Стабилитроны (Диод Зенера), Стабисторы Электроника, Микроэлектроника ,…
Сразу хочу сказать, что здесь никакой воды про стабилитрон, и только нужная информация. Для того чтобы лучше понимать что такое стабилитрон, диод зенера,защитный диод,стабисторы,стабистор,презиционные стабилитроны , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база
Существуует большое многообразие полупроводниковых приборов, — Диоды Шоттки, диоды Ганна, стабилитрон ы, светодиоды, фотодиоды, туннельные диоды и еще много разных типов и областей применения.
Полупроводниковые диоды, для которых характерна слабая зависимость напряжения от тока в области электрического пробоя при обратном смещении, называют стабилитронами.
Стабилитроном называется полупроводниковый диод , напряжение на котором в области электрического пробоя при обратном смещении слабо зависит от тока в заданном его диапазоне, и который предназначен для стабилизации уровня напряжения в схеме. Стабилитроном — радиокомпонент, конструктивно напоминающий диод, но кардинально отличающийся от него характером функционирования. Ключевым элементом так же, как и в обычном полупроводниковом вентиле, является полупроводниковый p-n-переход. И реакции обоих элементов на подачу обратного напряжения схожи – они оба запираются. Разница заключается в том, что пробой p-n-переходной зоны, который наступает при достижении обратным смещением некоего критического значения и выводит диод из строя, для стабилитрона является рабочим режимом.
Исходным материалом служит кремний, обеспечивающий малые обратные токи, широкий диапазон температур, высокую крутизну ВАХ в области напряжения стабилизации. Принцип работы стабилитронов основан на использовании свойства p-n-перехода при электрическом пробое сохранять практически постоянную величину напряжения в определенном диапазоне изменения обратного тока. Механизм пробоя может быть туннельным, лавинным или смешанным.
Основа функциональности стабилитрона состоит в том, что при довольно больших изменениях обратного тока напряжение на элементе остается практически неизменным. Другими словами, насколько бы существенным ни было обратное смещение, радиокомпонент будет поддерживать постоянный уровень выходной разности потенциалов. Эта стабилизированное напряжение может использоваться в качестве опорного, что и находит применение в реальных радиоэлектронных устройствах, критичных к электрическим характеристикам сигнала.
У полупроводникового стабилитрона (рис. 11.4, а) — в рабочем режиме используется обратная ветвь его ВАХ (рис. 11.4, б), причем на участке, соответствующем электрическому пробою.
Рис. 11.4. Полупроводниковый стабилитрон:
а — условное изображение; б — ВАХ стабилитрона
Туннельный и лавинный пробой
Пробой p-n-перехода, при котором работают стабилитроны, может быть лавинным или туннельным. Они являются электрическими и носят обратимый характер. То есть при отключении обратного смещения физико-химические свойства полупроводников восстанавливаются, и диод продолжает исполнять свои функции. Однако в случае стабилитронов условия возникновения пробоя создаются и поддерживаются искусственно.
В основе лавинного и туннельного пробоя лежат одноименные квантовые эффекты, наблюдаемые в кристаллической структуре полупроводника при возбуждении электрического поля. При разной природе и механизмах данных процессов их последствия одинаковы – электроны приобретают энергию, достаточную для прохождения через p-n-переход. Возникает пробой, и через диод начинает протекать обратный ток.
Именно в этом режиме и работает стабилитрон. При этом существует различие между радиокомпонентами, в которых используются разные эффекты. Стабилитроны, функционирующие при лавинном пробое, оперируют разностями потенциалов свыше 7 Вольт. В элементах, рассчитанных на напряжение стабилизации 3-7 Вольт, провоцируется туннельный пробой. Для стабилизации более низких разностей потенциалов применяются стабистор ы , о которых мы расскажем ниже.
В настоящее время выпускается широкая номенклатура стабилитронов, но вся их масса классифицируется по функциональным характеристикам и конструкции. В зависимости от параметров данные радиокомпоненты подразделяются на следующие классы:
- прецизионные;
- двуханодные;
- быстродействующие.
Прецизионные отличаются высокой точностью стабилизации напряжения . Об этом говорит сайт https://intellect.icu . Отклонения стабилизируемой разности потенциалов на выходе такой детали не превышают 0,0001%. Точность сильно зависит от времени жизни прецизионного стабилитрона и температуры полупроводника. В связи с этим в отношении этих радиокомпонентов введены эксплуатационные нормы, которые должны постоянно контролироваться в процессе использования аппаратуры.
Двуханодный стабилитрон исполняет функцию двух стабилитронов, включенных встречно. Это позволяет элементу обрабатывать сигналы и с одинаковой эффективностью обрабатывать напряжения разной полярности. Такая радиодеталь изготавливается в едином технологическом цикле, когда на одном кристалле кремния выращивается два встречных p-n-перехода, но, в принципе, роль двуханодного радиокомпонента могут играть и два дискретных стабилитрона, взаимно соединенных катодами.
И, наконец, стабилитроны третьего типа – быстродействующие – отличаются пониженной барьерной емкостью, вследствие чего сокращается продолжительность переходных процессов, протекающих в полупроводнике. Эти радиокомпоненты являются наилучшим решением для работы с импульсными сигналами. Конструктивная особенность данных элементов состоит в небольшой ширине p-n-перехода, которая обеспечивается применением особой технологии легирования полупроводника.
Стабистор
Немного по-другому функционируют радиокомпоненты, называемые стабисторами, о которых мы говорили выше. Они исполняют ту же функцию, то есть стабилизируют выходное напряжение, но являются низковольтными. Обычные стабилитроны не способны оперировать малыми разностями потенциалов. При напряжениях до 3 Вольт не возникает условий ни для лавинного, ни для туннельного пробоя p-n-перехода. Для стабилизации меньших напряжений прибегают к другому решению, а именно к использованию не обратного, а прямого смещения.
Установлено, что в сильно легированном p-n-переходе дырки и электроны рекомбинируют таким образом, что при значительном прямом токе наблюдается эффект стабилизации выходного напряжения на уровне 2,5-3 Вольт. Это обуславливает ключевое технологическое различие стабилитронов и стабисторов. Вторые предназначены для работы только в низковольтных радиосхемах.
Устройство маломощного стабилитрона
с гибкими выводами в пластиковом (вверху) и стеклянном (внизу) корпусах
Рис Устройство маломощного стабилитрона с гибкими выводами в пластиковом корпусе
Рис. Устройство маломощного стабилитрона с гибкими выводами в стеклянном корпусе
У низковольтных стабилитронов (с низким сопротивлением базы) более вероятен туннельный пробой. У стабилитронов с высокоомной базой пробой носит лавинный характер. Для обеспечения электрического пробоя при относительно небольших обратных напряжениях напряженность электрического поля в p-n-переходе должна быть значительно выше, чем у обычных диодов, поэтому при изготовлении стабилитронов используют материалы с высокой концентрацией примесей.
обычных (вверху) и двуханодных (внизу) стабилитронов на принципиальных схемах
Вольт-амперная характеристика и схема включения стабилитрона.
ВАХ стабилитрона реальная
Идеальная ВАХ стабилитрона
Основные параметры стабилитронов
1. Uст
2. Дифференциальное сопротивление Rдиф = 0.5 – 200 Ом
3. Iст min ток стабилизации минимальный
4. Iст max ток стабилизации максимальный
Imax≈ Pmax/Uст
В качестве стабилитронов применяют кремниевые диоды, обладающие большой устойчивостью к тепловому пробою.
Кремниевые стабилитроны используются для стабилизации напряжений источников питания, а также для фиксации уровней U в различных схемах
Группы маломощных диодов в виде диодных матриц и диодных сборок используются в логических устройствах дешифраторах и других элементах ВТ.
Стабилитрон в схему стабилизации обычно включают так, чтобы p-n-переход был смещен в обратном направлении.
Для стабилизации малых напряжений U = 1 — 1.5B используют стабисторы
Презиционные и двунаправленные стабилитроны
В прецизионных стабилитронах используют три последовательно соединенных p-n-перехода, один из которых – стабилизирующий, два других – термокомпенсирующие. Если стабилизирующий переход работает в режиме лавинного пробоя, то с увеличением температуры напряжение на нем растет. Одновременно прямое напряжение на двух термокомпенсирующих переходах уменьшается, поэтому общее напряжение на стабилитроне меняется незначительно.
Для обеспечения стабилизации двуполярных напряжений стабилитроны общего назначения включают последовательно, а прецизионные – параллельно.
Двуханодные стабилитроны имеют структуру, формируемую диффузией примесей в пластину n-кремния одновременно с двух сторон. Образующиеся при этом два p-n-перехода включены встречно. Внешние выводы имеют только анодные p-области структуры. При подаче на стабилитрон напряжения любой полярности один переход работает в режиме электрического пробоя, а другой является термокомпенсирующим
Области применения стабилитронов и стабисторов
Хорошие стабилизирующие свойства стабилитронов и стабисторов обуславливают основную сферу применения этих радиокомпонентов – создание фиксированного питающего и опорного напряжения в различных радиоэлектронных устройствах. На первом месте по распространенности стоят стабилитроны, используемые в источниках питания. Применение этих специализированных диодов обеспечивает стабильные выходные параметры питающего напряжения и одновременно упрощает схему.
В блоках питания с повышенными требованиями по точности выходных характеристик находят применение прецизионные стабилитроны. Эти элементы устанавливаются в высокоточной измерительной аппаратуре и аналого-цифровых преобразователях. Двуханодные стабилитроны используются в подавителях импульсных помех. Данные радиокомпоненты в реальных схемах нередко сочетаются с импульсными диодами. Быстродействующие стабилитроны в сочетании с СВЧ-диодами применяются в аппаратуре, работающей на сверхвысоких частотах – передатчиках, радиолокаторах и так далее.
Защитные стабилитроны в «умном» МДП-транзисторе семейства Intelligent Power Switch компании International Rectifier
Основная область применения стабилитрона — стабилизация постоянного напряжения источников питания. В простейшей схеме линейного параметрического стабилизатора стабилитрон выступает одновременно и источником опорного напряжения, и силовым регулирующим элементом. В более сложных схемах стабилитрону отводится только функция источника опорного напряжения, а регулирующим элементом служит внешний силовой транзистор .
Прецизионные термокомпенсированные стабилитроны и стабилитроны со скрытой структурой широко применяются в качестве дискретных и интегральных источников опорного напряжения (ИОН), в том числе в наиболее требовательных к стабильности напряжения схемах измерительных аналого-цифровых преобразователей. C середины 1970-х годов и по сей день (2012 год) стабилитроны со скрытой структурой являются наиболее точными и стабильными твердотельными ИОН. Точностные показатели лабораторных эталонов напряжения на специально отобранных интегральных стабилитронах приближаются к показателям нормального элемента Вестона[38].
Особые импульсные лавинные стабилитроны («подавители переходных импульсных помех», «супрессоры», «TVS-диоды») применяются для защиты электроаппаратуры от перенапряжений, вызываемых разрядами молний и статического электричества, а также от выбросов напряжения на индуктивных нагрузках. Такие приборы номинальной мощностью 1 Вт выдерживают импульсы тока в десятки и сотни ампер намного лучше, чем «обычные» пятидесятиваттные силовые стабилитроны. Для защиты входов электроизмерительных приборов и затворов полевых транзисторов используются обычные маломощные стабилитроны. В современных «умных» МДП-транзисторах защитные стабилитроны выполняются на одном кристалле с силовым транзистором.
В прошлом стабилитроны выполняли и иные задачи, которые впоследствии потеряли прежнее значение:
- Ограничение, формирование, амплитудная селекция и детектирование импульсов. Еще в эпоху электронных ламп кремниевые стабилитроны широко применялись для ограничения размаха импульсов и преобразования сигналов произвольной формы в импульсы заданной полярности. С развитием интегральных технологий эту функцию взяли на себя устройства на быстродействующих компараторах, а затем цифровые процессоры обработки сигналов.
- Стабилизация напряжения переменного тока также сводилась к ограничению размаха синусоидального напряжения двусторонним стабилитроном. При изменении входного напряжении амплитуда выходного напряжения поддерживалась постоянной, а его действующее значение лишь незначительно отставало от действующего значения входного напряжения.
- Задание напряжений срабатывания реле . При необходимости установить нестандартный порог срабатывания реле последовательно с его обмоткой включали стабилитрон, доводивший порог срабатывания до требуемого значения. С развитием полупроводниковых переключательных схем сфера применения реле сузилась, а функцию управления реле взяли на себя транзисторные и интегральные пороговые схемы.
- Задание рабочих точек усилительных каскадов. В ламповых усилителях 1960-х годов стабилитроны использовались как замена RC-цепочек автоматического смещения. На нижних частотах звукового диапазона и на инфразвуковых частотах расчетные емкости конденсаторов таких цепей становились неприемлемо велики, поэтому стабилитрон стал экономичной альтернативой дорогому конденсатору.
- Межкаскадный сдвиг уровней. Сдвиг уровней в ламповых усилителях постоянного тока обычно осуществлялся с помощью газонаполненных стабилитронов или обычных неоновых ламп. C изобретением полупроводниковых стабилитронов они стали применяться вместо газонаполненных. Аналогичные решения применялись и в транзисторной аппаратуре, но были быстро вытеснены более совершенными схемами сдвига уровней на транзисторах.
- Стабилитроны с высоким ТКН использовались как датчики температуры в мостовых измерительных схемах. По мере снижения напряжений питания и потребляемых мощностей эту функцию приняли на себя прямо смещенные диоды, транзисторные PTAT-цепи и интегральные схемы на их основе.
В среде моделирования SPICE модель элементарного стабилитрона используется не только по прямому назначению, но и для описания режима пробоя в моделях «реальных» биполярных транзисторов. Стандартная для SPICE модель транзистора Эберса—Молла режим пробоя не рассматривает
См. также
А как ты думаешь, при улучшении стабилитрон, будет лучше нам? Надеюсь, что теперь ты понял что такое стабилитрон, диод зенера,защитный диод,стабисторы,стабистор,презиционные стабилитроны и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база
Что такое диод зенера
Стабилитрон – сильно легированный кремниевый кристаллический диод, пропускающий ток в прямом направлении так же, как и обычный диод. Он также позволяет току идти в обратном направлении, когда уровень приложенных к полупроводнику потенциалов превышает определенное значение, известное как U пробоя или напряжение колена Зенера.
Устройство сначала назвали в честь американского ученого Кларенса Зенера, который описал в своей работе свойство разрушения электрических изоляторов.
Открытый американским физиком Зенером электрический пробой p-n перехода, связанный непосредственно с туннельным эффектом, явлением просачивания электронов сквозь тонкий слой потенциального барьера, назвали эффектом Зенера
Физическая картина эффекта Зенера состоит в том, что при обратном смещении p-n перехода энергетические зоны начинают блокироваться, и свободные электроны могут перетекать из валентной зоны p-области в зону проводимости n-типа, благодаря электрическому полю, это повышает число свободных носителей заряда, и обратный ток стабилитрона резко увеличивается.
Таким образом, главной задачей стабилитрона является стабилизация напряжения. Электронная промышленность выпускает их на номинальные напряжения от 1,8 В до 400 Вольт, большой, средней и малой мощности, которые отличаются максимально допустимым обратным током.
На принципиальных схемах стабилитроны обозначаются символом похожим на знак полупроводникового диода, с тем лишь небольшим отличием, что их катод изображается в форме русской буквы «Г».
Стабилитроны скрытой интегральной структуры, со стабилизацией 7 В — это самые стабильные и точные твердотельные источники опорного напряжения: лучшие их представители по своим свойствам близки к нормальному гальваническому элементу Вестона (эталонный ртутно-кадмиевый гальванический элемент).
Разновидностью стабилитронов можно считать «суппрессоры», «TVS-диоды», их основная задача защита электроаппаратуры.
Полупроводниковые стабилитроны появились где-то во второй половине 50-х годов прошлого века. Различают дискретные стабилитроны общего назначения — разной мощности. Прецизионные стабилитроны, в.т.ч термокомпенсированные и со скрытой структурой; Подавители импульсных помех («ограничительные диоды», «суппрессоры»).
Прежде всего, следует помнить о том, что стабилитроны работают только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод будет подан минус, а на катод соответственно плюс. При таком включении через него течет обратный ток (Iобр). Входное U его может изменяться, а на стабилитроне будет изменяться только обратный ток, а вольты на нагрузке останутся постоянными, то есть стабильными. На рисунке ниже показана вольт-амперная характеристика диода Зенера.
Основным принципом работы стабилитрон является то, что он работает на обратной ветви Вольт-амперной характеристики. Как хорошо видно из нее, основными характеристиками стабилитрона является Uст – напряжение стабилизации и Iст (ток стабилизации). Эти данные можно узнать в справочниках по электронике.
В типовом диоде, если к нему приложить Uобр, может возникнуть пробой по одному из трех направлений туннельный, лавинный и пробой из-за теплового разогрева токами утечки. Тепловой пробой кремниевым стабилитронам совершенно не интересен, т.к они проектируются с учетом того, чтобы или туннельный, или лавинный пробой наступали задолго до зарождающейся тенденции к тепловому пробою. Серийные стабилитроны отечественного и зарубежного исполнения в настоящее время изготавливаются в основном из кремния.
Пробой при напряжении ниже 5 В характеризуется проявлением эффекта Зенера, пробой выше 5 Вольт — проявление лавинного пробоя. Промежуточное напряжение пробоя около 5 В, является результатом сочетания двух выше упомянутых эффектов. Напряженность электрического поля в момент пробоя составляет около 30 МВ/м. Пробой стабилитрона осуществляется в умеренно легированных полупроводниках р-проводимости и сильно легированных полупроводниках n. С ростом температуры на стыке снижается срыв стабилитрона и вклад лавинного пробоя возрастает.
Что такое стабилитрон
Когда U обратное, приложенное к стабилитрону, увеличивается и достигает уровня пробоя, то электрический ток проходящий через него может достигать достаточно больших величин. В режиме пробоя стабилитрона дальнейшего увеличение U обратного не будет, только увеличивается ток. Таким образом, постоянное напряжение, сохраняется на стабилитроне при изменении питающего. Поэтому он работает, по принципу регулятора.
Обратная ветвь вольт-амперной характеристики стабилитрона получена с помощью откладывания Uобр оси X и обратного тока вдоль оси Y. Когда Uобр достигает некоторого значения, Iобр увеличивается до гораздо большого уровня, но напряжение на стабилитроне остается постоянным.
Основные справочные параметры и характеристики стабилитронов
Для проектирования и разработки схем с использованием стабилитронов необходимо знать три основных его параметра: Напряжение стабилизации, минимальный токи и предельно-допустимый обратный ток. В отдельных случаях используют величину предельно допустимого прямого тока стабилитрона, если он применяется в схеме переменного тока и должен проводить ток в оба полупериода.
На рисунке ниже приведены для примера дифференциальные характеристики различных стабилитронов.
Как видим из графиков, значение дифференциального сопротивления для стабилитрона обратно пропорционально току стабилизации и составляет десятки Ом при рабочих токовых параметрах. Точность значения U стабилизации составляет десятки милливольт в типовом температурном диапазоне.
Максимальная рассеиваемая корпусом стабилитрона мощность, обычно находится в интервале от 0,125 до 1 ватта. Этого, вполне хватает для нормальной работы схемы защиты от импульсных помех и для построения маломощных стабилизаторов.
Как мы уже знаем основная область использования стабилитронов — стабилизация постоянного напряжения в источниках питания. В простейших конструкциях линейного параметрического стабилизатора стабилитрон играет роль и источника опорного напряжения, и силового регулирующего элемента. В более сложных схемах ему отводится только задача источника опорного напряжения, а регулирующим элементом является внешний силовой транзистор.
Рассмотрим реальные практические примеры, использования стабилитронов в схемах блоках питания не требующих высокой стабильности напряжения питания.
Стабилитроны обычно используются в роли регуляторов напряжения в различных радиолюбительских схемах, кроме того их можно применять в устройствах защиты от перенапряжений, которые используются в различной бытовой техники, чтобы защитить их от колебаний сети.
Стабилитрон в электронике и практике
Для многих радиолюбительских самоделок необходимы стабилизированные источники питания. Основным их элементом является полупроводниковый прибор, который способен обеспечить постоянное выходное напряжение. Итак, проверить этот радио элемент и его работоспособность и функционирование можно несколькими простыми способами.
Если требуется стабилитрон на “нестандартное” напряжение, то поможет транзисторный аналог последнего. Схема полностью подходит для замены и может использоваться для замены стабилитронов в диапазоне напряжений 3-25 вольт.
Диод Зенера или стабилитрон (полупроводниковый стабилитрон) представляет собой особый диод, функционирующий в режиме устойчивого пробоя в условиях обратного смещения p-n перехода. До момента наступления этого пробоя, ток через стабилитрон протекает лишь очень малый, ток утечки, в силу высокого сопротивления запертого стабилитрона.
Но когда наступает пробой, ток мгновенно вырастает, поскольку дифференциальное сопротивление стабилитрона составляет в этот момент от долей до сотен Ом. Таким образом, напряжение на стабилитроне весьма точно поддерживается в определенном диапазоне обратных токов, относительно широком.
Стабилитрон называют диодом Зенера (от англ. Zener diode) в честь ученого, впервые открывшего явление туннельного пробоя, американского физика Кларенса Мэлвина Зенера (1905 — 1993).
Открытый Зенером электрический пробой p-n перехода, связанный с туннельным эффектом, явлением просачивания электронов сквозь тонкий потенциальный барьер, называется теперь эффектом Зенера, который и служит сегодня в полупроводниковых стабилитронах.
Физическая картина эффекта заключается в следующем. При обратном смещении p-n перехода энергетические зоны перекрываются, и электроны могут переходить из валентной зоны p-области в зону проводимости n-области, благодаря электрическому полю, это повышает количество свободных носителей заряда, и обратный ток резко возрастает.
Таким образом, главным назначением стабилитрона является стабилизация напряжения. Промышленностью выпускаются полупроводниковые стабилитроны с напряжениями стабилизации от 1,8 В до 400 В, большой, средней и малой мощности, которые отличаются максимально допустимым обратным током.
На этой базе изготавливают простые стабилизаторы напряжения. На схемах стабилитроны обозначаются символом похожим на символ диода, с тем лишь отличием, что катод стабилитронов изображается в форме буквы «Г».
Стабилитроны скрытой интегральной структуры, с напряжением стабилизации около 7 В — это самые точные и стабильные твердотельные источники опорного напряжения: лучшие их экземпляры характеристически близки к нормальному гальваническому элементу Вестона (эталонный ртутно-кадмиевый гальванический элемент).
К стабилитронам особого типа относятся высоковольтные лавинные диоды («TVS-диоды» и «супрессоры»), которые широко применяются в цепях защиты от перенапряжений всевозможной аппаратуры.
Как видим, стабилитрон, в отличие от обычного диода, работает на обратной ветви ВАХ. В обычном диоде, если к нему приложить обратное напряжение, может возникнуть пробой по одному из трех путей (или по всем сразу): туннельный пробой, пробой лавинный и пробой вследствие теплового разогрева токами утечки.
Тепловой пробой кремниевым стабилитронам не важен, ибо они проектируются так, чтобы или туннельный, или лавинный пробой, либо оба типа пробоя одновременно наступали задолго до тенденции к тепловому пробою. Серийные стабилитроны на данный момент изготавливаются преимущественно из кремния.
Пробой при напряжении ниже 5 В — проявление эффекта Зенера, пробой выше 5 В — проявление лавинного пробоя. Промежуточное напряжение пробоя около 5 В, как правило, является результатом сочетания двух этих эффектов. Напряженность электрического поля в момент пробоя стабилитрона составляет около 30 МВ/м.
Пробой стабилитрона происходит в умеренно легированных полупроводниках р-типа и сильно легированных полупроводниках n-типа. При повышении температуры на стыке уменьшается срыв стабилитрона и вклад лавинного пробоя увеличивается.
Стабилитроны имеют следующие типичные характеристики. Vz – напряжение стабилизации. В документации указываются два значения для этого параметра: максимальное и минимальное значение напряжения стабилизации. Iz – минимальный ток стабилизации. Zz – сопротивление стабилитрона. Izk и Zzk– ток и динамическое сопротивление при постоянном токе. Ir и Vr — максимальный ток утечки и напряжение при заданной температуре. Tc — температурный коэффициент. Izrm — максимальный ток стабилизации стабилитрона.
Стабилитроны широко применяют в качестве самостоятельных стабилизирующих элементов, а также источников образцовых напряжений (опорных напряжений) в стабилизаторах на транзисторах.
Для получения малых образцовых напряжений стабилитроны включают и в прямом направлении, как обычные диоды, тогда напряжение стабилизации одного стабилитрона будет равно 0,7 – 0,8 вольт.
Максимальная рассеиваемая корпусом стабилитрона мощность, обычно лежит в диапазоне от 0,125 до 1 ватта. Этого, как правило, достаточно для нормальной работы цепей защиты от импульсных помех и для построения маломощных стабилизаторов.
Его назначение, параметры и обозначение на схеме
Много-много лет тому назад такого слова как стабилитрон не существовало вообще. Тем более в бытовой аппаратуре.
Попробуем представить себе громоздкий ламповый приёмник середины двадцатого века. Многие приносили их в жертву собственному любопытству, когда папа с мамой приобретали что-нибудь новое, а «Рекорд» или «Неман» отдавали на растерзание .
Блок питания лампового приёмника был предельно прост: мощный кубик силового трансформатора, который обыкновенно имел всего две вторичных обмотки, диодный мостик или селеновый выпрямитель, два электролитических конденсатора и резистор на два ватта между ними.
Первая обмотка питала накал всех ламп приёмника переменным током и напряжением 6,3V (вольт), а на примитивный выпрямитель приходило порядка 240V для питания анодов ламп. Ни о какой стабилизации напряжения и речи не шло. Исходя из того, что приём радиостанций вёлся на длинных, средних и коротких волнах с очень узкой полосой и ужасным качеством, наличие или отсутствие стабилизации напряжения питания на это качество совершенно не влияло, а приличной автоподстройки частоты на той элементной базе просто быть не могло.
Стабилизаторы в то время применялись только в военных приёмниках и передатчиках, конечно тоже ламповые. Например: СГ1П – стабилизатор газоразрядный, пальчиковый. Так продолжалось до тех пор, пока не появились транзисторы. И тут выяснилось, что схемы, выполненные на транзисторах очень чувствительны к колебаниям питающего напряжения, и обыкновенным простым выпрямителем уже не обойтись. Используя физический принцип, заложенный в газоразрядных приборах, был создан полупроводниковый стабилитрон реже называемый диод Зенера.
Графическое изображение стабилитрона на принципиальных схемах.
Внешний вид стабилитронов. Первый сверху в корпусе для поверхностного монтажа. Второй сверху – в стеклянном корпусе DO-35 и мощностью 0,5 Вт. Третий, – мощностью 1 Вт (DO-41). Естественно, стабилитроны изготавливают в разнообразных корпусах. Иногда в одном корпусе объединяется два элемента.
Принцип работы стабилитрона.
Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус «-«. При таком включении через него протекает обратный ток (I обр) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.
Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст. (напряжение стабилизации) и I ст. (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.
Основные параметры стабилитронов.
Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.
V стаб. мин. – 8 вольт.
V стаб. ном. – 9 вольт.
V стаб. макс. – 9,5 вольт.
I стаб. – 3 – 35 мA.
P макс. – 340 мВт.
V стаб. мин. – 4,2 вольта.
V стаб. ном. – 4,7 вольт.
V стаб. макс. – 5,1 вольт.
I стаб. – 3 – 60 мА.
P макс. – 300 мВт.
Рядом паспортные данные современного стабилитрона (2C147A), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.
Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.
Вот схема простого, но надёжного стабилизатора напряжения.
Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.
Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.
Интегральные стабилизаторы.
Развитие интегральной микроэлектроники и появление многофункциональных схем средней и большой степени интеграции, конечно, коснулось и проблем связанных со стабилизацией напряжения. Отечественная промышленность напряглась и выпустила на рынок радиоэлектронных компонентов серию К142, которую составляли как раз интегральные стабилизаторы. Полное название изделия было КР142ЕН5А, но так как корпус был маленький и название не убиралось целиком, стали писать КРЕН5А или Б, а в разговоре они назывались просто «кренки».
Сама серия была достаточно большая. В зависимости от буквы варьировалось выходное напряжение. Например, КРЕН3 выдавал от 3 до 30 вольт с возможностью регулировки, а КРЕН15 был пятнадцативольтовым двухполярным источником питания.
Подключение интегральных стабилизаторов серии К142 было крайне простым. Два сглаживающих конденсатора и сам стабилизатор. Взгляните на схему.
Если есть необходимость получить другое стабилизированное напряжение, то поступают следующим образом: допустим, мы используем микросхему КРЕН5А на 5V, а нам нужно другое напряжение. Тогда между вторым выводом и корпусом ставится стабилитрон с таким расчётом, чтобы сложив напряжение стабилизации микросхемы, и стабилитрона мы получили бы нужное напряжение. Если мы добавим стабилитрон КС191 на V = 9,1 + 5V микросхемы, то на выходе мы получим 14.1 вольт.
Есть ли такая вещь, как зенер Шоттки?
Шоттки-Зенера не существует *. Спина к спине стабилитрона и диода Шоттки, как вы предлагаете, является подходящим методом минимизации недолета.
Зенер медленный и «мягкий». В условиях высокой энергии, когда будет протекать значительный ток, напряжение стабилитрона может значительно превышать его номинальное значение. При необходимости более быстрое зажатие может быть достигнуто, например, путем использования диода к шине питания при желаемом напряжении зажима. Это прямой эквивалент обратного Шоттки к земле в вашем примере.
Диод Шоттки с обратным смещением иногда устанавливается на штырьках затвора МОП-транзистора в приложениях с питанием от источника питания, с минимальной длиной провода между МОП-транзистором и диодом. Причина этого не всегда очевидна из осмотра. Эффекты емкости Миллера могут соединить переходные процессы нагрузки в затворе MOSFET и вызвать колебательный «звонок», который может привести к быстрому переключению и разрушению устройства. Обратный Шоттки обрезает отрицательные пики колебаний до уровня намного ниже порогового напряжения почти всех полевых транзисторов и предотвращает колебания.
Я всегда использую стабилитрон затвора с низкой мощностью на затворах MOSFET в приложениях с электроприводом. Я редко использую обратный Шоттки. В коммерческом продукте с типичным временем выживания MOSFET в несколько минут без стабилитрона (благодаря соединению Миллера от индуктивной нагрузки) стабилитрон обеспечивал полную долговременную надежность.
Обратите внимание, что при подключении к «шине» источника питания вы должны быть уверены, что поставляемая энергия не «накачивает напряжение на шине» более, чем допустимо. Это случается редко, так как энергия на событие зажима x событий в секунду = мощность зажима обычно будет ниже, чем нагрузка на типичном рельсе.
То же самое относится к зажимным диодам, используемым для ограничения диапазона колебаний напряжения на входной линии, чтобы он (почти) находился в питающих рельсах, используя диод от входа до положительной шины и земли. Если входная энергия, которая может течь, превышает энергию, получаемую от рельса, напряжение на рельсе может возрасти. Это на самом деле происходит в некоторых реальных случаях. Я видел примечание по применению, опубликованное крупным производителем микроконтроллеров, которые использовали входные диоды для «защиты» входа (тестового зонда), к которому можно подключить сеть переменного тока. В таком случае поток энергии превысил бы нагрузку на шину 5 В, и напряжение питания увеличилось бы до неизвестного более высокого напряжения.
- Примечание: * «Не существует» — сильная претензия. Две технологии принципиально разные. Я никогда не видел ни одного, но гибридный дизайн мог бы быть создан и может существовать, но простое использование двух компонентов настолько просто, что не было бы большого спроса на то, что было бы относительно специализированной частью.
принцип работы стабилитрона, ВАХ, маркировка, характеристики
У полупроводникового диода множество «профессий». Он может выпрямлять напряжение, развязывать электрические цепи, предохранять оборудование от неправильной подачи питания. Но есть не совсем обычный вид «работы» диода, когда его свойство односторонней проводимости используется очень косвенно. Полупроводниковый прибор, для которого нормальным режимом является обратное смещение, называется стабилитроном.
Что такое стабилитрон, где используется и какие бывают
Стабилитрон, или диод Зенера (по имени американского ученого, первым изучившим и описавшим свойства этого полупроводникового прибора), представляет собой обычный диод с p-n переходом. Его особенность – работа на участке характеристики с отрицательным смещением, то есть, когда напряжение прикладывается в обратной полярности. Используется такой диод в качестве самостоятельного стабилизатора, поддерживающего напряжение потребителя постоянным вне зависимости от изменения тока нагрузки и колебаний входного напряжения. Также узлы на стабилитронах применяются в качестве источников опорного напряжения для других стабилизаторов с развитой схемой. Реже диод с обратным включением используется в качестве элемента формирования импульсов или защитного ограничителя от перенапряжений.
Существуют обычные стабилитроны и двуханодные. Двуханодный стабилитрон — это два диода, включенные встречно в одном корпусе. Его можно заменить двумя отдельными приборами, включив их по соответствующей схеме.
Вольт-амперная характеристика стабилитрона и его принцип работы
Чтобы разобраться с принципом работы стабилитрона, надо изучить его типовую вольт-амперную характеристику (ВАХ).
Если к зенеру приложить напряжение в прямом направлении, как к обычному диоду, то он и вести себя будет подобно обычному диоду. При напряжении около 0,6 В (для кремниевого прибора) он откроется и выйдет на линейный участок ВАХ. По теме статьи более интересно поведение стабилитрона при приложении напряжения обратной полярности (отрицательная ветвь характеристики). Сначала сопротивление его резко возрастет, и прибор перестанет пропускать ток. Но при достижении определенного значения напряжения произойдет резкий рост тока, называемый пробоем. Он носит лавинный характер, и исчезает после снятия питания. Если продолжать увеличивать обратное напряжение, то p-n переход начнет нагреваться и выйдет в режим теплового пробоя. Тепловой пробой необратим и означает выход стабилитрона из строя, поэтому вводить диод в такой режим не следует.
Интересен участок работы полупроводникового прибора в режиме лавинного пробоя. Его форма близка к линейной, и он имеет высокую крутизну. Это означает, что при большом изменении тока (ΔI) изменение падения напряжения на стабилитроне относительно невелико (ΔU). А это и есть стабилизация.
Такое поведение при подаче обратного напряжения характерно для любого диода. Но особенность стабилитрона в том, что его параметры на этом участке ВАХ нормированы. Его напряжение стабилизации и крутизна характеристики заданы (с определенным разбросом) и являются важными параметрами, определяющими пригодность использования прибора в схеме. Найти их можно в справочниках. Обычные диоды также можно использовать в качестве стабилитронов – если снять их ВАХ и среди них найдется с подходящей характеристикой. Но это долгий, трудоёмкий процесс с негарантированным результатом.
Основные характеристики стабилитрона
Чтобы подобрать диод Зенера под существующие цели, надо знать несколько важных параметров. Эти характеристики определят пригодность выбранного прибора для решения поставленных задач.
Номинальное напряжение стабилизации
Первый параметр зенера, на который надо обратить внимание при выборе – напряжение стабилизации, определяемое точкой начала лавинного пробоя. С него начинают выбор прибора для использования в схеме. У разных экземпляров ординарных стабилитронов, даже одного типа, напряжение имеет разброс в районе нескольких процентов, у прецизионных разница ниже. Если номинальное напряжение неизвестно, его можно определить, собрав простую схему. Следует подготовить:
- балластный резистор в 1…3 кОм;
- регулируемый источник напряжения;
- вольтметр (можно использовать тестер).
Надо поднимать напряжение источника питания с нуля, контролируя по вольтметру рост напряжения на стабилитроне. В какой-то момент он остановится, несмотря на дальнейшее увеличение входного напряжения. Это и есть фактическое напряжение стабилизации. Если регулируемого источника нет, можно использовать блок питания с постоянным выходным напряжением заведомо выше Uстабилизации. Схема и принцип измерения остаются теми же. Но есть риск выхода полупроводникового прибора из строя из-за превышения рабочего тока.
Стабилитроны применяются для работы с напряжениями от 2…3 В до 200 В. Для формирования стабильного напряжения ниже данного диапазона, используются другие приборы – стабисторы, работающие на прямом участке ВАХ.
Диапазон рабочих токов
Ток, при котором стабилитроны исполняют свою функцию, ограничен сверху и снизу. Снизу он ограничен началом линейного участка обратной ветви ВАХ. При меньших токах характеристика не обеспечивает режима неизменности напряжения.
Верхнее значение лимитировано максимальной мощностью рассеяния, на которую способен полупроводниковый прибор и зависит от его конструкции. Стабилитроны в металлическом корпусе рассчитаны на больший ток, но не надо забывать об использовании радиаторов. Без них наибольшая допустимая мощность рассеяния будет существенно меньше.
Дифференциальное сопротивление
Еще один параметр, определяющий работу стабилитрона – дифференциальное сопротивление Rст. Оно определяется как отношение изменения напряжения ΔU к вызвавшему его изменение тока ΔI. Эта величина имеет размерность сопротивления и измеряется в омах. Графически — это тангенс угла наклона рабочего участка характеристики. Очевидно, что чем меньше сопротивление, тем лучше качество стабилизации. У идеального (не существующего на практике) стабилитрона Rст равно нулю – любое приращение тока не вызовет никакого изменения напряжения, и участок ВАХ будет параллелен оси ординат.
Маркировка стабилитронов
Отечественные и импортные стабилитроны в металлическом корпусе маркируются просто и наглядно. На них наносится наименование прибора и расположение анода и катода в виде схематического обозначения.
Приборы в пластиковом корпусе маркируются кольцами и точками различных цветов со стороны катода и анода. По цвету и сочетанию знаков можно определить тип прибора, но для этого придётся заглянуть в справочники или использовать программы-калькуляторы. И то, и другое можно найти в интернете.
Иногда на маломощных стабилитронах наносят напряжение стабилизации.
Схемы включения стабилитрона
Основная схема включения стабилитрона – последовательно с резистором, который задает ток через полупроводниковый прибор и берет на себя излишек напряжения. Два элемента составляют обычный делитель. При изменении входного напряжения падение на стабилитроне остается постоянным, а на резисторе изменяется.
Такая схема может использоваться самостоятельно и называется параметрическим стабилизатором. Он поддерживает напряжение на нагрузке постоянным, несмотря на колебания входного напряжения или потребляемого тока (в определенных пределах). Подобный блок ещё используют в качестве вспомогательной схемы там, где нужен источник образцового напряжения.
Подобное включение также применяется в качестве защиты чувствительного оборудования (датчиков и т.п.) от нештатного появления высокого напряжения в линии питания или измерения (постоянного или случайных импульсов). Все, что выше напряжения стабилизации полупроводникового прибора, «срезается». Такая схема называется «барьером Зенера».
Раньше свойство стабилитрона «срезать» верхушки напряжения широко использовалось в схемах формирователей импульсов. В цепях переменного тока применялись двуханодные приборы.
Но с развитием транзисторной техники и появлением интегральных микросхем такой принцип стал использоваться редко.
Если под рукой отсутствует стабилитрон на нужное напряжение, его можно составить из двух. Общее напряжение стабилизации будет равно сумме двух напряжений.
Важно! Нельзя включать стабилитроны параллельно для увеличения рабочего тока! Разброс вольтамперных характеристик приведет к выводу в зону теплового пробоя один стабилитрон, далее выйдет из строя второй из-за превышения тока нагрузки.
Хотя в технической документации времен СССР разрешается параллельное включение зенеров в параллель, но с оговоркой, что приборы должны быть однотипные и суммарная фактическая мощность рассеяния в процессе эксплуатации не должна превышать допустимую для единичного стабилитрона. То есть, увеличения рабочего тока при таком условии не добиться.
Для повышения допустимого тока нагрузки используется другая схема. Параметрический стабилизатор дополняется транзистором, и получается эмиттерный повторитель с нагрузкой в цепи эмиттера и стабильным напряжением на базе транзистора.
В этом случае выходное напряжение стабилизатора будет меньше Uстабилизации на величину падения напряжения на эмиттерном переходе – для кремниевого транзистора около 0,6 В. Чтобы скомпенсировать это уменьшение, можно включить последовательно со стабилитроном диод в прямом направлении.
Таким способом (включением одного или нескольких диодов) можно подкорректировать выходное напряжение стабилизатора в большую сторону в небольших пределах. Если надо радикально повысить Uвых, лучше включить последовательно ещё одни стабилитрон.
Сфера применения стабилитрона в электронных схемах обширна. При осознанном подходе к выбору этот полупроводниковый прибор поможет решить множество задач, поставленных перед разработчиком.
50 шт. 1 Вт Зенер диод ZM4752A/33 в ZM4753A/36 В ZM4754A/39 в ZM4755A/43 в ZM4756A/47 в LL41
US $2.59 Набор резисторов 33valuesX 20 шт. = 660 шт., набор резисторов 0603, 0805, 1206, ассорти 1 об/1 м ом, 1% SMD, набор образцов DIY 3.3R 5.1R 10R 47R 62R 82R 1K 10K US $0.74 Алюминиевый электролитический конденсатор 4 в 10 в 16 в 25 в 35 в 470 мкФ 100 мкФ 220 мкФ 330 мкФ Ф 470 мкФ 680 мкФ 1000 мкФ 47 мкФ 1500 мкФ 10 мкФ 22 мкФ 0,47 мкФ 82 мкФ US $0.74 20 шт., алюминиевый электролитический конденсатор 35 в 470 мкФ 4 в 10 в 16 в 25 в 35 в 100 мкФ 220 мкФ 330 мкФ 470 мкФ 680 мкФ 1000 мкФ 47 мкФ 1500 мкФ 10 мкФ 22 мкФ US $1.51 50 шт., стабилитрон 1N4743A/13 в 1N4744A/15 в 1N4745A/16 в 1N4746A/18 в 1N4747A/20 в 1N4748A/22 в 1N4749A/24 В 1N4750A/27 в 1N4751A/30 в 50 шт. 1 Вт Зенер диод ZM4752A/33 в ZM4753A/36 В ZM4754A/39 в ZM4755A/43 в ZM4756A/47 в LL41Store | Product Rating | 0.0% | |
Original Price | 2.74 | Discount | 5% |
Sale Price | : | 2.60 |
- Picture
- Related Product
- Product Description
Стабилитрон. Принцип работы, вольт-амперная характеристика.
После изучения диодов, их принципа работы и устройства самым логичным шагом будет рассмотреть и еще один полезнейший элемент многих электрических схем – стабилитрон! Также его называют диодом Зенера, в честь физика Кларенса Зенера, которому и принадлежит гордое звание изобретателя стабилитрона. В 1930-х годах Зенер изучал явления электрического пробоя в диэлектриках, результаты его исследований и легли в основу работы диодов Зенера.
Стабилитрон – это диод, который предназначен для работы на обратной ветви вольт-амперной характеристики, в режиме пробоя. Как вы помните, рабочая область обычного диода находится наоборот на прямой ветви. Я уже упомянул термин “пробой”, так что давайте разберемся подробнее с этим явлением…
Итак, различают три типа или механизма пробоя:
- туннельный
- лавинный
- тепловой
Именно первый тип пробоя и открыл К. Зенер в своих работах. Туннельный пробой связан, в свою очередь, с туннельным эффектом, то есть явлением проникновения электронов через узкий потенциальный барьер на границе p-n перехода. Это приводит к тому, что электроны начинают проходить из p-области в область n-типа, что, в свою очередь, вызывает резкое возрастание обратного тока через p-n переход.
Лавинный пробой связан с тем, что движущиеся в сильном электрическом поле частицы могут приобретать кинетическую энергию, величины которой достаточно для ударной ионизации молекул или атомов материала. То есть электрон или дырка, разогнавшись, сталкиваются с атомом вещества, в результате чего образуется пара противоположно заряженных частиц. Все это становится возможным, если кинетическая энергия этих частиц до столкновения имела достаточную величину. Так вот, в итоге, образовавшиеся частицы (либо одна из них) также начинают разгоняться под действием сильного поля и также врезаются в атом материала 🙂 В итоге весь процесс повторяется снова и снова, как лавина, собственно, из-за этого пробой и получил свое название.
Тепловой же пробой куда более прозаичен. Из-за увеличения обратного напряжения p-n переход нагревается и затем разрушается. В отличие от туннельного и лавинного пробоя, которые являются обратимыми, тепловой пробой – необратим.
На обратимости механизмов пробоя, в общем-то, и строится принцип работы стабилитрона. Именно ситуация, при которой он находится в состоянии лавинного или туннельного пробоя, и является для диода Зенера рабочей! Из этого же вытекает и основное отличие стабилитрона от обычного диода. Стабилитрон проектируется таким образом, чтобы туннельный, либо лавинный, либо оба этих типа пробоя возникали гарантированно и задолго до того, как в устройстве возникнет тепловой пробой (ведь тепловой пробой просто выведет элемент из строя – окончательно и бесповоротно).
Принято считать, что разным механизмам пробоя соответствуют величины обратных напряжений:
- U_{пробоя} < 4.5 В – преобладает туннельный пробой
- 4.5 В \leqslant U_{пробоя} \leqslant 6.7 В – оба типа пробоя возникают одновременно
- U_{пробоя} > 6.7В – лавинный пробой
Все эти характеристики стабилитрона можно изобразить следующим образом:
Тут стоит отметить два важных нюанса. Во-первых, эти значения не являются строго точными. Для разных диодов, разных способов изготовления, величины могут быть другими. Но, в целом, идея неизменна – существует некая область, в пределах которой оба механизма пробоя сосуществуют вместе. Второй интересный момент заключается в том, что температурный коэффициент лавинного и туннельного пробоя имеют разные знаки:
- при туннельном пробое температурный коэффициент напряжения (ТКН) отрицательный, поскольку с увеличением температуры напряжения пробоя уменьшается.
- при лавинном же пробое ТКН положительный, то есть все наоборот – увеличение температуры ведет к увеличению напряжения пробоя.
Итак, мы разобрались с принципом работы стабилитрона, протекающими процессами и с тем, что рабочий режим диода Зенера лежит в области обратной ветви вольт-амперной характеристики стабилитрона:
При увеличении обратного напряжения в определенный момент наступает пробой и ток через стабилитрон резко возрастает. При этом напряжение напротив остается практически неизменным, то есть стабилизированным. В этом и заключается идея использования стабилитронов в электрических цепях 🙂
На схеме я отдельно выделил несколько точек, давайте по ним пробежимся:
- I_{ст \medspace мин} – минимальное значение обратного тока. Если ток имеет меньшее значение, то стабилитрон закрыт.
- I_{ст} – номинальное значение обратного тока. Обычно указывается производителем в документации и может составлять около 30% от максимального тока стабилизации.
- I_{ст \medspace макс} – вот и он, уже упомянутый максимальный ток стабилизации. Эта величина ограничена максимальной рассеиваемой мощностью прибора. При превышении этого значение как раз-таки и произойдет пресловутый тепловой пробой, который выведет стабилитрон из строя.
Каждому из этих значений тока соответствует определенное значение напряжения, которое также указывается в справочнике/документации на конкретный элемент.
Теперь для наглядной демонстрации рассмотрим практический пример схемы со стабилитроном. Кстати на принципиальных электрических схемах он обозначается следующим образом:
А так выглядит базовая схема, в отличие от диода полярность включения стабилитрона обратная:
Выберем какой-нибудь конкретный экземпляр, например, 1N4733A. Его характеристики приведены ниже:
Минимальное напряжение стабилизации, В | 4.8 |
Номинальное напряжение стабилизации, В | 5.1 |
Максимальное напряжение стабилизации, В | 5.3 |
Минимальный ток стабилизации, мА | 49 |
Максимальный ток стабилизации, мА | 178 |
Итак, начинаем подавать на вход напряжение:
U_{вых} = 3 ВКак видите, подаваемое напряжение не превышает напряжение стабилизации, поэтому на выходе наблюдаем то же значение, что и на входе. Увеличиваем напряжение:
U_{вых} = 5 ВИ здесь уже ситуация меняется, стабилитрон начинает выполнять свою работу! Поднимаем напряжение еще выше:
U_{вых} = 5.05 В U_{вых} = 5.11 ВСтабилизация напряжения налицо! Вот, в общем-то, мы наглядно проверили принцип работы стабилитрона, теоретические аспекты которого изучили ранее 🙂
На этом заканчиваем сегодняшнюю статью, большое спасибо за внимание!
Стабилитрон: устройство, принцип действия, характеристики
Основой надежной и продолжительной работы электронной аппаратуры является стабильное напряжение питания. Для этого применяют стабилизированные источники питания. Можно сказать, что основным элементом, который определяет уровень выходного напряжения блока питания, это полупроводниковый прибор – стабилитрон. Он может быть как основой линейного стабилизатора, так и пороговым элементом в цепи обратной связи импульсного источника питания. В этой статье мы расскажем читателям сайта Сам Электрик про устройство и принцип работы стабилитрона.
Что это такое
В литературе дается следующее определение:
Стабилитрон или диод Зенера это прибор, предназначенный для стабилизации напряжения в электрических цепях. Работает при обратном смещении в режиме пробоя. До наступления пробоя имеет высокое сопротивление перехода. Протекающие при этом токи незначительны. Широко используются в электронике и в электротехнике.
Если говорить простыми словами, то стабилитрон предназначен для стабилизации напряжения в электронных схемах. В цепь он включается в обратном направлении. При достижении напряжения, превышающего напряжение стабилизации, происходит обратимый электрический пробой pn-перехода. Как только оно понизится до номинала, пробой прекращается, и стабилитрон закрывается.
На нижеприведенном рисунке представлена графическая схема для чайников, позволяющая понять принцип действия диода Зенера.
Основными преимуществами является невысокая стоимость и небольшие габариты. Промышленность выпускает устройства с напряжением стабилизации о 1,8 – 400 В в металлических, керамических или корпусах из стекла. Это зависит от мощности, на которую рассчитан стабилитрон и других характеристик.
Для стабилизации высоковольтного напряжения от 0,4 до нескольких десятков кВ, применяются стабилитроны тлеющего разряда. Они имеют стеклянный корпус и до появления полупроводниковых приборов применялись в параметрических стабилизаторах.
Аналогичными свойствами обладают приборы, меняющие свое сопротивление в зависимости от приложенного напряжения – это варисторы. Между стабилитроном и варистором разница заключается в том, что последний обладает двунаправленными симметричными характеристиками. А это значит, что в отличие от диодов, он не имеет полярности. Кратко варистор предназначен для обеспечения защиты от перенапряжения электронных схем.
Для предохранения аппаратуры от скачков напряжения применяют супрессоры. Между стабилитроном и супрессором отличия заключаются в том, что первый постепенно изменяет свое внутреннее сопротивление в зависимости от приложенного напряжения. Второй при достижении определенного порога напряжения открывается сразу. Т.е. его внутреннее сопротивление стремится к нулю. Основное назначение супрессоров — защита аппаратуры от скачков питания.
На рисунке ниже представлено условно графическое обозначение (УГО по ГОСТ) полупроводника и его вольт-амперная характеристика.
На рисунке цифрами указан участок 1-2. Он является рабочим и предназначен для стабилизации напряжения в цепях. Если прибор включить в прямом направлении, то он будет работать как обычный диод.
Рекомендуем посмотреть следующий видеоролик, чтобы подробнее изучить принцип действия стабилитрона, обозначение элементов и область их применения.
Основные характеристики
При проектировании блоков питания, следует уметь правильно произвести расчет и подобрать по значениям необходимый элемент. Неправильно подобранный стабилитрон сразу выйдет из строя или не будет поддерживать напряжение на необходимом уровне.
Основными характеристиками являются:
- напряжение Ucт. стабилизации;
- номинальный ток стабилизации Iст., протекающий через стабилитрон;
- допустимая мощность рассеивания;
- температурный коэффициент стабилизации;
- динамическое сопротивление.
Эти характеристики определены заводом-изготовителем и указываются в справочной литературе.
Условно графическое обозначение на схемах
Все приборы имеют графическое обозначение. Это необходимо, чтобы не загромождать электрическую схему. Стабилитрон имеет свое условно-графическое обозначение, которое утверждено межгосударственным стандартом единого стандарта конструкторской документации (ЕСКД).
На рисунке снизу представлено как обозначается на схеме по ГОСТ 2.730-73, стабилитрон обозначается практически как диод, так как, в сущности, является одной из его разновидностей.
Для правильного включения следует различать, где плюс, где минус. Если смотреть на приведенный выше рисунок, то на нем плюс (анод) расположен слева, а минус (катод) справа. Согласно ЕСКД размеры УГО диодов должны составлять 5/5 мм. Это иллюстрирует рисунок снизу.
Схема подключения
Рассмотрим работу стабилитрона на примере схемы параметрического стабилизатора. Это типовая схема. Приведем формулы для расчета стабилизатора.
Допустим, что имеется 15 Вольт, а на выходе необходимо получить 9 В. По таблице напряжений в справочнике подбираем стабилитрон Д810. Произведем расчет токоограничивающего резистора R1, согласно рисунку ниже. На нем показан токоограничивающий резистор и схема включения. Режим регулирования напряжения отмечен на вольт-амперной характеристике 1,2.
Для того чтобы полупроводник не вышел из строя, необходимо учитывать ток стабилизации и ток нагрузки. Из справочника определяем ток стабилизации.
Он равен 5 мА. На рисунке снизу представлена часть справочника.
Предполагаем, что ток нагрузки равен 100 мА:
R1= (Uвх-Uст)/(Iн+Icт)= (15-9)/(0.1+0.005)=57.14 Ом.
Если нужен мощный стабилизатор, то стоит собирать схему из стабилитрона и транзистора.
Если необходимо изготовить стабилизатор на небольшое напряжение 0,2-1 В, для этого применяется стабистор. Он является разновидностью стабилитрона, но работает в прямой ветви ВАХ и включается в прямом направлении, в чем его уникальная особенность и заключается.
Аналогичным образом можно изготовить блок питания, где стабилизатор изготовлен из диодов. Как и стабистор их включают в прямом направлении. Нужное напряжение набирают прямыми падениями напряжений на диоде, для кремниевых диодов оно находится в пределах 0.5-0.7В. При отсутствии диодов, можно собрать стабилитрон из транзистора.
На нижеприведенном рисунке представлена схема на транзисторе.
Промышленность выпускает и управляемые стабилитроны. Или, точнее сказать, это микросхема – TL431. Это универсальная микросхема, позволяет регулировать напряжение в пределах от 2,5 до 36 вольт.
Регулировка осуществляется путем подбора делителя сопротивлений. На нижеприведенной схеме представлен стабилизатор на 5 вольт. Делитель собран на резисторах номиналом 2,2 К.
Специалист должен знать, как проверить мультиметром работоспособность стабилитрона. Сразу отметим, что проверить можно только однонаправленный элемент, сдвоенные (двунаправленные) такой проверке не подлежат. Если диод Зенера исправен, то при «прозвонке» тестером в одну сторону он будет показывать обрыв, а во вторую минимальное сопротивление. Неисправный звонится в обе стороны.
Маркировка
В зависимости от мощности диода, они выпускаются в различных корпусах. На металлических корпусах большой мощности указывается буквенное обозначение типа прибора.
На нижеприведенных фото представлены приборы советского производства, и как они выглядели.
Сейчас маломощные диоды выпускаются в стеклянных корпусах. Маркировка импортных приборов имеет цветовое обозначение. На корпус наносится маркировка полосами или цветными кольцами.
На нижеприведенном рисунке представлена маркировка SMD-диодов.
Отечественные диоды в стеклянных корпусах маркируют полосами или кольцами. Определить тип и параметры можно по любому справочнику радиоэлектронных компонентов. Например, зеленая полоса обозначает стабилитрон КС139А, а голубая полоса (или кольцо) указывает на КС133А.
На мощных устройствах в металлических корпусах указывается буквенное обозначение, например, Д816, как показано на фото вверху. Это необходимо для того, чтобы знать, как подобрать аналог.
Вот мы и рассмотрели, какие бывают стабилитроны, как они работают и для чего нужны. Если остались вопросы, задавайте их в комментариях под статьей!
Материалы по теме:
СтабилитронОсновные операции и применение
16.12.2015 | Автор: Цзя (Рабийя Хан)
Стабилитрон — это кремниевый полупроводниковый прибор, который позволяет току течь в прямом или обратном направлении. Диод состоит из специального сильно легированного p-n перехода, предназначенного для проведения в обратном направлении при достижении определенного заданного напряжения.
Стабилитрон имеет четко определенное напряжение обратного пробоя, при котором он начинает проводить ток и продолжает непрерывно работать в режиме обратного смещения без повреждения.Кроме того, падение напряжения на диоде остается постоянным в широком диапазоне напряжений, что делает стабилитроны пригодными для использования при регулировании напряжения.
Стабилитрон срабатывания
Стабилитрон работает так же, как обычный диод в режиме прямого смещения, и имеет напряжение включения от 0,3 до 0,7 В. Однако при подключении в обратном режиме, что является обычным для большинства его приложений, может протекать небольшой ток утечки. Когда обратное напряжение увеличивается до заданного напряжения пробоя (Vz), через диод начинает течь ток.Ток увеличивается до максимума, который определяется последовательным резистором, после чего он стабилизируется и остается постоянным в широком диапазоне приложенного напряжения.
Рисунок 1: ВАХ стабилитрона
Стабилитрон
Пробой вызван либо эффектом пробоя стабилитрона, который возникает ниже 5,5 В, либо ударной ионизацией, которая возникает выше 5,5 В. Оба механизма приводят к одинаковому поведению и не требуют разной схемы; однако у каждого механизма свой температурный коэффициент.
Эффект Зенера имеет отрицательный температурный коэффициент, тогда как ударный эффект имеет положительный коэффициент. Два температурных эффекта почти равны при 5,5 В и компенсируют друг друга, что делает стабилитроны с номинальным напряжением около 5,5 В наиболее стабильными в широком диапазоне температурных условий.
Технические характеристики стабилитрона
Стабилитроныразличаются по характеристикам, таким как номинальное рабочее напряжение, рассеиваемая мощность, максимальный обратный ток и упаковка.Некоторые часто используемые спецификации включают:
- Напряжение Vz: Напряжение стабилитрона относится к напряжению обратного пробоя — от 2,4 В до примерно 200 В; может достигать 1 кВ, в то время как максимальное значение для устройства поверхностного монтажа (SMD) составляет около 47 В).
- Ток Iz (макс.): Максимальный ток при номинальном напряжении стабилитрона Vz — от 200 мкА до 200 А).
- Ток Iz (мин.): Минимальный ток, необходимый для выхода диода из строя — 5 мА и 10 мА.
- Номинальная мощность: максимальная мощность, которую может рассеять стабилитрон; дается произведением напряжения на диоде и протекающего через него тока.Типичные значения: 400 мВт, 500 мВт, 1 Вт и 5 Вт; для поверхностного монтажа типичны 200 мВт, 350 мВт, 500 мВт и 1 Вт.
- Допустимое отклонение напряжения: обычно ± 5%.
- Температурная стабильность: Наилучшей стабильностью обладают диоды с напряжением около 5 В.
- Корпус: Устройства с выводами и поверхностный монтаж либо в виде дискретных устройств, либо в составе интегральных схем.
- Сопротивление стабилитрона (Rz): Диод показывает некоторое сопротивление, о чем свидетельствуют ВАХ.
Рисунок 2: Сопротивление стабилитрона
Применение стабилитрона
Стабилитроныиспользуются для регулирования напряжения, в качестве опорных элементов, ограничителей перенапряжения, а также в коммутационных устройствах и схемах ограничителей.
Регулятор напряжения
Напряжение нагрузки равно напряжению пробоя VZ диода. Последовательный резистор ограничивает ток через диод и снижает избыточное напряжение, когда диод проводит.
Рисунок 3: Шунтирующий стабилизатор на стабилитроне
Стабилитрон в защите от перенапряжения
Если входное напряжение увеличивается до значения, превышающего напряжение пробоя стабилитрона, ток течет через диод и создает падение напряжения на резисторе; это запускает SCR и создает короткое замыкание на землю.Короткое замыкание размыкает предохранитель и отключает нагрузку от источника питания.
Рисунок 4: Цепь лома защиты от перенапряжения SCR
Цепи ограничения стабилитрона
Стабилитроныиспользуются для модификации или формирования схем ограничения формы сигнала переменного тока. Схема ограничения ограничивает или отсекает части одного или обоих полупериодов сигнала переменного тока для формирования формы сигнала или обеспечения защиты.
Рисунок 5: Цепи ограничения стабилитрона
Что такое стабилитроны? | Диоды и выпрямители
Что такое стабилитрон?
Стабилитрон — это особый тип выпрямительного диода, который может выдерживать пробой из-за обратного напряжения пробоя без полного отказа.Здесь мы обсудим концепцию использования диодов для регулирования падения напряжения и то, как стабилитрон работает в режиме обратного смещения для регулирования напряжения в цепи.
Как диоды регулируют падение напряжения
Если мы подключим диод и резистор последовательно к источнику постоянного напряжения так, чтобы диод был смещен в прямом направлении, падение напряжения на диоде останется довольно постоянным в широком диапазоне напряжений источника питания, как показано на рисунке (а) ниже.
Ток через смещенный в прямом направлении PN-переход пропорционален значению и , возведенному в степень прямого падения напряжения.Поскольку это экспоненциальная функция, ток растет довольно быстро при небольшом увеличении падения напряжения.
Другой способ рассмотреть это — сказать, что напряжение, падающее на диоде с прямым смещением, мало изменяется при больших изменениях тока диода. В схеме, показанной на рисунке (а) ниже, ток диода ограничен напряжением источника питания, последовательным резистором и падением напряжения на диоде, которое, как мы знаем, не сильно отличается от 0,7 вольт.
Прямо смещенный Si-эталон: (а) одиночный диод, 0.7В, (б) 10-диодов последовательно 7.0В.
Если бы напряжение источника питания было увеличено, падение напряжения резистора увеличилось бы почти на такую же величину, а напряжение диода упало бы совсем немного. И наоборот, уменьшение напряжения источника питания привело бы к почти одинаковому уменьшению падения напряжения на резисторе с небольшим уменьшением падения напряжения на диодах.
Короче говоря, мы могли бы резюмировать это поведение, сказав, что диод регулирует падение напряжения примерно на 0.7 вольт.
Использование регулирования напряжения
Регулировка напряжения — это полезное свойство диода. Предположим, мы строим какую-то схему, которая не может выдерживать колебаний напряжения источника питания, но должна питаться от химической батареи, напряжение которой изменяется в течение срока ее службы. Мы могли бы сформировать схему, как показано выше, и подключить схему, требующую постоянного напряжения на диоде, где он будет получать неизменное 0,7 вольт.
Это, безусловно, сработает, но для большинства практических схем любого типа требуется напряжение источника питания выше 0.7 вольт для нормальной работы. Один из способов увеличить нашу точку стабилизации напряжения — это соединить несколько диодов последовательно, чтобы их индивидуальные прямые падения напряжения по 0,7 вольта добавлялись, чтобы получить большее общее.
Например, в нашем примере выше [рисунок (b)], если бы у нас было десять последовательно соединенных диодов, регулируемое напряжение было бы в десять раз 0,7 или 7 вольт.
До тех пор, пока напряжение батареи никогда не опускалось ниже 7 вольт, на десятидиодной «стопке» всегда будет падать около 7 вольт.”
Как стабилитроны регулируют напряжение
Если требуются более высокие регулируемые напряжения, мы могли бы либо использовать больше диодов последовательно (на мой взгляд, это неэлегантный вариант), либо попробовать принципиально другой подход.
Мы знаем, что прямое напряжение на диоде является довольно постоянной величиной в широком диапазоне условий, как и напряжение обратного пробоя . Напряжение пробоя обычно намного больше прямого напряжения.
Если бы мы поменяли полярность диода в нашей схеме однодиодного стабилизатора и увеличили напряжение источника питания до точки, где диод «сломался» (то есть он больше не мог выдерживать напряжение обратного смещения, подаваемое на него) диод аналогичным образом регулирует напряжение в этой точке пробоя, не позволяя ему расти дальше.Это показано на рисунке (а) ниже.
(a) Кремниевый малосигнальный диод с обратным смещением выходит из строя при напряжении около 100 В. (b) Символ стабилитрона.
К сожалению, когда обычные выпрямительные диоды «выходят из строя», они обычно разрушаются. Однако можно создать диод особого типа, который выдержит пробой без полного выхода из строя. Этот тип диода называется стабилитроном , и его символ показан на рисунке (b) выше.
При прямом смещении стабилитроны ведут себя так же, как стандартные выпрямительные диоды: у них прямое падение напряжения, которое соответствует «уравнению диода» и составляет около 0.7 вольт. В режиме обратного смещения они не проводят до тех пор, пока приложенное напряжение не достигнет или не превысит так называемое напряжение стабилитрона , в этот момент диод может проводить значительный ток, и при этом будет пытаться ограничить падение напряжения на это к той точке напряжения Зенера.
Пока мощность, рассеиваемая этим обратным током, не превышает тепловые пределы диода, диод не будет поврежден. По этой причине стабилитроны иногда называют «диодами пробоя».”
Схема стабилитрона
Стабилитроныпроизводятся с напряжением стабилитрона от нескольких вольт до сотен вольт. Это напряжение стабилитрона незначительно изменяется с температурой, и, как и обычные значения резисторов из углеродного состава, может иметь погрешность от 5 до 10 процентов по сравнению со спецификациями производителя. Однако эта стабильность и точность обычно достаточно хороши для использования стабилитрона в качестве устройства регулятора напряжения в общей цепи питания, показанной на рисунке ниже.
Схема стабилитрона, напряжение стабилитрона = 12,6 В).
Принцип работы стабилитронаОбратите внимание на ориентацию стабилитрона в приведенной выше схеме: диод смещен в обратном направлении, , и это сделано намеренно. Если бы мы сориентировали диод «нормальным» образом, чтобы он был смещен в прямом направлении, он бы упал всего на 0,7 В, как и обычный выпрямительный диод. Если мы хотим использовать свойства обратного пробоя этого диода, мы должны использовать его в режиме обратного смещения.Пока напряжение источника питания остается выше напряжения стабилитрона (в данном примере 12,6 вольт), падение напряжения на стабилитроне будет оставаться на уровне примерно 12,6 вольт.
Как и любой полупроводниковый прибор, стабилитрон чувствителен к температуре. Чрезмерная температура разрушит стабилитрон, и, поскольку он снижает напряжение и проводит ток, он производит собственное тепло в соответствии с законом Джоуля (P = IE). Следовательно, нужно быть осторожным при проектировании схемы регулятора таким образом, чтобы не превышалась допустимая мощность рассеиваемой мощности диода.Достаточно интересно, что когда стабилитроны выходят из строя из-за чрезмерного рассеивания мощности, они обычно выходят из строя , закорачивая , а не открываясь. Диод, вышедший из строя таким образом, легко обнаруживается: он падает почти до нуля при смещении в любую сторону, как кусок проволоки.
Математический анализ цепи стабилитрона
Давайте рассмотрим схему стабилизации стабилитрона математически, определив все напряжения, токи и рассеиваемую мощность. Взяв ту же форму схемы, показанную ранее, мы выполним вычисления, предполагая, что напряжение Зенера равно 12.6 вольт, напряжение источника питания 45 вольт и номинальное сопротивление последовательного резистора 1000 Ом (мы будем считать, что напряжение стабилитрона равно , ровно 12,6 вольт, чтобы не квалифицировать все цифры как «приблизительные» на рисунке ( а) ниже
Если напряжение стабилитрона составляет 12,6 вольт, а напряжение источника питания составляет 45 вольт, на резисторе будет падать 32,4 вольт (45 — 12,6 вольт = 32,4 вольт). Падение 32,4 В на 1000 Ом дает 32,4 мА тока в цепи. (Рисунок ниже (b))
(a) Зенеровский стабилизатор напряжения с резистором 1000 Ом.(б) Расчет падений напряжения и тока.
Мощность рассчитывается путем умножения тока на напряжение (P = IE), поэтому мы можем довольно легко рассчитать рассеиваемую мощность как для резистора, так и для стабилитрона:
Подойдет стабилитрон с номинальной мощностью 0,5 Вт, а также резистор с мощностью рассеяния 1,5 или 2 Вт.
Схема стабилитрона с более высоким сопротивлением
Если чрезмерное рассеяние мощности является вредным, то почему бы не спроектировать схему с минимальным возможным рассеянием? Почему бы просто не рассчитать резистор на очень высокое значение сопротивления, тем самым резко ограничив ток и сохранив показатели рассеиваемой мощности на очень низком уровне? Возьмем, например, эту схему с резистором 100 кОм вместо резистора 1 кОм.Обратите внимание, что как напряжение источника питания, так и напряжение стабилитрона диода на рисунке ниже идентичны последнему примеру:
стабилитрон с резистором 100 кОм.
При токе только 1/100 от того, что было раньше (324 мкА вместо 32,4 мА), оба значения рассеиваемой мощности должны быть в 100 раз меньше:
Рекомендации по сопротивлению нагрузки
Кажется идеальным, не правда ли? Меньшая рассеиваемая мощность означает более низкие рабочие температуры как диода, так и резистора, а также меньшие потери энергии в системе, верно? Более высокое значение сопротивления действительно снижает уровень рассеиваемой мощности в цепи, но, к сожалению, создает другую проблему.Помните, что цель схемы регулятора — обеспечить стабильное напряжение для другой схемы . Другими словами, мы в конечном итоге собираемся запитать что-то с напряжением 12,6 вольт, и это что-то будет иметь собственное потребление тока.
Меньшее значение сопротивления падающему резистору
Рассмотрим нашу первую схему стабилизатора, на этот раз с нагрузкой 500 Ом, подключенной параллельно стабилитрону на рисунке ниже.
Стабилизатор стабилитрона с последовательным резистором 1000 Ом и нагрузкой 500 Ом.
Если на нагрузке 500 Ом поддерживается 12,6 В, нагрузка потребляет ток 25,2 мА. Для того, чтобы «падающий» резистор 1 кОм упал на 32,4 В (уменьшив напряжение источника питания с 45 В до 12,6 на стабилитроне), он все равно должен проводить ток 32,4 мА. Это оставляет 7,2 мА тока через стабилитрон.
Рассмотрение резистора с пониженным сопротивлением повышенного значения
Теперь рассмотрим нашу схему «энергосберегающего» регулятора с понижающим резистором 100 кОм, обеспечивающую питание той же нагрузки 500 Ом.Что он должен делать, так это поддерживать 12,6 вольт на нагрузке, как и в последней цепи. Однако, как мы увидим, не может выполнить эту задачу. (Рисунок ниже)
Нерегуляторный стабилитрон с последовательным резистором 100 кОм и нагрузкой 500 Ом.>
При большем значении падающего резистора на месте будет только около 224 мВ напряжения на нагрузке 500 Ом, что намного меньше ожидаемого значения 12,6 вольт! Почему это? Если бы у нас действительно было 12,6 вольт на нагрузке, она бы потребляла 25.2 мА тока, как и раньше. Этот ток нагрузки должен был пройти через последовательный понижающий резистор, как это было раньше, но с новым (гораздо большим!) Понижающим резистором на месте падение напряжения на этом резисторе при токе 25,2 мА, проходящем через него, составит 2520 вольт! Поскольку очевидно, что аккумулятор не имеет такого большого напряжения, этого не может произойти.
Анализ более высокого сопротивления падению без стабилитрона
Ситуацию легче понять, если мы временно удалим стабилитрон из схемы и проанализируем поведение только двух резисторов на рисунке ниже.
Нерегулятор со снятым стабилитроном.
И понижающий резистор 100 кОм, и сопротивление нагрузки 500 Ом включены последовательно друг с другом, что дает общее сопротивление цепи 100,5 кОм. При общем напряжении 45 В и общем сопротивлении 100,5 кОм закон Ома (I = E / R) говорит нам, что ток будет 447,76 мкА. Рассчитав падение напряжения на обоих резисторах (E = IR), мы получаем 44,776 В и 224 мВ соответственно.
Если бы мы переустановили стабилитрон в этот момент, он также «увидел бы» 224 мВ на нем, параллельно сопротивлению нагрузки.Это намного ниже напряжения пробоя стабилитрона диода, поэтому он не «пробивается» и не проводит ток. Если уж на то пошло, при таком низком напряжении диод не будет проводить, даже если он будет смещен в прямом направлении! Таким образом, диод перестает регулировать напряжение. Чтобы «активировать» его, необходимо упасть минимум 12,6 вольт.
Аналитическая методика удаления стабилитрона из схемы и проверки наличия достаточного напряжения, чтобы заставить его проводить, является правильной. Тот факт, что стабилитрон включен в цепь, не гарантирует, что на нем всегда будет падать полное напряжение стабилитрона! Помните, что стабилитроны работают по принципу , ограничивая напряжение до некоторого максимального уровня; они не могут заменить из-за отсутствия напряжения.
Правило в работе стабилитрона
Таким образом, любая схема стабилизации на стабилитронах будет работать до тех пор, пока сопротивление нагрузки равно некоторому минимальному значению или превышает его. Если сопротивление нагрузки слишком низкое, он будет потреблять слишком большой ток, слишком большое падение напряжения на последовательном понижающем резисторе, оставляя недостаточное напряжение на стабилитроне, чтобы заставить его проводить. Когда стабилитрон перестает проводить ток, он больше не может регулировать напряжение, и напряжение нагрузки упадет ниже точки регулирования.
Расчет сопротивления нагрузки для некоторых резисторов падения
Однако наша схема регулятора с понижающим резистором 100 кОм должна быть подходящей для некоторого значения сопротивления нагрузки. Чтобы найти это приемлемое значение сопротивления нагрузки, мы можем использовать таблицу для расчета сопротивления в последовательной цепи с двумя резисторами (без диода), вставив известные значения общего напряжения и сопротивления падающего резистора и рассчитав ожидаемое напряжение нагрузки 12,6 В. :
С общим напряжением 45 В и 12.6 вольт на нагрузке, у нас должно быть 32,4 вольт на R , падение :
При 32,4 В на падающем резисторе и сопротивлении 100 кОм ток через него будет 324 мкА:
Поскольку цепь является последовательной, ток во всех компонентах в любой момент времени одинаков:
Расчет сопротивления нагрузки теперь является простым делом закона Ома (R = E / I), что дает нам 38,889 кОм:
Таким образом, если сопротивление нагрузки равно 38.889 кОм, на нем будет 12,6 вольт, диод или без диода. Любое сопротивление нагрузки менее 38,889 кОм приведет к напряжению нагрузки менее 12,6 В, диод или отсутствие диода. При установленном диоде напряжение нагрузки будет регулироваться максимум до 12,6 В для любого сопротивления нагрузки больше , чем 38,889 кОм.
При исходном значении падающего резистора 1 кОм наша схема регулятора смогла адекватно регулировать напряжение даже при сопротивлении нагрузки всего 500 Ом.Мы видим компромисс между рассеиваемой мощностью и допустимым сопротивлением нагрузки. Понижающий резистор большего номинала дал нам меньше рассеиваемой мощности за счет повышения допустимого минимального значения сопротивления нагрузки. Если мы хотим регулировать напряжение для низких сопротивлений нагрузки, схема должна быть подготовлена к более высокому рассеиванию мощности.
Как стабилитрон регулирует напряжение
Стабилитронырегулируют напряжение, действуя как дополнительные нагрузки, потребляя больше или меньше тока, если это необходимо для обеспечения постоянного падения напряжения на нагрузке.Это аналогично регулированию скорости автомобиля путем торможения, а не изменения положения дроссельной заслонки: это не только расточительно, но и тормоза должны быть сконструированы так, чтобы справляться со всей мощностью двигателя, когда условия движения этого не требуют.
Несмотря на эту фундаментальную неэффективность конструкции, схемы стабилизаторов на стабилитронах получили широкое распространение благодаря своей простоте. В приложениях с большой мощностью, где неэффективность недопустима, применяются другие методы регулирования напряжения.Но даже в этом случае небольшие схемы на основе стабилитронов часто используются для обеспечения «эталонного» напряжения для управления более эффективной схемой усилителя, управляющей основной мощностью.
Напряжение общего стабилитрона
Стабилитроныпроизводятся со стандартными номинальными напряжениями, указанными в таблице ниже. В таблице «Общие напряжения стабилитронов» указаны стандартные напряжения для компонентов мощностью 0,3 и 1,3 Вт. Мощность соответствует размеру кристалла и корпуса и представляет собой мощность, которую диод может рассеять без повреждения.
Напряжение на обычных стабилитронах
0.5 Вт | ||||||
2,7 В | 3,0 В | 3,3 В | 3,6 В | 3,9 В | 4,3 В | 4,7 В |
5,1 В | 5,6 В | 6,2 В | 6,8 В | 7,5 В | 8,2 В | 9,1 В |
10 В | 11В | 12 В | 13 В | 15 В | 16 В | 18 В |
20 В | 24 В | 27В | 30 В | |||
1.3Вт | ||||||
4,7 В | 5,1 В | 5,6 В | 6,2 В | 6,8 В | 7,5 В | 8,2 В |
9,1 В | 10 В | 11В | 12 В | 13 В | 15 В | 16 В |
18 В | 20 В | 22V | 24 В | 27В | 30 В | 33V |
36 В | 39V | 43V | 47V | 51V | 56V | 62V |
68V | 75 В | 100 В | 200 В |
Ограничитель стабилитрона: Схема ограничения, которая ограничивает пики формы волны приблизительно при напряжении стабилитрона диодов.В схеме на рисунке ниже два стабилитрона соединены последовательно друг с другом, чтобы симметрично ограничить форму волны почти при напряжении стабилитрона. Резистор ограничивает ток, потребляемый стабилитронами, до безопасного значения.
* SPICE 03445.eps D1 4 0 диод D2 4 2 диода R1 2 1 1.0k V1 1 0 SIN (0 20 1k). Модель диода d bv = 10 .tran 0.001m 2m .end |
Ограничитель стабилитрона:
Напряжение пробоя стабилитрона для диодов устанавливается равным 10 В параметром модели диода «bv = 10» в списке цепей spice на рисунке выше.Это приводит к срезанию стабилитронов при напряжении около 10 В. Подключенные друг к другу диоды срезают оба пика. Для положительного полупериода верхний стабилитрон смещен в обратном направлении, выходя из строя при напряжении стабилитрона 10 В. Нижний стабилитрон падает примерно на 0,7 В, поскольку он смещен в прямом направлении. Таким образом, более точный уровень отсечения составляет 10 + 0,7 = 10,7 В. Аналогичное отрицательное ограничение полупериода происходит при -10,7 В. (Рисунок ниже) показывает уровень ограничения при немного более ± 10 В.
Ограничитель стабилитрона: вход v (1) ограничивается формой волны v (2).
ОБЗОР:
- Стабилитроны предназначены для работы в режиме обратного смещения, обеспечивая относительно низкий стабильный пробой, или напряжение стабилитрона , при котором они начинают проводить значительный обратный ток.
- Стабилитрон может работать как регулятор напряжения, действуя как дополнительная нагрузка, потребляя больше тока от источника, если напряжение слишком высокое, и меньше, если оно слишком низкое.
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Основы: Введение в стабилитроны
Стабилитроны— это особый тип полупроводниковых диодов — устройств, которые позволяют току течь только в одном направлении, которые также позволяют току течь в противоположном направлении, но только при достаточном напряжении.И хотя это звучит немного эзотерически, на самом деле они являются одними из самых удобных компонентов, когда-либо встречавшихся на рабочем месте инженера, обеспечивая отличные решения для ряда общих потребностей в схемотехнике.
Далее мы покажем вам, как (и когда) использовать стабилитрон для приложений, включая простые опорные напряжения, ограничение сигналов до определенных диапазонов напряжения и снижение нагрузки на регулятор напряжения.
Справочная информация: Полупроводниковые диоды, настоящие и идеальные
Чтобы понять, чем стабилитроны отличаются от других диодов, давайте сначала рассмотрим свойства обычных диодов.И хотя существует много различных типов диодов — см. Здесь длинный список — мы собираемся сосредоточиться на так называемых «нормальных» полупроводниковых диодах, чаще всего построенных с кремниевым p-n переходом.
Диоды обычно поставляются в стеклянных или пластиковых цилиндрических корпусах, маркированных полосой с одной стороны для обозначения полярности. В идеальном диоде ток течет только в одном направлении, от анода (положительная сторона) к катоду (отрицательная сторона), отмеченному полосой.Схематический символ представляет собой треугольник, указывающий на полосу, где ток течет в том же направлении, к концу с перемычкой (полосой). Версии диодов для поверхностного монтажа, как правило, следуют одному и тому же соглашению о маркировке, где катодный конец маркируется широкой полосой.
Если мы подключим диод в простую схему с источником переменного напряжения и ограничивающим ток резистором, мы сможем измерить ток I через диод, когда к нему приложено заданное напряжение В .В идеальном диоде ток вообще не проходит, когда напряжение меньше нуля: диод полностью предотвращает обратный ток. Для небольшого положительного напряжения («прямое смещение» или иногда «прямое напряжение») может протекать крошечный ток, а очень большой ток будет течь выше заданного порога. Величина протекающего тока фактически экспоненциальна с увеличением напряжения.
Порог, при котором протекает значительный ток, обычно составляет около 0,7 В для простых полупроводниковых диодов, но может быть и ниже 0.15 В для диодов Шоттки или до 4 В для некоторых типов светодиодов.
Конечно, диод не идеален. В реальных диодах, когда напряжение меняется на противоположное, может протекать очень небольшой ток (утечка). И, что более важно, каждый диод рассчитан на определенную максимальную величину обратного напряжения. Если вы подадите напряжение более отрицательное, чем этот предел, диод подвергнется «обратному пробою» и начнет проводить значительный ток, но на назад на от нормального направления протекания тока через диод.Для обычного диода мы бы сказали, что диод вышел из строя , если он начинает проводить ток в этом направлении.
Помимо: Фактическая физика того, что происходит при пробое, довольно интересна; этому поведению способствуют два отдельных эффекта: эффект Зенера и лавинный пробой.
Стабилитроны
Стабилитроны— это полупроводниковые диоды, которые были изготовлены так, чтобы их обратный пробой происходил при определенном, четко определенном напряжении (его «напряжение стабилитрона»), и которые спроектированы таким образом, что они могут работать непрерывно в этом режиме пробоя.Стандартные стабилитроны доступны с пробивным напряжением («стабилитроны») от 1,8 до 200 В.
Схематический символ стабилитрона показан выше — он очень похож на обычный диод, но с загнутыми краями на полосе. Стабилитрон по-прежнему проводит электричество в прямом направлении, как любой другой диод, но также проводит в обратном направлении, если приложенное напряжение обратное и больше, чем напряжение пробоя стабилитрона.
Типичное применение может быть таким, как указано выше: стабилитрон 10 В (тип 1N4740) включен последовательно с резистором и фиксированным источником питания 12 В. Номинал резистора выбирается таким образом, чтобы через него и через стабилитрон протекало несколько мА, удерживая его в области пробоя. В приведенной выше схеме напряжение на стабилитроне составляет 10 В, а на резисторе — 2 В. При 2 В на резисторе 400 Ом ток через этот резистор (и диод последовательно) составляет 5 мА.
Опоры напряжения Зенера
Стабилитроны с фиксированным напряжением делают их очень удобными в качестве источников быстрого опорного напряжения.Базовая схема выглядит так:
Необходимо учитывать несколько требований. Во-первых, входное напряжение должно быть выше напряжения стабилитрона. Во-вторых, номинал резистора должен быть выбран таким, чтобы через стабилитрон всегда протекал ток.
Некоторые предостережения: Это не обязательно хороший источник питания для всех целей — резистор ограничивает величину потребляемого тока. Это также не обязательно прецизионный источник опорного напряжения ; напряжение будет зависеть от величины потребляемого тока.(То есть, чтобы напряжение было стабильным, нагрузка, управляемая этим опорным напряжением, должна быть постоянной.) Напряжение также зависит от температуры. Стабилитроны в диапазоне 5-6 В обладают наилучшей температурной стабильностью, и есть высокоточные стабилитроны (например, LM399), которые включают собственную термостабилизированную печь, чтобы в дальнейшем поддерживать температуру диода как можно более стабильной.
Развивая эту идею немного дальше, вы можете создать полноценный многорельсовый источник питания, используя не что иное, как набор стабилитронов для генерации всех необходимых напряжений, при условии, что текущие требования к разным напряжениям питания невысоки. .Схема выше является частью работающего лабораторного прибора.
Клещи напряжения: ограничение сигналов с помощью стабилитронов
Изменяющийся аналоговый сигнал может быть ограничен довольно узким диапазоном напряжений с помощью одного стабилитрона. Если у вас есть напряжение, которое колеблется между + 7 В и -7 В, вы можете использовать один стабилитрон 4 В, подключенный к земле, чтобы гарантировать, что сигнал не превышает 4 В или опускается ниже -0,7 В (где диод проводит вперед на землю).
Если вы хотите ограничить сигнал, чтобы он никогда не становился отрицательным — например, для входа в аналого-цифровой преобразователь, который принимает сигналы в диапазоне 0-5 В, вы можете подключить анод стабилитрона к шине питания на 1 В вместо земли. Тогда диапазон выходного сигнала будет ограничен диапазоном 0,3 В — 5 В.
Еще один изящный трюк — использовать последовательно два противоположно ориентированных стабилитрона. Это может обеспечить, например, симметричный предел отклонения сигнала от земли.Это также обычная конфигурация для использования стабилитронов в качестве подавителя переходных процессов.
Преобразование напряжения: снижение нагрузки на регулятор
Вот что-то не работает. У нас есть TL750L05, который представляет собой тип линейного стабилизатора с выходом 5 В, который может выдавать выходной ток до 150 мА, а его нагрузка будет переменной. Нам нужно запитать его от источника 36 В. К сожалению, максимальное входное напряжение TL750L05 составляет 26 В.
Давайте попробуем добавить резистор последовательно, чтобы немного понизить это напряжение:
Наша выходная нагрузка может составлять от 125 мА до 10 мА.Итак, резистор какого номинала у нас подойдет?
Предположим, мы предполагаем нагрузку 125 мА. Затем снять (скажем) 20 В на резисторе, 20 В / .125 А = 160 Ом. Если мы используем 160 Ом, то при нагрузке 10 мА оно упадет только на 160 Ом × 0,01 А = 1,6 В, а 36 В — 1,6 В все еще больше, чем 26 В. Чтобы быть безопасным для нагрузки 10 мА, мы должны выбрать резистор, который дает нам падение как минимум 11 В для входного сигнала регулятора 25 В. Таким образом, 11 В / 0,01 А = 1100 Ом будет безопасным для нагрузки 10 мА. Но если нагрузка увеличится до 125 мА, падение на 1100 Ом будет V = 0.125 А × 1100 Ом = 137 В, что означает, что на входе регулятора будет ниже 5 В, и он перестанет работать.
Очевидно, что вы не можете выбрать номинал резистора, который действительно работал бы как для низкого, так и для сильноточного случая.
В сторону: Мы пропустили пару незначительных деталей о регуляторах напряжения, которые часто заслуживают внимания. Во-первых, линейный регулятор всегда требует немного больше напряжения на входе, чем на выходе.Эта разница напряжений называется «падением напряжения» и может достигать 0,6 В для TL750L05, так называемого стабилизатора с «малым падением напряжения». Это означает, что при выводе 5 В при 150 мА входная клемма регулятора должна быть на 5,6 В или выше. Мы можем спокойно игнорировать это здесь, потому что 36 В — 137 В все еще ниже 5,6 В.
Вторая небольшая деталь заключается в том, что линейный регулятор на самом деле потребляет немного больше тока на своем входе, чем на выходе. Причина этого в том, что часть тока, протекающего на вход регулятора, течет на землю через его третью «заземляющую» клемму, а не на выходную клемму.Этот «ток покоя» может достигать 12 мА для TL750L05. Это означает, что когда 125 мА выходит из выходной клеммы регулятора, на входную клемму может поступать до 137 мА. В приведенном выше примере это означает, что максимальное падение напряжения на резисторе 1100 Ом было бы более точно оценить как V = 0,137 A × 1100 Ом = 151 В. Опять же, это не меняет нашего анализа.
Давайте попробуем еще раз, на этот раз с нашим другом, стабилитроном.
Наконец, давайте попробуем использовать один жирный стабилитрон на 20 В (тип 1N5357BRLG), чтобы снизить нагрузку.Тогда выход на аноде стабилитрона составляет всего 16 В, что находится в пределах безопасного входного диапазона регулятора. 1N5357BRLG рассчитан на максимум 5 Вт.
Когда регулятор работает на выходе 125 мА, его входной ток может достигать 137 мА, включая ток покоя, поэтому мощность, рассеиваемая стабилитроном, может достигать 20 В × 0,137 А = 2,74 Вт. Он будет нагреваться, но мы находимся в безопасных условиях эксплуатации стабилитрона, и теперь схема заработает.
Обновлено в апреле 2020 года, чтобы включить примечания о падении напряжения линейного регулятора и тока покоя.
Стабилитрон— определение, VI характеристики и пробой стабилитрона
А нормальный п-п переходной диод пропускает электрический ток только в прямом направлении. предвзятое состояние. Когда прямое смещенное напряжение подается на диод p-n перехода, он позволяет большое количество электрического ток и блокирует только небольшое количество электрического тока. Следовательно, нападающий смещенный диод на p-n переходе предлагает лишь небольшой сопротивление электрическому току.
Когда обратное смещенное напряжение подается на диод p-n перехода, он блокирует большое количество электрического тока и позволяет только небольшое количество электрического тока. Следовательно, обратное смещенный диод на p-n переходе обеспечивает большое сопротивление электрический ток.
Если Напряжение обратного смещения, приложенное к диоду с p-n переходом, равно сильно увеличивается, происходит внезапное повышение тока.В этот точка, небольшое повышение напряжения быстро увеличивает электрический ток. Этот внезапное повышение электрического тока вызывает пробой перехода называется стабилитрон или лавинный пробой. Напряжение, при котором Пробой стабилитрона называется напряжением стабилитрона, и внезапное увеличение тока называется током стабилитрона.
А нормальный диод p-n перехода не работает при пробое области, потому что избыточный ток необратимо повреждает диод.Обычные диоды с p-n переходом не предназначены для работают в области обратного пробоя. Следовательно, нормальный p-n переходной диод не работает в области обратного пробоя.
Что такое стабилитрон?
А стабилитрон — это особый тип устройства, предназначенный для работы в области пробоя стабилитрона. Стабилитроны работают как обычно Диоды с p-n переходом в прямом смещении.Когда на стабилитрон подается напряжение прямого смещения. допускает большое количество электрического тока и блоков только небольшое количество электрического тока.
Стабилитронсильно нагружен. легированный, чем обычный диод с p-n переходом. Следовательно, у него очень тонкое истощение область. Следовательно, стабилитроны позволяют увеличить электрическую мощность. ток, чем нормальные диоды с p-n переходом.
Стабилитронпозволяет электрический ток в прямом направлении, как обычный диод но также пропускает электрический ток в обратном направлении, если приложенное обратное напряжение больше стабилитрона Напряжение. Стабилитрон всегда подключен в обратном направлении направление, потому что он специально разработан для работы в обратное направление.
стабилитрон определение
А Стабилитрон — это полупроводниковый прибор с p-n переходом, разработанный работать в области обратного пробоя.Поломка напряжение стабилитрона тщательно настраивается путем управления уровень легирования при производстве.
название стабилитрон был назван в честь американского физика Кларенс Мелвин Зенер, открывший эффект Зенера. Зинер диоды являются основными строительными блоками электронных схем. Они широко используются во всех видах электронного оборудования.Стабилитроны в основном используются для защиты электронных схем. от перенапряжения.
Обрыв в стабилитрон
Там Есть два типа областей обратного пробоя в стабилитроне: лавинный пробой и пробой стабилитрона.
Лавина поломка
лавина пробой происходит как в нормальных диодах, так и в стабилитронах при высокое обратное напряжение.Когда приложено высокое обратное напряжение к диоду p-n перехода, свободный электроны (неосновные носители) получают большое количество энергии и разогнался до больших скоростей.
свободные электроны, движущиеся с высокой скоростью, будут сталкиваться с атомами и выбить больше электронов. Эти электроны снова ускоряется и сталкивается с другими атомами.Из-за этого непрерывное столкновение с атомами, большое количество свободных электроны генерируются. В результате электрический ток в диод быстро увеличивается. Это внезапное увеличение электрический ток может навсегда разрушить нормальный диод. Однако лавинные диоды нельзя разрушить, потому что они тщательно спроектированы для работы в лавинных условиях область.Лавинный пробой происходит в стабилитронах с напряжение стабилитрона (В z ) более 6 В.
Зенера поломка
Пробой стабилитрона происходит в сильно легированных диодах с p-n переходом из-за их узкой области истощения. При обратном смещенное напряжение, приложенное к диоду, увеличивается, узкая область истощения генерирует сильное электрическое поле.
Когда
обратное смещенное напряжение, приложенное к диоду, достигает
близкое к напряжению стабилитрона электрическое поле в
область обеднения достаточно сильна, чтобы вытягивать электроны из
их валентная группа. Валентные электроны, которые получают
достаточная энергия от сильного электрического поля
область истощения нарушит связь с родительским атомом.Балдахин
электроны, которые разрывают связь с родительским атомом, будут
становятся свободными электронами. Эти свободные электроны несут электрический ток.
ток из одного места в другое. При пробое стабилитрона
области, небольшое увеличение напряжения будет быстро увеличиваться
электрический ток.
- Зенер пробой происходит при низком обратном напряжении, а лавинный пробой происходит при высоком обратном напряжении.
- Зенера в стабилитронах происходит пробой, потому что у них очень тонкая область истощения.
- Разбивка Область является нормальной рабочей областью стабилитрона.
- Зенера Пробой происходит в стабилитронах при напряжении стабилитрона (В z ) менее 6В.
Символ стабилитрон
Символ стабилитрона показан на рисунке ниже.Стабилитрон состоит из двух выводов: катода и анода.
В стабилитрон, электрический ток течет от обоих анодов к катод и катод к аноду.
символ стабилитрона аналогичен нормальному p-n переходу диодный, но с загнутыми краями на вертикальной полосе.
VI характеристики стабилитрона
VI характеристики стабилитрона показаны ниже. фигура.При подаче напряжения прямого смещения на стабилитрон диод, работает как обычный диод. Однако при обратном на стабилитрон подается смещенное напряжение, он работает в по-разному.
Когда Обратно смещенное напряжение подается на стабилитрон, он допускает только небольшое количество тока утечки до тех пор, пока напряжение меньше напряжения стабилитрона.При обратном смещении напряжение, приложенное к стабилитрону, достигает напряжения стабилитрона, он начинает пропускать большое количество электрического тока. В этот точка, небольшое увеличение обратного напряжения быстро увеличивает электрический ток. Из-за этого внезапного подъема в электрическом токе происходит пробой, называемый стабилитроном авария. Однако стабилитрон демонстрирует управляемый поломка, приводящая к повреждению устройства.
Напряжение пробоя стабилитрона зависит от количество примененного допинга. Если диод сильно легирован, Пробой стабилитрона происходит при малых обратных напряжениях. С другой стороны, если диод слабо легирован, пробой стабилитрона возникает при высоких обратных напряжениях. Доступны стабилитроны с напряжениями стабилитрона в диапазоне 1.От 8 В до 400 В.
Преимущества стабилитрона
- Мощность рассеивающая способность очень высокая
- Высокая точность
- Малый размер
- Низкая стоимость
Приложения стабилитрона
- Обычно используется как источник опорного напряжения Стабилитроны
- используются в стабилизаторах напряжения или шунтах. регуляторы.
- Стабилитроны используются в коммутационных операциях Стабилитроны
- используются в схемах отсечки и зажима.
- Стабилитроны используются в различных схемах защиты
Типы диодов
различные типы диодов следующие:
- Зенера диод
- Лавинный диод
- Фотодиод
- Свет Излучающий диод
- Лазер диод
- Туннель диод
- Шоттки диод
- Варактор диод
- П-Н переходной диод
, стабилитрон в качестве регулятора напряжения, стабилитрон
Надежно защитите свои схемы с помощью обширного выбора стабилитронов Allied Electronics.Они используются для изменения направления тока, если напряжение достигает заданного уровня, поэтому вы можете положиться на них в широком диапазоне приложений.
Это потому, что мы поставляем наши стабилитроны от ведущих производителей, таких как Vishay, ON Semiconductor и NTE Electronics, которые используют только лучшие процессы и материалы. Наши продукты также бывают разных типов, конфигураций и напряжений, включая обычно используемые стабилитроны 3 В, 5 В, 12 В и 100 В.
Изучите наш выбор с помощью поисковых фильтров в левой части страницы или свяжитесь с нами, если вы хотите узнать больше о нашем ассортименте.Для получения дополнительной информации прокрутите вниз, чтобы узнать о стабилитронах, их принципах работы, их типах и использовании, или просмотрите наш информационный центр, чтобы найти написанные экспертами руководства по ряду вопросов, касающихся компонентов.
Что такое стабилитроны?
Стабилитроны изменяют направление потока тока в их цепи, когда напряжение достигает заранее определенного уровня, делая их двунаправленными по своей природе.
Это возможно благодаря включению в диод сильно легированного p-n перехода. Эта нечистая и очень тонкая область имеет определенное напряжение пробоя, которым можно точно управлять с помощью легирования.Когда это напряжение — напряжение стабилитрона — достигается, диод испытывает обратный пробой, проводя ток и меняя его направление.
Эта возможность означает, что они очень полезны для защиты цепей от перенапряжения или электростатического разряда, особенно потому, что они продолжают работать даже при высоком напряжении, обычном в периоды чрезмерного напряжения.
Для чего используются стабилитроны?
Существует несколько применений схем стабилитрона в электронике.
Они имеют решающее значение при создании устройств опорного напряжения, которые могут обеспечивать постоянное выходное напряжение независимо от изменения температуры или напряжения питания. Стабилитроны также широко используются в качестве регуляторов напряжения, они направляют напряжение на землю, когда ток превышает предварительно установленный уровень стабилитрона. И они используются для создания схем защиты от перенапряжения, которые просто прекращают подачу электричества, когда оно превышает напряжение стабилитрона диода.
Стабилитроны также могут использоваться для коммутации, отвода напряжения от исходной схемы и для схем ограничения, которые изменяют форму сигналов.
Какие бывают типы стабилитронов?
Доступны три основных типа стабилитронов:
Регуляторы напряжения — стабилитроны — это стабилитроны, специально разработанные для использования в схемах стабилизации напряжения.
Кремниевый планарный — Большинство стабилитронов производятся с использованием кремниевого планарного процесса, который используется для изготовления из кремния электрических компонентов. К ним относятся популярные модели, такие как серия стабилитронов BZX от Vishay.
Слабый сигнал — используется в цепях, где токи очень малы или частоты особенно высоки, малосигнальные стабилитроны обычно работают в милли- или микровольтном диапазоне.
Почему для стабилитронов выбирают Allied Electronics?
Стабилитроныобычно используются для защиты других электронных компонентов, поэтому вы должны быть уверены, что ваш диод будет работать эффективно. Выбирая широкий ассортимент Allied Electronics, вы можете создавать безопасные схемы, зная, что компоненты стабилитронов будут соответствовать вашим ожиданиям.
Мы поставляем компоненты на протяжении десятилетий, и за это время мы наладили тесные партнерские отношения с лидерами в области производства стабилитронов, включая Comchip Technology, производство твердотельных элементов и Siliconix. У нас есть только стабилитроны, произведенные в соответствии с лучшими отраслевыми стандартами, поэтому вы можете быть уверены, что они прошли испытания и отточены в результате экспертных исследований и разработок.
Наши стабилитроны имеют очень широкий диапазон напряжений: от 2,4 В до 200 В; несколько допусков стабилитрона по напряжению; импедансы от 0.От 12 Ом до 1500 Ом; и множество двух- и трехштырьковых типов монтажа, таких как шпилька, поверхностный монтаж и сквозное отверстие. Какую бы схему вы ни проектировали, мы можем помочь.
Наши стабилитроны имеют конкурентоспособные цены и поддерживаются нашими квалифицированными специалистами по послепродажному обслуживанию. Если у вас есть какие-либо вопросы относительно наших продуктов или вашего заказа, свяжитесь с нами. Чтобы узнать больше о стабилитронах и электрических компонентах в целом, посетите наш экспертный центр.
Стабилитрон — обзор
Пример 3.4
Желательно поддерживать сопротивление нагрузки R L при постоянном напряжении 100 В, поскольку входное напряжение изменяется от 120 до 110 В. Если стабилизатор напряжения типа, показанного на рис. 3.10a, должен Для достижения этой цели найдите наилучшее значение R s , учитывая, что R L = 10 кОм.
Сначала мы выбираем стабилитрон с напряжением В z = 100 В. Во-вторых, мы должны определить максимальный ток через стабилитрон при нормальной работе и убедиться, что он не превышает максимально допустимый ток стабилитрона.Затем определяем R s .
Для начала предположим, что входное напряжение зафиксировано на уровне В мин = 110 В; тогда падение напряжения 10 В на последовательном сопротивлении R s оставит R L с падением напряжения 100 В — желаемое состояние. Чтобы это произошло, ток 10 мА должен протекать через R L и R с , что определило бы последовательное сопротивление как R с = 10 В / 10 мА = 1 кОм. .Если бы напряжение оставалось на уровне 110 В, стабилитрон не понадобился бы, так как стабилитрон не протекал бы, даже если бы стабилитрон присутствовал. Однако входное напряжение изменяется, как показано на рис. 3.10b. Переключение с 110 В на 120 В обычно происходит не быстро, но может происходить за секунды, минуты или даже часы.
При повышении входного напряжения до 120 В ток через R s будет увеличиваться пропорционально. Чтобы поддерживать R L при 100 В, ток через R L должен оставаться на уровне 10 мА, а любой избыточный ток должен течь через стабилитрон.Когда входное напряжение составляет В макс = 120 В, 20 В падает на R с и 20 мА проходит через R с (от 10 мА до R L и 10 мА через стабилитрон). Следовательно, как показано на рис. 3.10b, ток стабилитрона изменяется между I z , мин. = 0 и I z , макс. = 10 мА в ответ на изменения входного напряжения, в то время как нагрузка напряжение остается постоянным на уровне 100 В.
Условие I z , min = 0 может использоваться для определения оптимального значения для R s , то есть
Rs, оптимальный = Vmin − VzIL
, который для нашего примера дает R с , opt = (110 В — 100 В ) / 10 мА = 1 кОм.Если нам известен максимальный ток I z , max , который может выдержать стабилитрон, мы можем указать минимальное значение R s , которое можно использовать в цепи стабилизатора напряжения на стабилитроне. as
Rs, min = Vmax − VzIz, max + IL
Если предположить, что I z , max = 30 мА, то для R s = (120 — 100 ) / (30 + 10) = 0.5 кОм = 500 Ом. Преимущество использования меньшего сопротивления для R s состоит в том, что если входное напряжение упадет ниже 110 В, действие регулятора все еще может иметь место. Недостатком является то, что (i) R s , min рассеивает больше мощности, чем R s , opt , (ii) ток стабилитрона изменяется в пределах I z , min = 10 мА и I z , макс = 30 мА, тогда как с R s , opt ток Зенера изменяется только от 0 до 10 мА, и (iii) если входное напряжение превышает 120 В, ток стабилитрона превысит максимально допустимый ток I z , max и, скорее всего, повредит диод.
Всегда существует некоторая опасность превышения максимального тока диода либо из-за неожиданного восходящего колебания входного напряжения, либо из-за внезапного отключения нагрузки, в результате чего весь входной ток будет протекать через диод. Последний случай, случай внезапной разомкнутой нагрузки ( R L = ∞), обычно приводит к выходу из строя стабилитрона, поскольку наиболее вероятно, что I z , max будет превышено.
Что такое стабилитрон
Стабилитрон широко используется в качестве источника опорного напряжения, где его характеристика обратного пробоя обеспечивает стабильное напряжение на диоде для ряда протекающих через него токов.
Учебное пособие по стабилитрону / эталонному диоду В комплект входит: Стабилитрон
Теория работы стабилитрона
Технические характеристики стабилитрона
Схемы на стабилитронах
Другие диоды: Типы диодов
Стабилитрон — это разновидность полупроводникового диода, который широко используется в электронных схемах в качестве источника опорного напряжения.
Стабилитрон или диод опорного напряжения — это электронный компонент, который обеспечивает стабильное и заданное напряжение.В результате схемы на стабилитронах часто используются в источниках питания, когда требуются регулируемые выходы. Эти диоды также используются во многих других приложениях, где требуются стабильные заданные источники опорного напряжения. Их также можно использовать для ограничения напряжения в ограничителях напряжения или для устранения скачков переходных процессов в линиях напряжения.
Стабилитроны/ опорные диоды напряжения дешевы, они также просты в использовании, и эти электронные компоненты легко доступны для различных напряжений, с различными номинальными мощностями и т. Д.
Стабилитрон работает как обычный диод с PN переходом в прямом направлении, но обеспечивает очень резкий пробой в обратном направлении при определенном напряжении. Именно это напряжение обратного пробоя используется для опорного напряжения или в приложениях ограничения.
История стабилитрона
История стабилитроновберет свое начало в разработке первых полупроводниковых диодов. Хотя первые детекторы, такие как кошачий ус, диоды с точечным контактом, были доступны примерно с 1905 года, много работ по полупроводникам и полупроводниковым диодам было предпринято во время и после Второй мировой войны.
Первым человеком, описавшим электрические свойства стабилитрона, был Кларенс Мелвин Зинер (родился 1 декабря 1905 года, умер 15 июля 1993 года).
Кларенс Зинер был физиком-теоретиком, который работал в Bell Labs, и в результате его работы Белл назвал стабилитрон в его честь. Он впервые постулировал эффект разрушения, носящий его имя, в статье, опубликованной в 1934 году.
Основы стабилитрона
Стабилитроныиногда называют эталонными диодами, поскольку они могут обеспечивать стабильное эталонное напряжение для многих электронных схем.Сами диоды дешевы и доступны в большом количестве, и их можно купить практически в каждом магазине электронных компонентов.
Стабилитроныимеют многие из основных свойств обычных полупроводниковых диодов. Они проводят в прямом направлении и имеют такое же напряжение включения, что и обычные диоды. Для кремния это около 0,6 вольт.
IV характеристика стабилитронаВ обратном направлении стабилитрон работает иначе, чем обычный диод. При низком напряжении диоды проводят не так, как можно было бы ожидать.Однако при достижении определенного напряжения диод «выходит из строя» и течет ток.
Глядя на кривые стабилитрона, можно увидеть, что напряжение почти постоянно, независимо от протекаемого тока. Это означает, что стабилитрон обеспечивает стабильное и известное опорное напряжение для широкого диапазона уровней тока.
Замечательная стабильность напряжения пробоя в широком диапазоне уровней пропускной способности — вот что делает эталонный стабилитрон таким полезным.Его можно использовать в большом количестве цепей для обеспечения стабильного опорного напряжения, а также во множестве других цепей, где можно использовать его характеристику обратного пробоя.
Обозначение схемы стабилитрона
Существует много стилей корпусов стабилитронов. Некоторые из них используются для высоких уровней рассеивания мощности, а другие содержатся в форматах для поверхностного монтажа. Для домашнего строительства наиболее распространенный тип заключен в небольшую стеклянную капсулу.У него есть полоса вокруг одного конца, которая отмечает катод.
Видно, что полоса вокруг корпуса соответствует линии на символе диодной цепи, и это может быть простым способом запомнить, какой конец есть какой. Для стабилитрона, работающего в режиме обратного смещения, полоса является более положительной клеммой в цепи.
Маркировка стабилитронов, символы и контуры упаковкиЧтобы отличить стабилитрон или эталонный диод от других форм диодов в пределах принципиальной схемы, символ цепи стабилитрона помещает две метки на конце полосы: одна направлена вверх, а другая — внизу. нижнее направление, как показано на схеме.
Типовой номер стабилитрона
С точки зрения нумерации типов стабилитроны или диоды опорного напряжения представляют небольшую проблему для их типовой нумерации. Может быть общая серия диодов одного семейства, но с разными пробивными или опорными напряжениями.
В результате можно зарезервировать последовательную серию номеров диодов в системе или добавить суффикс к номеру основного типа для обозначения напряжения.
Один из методов нумерации стабилитронов одного семейства, но с разными напряжениями — это использовать серию в рамках стандартной системы нумерации.Одним из примеров является серия от 1N4728A до 1N4764A с одним номером детали, назначенным для каждого напряжения. Эти диоды представляют собой стабилитроны мощностью 400 мВт с диапазоном напряжений от 3,3 до 100 В с допуском 5% и в диапазоне E24.
Другой используемый метод состоит в том, чтобы указать номер для семейства, а затем добавить к номеру детали напряжение, например BZY88 C5V6 где 5V6 — напряжение, 5,6 вольт.
Стабилитроны или значения опорного диода напряжения обычно разнесены с использованием серии E12, хотя некоторые из них доступны в серии E24, например.g 5V1 используется для ряда логических микросхем, где используется очень простой стабилитрон. Если транзисторный эмиттерный повторитель используется для большего тока, то стабилитрон 5V6 лучше, так как транзистор упадет на 0,6 вольт, что делает его идеальным.
Хотя лучше всего придерживаться более часто используемой серии E12, а еще лучше E6 или даже E3, часто это невозможно, и доступны значения напряжения стабилитронов из серии E24.
Стандартное напряжение стабилитрона E24, серия (Примечание: значения E12 выделены жирным шрифтом) | ||
---|---|---|
1.0 | 1,1 | 1,2 |
1,3 | 1,5 | 1,6 |
1,8 | 2,0 | 2,2 |
2,4 | 2,7 | 3,0 |
3,3 | 3,6 | 3,9 |
4,3 | 4,7 | 5.1 |
5,6 | 6,2 | 6,8 |
7,5 | 8,2 | 9,1 |
Примечание: Значения E12 выделены жирным шрифтом.
Стабилитроныобычно не поставляются последовательно выше диапазона E24. Причина этого в том, что производственные допуски недостаточны, и их использование обычно не требует.
Стабилитроны с технологией
Стабилитроныработают при обратном смещении и используют две формы обратного пробоя. Одна из форм обратного пробоя называется пробоем Зенера, и это дает название, которое часто используется для описания всех форм опорного диода напряжения. Другой тип обратного пробоя можно назвать ударно-ионизационным пробоем.
Установлено, что из двух эффектов эффект Зенера преобладает выше примерно 5,5 вольт, тогда как ударная ионизация является основным эффектом ниже этого напряжения.
Поскольку два эффекта имеют температурный коэффициент, который находится в противоположных смыслах, это означает, что диоды с напряжением около 5,5 В являются наиболее термостабильными.
Технические характеристики стабилитронов / диодов опорного напряжения
При выборе стабилитрона или опорного диода напряжения для использования в схеме необходимо учитывать несколько спецификаций, чтобы гарантировать выбор оптимального диода для конкретного применения.
Очевидная спецификация стабилитрона — это обратное напряжение, но другие характеристики, такие как рассеиваемая мощность, обратный ток и т.п., также важны для любой схемы, которая может включать диод.
Цепи стабилитронов
Есть много способов использования стабилитронов или диодов опорного напряжения. Наиболее широко известны в качестве источника опорного напряжения в некоторой форме регулятора напряжения, но они также могут использоваться в качестве ограничителей формы сигнала для схем, где может возникнуть необходимость ограничить отклонение формы сигнала для предотвращения перегрузки и т. Д. Они также могут использоваться. в переключателях напряжения.
Соответственно, стабилитроны часто используются в конструкциях электронных схем, и огромное количество их повторно используется в производстве, как в качестве устройств с выводами, так и в форматах для поверхностного монтажа.
Стабилитрон — особенно полезный компонент для проектирования электронных схем. В результате миллионы стабилитронов ежегодно используются при создании электронного оборудования как в виде дискретных компонентов, так и в качестве компонентов, содержащихся в больших интегральных схемах.
Несмотря на то, что доступны интегральные схемы опорного напряжения, которые обеспечивают очень высокую степень точности и температурную стабильность, для большинства применений простой стабилитрон более чем удовлетворительный и обеспечивает гораздо более дешевое решение.Соответственно, это помогает узнать, что такое стабилитрон, как он работает, и основы схемы на стабилитроне.