причина поиска замены была в наполовину не рабочей LM358. В последствии купил TL-ку и LM-ку. Попробовал сначала LM358. а потом TL072 — оказалось что с микросхемой TL072 цветомузыкальная установка работает лучше.
Рис. 2. Схема входных усилителей на микросхеме TL071.
Проще говоря входной уровень сигнала для TL072 нужен совсем не большой по сравнению с LM358. Изначально печатную плату делал для компонентов по схеме. Печатку прикладываю.
Рис. 3. Печатная плата для цветомузыкальной установки (ЦМУ) на микросхемах и светодиодах.
Несколько позднее заменил буферную микросхему и собрал все это на куске монтажной платы. Так и оставил в итоге на куске как есть. Самой дорогой частью оказались светодиоды — куплено было 70 штук. В процессе сборки пять штук выкинул — после пайки перестали светиться.
Рис. 4. Плата ЦМУ с размещенными электронными компонентами.
Рис. 5. Внешний вид платы со светодиодами для цветомузыки.
В качестве корпуса мною была использована коробочка из оргстекла от реле времени. Вот собственно и все что нужно иметь ввиду при сборке. Ниже представлена видеодемонстрация работы моей самодельной цветомузыкальной установки (ЦМУ).
Получилось в принципе не очень дорого, быстро, сердито и довольно не плохой результат.
Если есть вопросы — спрашивайте.
Прислал: Сэм, dimka.kyznecov[собачка]rambler.ru
Невероятно эффектная цветомузыка на Arduino и светодиодах / Хабр
С наступающим! Приближается Новый год, а значит, пора срочно создавать настроение! Ну и как всегда в это время года рождаются десятки электронных схем различных цветомузыкальных установок.
Чего только самобытные мастера не придумают. От трехцветных моргалок до лазерных многолучевых установок с управлением по MIDI интерфейсу.
Как большой поклонник, так называемых адресных светодиодов, хочу показать вам очень простую и удивительную цветомузыку. Я вообще такой ни разу не видел. Пока не собрал за один вечер. Итак, визуализатор звука!
Инструкция
Схема очень простая!
Вам понадобятся Arduino Nano, или Uno. Или какая там у вас есть? Два потенциометра, пять резисторов, пару конденсаторов и линейка (лента) из 180 светодиодов WS2812b. Всё! Светодиодов в линейке может быть 60, 120 или 180.
В визуализаторе с помощью алгоритма быстрого преобразования Фурье выделяются 8 частот (порог чувствительности на каждую частоту свой, снижается от 1 к 8), преобразуются в цвет и выводятся на линейку светодиодов по одному из восьми алгоритмов. Скетч писал Майкл Крампас, парни из Чип и Дипа добавили функционал, а библиотека для светодиодов и быстрого преобразования Фурье (FFT) написана в Адафрут для проекта Piccolo. Библиотека FFT для 128 точек, адаптированная для AVR микроконтроллеров написана на ассемблере.
Сам скетч и библиотеку FFT нужно скачать здесь и здесь.
Не теряйте время на разбор алгоритмов, просто соберите, залейте скетч и наслаждайтесь шоу.
Это всего лишь развлечение!
В момент первого включения нужно сделать пару настроек:
Яркость: удерживайте кнопку color при включении питания. На первых 8 светодиодах будет отображаться радуга светодиодов. С помощью ручки param измените яркость. По завершении нажмите кнопку color еще раз, и ваша конфигурация будет сохранена в памяти.
Длина светодиодной полосы: удерживайте кнопку pattern при включении питания. Отобразится один, два или три красных светодиода. Используйте ручку param, чтобы выбрать длину светодиодной полосы в зависимости от количества красных светодиодов:
1=60 светодиодов
3=180 светодиодов
По завершении нажмите кнопку pattern еще раз, и ваша конфигурация будет сохранена в памяти.
Алгоритмы
Танцы плюс: пики звуковых сигналов испускаются из центра полосы и исчезают по мере приближения к концам. Скорость пика пропорциональна величине звукового сигнала этого пика.
Танцы минус: то же, что и Dance Party, но пики сигналов испускаются с одного конца.
Импульс: пики сигналов отображаются как яркие импульсы, которые поступают из центра полосы. Ширина импульса зависит от уровня сигнала.
Световая полоса: в пиках освещается вся полоса.
Цветные полоски: пики сигналов отображаются как цветные полосы, которые исчезают.
Цветные полоски 2: подобно цветные полоски, но каждая полоска сжимается и исчезает.
Вспышки: пики сигналов отображаются в виде светодиодной вспышки в случайном месте. Начальный цвет белый, а затем исчезает через другой цвет.
Светлячки: пики сигналов отображаются как одиночные светодиоды в случайном месте, и они перемещаются влево или вправо и исчезают. Их скорость зависит от величины сигнала.
Цветовые схемы
Случайная двухцветная схема: выбраны два случайных цвета и только они используются для отображения пиков сигнала.
Радуга: все пики сигналов отображаются как один и тот же цвет (с небольшим количеством случайных вариаций) и этот цвет меняется как радуга с течением времени. Скорость изменения цвета устанавливается потенциометром param.
Цветные частоты: в этом режиме каждый пик сигнала окрашивается в зависимости от частотной полосы где он находится. Самая низкая полоса красного цвета, и дальше вверх по спектру. Есть 8 полос частот: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый, белый. Этот цветовой режим наиболее интересен, когда частотная характеристика настроена на все полосы частот.
Диапазон частот: вы можете управлять тем диапазоном частот, на который откликается цветомузыка. Чтобы установить диапазон нажмите и удерживайте обе кнопки. Используйте ручку param, чтобы выбрать, сколько из восьми частотных диапазонов будет показываться. Если вы хотите выделить бас и ритм музыки, установите частотную характеристику только на самые низкие 2 или 3 полосы. Если вы хотите показать все частоты в музыке (например, вокал и более высокие инструменты), выберите все полосы частот.
Это видеоинструкция по настройке и она же демонстрация визуализатора в работе. Там в конце две музыкальные композиции с разными алгоритмами.
Ещё одна композиция
Парни! И дамы конечно. Я очень хочу, чтобы вы успели сделать эту простую конструкцию к новогоднему празднику. Не пожалеете! Гости будут в шоке!
С наступающим 2018 годом!
Добавлено 15.12.2017 Эпилог или разбор полётов
1. Как изменить подсветку в паузах?
2. Можно ли изменить динамику?
Плюс опубликована обновленная схема. Не волнуйтесь, добавили всего один резистор.