Site Loader

2.4. Закон Ома. Электрическое сопротивление. Закон Джоуля – Ленца — ЗФТШ, МФТИ

Как отмечалось выше, для поддержания постоянного тока в проводнике, т. е. движения электронов с постоянной скоростью, необходимо непрерывное действие сил электрического поля на носители заряда. Это означает, что электроны в проводниках движутся «с трением», иначе говоря, проводники обладают электрическим сопротивлением.

Если состояние проводника остаётся неизменным (не изменяется его температура и т. д.), то для каждого проводника существует однозначная зависимость между напряжением `U` на концах проводника и силой `I` тока в нём `I=f(U)`. Она называется вольтамперной характеристикой данного проводника.

Для многих проводников эта зависимость особенно проста – линейная: сила тока прямо пропорциональна приложенному напряжению, т. е.

где `R` – электрическое сопротивление проводника (постоянная при неизменных условиях величина).

Этот закон носит название закона Ома. Немецкий физик Г. Ом в 1827 г. в результате серии экспериментов установил, что для широкого класса проводников сила `I` электрического тока в проводнике пропорциональна напряжению `U` на концах проводника.

Сопротивление `R` проводника зависит от рода вещества проводника, от его размеров и формы, а также от состояния проводника.

Единицей сопротивления в СИ является один Ом (Ом). За один Ом принимается сопротивление такого проводника, в котором при напряжении между его концами один вольт течёт постоянный ток силой один ампер: `1`Ом`=1`В`//1`A.

Вытекающее из закона Ома (8) соотношение

можно рассматривать и как определение сопротивления по приведённой формуле.

Г. Ом установил, что для проводников  $$ R$$ не зависит от $$ U.$$ 

В технических приложениях для описания процессов в электрических цепях часто используется понятие  вольтамперной характеристики. Для проводников, подчиняющихся закону Ома (8), графиком зависимости силы `I` тока в проводнике от напряжения `U` на нём будет прямая линия, проходящая через начало координат (см. рис. 1). При этом говорят, что проводник имеет линейную вольтамперную характеристику.

В то же время для полупроводников, электронных ламп, диодов, транзисторов зависимость `I=f(U)` носит сложный характер, и такие элементы называют нелинейными (или неомическими). Для таких элементов величина `R`, вычисленная по формуле `R=U/I`, зависит от `U`. В частности, при измерении вольтамперной характеристики лампочки накаливания с вольфрамовой нитью мы обнаружим, что она имеет вид, схематически показанный на рис. 2. Искривление вольтамперной характеристики связано с нагревом нити и увеличением сопротивления нити накала с ростом температуры. В некоторых устройствах, таких как диод, сопротивление зависит от направления тока.

Обсудим вопрос о тепловыделении в проводнике. С учётом закона Ома (8) формула (7) для мощности тепловыделения принимает вид:

Другими словами, если через резистор `R` протекает постоянный ток силой `I`, то за `t` секунд в резисторе выделяется количество теплоты, равное

Соотношения (10), (11) являются математическим выражением закона, открытого в XIX веке практически одновременно и независимо английским физиком Д. Джоулем и русским физиком Э.Х. Ленцем.

Обратим внимание, что полученный закон является прямым следствием закона сохранения энергии в применении к движению электрических зарядов под действием сил электрического поля.

Закон Ома — Learn

Закон Ома

«Не знаешь закон Ома – сиди дома»

Георг Симон Ом

Закон Ома – полученный экспериментальным путём закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.

Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.

Формула закона Ома записывается в следующем виде:

где:

I – сила тока в проводнике, единица измерения силы тока – ампер [А];

U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];

R – электрическое сопротивление проводника, единица измерения электрического сопротивления – ом [Ом]

Электрическая цепь

 

Чтобы лучше понять смысл закона Ома, нужно представлять, как устроена электрическая цепь.

Что такое электрическая цепь? Это путь, который проходят электрически заряженные частицы (электроны) в электрической схеме.

Чтобы в электрической цепи существовал ток, необходимо наличие в ней устройства, которое создавало бы и поддерживало разность потенциалов на участках цепи за счёт сил неэлектрического происхождения. Такое устройство называется источником постоянного тока, а силы – сторонними силами.

Электрическую цепь, в которой находится источник тока, называют полной электрической цепью. Источник тока в такой цепи выполняет примерно такую же функцию, что и насос, перекачивающий жидкость в замкнутой гидравлической системе.

Простейшая замкнутая электрическая цепь состоит из одного источника и одного потребителя электрической энергии, соединённых между собой проводниками.

 

Параметры электрической цепи

Электрический ток в такой цепи представляет собой движение электронов в проводнике. И хотя в действительности они движутся по направлению к положительному полюсу источника, в физике направлением тока принято считать движение от положительного полюса к отрицательному.

Количество заряженных частиц, протекающих через поперечное сечение проводника, называется силой тока. Обозначается эта величина буквой I  и измеряется в амперах.

Но проводник оказывает сопротивление движению электронов. Величину, характеризующую противодействие электрической цепи или её участка электрическому току, называют электрическим сопротивлением. Его величина называется омом в честь знаменитого физика и обозначается буквой R.

Величина, равная разности потенциалов источника электрического тока, называется электрическим напряжением. Обозначается буквой U. Измеряется в вольтах.

Участок цепи без источника тока называют внешней цепью. Её сопротивление обозначают буквой R, а внутреннее сопротивление источника – r. ЭДС источника обозначается символом ε. ЭДС источника состоит из падения напряжения U во внешней цепи и падения напряжения Uна самом источнике.

ε = U +U1,

Внешняя цепь рассматривается как участок цепи. Вообще, любую электрическую цепь можно представить в виде участков, между двумя точками которых течёт электрический ток. Каждый участок можно охарактеризовать падением напряжения U, сопротивлением R и силой тока I.

Опытным путём Ом установил взаимосвязь между этими основными параметрами электрической цепи: «Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению на этом участке».

I = U/R

Это и есть формула закона Ома для участка цепи.

Опыт Ома

 

Свой знаменитый закон Ом вывел экспериментальным путём.

Проведём несложный опыт.

Соберём электрическую цепь, в которой источником тока будет аккумулятор, а прибором для измерения тока – последовательно включенный в цепь амперметр. Нагрузкой служит спираль из проволоки. Напряжение будем измерять с помощью вольтметра, включенного параллельно спирали. Замкнём с помощью ключа электрическую цепь и запишем показания приборов.

Подключим к первому аккумулятору второй с точно таким же параметрами (последовательно). Снова замкнём цепь. Приборы покажут, что и сила тока, и напряжение увеличились в 2 раза.

Вывод очевиден: сила тока в проводнике прямо пропорциональна напряжению, приложенному к концам проводника.

В нашем опыте величина сопротивления оставалась постоянной. Мы меняли лишь величину тока и напряжения на участке проводника. Оставим лишь один аккумулятор. Но в качестве нагрузки будем использовать спирали из разных материалов. Их сопротивления отличаются. Поочерёдно подключая их, также запишем показания приборов. Мы увидим, что здесь всё наоборот. Чем больше величина сопротивления, тем меньше сила тока. Сила тока в цепи обратно пропорциональна сопротивлению.

Итак, наш опыт позволил нам установить зависимость силы тока от величины напряжения и сопротивления.

Шпаргалка для запоминания

Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.

Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.

Для наглядного объяснения своего закона Георг Ом течение тока сравнивал с течением воды по трубе, чем тоньше труба – тем больше сопротивление и меньше ток. Чем больше воды подаётся в трубу, тем выше ток.

Мне нравится такое сравнение как на картинке ниже:

 

Короткое замыкание

А что произойдёт, если сопротивление внешней цепи вдруг станет равно нулю? В повседневной жизни мы можем наблюдать это, если, например, повреждается электрическая изоляция проводов, и они замыкаются между собой. Возникает явление, которое называется коротким замыканием. Ток, называемый током короткого замыкания, будет чрезвычайно большим. При этом выделится большое количество теплоты, которое может привести к пожару. Чтобы этого не случилось, в цепи ставят устройства, называемые предохранителями. Они устроены так, что способны разорвать электрическую цепь в момент короткого замыкания.

Закон Ома для переменного тока

В цепи переменного напряжения кроме обычного активного сопротивления встречается реактивное сопротивление (ёмкости, индуктивности).

Для таких цепей U = I · Z, где Z – полное сопротивление, включающее в себя активную и реактивную составляющие.

Но большим реактивным сопротивлением обладают мощные электрические машины и силовые установки. В бытовых приборах, окружающих нас, реактивная составляющая настолько мала, что её можно не учитывать, а для расчётов использовать простую форму записи закона Ома:

I = U/R

С помощью закона Ома можно рассчитать параметры любой электрической цепи.

Мощность и закон Ома

 

Ом не только установил зависимость между напряжением, током и сопротивлением электрической цепи, но и вывел уравнение для определения мощности:

P = U · I = I2 · R

Как видим, чем больше ток или напряжение, тем больше мощность. Так как проводник или резистор не является полезной нагрузкой, то мощность, которая приходится на него, считается мощностью потерь. Она идёт на нагревание проводника. И чем больше сопротивление такого проводника, тем больше теряется на нём мощности. Чтобы уменьшить потери от нагревания, в цепи используют проводники с меньшим сопротивлением. Так делают, например, в мощных звуковых установках.

Движение тока в цепи постоянного тока

Считалось, что ток движется от + к – до тех пор, пока не открыли электрон. Оказалось, что электроны двигаются от минуса к плюсу. Решили оставить предположение как есть. Путаницу может внести и то, что, если в металлах двигаются отрицательно заряженные электроны, то в электролитах присутствуют и положительные ионы, и отрицательные.

Значение закона Ома: краткий обзор основ

  • Новостная рассылка
  • Белая бумага
  • Вебинары

Откройте для себя PCIM Europe

  • Продукты и приложения
  • Новости отрасли
  • Исследования и разработки
  • Инструменты и программное обеспечение
  • Эксперты
  • Услуги

От Люк Джеймс

Связанные поставщики

КерамТек ГмбХ EA Elektro-Automatik GmbH & Co. KG РОМ Полупроводник ГмбХ

Закон Ома, возможно, является одним из наиболее важных принципов силовой электроники и лежит в основе проектирования электронных схем. Но что такое закон Ома и как выглядит формула? Прочитайте эту статью, чтобы получить объяснение закона Ома.

(Источник: shaiith — stock.adobe.com)

Что такое закон Ома?

Закон Ома — это формула, которая используется для расчета соотношения между напряжением, током и сопротивлением в электрической цепи. Это три наиболее важных параметра схемы в электронике, поэтому закон Ома является важным принципом, который должен понимать любой начинающий инженер-электрик.

Сегодня закон Ома используется во всех отраслях электротехники, особенно при проектировании электронных схем. Он используется для расчета номинала резисторов, необходимых в цепях, а также может использоваться для определения тока, протекающего в цепи, где можно легко измерить напряжение на известном резисторе.

Закон Ома также используется во множестве расчетов во всех формах проектирования электронных схем, от самых простых до очень сложных. Фактически везде, где течет ток, действует закон Ома.

Определение закона Ома

Закон, утверждающий, что электрический ток пропорционален напряжению и обратно пропорционален сопротивлению.

Какова формула закона Ома?

Закон Ома гласит, что ток через компонент, такой как резистор или диод, равен напряжению на этом компоненте, деленному на сопротивление этого соединения. Это можно выразить с помощью трех простых взаимозаменяемых формул (см. рис. 1)

Рисунок 1. На этом изображении показаны три формулы закона Ома.

(Источник: petrroudny — stock.adobe.com)

Каждая из этих формул по существу одинакова. Ни один из них не признан «официальным»; все три используются различными источниками.

Взаимозаменяемость уравнения также означает, что его иногда представляют в виде треугольника, где V (напряжение) находится в верхней части, I (ток) — внизу слева, а R (сопротивление) — внизу справа.

Посмотрите это видео, чтобы увидеть объяснение закона Ома с практическим примером того, как его использовать в простой цепи, в последовательной цепи, а также в параллельной цепи:

История закона Ома

В 1826 году , Георг Саймон Ом опубликовал статьи, в которых дается математическая модель того, как электрические цепи отводят тепло. В мае 1827 года Ом опубликовал Die galvanische Kette, mathematisch Bearbeitet, в которой описал взаимосвязь между электродвижущей силой, током и сопротивлением, позже известную как закон Ома. Эта работа была вдохновлена ​​работой Жана-Батиста Жозефа Фурье по теплопроводности.

Закон Ома был определен Георгом Симоном Омом (1789 — 1854), немецким физиком и математиком.

(Источник: Archivist — stock. adobe.com)

Ом использовал гальванометр для измерения тока и знал, что напряжение между клеммами термопары пропорционально температуре перехода. Затем он добавил тестовые провода, диаметр и материал, чтобы завершить схему, и обнаружил, что его данные можно смоделировать с помощью уравнения закона Ома.

Несмотря на то, что критики отнеслись к его работе враждебно, охарактеризовав ее как фантастику, закон Ома в настоящее время признан одним из наиболее важных из ранних количественных описаний физики электричества. Сегодня это считается очевидным, но в то время было трудно доказать.

Какую роль играет закон Ома в силовой электронике?

Закон Ома позволяет инженерам определять характеристики цепи, такие как ток, протекающий через нее, и сопротивление, если известно напряжение батареи в цепи. Поэтому его можно использовать для управления величиной тока в цепи, позволяя инженерам добавлять и удалять резисторы для уменьшения или увеличения величины тока, необходимого в различных приложениях.

Закон Ома также может быть расширен для описания электрической мощности (т. е. скорости потока энергии в секунду), поскольку мощность P = IV, и поэтому инженеры могут использовать его, чтобы гарантировать, что их схема обеспечивает достаточно энергии для удовлетворения потребностей, например, 80-ваттный прибор.

Вкратце, три основных применения закона Ома:

  • Определение напряжения, сопротивления или силы тока в электрической цепи.
  • Поддержание желаемого падения напряжения на электронных компонентах.
  • Отвод тока в амперметрах постоянного тока и других шунтах постоянного тока.

Ограничения закона Ома

Подобно закону Мура, некоторые законы в отрасли силовой электроники противоречивы или не могут применяться безоговорочно. Это приводит к следующему вопросу: Всегда ли верен закон Ома? Хотя закон Ома играет фундаментальную роль в электротехнике, необходимо помнить о некоторых ключевых ограничениях.

Во-первых, закон Ома не применяется к односторонним электрическим компонентам. К ним относятся, например, диоды и транзисторы, несмотря на то, что они пропускают ток только в одном направлении. Во-вторых, уровень напряжения не будет соответствовать времени для нелинейных электронных компонентов, обладающих такими свойствами, как емкость и сопротивление. Это затрудняет применение закона Ома в таких сценариях.
Полупроводники, такие как кремний, например, не подчиняются закону Ома и в результате известны как неомические проводники. По сути, это означает, что отношение напряжения к току не остается постоянным при изменении напряжения.
Закон Ома также может не дать желаемых результатов, если физические условия, такие как температура или давление, не поддерживаются постоянными.

Подпишитесь на рассылку новостей сейчас

Не пропустите наш лучший контент

Деловая электронная почта

Нажимая «Подписаться на рассылку новостей», я даю согласие на обработку и использование моих данных в соответствии с формой согласия (пожалуйста, разверните для подробностей) и принимаю Условия использования.

Для получения дополнительной информации ознакомьтесь с нашей Политикой конфиденциальности.

Развернуть для подробностей вашего согласия

(ID:49039739)

Закон Ома

Закон Ома

Для многих проводников электричества электрический ток, протекающий по ним, прямо пропорционален приложенному к ним напряжению. При микроскопическом рассмотрении закона Ома обнаруживается, что он зависит от того факта, что скорость дрейфа зарядов через материал пропорциональна электрическому полю в проводнике. Отношение напряжения к току называется сопротивлением, и если это отношение остается постоянным в широком диапазоне напряжений, материал называется «омическим». Если материал можно охарактеризовать таким сопротивлением, то ток можно спрогнозировать из соотношения:


Данные могут быть введены в любое из полей ниже. Задание любых двух величин определяет третью. После того, как вы ввели значения для двух, щелкните текст, представляющий третий на активной иллюстрации выше, чтобы вычислить его значение.
Ампер = вольт / Ом
Версия закона Ома для переменного тока
Индекс

Цепи постоянного тока

 
Гиперфизика***** Электричество и магнетизм R Ступица
Назад

Изменения напряжения вокруг любого замкнутого контура должны в сумме равняться нулю. Независимо от того, какой путь вы выберете через электрическую цепь, если вы вернетесь в исходную точку, вы должны измерить одно и то же напряжение, ограничивая чистое изменение по контуру равным нулю. Поскольку напряжение представляет собой электрическую потенциальную энергию на единицу заряда, закон напряжения можно рассматривать как следствие закона сохранения энергии.

Закон напряжения имеет большое практическое значение при анализе электрических цепей. Он используется в сочетании с текущим законом во многих задачах анализа цепей.

Закон напряжения является одним из основных инструментов анализа электрических цепей, наряду с законом Ома, законом тока и соотношением сил. Применение закона напряжения к приведенным выше схемам вместе с законом Ома и правилами объединения резисторов дает числа, показанные ниже. Определение напряжений и токов, связанных с конкретной цепью, наряду с мощностью, позволяет полностью описать электрическое состояние цепи постоянного тока.


Действующее законодательство Комбинации резисторов
Аналогия в водяном контуре
Индекс

Цепи постоянного тока

 
Гиперфизика***** Электричество и магнетизм R Ступица
Назад

Электрический ток в амперах, протекающий в любом соединении электрической цепи, равен току, вытекающему из него.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *