Site Loader

Содержание

АВР для дизельных генераторов и электростанций

АВР – это автоматика ввода резерва, которая представляет собой механизм коммутации нагрузки на резервный источник питания (дизель генератор). Происходит это в случае потери напряжения в основной электрической сети. Обратный перевод нагрузки с дизельной электростанции на основную сеть электропитания производится по сигналу восстановления в ней напряжения.

Существует несколько типовых схем АВР, из которых необходимо выбрать ту, которая наиболее полно отвечает конкретным условиям объекта.
  1. Схема с АВР на двух контракторах. В этом случае сигнал перекоммутации вырабатывается контроллером управления ДГУ с функцией автозапуска. Важным моментом являет то, что напряжение питания катушек контракторов должно быть 220VAC, так как сигнал постоянного тока не может быть передан на расстояние свыше 40 метров без существенного понижения напряжения в проводах. Соответственно требуется установка развязывающих реле, которые соотносятся с напряжением питания стартера дизельного двигателя. Наиболее удобны реле, оснащенные световой индикацией и механизмом принудительного ручного включения. При реализации этой схемы важно предусмотреть защиту от встречного включения для того чтобы не возникло соединения в одной точке напряжения основной сети и ДЭС. Такая защита есть в контроллере – это запрет коммутации второго контактора при первом замкнутом. Достоинства этой схемы в том, что всем процессом управляет контроллер и это позволяет гибко отстроить все параметры срабатывания системы. Автоматизация позволяет наладить дистанционный мониторинг и управление с возможностью доступа ко всем параметрам.

  2. Дизельные генераторы с АВР с мотор-приводом. В этом случае сигнал управления тоже генерирует контроллер. Эта автоматизация оправдывает себя при мощностях свыше 250-300 кВт и выше. Механизм переводит нагрузку напряжения по принципу перекидного рубильника. Как правило, напряжение питания исполнительного привода составляет 24VDC. Преимуществом этой схемы является снижение стоимости АВР при росте коммутируемого тока нагрузки.

  3. Электростанции с интеллектуальным АВР. В этой схеме АВР является интеллектуальным устройством и самостоятельно вырабатывает сигнал запуска и остановки дизель генератора. Контроллер настраивается на выполнение процедур пуска и остановки по сигналу извне. Сигнал может быть как релейным, так и цифровым. Достоинства этой системы заключаются в том, что появляется модульность, то есть все дизельные генераторы оснащаются одним типом контроллера, а автоматика ввода резерва поставляется как опция.

Специалисты по эксплуатации дизельных электростанций сходятся во мнении, что любая АВР должна быть максимально удобна и проста в работе, ремонтопригодна и безотказна. Задача установки АВР заключается в гарантии подачи электроснабжения в любых ситуациях. Автоматика должна быть удобной, но в, то, же время допускать возможность для перевода управлением в ручной режим при возникновении аварийной ситуации.

Автоматизация электростанций также включает в себя:

  • слежение за качеством электроэнергии, ее напряжением и частотой,
  • автоматическое поддержание температуры охлаждающей системы внутри кожуха, как во время работы электростанции, так и в режиме ожидания,
  • контроль и поддержание аккумуляторной батареи в рабочем состоянии,
  • отслеживание наличия масла и топлива с их автоматической подкачкой,
  • дистанционная передача на пульт управления полной информации о текущем состоянии ДГУ.
В автоматическом режиме дизель генератор включается только через несколько секунд после потери электроснабжения в основной сети, и выключается только после полного его восстановления.

Схемы подключения резервного дизель-генератора

Резервный дизельный генератор чаще всего подключается по стандартной схеме. Отличия в вариантах подключения могут быть в зависимости от выходного напряжения, на которое рассчитан электрогенератор (однофазное или трёхфазное), от наличия или отсутствия панели автоматического включения резерва (АВР), от типа места расположения блока контроля состояния внешней сети (в панели АВР или в панели управления автономной электростанции).

Ниже приведена однолинейная электрическая схема подключения генераторной установки с панелью АВР:

На данной схеме указаны следующие элементы:

  • Дизель-генератор. Резервная дизельная электростанция.
  • АВР сеть — ДГ. Панель автоматического включения резерва, которая осуществляет переключение питания нагрузки между внешней сетью и дизельной электростанцией.
  • QS. Перекидной рубильник линии «обводного канала» (байпас). Данный рубильник осуществляет переключение питания нагрузки напрямую от сети, исключая из цепи энергоснабжения панель АВР. Эта опция не является обязательной для схемы резервного электропитания, но она очень удобна, так как позволяет отключить панель АВР (например для ремонта) без необходимости длительного отключения нагрузки.
  • Панель управления. Панель управления дизель-генератором.
  • Щит ЩРдг. Электрощитовая, в которой расположены автоматические выключатели нагрузок, которые резервируются от автономного генератора.
  • QF1. Выходной автоматический выключатель генераторного агрегата.
  • QF2. Автоматический выключатель для защиты кабеля собственных нужд. Обычно устанавливается в электрощитовой.
  • Силовой кабель. Данный кабель прокладывается между резервным генератором и панелью АВР. По нему на нагрузки передаётся электроэнергия, которую вырабатывает дизель-генератор. Со стороны генераторного агрегата силовой кабель подключается непосредственно на клеммы выходного автоматического выключателя (QF1). С другой стороны силовой кабель подключается на соответствующие клеммы панели АВР.
  • Кабель управления. Данный кабель прокладывается между резервной электростанцией и панелью АВР. Предназначение кабеля управления (сигнального кабеля) меняется в зависимости от места расположения блока контроля внешней сети. Данный блок осуществляет контроль наличия внешней сети, контроль соответствия качества основного энергоснабжения заданным параметрам (по напряжению и частоте), даёт команды на запуск и остановку генератора электричества, а также управляет переключением панели АВР. Если блок контроля внешней сети расположен на панели АВР, то по кабелю управления от панели АВР на генератор дизельный поступает сигнал о запуске или остановке. Если же блок контроля внешней сети расположен в панели управления автономной электростанции, то по данному кабелю осуществляется управление переключения панели АВР. В последнем случае, от внешней сети на электрогенератор необходимо проложить дополнительный кабель (не показан на приведенной выше электрической схеме), который подключается на панель управления, и по которому осуществляется контроль наличия и качества основного энергоснабжения.
  • Кабель собственных нужд. Данный кабель прокладывается от генераторной установки в электрощитовую. Когда дизельная электростанция не работает, по данному кабелю осуществляется питание автоматического подогрева охлаждающей жидкости двигателя и автоматического подзаряда аккумуляторных батарей от внешней сети. Необходимо помнить, что кабель собственных нужд должен быть защищён отдельным автоматическим выключателем, который на схеме показан как QF2.

Очень часто на объекте есть два независимых ввода от основного энергоснабжения, что повышает отказоустойчивость системы электропитания в целом. В данном случае, дизельные генераторы подключаются аналогичным способом, как и в приведённой выше схеме, только между двумя сетевыми вводами добавляется ещё одна панель АВР (АВР сеть — сеть на однолинейной схеме ниже).

Однако, не всегда генераторы дизельные резервируют все нагрузки на объекте. Часто, потребителей разделяют на группы в зависимости от их критичности (например по величине финансовых потерь в случае их отключения от электропитания). Наименее критичной является группа нагрузок («Потребители 1 категории» на схеме ниже), которая питается только от внешней сети, и её энергоснабжение резервируется переключением между двумя сетевыми вводами. Более критичные нагрузки выделяются в так называемую «Особую группу 1 категории». Помимо двух сетевых вводов данных потребителей также резервируют дизельные электростанции (ДЭС), которые запускаются в случае пропадания основного энергоснабжения по обоим вводам. Самые важные нагрузки, для которых не приемлемо даже секундное прерывание в электропитании, выделяются в «Критическую группу». Потребителей «Критической группы» резервируют не только электрогенераторы, но и источники бесперебойного питания (ИБП), которые включаются последовательно в электрическую цепь и обеспечивают отсутствие пропадания энергоснабжения на время запуска резервной электростанции.

Если Вы планируете покупать дизель генераторы или источники бесперебойного питания рекомендуем Вам обратится к специалистам ОАО Энергомаш для правильного подбора оборудования и построения надёжной схемы энергоснабжения.

Оригинал статьи

Принципиальные электрические схемы дизельных электростанций



Принципиальная электрическая схема агрегата АД-20М (см. рис.1).

Стационарные агрегаты АД-20М предназначены для питания силовой и осветительной нагрузки при параллельной и автономной работе. В силовую цепь включены обмотки генераторов ОС, цепи компаундирующего трансформатора ТТП, трансформатор статизма ТС, реактор PN, автоматический выключатель АВ1, трансформаторы тока ТТ1-ТТ3, три нагрузочные линии ШГ1 (подключение резервного генератора), ШГ2 и ШГЗ (подключение нагрузки мощностью до 50% мощности генератора). Линии ШГ2 и ШГЗ включаются через автоматические выключатели АВ2 и АВЗ и специальные разъемы. В схеме предусмотрено автоматическое регулирование напряжения с помощью фазного компаундирования и электромагнитного корректора напряжения КН. Схема обеспечивает точность поддержания напряжения ±2% при изменении нагрузки от 0 до 100%, а также при изменении частоты в пределах 48-52 Гц и ±1% при неизменной нагрузке в пределах от 0 до 100%.

Рис.1. Принципиальная схема дизель-генератора АД-20М

Для контроля за работой генератора в схеме предусмотрены вольтметр V для измерения линейных напряжений с переключателем ПП1, амперметр А для измерения токов трех фаз с переключателем ПП2, ваттметр W и частотомер Hz. В схеме имеется также прибор постоянного контроля изоляции ПКИ-1, а для электробезопасного обслуживания установлено реле РБП.

Для параллельной работы с другими ДЭС или агрегатами в схеме имеется трансформатор ТС с резистором СРС и выключателем ВЗ для шунтирования этого резистора при автономной работе генератора. Уставка напряжения выставляется резистором РУ.

В схеме предусмотрены цепи синхронизации с лампами 4ЛС и 5ЛС и резисторами R1-R2, сигнализации положения с лампами 6ЛС-10ЛС, питающимися через конденсаторы С1-С5, и цепи блокировки с реле РБ и выпрямительным мостом Д17-Д20.

Через автоматический выключатель АВ4 и вилку В происходит соединение с другим генератором для параллельной работы.

Рис.2. Принципиальная схема электростанции ЭСДА-30.
а — схема силовой части ДЭС;
б — схема управления ДЭС.

Принципиальная электрическая схема передвижной ДЭС типа ЭСДА-30 (рис.2).

Передвижная ДЭС типа ЭСДА-30 автоматизирована по 1-й степени и предназначена для питания силовой и осветительной нагрузки. В схему силовой части агрегата входят обмотки генератора с резонансной статической системой возбуждения, корректор напряжения на полупроводниковых элементах КН, блок параллельной работы БПР с трансформатором тока, трансформаторы тока для измерительных цепей и выводы отходящих линий с автоматическими выключателями: генератора АВГ, резервной сети АВС и нагрузки АВ1.

В схеме предусмотрена автоматическая система регулирования напряжения с помощью схемы компаундирования и полупроводникового корректора напряжения. Схема обеспечивает точность регулирования напряжения ±1% номинального значения при изменении нагрузки от 0 до 100%.

Для контроля за работой генератора предусмотрены вольтметр V, амперметр А, киловаттметр KW, частотомер Hz и переключатели ПА и ПВ. Постоянный контроль изоляции осуществляется прибором ПКИ. Цепи синхронизации с выключателем ВС и лампой позволяют включать генератор на параллельную работу с сетью и другими агрегатами. Схема предусматривает пуск агрегата со щита управления кнопкой КнП и его остановку кнопкой КнО, автоматическую остановку агрегата в аварийном режиме с работой сигнализации и ручную систему подогрева двигателя.

Перед запуском включают выключатели батареи ВБ, приборов ВП, реле питания РК, систему подогрева двигателя с панели управления подогревателем (свеча накаливания СН, топливный клапан ТК, электродвигатель Д). На период пуска выключатель защиты ВЗ выключается. После пуска двигателя кнопкой КУМ осуществляется увеличение частоты вращения двигателя с помощью изменения положения рейки топливного насоса, на которую действует электродвигатель постоянного тока ДНО.

При достижении номинальной частоты вращения двигателя включается нагрузка с помощью автоматов АВГ и AB1. В случае необходимости нормальная остановка агрегата производится кнопкой КнО, но перед этим необходимо отключить выключатель автомата АВГ (снимается нагрузка генератора) и выключатель ВЗ (отключается защита двигателя). Кнопкой КнО подается питание на обмотку соленоида закрытия топлива СЗТ, который действует на рейку топливного насоса. Подача топлива в двигатель прекращается, и он останавливается.

При понижении давления масла в системе смазки, повышении температуры воды в охлаждающей системе или разносе двигателя срабатывает соответствующее реле (РДМ, РКО или РТВ) и подается сигнал на реле РЗ, которое воздействует на соленоид воздушной захлопки СЗВ, останавливает двигатель и отключает автомат АВГ, снимая нагрузку с генератора; одновременно работает аварийная световая сигнализация.

Принципиальная электрическая схема стационарной ДЭС типа АСДА-100 с устройством КУ-67М (рис.3).

Схема силовой части агрегата и автоматической системы регулирования напряжения, за небольшим исключением, аналогична схеме ЭСДА-30. К шинам панели ПР-1 через автоматы 1В-4В подключены кабели, питающие потребителей электроэнергии агрегата.

Для контроля параметров генератора предусмотрены амперметр, вольтметр, частотомер и ваттметр. Устройство КУ-67М обеспечивает автоматизацию по 1-й степени, в том числе дистанционный пуск и остановку дизеля, включение генератора на обесточенные шины и на параллельную работу, отключение генератора, защиту и сигнализацию дизеля и генератора.

Для нормального пуска дизеля (рис.3,6) поворотом переключателя 1К в положение «Больше» приводят во вращение электродвигатель ДР, который выводит рейку топливного насоса в положение, соответствующее промежуточной частоте вращения дизеля (определяется настройкой микровыключателя В2), при этом загорается лампа 7ЛK. Когда рейка достигает определенного положения, микровыключатель В2 срабатывает и останавливает двигатель ДР, лампа 7ЛK гаснет. Нажатием кнопки КП замыкают цепь контактора 2К, включают маслопрокачивающий насос ДМ. Когда давление масла в масляной магистрали дизеля достигает значения настройки датчика давления масла 1ДДМ, последний срабатывает, замыкая цепь лампы 3ЛK и реле 2РИ, которое своими контактами замыкает цепь включения стартера. Дизель запускается. По импульсу от зарядного генератора замыкается цепь реле удавшегося запуска 1РИ. Лампа ЗЛК гаснет, загорается лампа 2Л3.

Дизель прогревается при промежуточной частоте вращения; при достижении рабочей температуры воды датчик 1ДТВ размыкает цепь лампы 2Л3 и она гаснет, а контакты 1ДТВ шунтируют микропереключатель В2. Поворотим ключа 1КУ в положение «Больше» повторно включают электродвигатель ДР; загорается лампа 7ЛК. Двигатель ДР включается микровыключателем ВЗ, который настроен на максимальную частоту вращения холостого хода дизеля.

При экстренном пуске дизеля включают выключатель Т1, шунтирующий микропереключатель В1, а все остальные операции осуществляют, как и при нормальном пуске дизеля.

Рис.3,а. Принципиальная схема дизельгенератора АСДА-100 с устройством КУ-67М

Для включения генератора на обесточенные шины (см. рис.3,а):

выбирают ручной или автоматический режим регулирования напряжения и переключают ТВ1, при автономной работе переключатель ставят в положение «Без статизма»;

включают автоматический выключатель 2АВ и подготавливают схему включения электродвигательного привода автоматического выключателя генератора. Напряжение на эту схему подается со сборных шин через размыкающие контакты РПН, а при отсутствии напряжения на шинах — от возбужденного генератора через замыкающие контакты РПН. После разворота генератора до номинальной частоты вращения нажатием кнопки КнВ в течение 2-3 с подают начальное возбуждение от аккумуляторной батареи на зажимы ротора генератора. Генератор возбуждается;

напряжение при ручном регулировании устанавливают с помощью резистора СУ, при автоматическом — резистора СУН;

поворотом ключа 2КУ в положение «Включено» замыкают цепь реле РУ. Срабатывая, оно замыкает свои контакты в цепи электродвигателя привода автоматического выключателя. Автоматический выключатель генератора включается. Загорается лампа 1ЛК, а лампа 1ЛЗ гаснет.

Рис. 3,б. Принципиальная схема дизельгенератора АСДА-100 с устройством КУ-67М.
Схема автоматики ДЭС.

Для включения генератора на параллельную работу:

переключатель ТВ1 устанавливают в положение «Параллельная работа», ТВ2 — в положение «Статизм», а переключатель Т4 — в положение «Медленно», что обеспечит уменьшение скорости нарастания частоты вращения дизеля при синхронизации генератора;

запускают дизель и сопротивлением СУН устанавливают на генераторе напряжение, равное напряжению сети. Генератор на параллельную работу включается невозбужденным. Для этого включают выключатель ТЗ, шунтирующий обмотку возбуждения генератора;

после того как напряжение генератора упадет до значения, близкого остаточному, поворотом ключа 1КУ в положение «Больше» подают импульс на включение автоматического выключателя генератора В. Реле РП срабатывает, самоблокируется и замыкает цепи реле ИРЧ;

при достижении генератором частоты вращения, близкой к синхронной, реле ИРЧ срабатывает и включает промежуточное реле синхронизации РПС. Своими контактами реле РПС замыкает цепь включения электродвигательного привода автоматического выключателя генератора;

генератор включается в сеть недовозбужденным, так как его обмотка возбуждения замкнута накоротко контактами выключателя гашения поля ВГП. После включения генераторного автомата обесточивается ВГП и размыкает свои контакты, шунтирующие обмотку возбуждения генератора;

генератор возбуждается и втягивается в синхронизм. Лампа 1ЛK загорается. Выключатель Т4 переключают в положение «Быстро», и генератор набирает нагрузку. Для нормальной остановки дизеля: отключают поворотом переключателя 2КУ автоматический выключатель генератора В, а поворотом переключателя 1КУ (В положение «Меньше») замыкают цепь обмотки левого вращения электродвигателя ДР, при этом рейка топливного насоса выводится в положение, соответствующее промежуточным оборотам дизеля;

дизель охлаждается до температуры настройки датчика 2ДТВ, который, срабатывая, размыкает цепь лампы 6Л3 и шунтирует микропереключатель В2;

повторным поворотом переключателя 1КУ рейка выводится в положение, соответствующее нулевой частоте вращения дизеля. Электродвигатель ДP выключается микропереключателем B1. Дизель останавливается.

Схемой предусмотрены защита и контроль работы дизеля при перегреве воды и масла, понижении давления масла и разносе.

При срабатывании датчика контролируемого параметра замыкается цепь выходного реле защиты 1P3 и срабатывает соответствующее указательное реле. Контакт реле 1РЗ замыкает цепи табло «Авария» и звукового сигнала (при замкнутом положении выключателя Т2). Другой контакт реле 1РЗ замыкает цепь независимого расцепителя автоматического выключателя генератора и отключает его.

Рейка топливного насоса автоматически выводится на нулевую частоту вращения. Дизель останавливается.

При срабатывании защиты от разноса одновременно с отключением генератора срабатывает автоматическое стоп-устройство дизеля АСУ. Для предотвращения ложного срабатывания защиты от понижения давления масла в цепь соответствующего сигнального реле включается контакт реле 1РИ, который контролирует запуск дизеля. Таким образом, контроль за понижением давления масла осуществляется только в том случае, если дизель запущен и контакт 1РИ замкнут.

Рис.4. Принципиальная схема дизель-генератора АСДА-100 полупроводниковыми блоками автоматики

Принципиальная электрическая схема АСДА-100, автоматизированного по 3-й степени (рис.4).

В схеме синхронный генератор со статической системой возбуждения показан в свернутом виде. На рис.4 показана силовая схема АСДА-100. Элементы блоков и автоматики показаны свернутом виде. Силовая цепь и цепи регулирования напряжения генератора состоят из резонансной статической системы возбуждения, корректора напряжения (на схеме не показан), блока управления параллельной работой БУ с трансформатором ТТ1, автоматического выключателя генератора АГ и сети АС, контакторов КФГ и КФС, предназначенных для дистанционной автоматической коммутации силовой цепи, реверсивного двигателя ДУН, регулирующего с помощью сопротивления СУН уставку напряжения, трансформаторов тока ТТ2-ТТ7 для питания цепей измерения тока, блока датчика мощности и частоты ДМЧ и блока контроля мощности БКМ.

Контроль и измерение параметров генератора производятся амперметром А, ваттметром W, частотомером Hz, вольтметром V.

Переключатель ВВ позволяет производить измерения на различных фазах (А,В,С) с использованием одного прибора.

При ручной синхронизации ненагруженного электроагрегата с сетью переключатель синхроноскопа ВСх устанавливают в положение I. В этом случае сигнальная лампа ЛC1 включена контактами переключателя ВСх через ограничительное сопротивление R1 на начала вторичных обмоток трансформаторов Th2 и ТН2 и находится под напряжением биений с амплитудой, изменяющейся от нуля до двойного значения напряжения вторичных обмоток этих трансформаторов. Частота биений равна разности частот синхронизируемых источников питания. Выключатель статизма ВС устанавливается во включенное положение и шунтирует часть сопротивления RП2 в блоке управления БУ. Сопротивлением установки напряжения СУН напряжение синхронизируемого электроагрегата устанавливается равным напряжению сети, а кнопками изменения частоты вращения двигателя устанавливается частота генератора, равная частоте сети. Включение электроагрегата на параллельную работу с сетью осуществляется контактором фидера генератора КФГ путем замыкания контактов кнопки включения контактора генератора в момент погасания сигнальной лампы ЛC1.

При ручной синхронизации нагруженного электроагрегата с сетью переключатель синхроноскопа BC устанавливается в положение III. При этом лампа синхроноскопа ЛС1 подключается контактами переключателя ВСх через ограничительное сопротивление R1 на начала вторичных обмоток трансформаторов ТН1 и ТНЗ и находится под напряжением биений. Напряжение и частота генератора устанавливаются, как и при ручной синхронизации ненагруженного электроагрегата с сетью. Включение нагруженного электроагрегата на параллельную работу с сетью осуществляется контактором фидера сети КФС.

Цепи собственных нужд получают питание от генераторного фидера через автоматический выключатель АСН. К собственным нуждам электроагрегата относятся устройства и цепи оперативного питания, поддержания горячего резерва, дозаправки масла и т.д.

Питание схемы автоматического управления осуществляется блоком питания. Основным источником постоянного напряжения является кремниевый выпрямительный агрегат со стабилизирующим напряжением, а резервным — аккумуляторные батареи.

Поддержание дизеля в состоянии горячей готовности производится электронагревателем ТЭН, расположенным в поддоне (водяной полости) масляного бака.

Питание на электронагреватель ТЭН подается через контакты контактора электронагревателя КЭП и предохранитель.

Контакторы КЭП включаются автоматически датчиком температуры охлаждающей жидкости, выходные контакты которого замыкаются при снижении температуры до +37°С и размыкаются при повышении ее до +45°С.

Дозаправка расходного масляного бака производится электронасосом, двигатель которого получает питание через контакты контактора заправки масла КЗМ и предохранители.

Включение контактора КЗМ осуществляется вручную кнопкой или автоматически с помощью реле заправки масла. При снижении уровня масла реле включает контактор КЗМ, а при повышении уровня масла отключает его. Аналогично работает и топливозакачивающий насос ДЗТ.

Пуск и остановку АСДА-100 осуществляют автоматически или дистанционно нажатием кнопки «Пуск» или «Стоп».

Схема предусматривает также автоматическое включение АСДА-100 на параллельную работу по методу точной синхронизации с помощью блоков автоматики.

Автономно работающий АСДА-100 поддерживает частоту тока с точностью 50±0,5 Гц независимо от нагрузки. Для поддержания частоты в заданных пределах служит система коррекции частоты, состоящая из датчиков частоты и магнитных усилителей.

Схема АСДА-100 обеспечивает защиту при следующих аварийных режимах: отключение автомата генератора, неудачный пуск и разнос двигателя, отсутствие возбуждения на генераторе, падение давления масла, перегрев дизеля и т. д. В этих случаях по сигналу соответствующего реле срабатывает реле аварии и выдает команду на остановку дизеля с одновременной выдачей сигнала.



АВР для дизельных генераторов и электростанций

АВР для дизельных генераторов и электростанций

АВР – это автоматика ввода резерва, которая представляет собой механизм коммутации нагрузки на резервный источник питания (дизель генератор). Происходит это в случае потери напряжения в основной электрической сети. Обратный перевод нагрузки с дизельной электростанции на основную сеть электропитания производится по сигналу восстановления в ней напряжения.

Существует несколько типовых схем АВР, из которых необходимо выбрать ту, которая наиболее полно отвечает конкретным условиям объекта.

1) Схема с АВР на двух контракторах. В этом случае сигнал перекоммутации вырабатывается контроллером управления ДГУ с функцией автозапуска. Важным моментом являет то, что напряжение питания катушек контракторов должно быть 220VAC, так как сигнал постоянного тока не может быть передан на расстояние свыше 40 метров без существенного понижения напряжения в проводах. Соответственно требуется установка развязывающих реле, которые соотносятся с напряжением питания стартера дизельного двигателя. Наиболее удобны реле, оснащенные световой индикацией и механизмом принудительного ручного включения. При реализации этой схемы важно предусмотреть защиту от встречного включения для того чтобы не возникло соединения в одной точке напряжения основной сети и ДЭС. Такая защита есть в контроллере – это запрет коммутации второго контактора при первом замкнутом. Достоинства этой схемы в том, что всем процессом управляет контроллер и это позволяет гибко отстроить все параметры срабатывания системы. Автоматизация позволяет наладить дистанционный мониторинг и управление с возможностью доступа ко всем параметрам.

2) Дизельные генераторы с АВР с мотор-приводом. В этом случае сигнал управления тоже генерирует контроллер. Эта автоматизация оправдывает себя при мощностях свыше 250-300 кВт и выше. Механизм переводит нагрузку напряжения по принципу перекидного рубильника. Как правило, напряжение питания исполнительного привода составляет 24VDC. Преимуществом этой схемы является снижение стоимости АВР при росте коммутируемого тока нагрузки.

3) Электростанции с интеллектуальным АВР. В этой схеме АВР является интеллектуальным устройством и самостоятельно вырабатывает сигнал запуска и остановки дизель генератора. Контроллер настраивается на выполнение процедур пуска и остановки по сигналу извне. Сигнал может быть как релейным, так и цифровым. Достоинства этой системы заключаются в том, что появляется модульность, то есть все дизельные генераторы оснащаются одним типом контроллера, а автоматика ввода резерва поставляется как опция.

Специалисты по эксплуатации дизельных электростанций сходятся во мнении, что любая АВР должна быть максимально удобна и проста в работе, ремонтопригодна и безотказна. Задача установки АВР заключается в гарантии подачи электроснабжения в любых ситуациях. Автоматика должна быть удобной, но в, то, же время допускать возможность для перевода управлением в ручной режим при возникновении аварийной ситуации.

Автоматизация электростанций также включает в себя:

— слежение за качеством электроэнергии, ее напряжением и частотой,

— автоматическое поддержание температуры охлаждающей системы внутри кожуха, как во время работы электростанции, так и в режиме ожидания,

— контроль и поддержание аккумуляторной батареи в рабочем состоянии,

— отслеживание наличия масла и топлива с их автоматической подкачкой,

— дистанционная передача на пульт управления полной информации о текущем состоянии ДГУ.

В автоматическом режиме дизель генератор включается только через несколько секунд после потери электроснабжения в основной сети, и выключается только после полного его восстановления.

Структурная схема АВР на электростанциях

В данной статье речь пойдет о реализации автоматического ввода резерва (АВР) на электростанциях небольшой мощности.

Главное отличие АВР на электростанциях от АВР на подстанциях распределительных сетей заключается в необходимости контроля встречного напряжения на потерявших питание шинах.

Рассмотрим на примере схемы электростанции и линии связи с энергосистемой (см.рис.1), когда происходит отключение выключателя Q6 действием дифференциальной защиты трансформатора. Происходит немедленное включение секционного выключателя Q5 по типовой схеме АВР. Если в это время были включены выключатели Q1 и Q4 и электростанция находилась в работе, то возникает опасность несинхронного включения генераторов из-за возможного расхождения угла между векторами напряжений энергосистемы и электростанции за время перерыва питания секции.

Аналогичная ситуация может возникнуть и на самой электростанции, когда отключается выключатель Q1 от защит при близком трехфазном КЗ на линии связи с энергосистемой и АВР включает секционный выключатель Q3 (рис. 1).

Рис.1 - Cхема электростанции и линии связи с энергосистемой

Что бы предотвратить несинхронное включение генераторов в схему АВР вводится контроль встречного напряжения на секции (со стороны подключенных генераторов), осуществляемый после некоторой выдержки времени (примерно 0,5 с). Эта выдержка необходима для того, чтобы напряжение, которое в момент трехфазного КЗ снизилось до нуля, успело возрасти до значения, при котором реле контроля встречного напряжения запретит АВР (учитывается инерционность действия регуляторов возбуждения генераторов).

При наличии контроля встречного напряжения (ожидания снижения напряжения) приходится применять специальный орган однократности действия АВР, поскольку рассмотренная ранее схема однократности действия для распределительных сетей — становится непригодной.

Данная схема выводит АВР из действия раньше, чем реле контроля встречного напряжения разрешит включение выключателя резервного питания.

Структурная схема АВР для подстанций с генераторами и для прилегающей подстанции энергосистемы приведена на рис. 2.

Подробно как реализуется данная схема на электромеханической или цифровой элементной базе рассмотрена в работе [Л2].

На электростанции АВР может иметь два варианта применения, однако типовая логика АВР выполняется одинаковой, пригодной для разных случаев применения.

Рис.2 - Структурная схема АВР для подстанций c синхронными генераторами

Первый случай

АВР вводится в работу только при остановленных генераторах и предназначено для резервирования вводов от энергосистемы (как на обычных распределительных подстанциях).

Органы контроля снижения линейного напряжения и Uab < , Uca < , Ubc < включены по схеме “И”, это предотвращает ложный сигнал при перегорании одного из высоковольтных предохранителей трансформатора напряжения.

Контроль встречного напряжения позволит предотвратить несинхронное включение в случае ошибочных действий оперативного персонала, когда при включении какого-либо генератора (генераторов) на шины переключатель АВР остался во включенном положении. При этом в схеме АВР достаточно использовать только вспомогательные контакты выключателей Q1 и Q2 (см. рис. 2, блоки отключения и контроля).

Второй случай

АВР вводится в работу при работающих генераторах и автономной работе подсистем. Например, генераторы включаются на первую секцию (ввод Q1 отключен), ввод от энергосистемы — на вторую секцию (ввод Q2 включен), секционный выключатель Q3 отключен, устройство АВР Q3 включено. При этом в схеме АВР необходимо кроме вспомогательных контактов выключателей Q1 и Q2 использовать вспомогательные контакты выключателей генераторов Q1(3) и Q2(4), как и показано на рис. 2. В этом случае выдержку времени контроля встречного напряжения можно установить равной нулю.

Для предотвращения неполнофазного режима работы при обрыве одной из фаз питающей линии электропередачи введен пуск АВР по напряжению обратной последовательности U2. Для предотвращения ложного пуска АВР при перегорании предохранителя со стороны ВН одной из фаз ТН пуск осуществляется от двух органов напряжения обратной последовательности, один из которых контролирует наличие напряжения обратной последовательности U2 на шинах секции, а другой — до вводного выключателя секции (рис.2). При этом контролируются также наличие нормального напряжения и отсутствие напряжения обратной последовательности U2 на смежной секции (резервном источнике питания).

Литература:

  1. А.В. Беляев. Защита, автоматика и управление на электростанциях малой энергетики. Часть 1.
  2. Беляев А. В. Противоаварийная автоматика в узлах нагрузки с синхронными электродвигателями большой мощности. 4-e изд., перераб. и доп. — СПб.: ПЭИПК, 2007.

Поделиться в социальных сетях

АВР для ДГУ/ДЭС | Точка Вис

Особенности АВР для ДГУ

Автоматический ввод резерва с применением ДГУ можно построить с применением специального контроллера (смотрите выше по тесту с фото), или на отдельных элементах. Для более удобной эксплуатации применяется контроллер и шкаф АВР, иногда называется ЩАВР. Команда на запуск ДГУ подается на контроллер (см.фото ниже).
При построении схемы АВР для электростанции учитывается особенности:
1. Приоритет работы от основного ввода.
2. После пропадания напряжения команда на запуск ДЭС должна подаваться с выдержкой времени, т.к. напряжение может восстановиться и команду придется снимать, что не очень хорошо скажется на работе двигателя. Регулировка задержки можно устанавливаться пользователем в пределах от единиц до несколько десятков секунд.
3. После выхода на режим ДЭС, а это прогрев, установление нормального давления и готовность к принятию нагрузки, включается контактор ДЭС, задержка включения тоже регулируемая, от единиц до нескольких десятков секунд, осуществляется пользователем.
4. Порой требуется, при восстановлении напряжения, отключить ДЭС, но осуществить не сразу, а вначале отключается контактор в АВР подающий питание от станции, далее двигатель работает без нагрузки определенное время, пока не понизится температура до нужного значения.
5. Команда на ПУСК может подаваться постоянно (замкнутые контакторы), а иногда требуется подавать команду «Пуск» в течении 2-3 секунд, и если запуск не произошел, то через 5-30 секунд повторить цикл заново, таких циклов обычно один — четыре, соответственно команда «СТОП» подается отдельно с АВР.
6. Необходимо учитывать что у ДГУ, как правило, система четырехпроводная TN-C. Согласно ПУЭ, издание 7, в вводном устройстве должна быть система TN-C-S, т.е. PE и N разделены. Таким образом силовые линии питания идущие с АВР к потребителям пятипроводные, но в некоторых конкретных случаях возможно и другое решение.

7. Особо следует отметить остановку двигателя генератора, команда на остановку может быть с задержкой до 5-7 минут, до достижения необходимой температуры и это время зависит от мощности ДГУ и др.

Алгоритм работы АВР и ДЭС
Ниже приведен алгоритм работы АВР с двумя вводами( одни вводом ) и ДЭС.
Данный щит управления был разработан для объекта Сочи,это ВРУ-21Л, на этом примере мы остановимся о работе АВР управляемый контроллером двумя вводами и ДЭС.
На фото слева ВРУ с АВР в процессе изготовления, на фото в середине передняя панель управления, на фото справа диаграммы работы: верхняя при неудачном запуске ДГУ, нижняя при удачном запуске ДГУ.
Работа АВР с ДГУ
При пропадании напряжения (пропадание фазы, увеличение или уменьшение напряжение от установленного значения ) на вводах 1 и 2, реле контроля напряжения KV1 и KV2 отключаются и контакты исполнительного встроенного реле становятся в исходное положение, через время задержки Т1 (5с) с выхода контроллера подается периодически сигнал запуска (прокрутка)ДГУ длительностью 10с в течении 52 сек.
Если ДЭС не запустится в течении этого времени (52с) контроллер выдает сигнал АВАРИЯ ДЭС, пусковой цикл прекращается.
Питание контроллера при отсутствии напряжения 220 осуществляется от АКБ ИБП.
При восстановлении напряжения на вводе 1 (2), контактор питания ВРУ от ДГУ отключается, сигнал СТОП подается с задержкой на ДГУ, он будет работать 15с на холостом ходу для охлаждения.
Управление порядком включения и переключения АВР обеспечивает контроллер Zelio Logic производства Schneider Electric.
Т1-время задержки 5с, после пропадания напряжения на основном (основных) вводах.
Т2-цикл запуска 52с
Т3-время Пуска ДЭС (прокрутка), 10с
Т4-время паузы между пусками ДЭС, 10с
Т5-время задержки 3с для включения сигнализации «АВАРИЯ ДЭС»
Механическая блокировка контакторов в АВР

Довольно часто применяется в схемах АВР электронная и механическая блокировка контакторов. Когда имеется один основной ввод, а второй от ДЭС, то блокировка между контакторами применяется в стандартном исполнении и проблем не возникает. В случае однолинейной схемы на два ввода и один ввод от ДЭС, взаимная механическая блокировка трех выключателей может применяться при применении выкатных автоматов в литом корпусе (блокировка тросиками подвижной и фиксированной частей ), к примеру производства АВВ, но это экономически целесообразно на больших токах, а что делать в случае не очень больших?
Рекомендуется использовать схему с четырьмя контакторами и попарно включить механическую блокировку.
Ниже показан вариант изготовления АВР ДГУ 1250А, применен реверсивный рубильник Q1 производства ABB. При переводе реверсивного рубильника Q1 из положения «I» в положение «II», и обратно, он проходит нулевое положение, таким образом исключается встречное включение вводов.

АВР с применением контроллера для ДЭС

Часто возникает вопрос, как можно использовать контроллер дизельной станции для управления, так как в нем имеются необходимые функции для управления внешними контакторами…

На фото ниже вариант исполнения на ток 1250А с использованием контроллера дизельной электростанции.

Фото АВР на 1250А, фрагмент монтажа элементов схемы, медная шина для подключения вводов. Управление моторизированным приводом осуществляется с панели управления двигателя Perkins, на которой установлен контроллер.

Питание нагрузки при дистанционном/местном управлении осуществляется от основного (сеть ~380 В 50 Гц) или резервного (ДГУ) ввода, путем включения реверсивного рубильника в соответствующее положение (положение «I» — основной ввод, положение «II» — резервный ввод).

ВРУ с АВР на четыре ввода: два сетевых ввода на ток по 600А и два ввода по 400А от ДГУ, выполнен на автоматических выключателях с моторным приводом, подключается нагрузка гарантированного питания. В случае запуска ДГУ питание негарантированной нагрузки отключается.
Кабельные вводы входящие и отходящие подключаются сверху, каждый кабельный ввод выполняется 2-мя кабелями СИП по 150 мм кв. с возможностью доумощнения вводов и прокладки 3-й линии.
Очередность приоритета работы вводов установлена в порядке:
— Ввод №1 от ТП – основной;
— Ввод №2 от ТП – резервный;
— Ввод №3 от ДГУ – основной;
— Ввод №4 от ДГУ – резервный.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *