Законы Ома для участка цепи и для полной цепи
В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.
В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.
Закон Ома для участка цепи
Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.
I = U/ R
Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.
Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.
U = I*R
R = U / I
Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.
Закон Ома для замкнутой цепи
Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.
Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.
I = E/ Rвн+r
Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.
Закон Ома для неоднородного участка цепи
Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.
Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:
I = U/ R = f1 – f2 + E/ R
Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети
R – общее сопротивление нелинейного участка цепи
ЭДС нелинейного участка цепи бывает боль
Закон Ома — это… Что такое Закон Ома?
V — напряжение,I — сила тока,
R — сопротивление.
Зако́н О́ма — физический закон, определяющий связь электродвижущей силы источника или электрического напряжения с силой тока и сопротивлением проводника. Экспериментально установлен в 1826 году, и назван в честь его первооткрывателя Георга Ома.
В своей оригинальной форме он был записан его автором в виде : ,
Здесь X — показания гальванометра, т.е в современных обозначениях сила тока I, a — величина, характеризующая свойства источника тока, постоянная в широких пределах и не зависящая от величины тока, то есть в современной терминологии электродвижущая сила (ЭДС) ,
В таком случае в современных терминах и в соответствии с предложенной автором записи формулировка Ома (1) выражает
Закон Ома для полной цепи:
, (2)
где:
Из закона Ома для полной цепи вытекают следствия:
- При r<<R сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения
- При r>>R сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.
Часто[2] выражение:
(3)
(где есть напряжение или падение напряжения, или, что то же, разность потенциалов между началом и концом участка проводника) тоже называют «Законом Ома».
Таким образом, электродвижущая сила в замкнутой цепи, по которой течёт ток в соответствии с (2) и (3) равняется:
(4)
То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему
К другой записи формулы (3), а именно:
(5)
Применима другая формулировка:
Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи. |
(6)
где коэффициент пропорциональности G назван проводимость или электропроводность. Изначально единицей измерения проводимости был «обратный Ом» — Mо[3], впоследствии переименованный в Си́менс (обозначение: См, S).
Мнемоническая диаграмма для Закона
Схема, иллюстрирующая три составляющие закона Ома Диаграмма, помогающая запомнить закон Ома. Нужно закрыть искомую величину, и два других символа дадут формулу для её вычисленияВ соответствии с этой диаграммой формально может быть записано выражение:
(7)
Которое всего лишь позволяет вычислить (применительно к известному току, создающему на заданном участке цепи известное напряжение), сопротивление этого участка. Но математически корректное утверждение о том, что сопротивление проводника растёт прямо пропорционально приложенному к нему напряжению и обратно пропорционально пропускаемому через него току, физически ложно.
В специально оговорённых случаях сопротивление может зависеть от этих величин, но по умолчанию оно определяется лишь физическими и геометрическими параметрами проводника:
(8)
где:
- — удельное сопротивление материала, из которого сделан проводник,
- — его длина
- — площадь его поперечного сечения
Закон Ома и ЛЭП
Одним из важнейших требований к линиям электропередач (ЛЭП) является уменьшение потерь при доставке энергии потребителю. Эти потери в настоящее время заключаются в нагреве проводов, то есть переходе энергии тока в тепловую энергию, за что ответственно омическое сопротивление проводов. Иными словами задача состоит в том, чтобы довести до потребителя как можно более значительную часть мощности источника тока = при минимальных потерях мощности в линии передачи = , где , причём на этот раз есть суммарное сопротивление проводов и внутреннего сопротивления генератора, (последнее всё же меньше сопротивления линии передач).
В таком случае потери мощности будут определяться выражением:
= (9)
Отсюда следует, что при постоянной передаваемой мощности её потери растут прямо пропорционально длине ЛЭП и обратно пропорционально квадрату ЭДС. Таким образом желательно всемерное её увеличение, что ограничивается электрической прочностью обмотки генератора. И повышать напряжение на входе линии следует уже после выхода тока из генератора, что для постоянного тока является проблемой. Однако, для переменного тока эта задача много проще решается с помощью использования трансформаторов, что и предопределило повсеместное распространение ЛЭП на переменном токе. Однако при повышении напряжения в ней возникают потери на коронирование и возникают трудности с обеспечением надёжности изоляции от земной поверхности. Поэтому наибольшее, практически используемое, напряжение в дальних ЛЭП не превышает миллиона вольт.
Кроме того, любой проводник, как показал Дж. Максвелл, при изменении силы тока в нём, излучает энергию в окружающее пространство, и потому ЛЭП ведёт себя как антенна, что заставляет в ряде случаев наряду с омическими потерями брать в расчёт и потери на излучение.
Закон Ома в дифференциальной форме
Сопротивление зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника.
Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:
где:
Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).
Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.
Закон Ома для переменного тока
Вышеприведённые соображения о свойствах электрической цепи при использовании источника (генератора) с переменной во времени ЭДС остаются справедливыми. Специальному рассмотрению подлежит лишь учёт специфических свойств потребителя, приводящих к разновремённости достижения напряжением и током своих максимальных значений, то есть учёта фазового сдвига.
Если ток является синусоидальным с циклической частотой , а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными:
где:
- U = U0eiωt — напряжение или разность потенциалов,
- I — сила тока,
- Z = Re−iδ — комплексное сопротивление (импеданс),
- R = (Ra2 + Rr2)1/2 — полное сопротивление,
- Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),
- Rа — активное (омическое) сопротивление, не зависящее от частоты,
- δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.
При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведён взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, подбором такой что Тогда все значения токов и напряжений в схеме надо считать как
Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.
Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и от сопротивления и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.
Трактовка закона Ома
Закон Ома можно просто объяснить при помощи теории Друде:
Здесь:
См. также
Примечания
Ссылки
Три закона Ома
Недавно мы выпустили переиздание книги Фрэнка Вильчека (Frank Wilczek) «Тонкая физика. Масса, эфир и объединение всемирных сил» в мягком переплете. Автор, лауреат Нобелевской премии по физике, излагает современные взгляды на нашу невероятную Вселенную и прогнозирует новый золотой век фундаментальной физической науки. ХХ2 уже публиковали один отрывок из этой замечательной книги, теперь публикуют новый — о том, почему эквивалентные равенства могут поведать нам о разных явлениях.
Из третьей главы. Второй закон Ома
Второй закон Эйнштейна, m = E/c2, поднимает вопрос о том, может ли масса быть понята более глубоко — как энергия. Можем ли мы создать, как выразился Уилер, «массу без массы»?
Когда я ещё только собирался начать преподавать в Принстоне, мой друг и наставник Сэм Трейман позвал меня в свой кабинет. Он хотел поделиться со мной своей мудростью. Сэм вытащил из ящика стола потрёпанное руководство в мягкой обложке и сказал мне: «Во время Второй мировой войны ВМС приходилось в спешке обучать новобранцев налаживанию и использованию радиосвязи. Многие из этих новобранцев прибывали прямо с ферм, так что быстро ввести их в курс дела было очень трудно. С помощью той великолепной книги командованию военно-морского флота это удалось. Это шедевр педагогики. Особенно первая глава. Взгляни».
Он вручил мне книгу, открытую на первой главе. Она называлась «Три закона Ома». Я был знаком с одним законом Ома, известным соотношением V = IR, который связывает напряжение (V), силу тока (I) и сопротивление (R) в электрической цепи.
Это оказалось первым законом Ома.
Мне было очень интересно узнать, каковы два других закона Ома. Перевернув несколько хрупких пожелтевших страниц, я обнаружил второй закон Ома: I = V/R. Я предположил, что третий закон Ома формулируется как R = I/V, и оказался прав.
Открывать новые законы легко
Тем, кто знаком с элементарной алгеброй, так очевидно, что эти три закона эквивалентны друг другу, что данная история воспринимается как шутка. Однако в ней заключён глубокий смысл. (Кроме того, в ней есть и неглубокий смысл, который, как мне кажется, Сэм хотел до меня донести. При обучении начинающих вы должны несколько раз сказать одно и то же, но по-разному. Соотношения, которые бесспорны для профессионала, могут не быть таковыми для новичка. Студенты не будут возражать против объяснения очевидного. Очень немногие люди обижаются, когда вы позволяете им почувствовать себя умными.)
Глубокий смысл содержит заявление великого физика-теоретика Поля Дирака. Когда его спросили, как он открывает новые законы природы, Дирак ответил: «Я играю с уравнениями». Суть в том, что различные способы написания одного и того же уравнения могут говорить о совершенно разных вещах, даже если они являются логически эквивалентными.
Второй закон Эйнштейна
Второй закон Эйнштейна формулируется следующим образом:
m = E/c2.
Первый закон Эйнштейна — это, разумеется, E = mc2. Здорово, что первый закон предполагает возможность получения большого количества энергии из небольшого количества массы. Он наводит на мысль о ядерных реакторах и ядерных бомбах.
Второй закон Эйнштейна предполагает нечто совершенно иное.
Он предполагает возможность объяснения того, как масса возникает из энергии.
На самом деле этот закон неправильно называть «вторым».
В оригинальной работе Эйнштейна 1905 года вы не найдёте уравнения E = mc2. Вы встретите уравнение m = E/c2. (Поэтому, возможно, нам следует назвать его нулевым законом Эйнштейна.)
На самом деле в качестве названия этой статьи используется вопрос: «Зависит ли инерция тела от содержащейся в нем энергии?»
Другими словами, может ли некоторое количество массы тела возникать из энергии содержащегося в нем вещества? С самого начала Эйнштейн размышлял о концептуальных основах физики, а не о возможности создания бомб или реакторов.
Понятие энергии играет гораздо более важную роль в современной физике, чем понятие массы. Это проявляется во многих отношениях. Сохраняется именно энергия, а не масса. Именно энергия фигурирует в таких фундаментальных уравнениях, как уравнение Больцмана для статистической механики, уравнения Шрёдингера для квантовой механики и уравнение Эйнштейна для гравитации. Масса в более техническом смысле проявляется в качестве метки для неприводимых представлений группы Пуанкаре.
(Я даже не буду пытаться объяснить, что означает предыдущее утверждение, к счастью, суть заключается в самом факте утверждения.)
Таким образом, вопрос Эйнштейна бросает вызов. Если мы сможем объяснить массу в терминах энергии, мы улучшим наше описание мира. В этом случае в нашем рецепте нам потребуется меньшее количество ингредиентов. Второй закон Эйнштейна позволяет дать хороший ответ на вопрос, который мы задали ранее. Откуда берётся масса? Может быть, из энергии. На самом деле, как мы увидим далее, в основном так и есть.
Источник: https://22century.ru/popular-science-publications/tonkaya-fizika-massa-efir-i-obedinenie-vsemirnyh-sil?
Законы электротехники | elesant.ru
Законы электротехники
- Закон Ома
- Законы Кирхгофа
- Закон Джоуля-Ленца
Основной закон электротехники закон Ома
Основным законом электротехники, несомненно, является Закон Ома. Названый, как и большинство, законы в физики, в честь его открывателя немецкого физика Ома, он гласит:
Сила тока участка электрической сети прямо пропорциональна напряжению, приложенному к этому участку и обратно пропорциональна его сопротивлению.
В символическом выражении Закон Ома выглядит так:
I=U÷R, где I-Сила тока в цепи (Ампер), U-Напряжение сети (Вольт), R-Сопротивление сети (Ом).
В таком виде закон Ома не имеет практического применения в электрике жилых и промышленных зданий. Напомню, что для электропитания зданий применяется переменное напряжение и здесь работают немного другие законы электротехники. Но закон Ома является одной из баз лежащей в основе всех формул и всех электротехнический расчетов.
Практическое применения имеет закон взаимосвязи (соответствия) напряжения, силы тока и мощности в электрической цепи. Он математически выводится из закона Ома и основан на двух алгебраических формулах, выражающих физические законы:
P=U×I, где P-мощность электрической сети (Ватт), U-напряжение, I-сила тока.
I=U÷R, где I-сила тока, U-напряжение, R-сопротивление.
Если немного посидеть, вспомнить простую алгебру и поманипулировать с эти двумя формулами, можно получить диаграмму-подсказку, в которой все четыре величины:U; I; R; P математически связаны друг с другом.
Практическое применение этих математических формул законов электрики можно применить в расчете простой электросети напряжением 220 Вольт без электродвигателей.
Например: Освещение одной комнаты из 20 лампочек накаливания. Напряжение сети величина постоянная и равна 220 вольт. Мощность каждой лампочки 25 Ватт.
Простым умножением получаем следующие результаты:
Общая потребляемая мощность сети:25 Ватт×20 лампочек=500ватт.
Сила тока в сети:500ватт÷220 вольт=2,3 ампера.
Если таких комнат в квартире три, то суммарный рабочий ток в сети составит 3×2,3 ватта=6,9 Ампер.
В соответствии с этим расчетом можно выбрать номинал автомата защиты освещения всей квартиры. Округляем 6,9 ампер в большую сторону, до значения номиналов автоматов имеющихся в продаже. Это 10 ампер.
Вывод: Простой расчет по основному закону электропроводки позволил рассчитать номинал нужного автомата защиты.
Законы Кирхгофа
Электрика любого помещения выполняется в виде замкнутых, рабочих электрических цепей. Два главных закона, которые определяют процессы в электрических сетях, являются законы Кирхгофа. Их два. Оба из них применяются и для постоянных и для переменных токов.
Первый закон Кирхгофа утверждает:
Суммарная величина токов направленная к узлу электрической сети равна суммарной величине токов направленных от узла.
В практике на основе первого закона Кирхгофа основана работа Устройств защитного отключения (УЗО). Работа УЗО заключается в отключении электропитания сети при возникновении токов утечки. При нормальном режиме работы суммарное значение тока, втекающая в электрическую сеть равна значению тока утекающему из нее. Если равенство токов нарушается, значит, в сети есть утечка. УЗО сконструировано и подключено таким образом, что при утечке тока УЗО его обнаруживает и размыкает питание электросети.
Второй закон Кирхгофа гласит:
Любой замкнутый контур переменной электрической сети имеет равные значения комплексных напряжений и ЭДС (электродвижущих сил) на всех пассивных элементах сети.
Примечание: Комплексное напряжение это значение напряжение в сети переменного тока.
Практическое применение можно пояснить на любой квартирной группе электропитания. Для пояснения рассмотрим квартиру.
Сколько бы групп электропитания в квартире не было, на любой розетке или светильнике напряжение в сети (при рабочем режиме) будет 220 вольт.
Еще один основной закон электрики нужно вспомнить.
Закон Джоуля-Ленца
Закон Джоуля-Ленца устанавливает связь между током «бегающему» по проводнику, его сопротивлению и теплом которое при этом выделяется.
В математическом символизме закон Джоуля-Ленца выглядит так:
Q=I2×R×t,где Q это количество выделяемого тепла в проводнике, в Джоулях;I-сила тока;R-сопротивление проводника;t-время прохождения тока в секундах.
В качестве информации: Ленц это русский физик Эмилий Христианович Ленц. Русский физик, электротехник, физический географ.1804-1865 года жизни.
Говоря о практическом применении закона Джоуля-Ленца, трудно назвать в какой части электрики он не проявляется. Электрические обогреватели, электрические водонагреватели, тепловые завесы, выбор автоматов защиты, тепловые реле в автоматике и многое другое.
Конечно это не все основные законы электрики. На по своему значению эти законы имеют фундаментальное значение.
Другие статьи сайта