Урок 29. закон ома для участка цепи. соединения проводников — Физика — 10 класс
Физика, 10 класс
Урок 29. Закон Ома для участка цепи. Соединения проводников
Перечень вопросов, рассматриваемых на уроке:
- условия, необходимые для существования электрического тока;
- постоянный электрический ток;
- закон Ома для участка цепи;
- формула расчета сопротивления проводника с учетом свойств материала проводника и его геометрических размеров;
- типы соединений проводников и формулы расчета параметров электрической цепи для каждого типа.
Глоссарий по теме.
Сила тока I — скалярная величина, равная отношению заряда q, прошедшего через поперечное сечение проводника, к промежутку времени t, в течение которого шёл ток.
Постоянный ток — электрический ток, не изменяющийся со временем.
Последовательное соединение проводников. При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочередно друг за другом.
Параллельное соединение проводников. При параллельном соединении концы проводников присоединены к одной и той же паре точек.
Смешанное соединение проводников — это такое соединение, когда в цепи присутствует и последовательное, и параллельное соединение.
Узел – это точка электрической цепи, где сходится не менее трех ветвей.
Свойство проводника ограничивать силу тока в цепи, то есть противодействовать электрическому току, называют электрическим сопротивлением проводника.
Резистор или проводник — элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления.
Основная и дополнительная литература по теме урока:
1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 335 – 340.
2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. — М.: Дрофа, 2009. – С. 105 – 109.
3. Элементарный учебник физики. Учебное пособие в 3 томах под редакцией академика Ландсберга Г.С.: Т.2. Электричество и магнетизм. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 110 – 115.
4. Тульчинский М.Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 83 – 87.
5. Савельев И.В. Курс общей физики, том II. Электричество. М.: Изд. «Наука», 1970 г. С. 108.
Открытые электронные ресурсы:
http://kvant.mccme.ru/1979/02/elektrichestvo_ie_temperatura.htm
Теоретический материал для дополнительного изучения
Сложно представить нашу жизнь без электрического тока. Каждый день, не задумываясь, мы используем различные электрические приборы, в основе работы которых лежат простые и сложные электрические цепи. Какому закону подчиняются основные параметры электрических цепей? Как рассчитать эти цепи, чтобы приборы работали исправно?
Вы уже знаете, электрическим током называют упорядоченное (направленное) движение заряженных частиц.
Для возникновения и существования электрического тока в проводнике необходимо:
- наличие свободных заряженных частиц;
- сила, действующая на них в определённом направлении, то есть наличие электрического поля в проводнике.
Различают следующие действия электрического тока:
- тепловое ;
- химическое ;
- магнитное .
Постоянный ток — электрический ток, у которого сила тока и направление не изменяются со временем.
Сила тока I равна отношению электрического заряда q, прошедшего через поперечное сечение проводника, ко времени его прохождения t:
За направление электрического тока условно выбрано направление движения положительно заряженных частиц, то есть
Для каждого проводника – твердого, жидкого и газообразного – существует определённая зависимость силы тока от приложенной разности потенциалов (напряжения) на концах проводника. Эту зависимость выражает, так называемая, вольт-амперная характеристика проводника.
Для широкого класса проводников (в т. ч. металлов ) при неизменной температуре справедлив закон Ома для участка цепи:
Сила тока на участке цепи прямо пропорциональна приложенному напряжению U и обратно пропорциональна сопротивлению этого участка цепи:
Закон имеет простую форму, но доказать экспериментально его справедливость довольно трудно.
Закон Ома является основой всей электротехники постоянных токов. Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно.
Основная электрическая характеристика проводника – сопротивление. От этой величины зависит сила тока в проводнике при заданном напряжении. Причиной электрического сопротивления является взаимодействие электронов при их движении по проводнику с ионами кристаллической решетки. Сопротивление проводника зависит от свойств материала проводника и его геометрических размеров.
Электрическое сопротивление металлов прямо пропорционально длине проводника и обратно пропорционально площади его поперечного сечения:
где величина ρ – удельное сопротивление проводника — величина, зависящая от рода вещества и его состояния (от температуры в первую очередь). Удельное сопротивление веществ приводятся в справочных таблицах.
Омметр – прибор для измерения сопротивления.
От источника тока энергия может быть передана по проводам к устройствам, потребляющим энергию. Для этого составляют электрические цепи различной сложности. Различают последовательное, параллельное, смешанное соединения проводников.
Последовательное соединение проводников. При последовательном соединении электрическая цепь не имеет разветвлений. Все проводники включают в цепь поочередно друг за другом. Главная особенность последовательного соединения заключается в том, что через все проводники протекает одинаковый ток. Если через один проводник протекает ток определенной величины, то такой же ток протекает и через все остальные. Если хотя бы в одном проводнике отсутствует ток, то он обязательно отсутствует и во всех остальных. Напряжение на концах последовательно соединенных проводников складывается. Полное сопротивление всего участка цепи при последовательном соединении равно сумме сопротивлений всех проводников.
Последовательное соединение | |
Физическая величина | Формула |
Сила тока | I = I1 = I2 |
Напряжение | U = U1 + U2 |
Сопротивление | R = R1 + R2 |
Параллельное соединение проводников. При параллельном соединении концы проводников присоединены к одной и той же паре точек.
Параллельное соединение | |
Физическая величина | Формула |
Сила тока | I = I1 + I2 |
Напряжение | U = U1 = U2 |
Сопротивление |
Узел – это точка электрической цепи, где сходится не менее трех ветвей.
Узел обозначается на схеме жирной точкой в том месте, где ветви соединяются между собой.
Смешанное соединение проводников.
Смешанным соединением проводников называют такое соединение, при котором в цепи присутствует и последовательное, и параллельное соединение.
Метод эквивалентных преобразований заключается в том, что электрическую цепь или ее часть заменяют более простой по структуре электрической цепью. При этом токи и напряжения в непреобразованной части цепи должны оставаться неизменными, т.е. такими, какими они были до преобразования. В результате преобразований расчет цепи упрощается и часто сводится к элементарным арифметическим операциям.
Расчет сопротивления сложной цепи:
Рези́стор или проводник — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления.
Примеры и разбор решения заданий
1. Выберите один из 3 вариантов ответа:
При параллельном соединении проводников…
1) напряжение зависит от сопротивления на данном участке цепи
2) напряжение везде разное
3) напряжение везде одинаковое
Ответ: 3) напряжение везде одинаковое.
2. На участке цепи, изображенном на рисунке, сопротивление каждого из резисторов равно 24 Ом. Чему равно полное сопротивление участка при замкнутом ключе К?
Решение.
После замыкания ключа схема будет представлять собой параллельное соединение резистора с двумя последовательно соединенными резисторами.
Полное сопротивление участка при замкнутом ключе равно
(R+R)R/((R+R) + R) = 2R/3 = 16 Ом.
Ответ: 16 Ом.
Количество теплоты, выделившееся при прохождении электрического тока по проводнику, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени, в течение которого шел ток: | Последовательное соединение. 1. Сила тока во всех последовательно соединенных участках цепи одинакова: I1=I2=I3=…=In=… 2. Напряжение в цепи, состоящей из нескольких последовательно соединенных участков, равно сумме напряжений на каждом участке: U=U1+U2+…+Un+… 3. Сопротивление цепи, состоящей из нескольких последовательно соединенных участков, равно сумме сопротивлений каждого участка: R=R1+R2+…+Rn+… Если все сопротивления в цепи одинаковы, то: R=R1. N При последовательном соединении общее сопротивление увеличивается (больше большего). | Параллельное соединение. 1. Сила тока в неразветвленном участке цепи равна сумме сил токов во всех параллельно соединенных участках. I=I1+I2+…+In+… | 2. Напряжение на всех параллельно соединенных участках цепи одинаково: U1=U2=U3=…=Un=… 3. При параллельном соединении проводников проводимости складываются (складываются величины, обратные сопротивлению): Если все сопротивления в цепи одинаковы, то: При параллельном соединении общее сопротивление уменьшается (меньше меньшего). | 4. Работа электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме работ на отдельных участках: A=A1+A2+…+An+… т.к. A=I2Rt=I2(R1+R2+…+Rn+…)t. 5. Мощность электрического тока в цепи, состоящей из последовательно соединенных участков, равна сумме мощностей на отдельных участках: P=P1+P2+…+Pn+… 6. Т.к. силы тока во всех участках одинаковы, то: U1:U2:…:Un:… = R1:R2:…:Rn:… Для двух резисторов: — чем больше сопротивление, тем больше напряжение. | 4. Работа электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме работ на отдельных участках: A=A1+A2+…+An+… т.к. .
5. Мощность электрического тока в цепи, состоящей из параллельно соединенных участков, равна сумме мощностей на отдельных участках: P=P1+P2+…+Pn+… 6. Т.к. напряжения на всех участках одинаковы, то: I1R1= I2R2=…= I3R3=… Для двух резисторов: — чем больше сопротивление, тем меньше сила тока. |
Закон ома параллельное и последовательное соединение проводников
В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.
Последовательное соединениеПри таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.
Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.
Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.
Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.
Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.
ПрименениеПоследовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.
Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.
Параллельное соединениеВ этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.
Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.
Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.
ПрименениеЕсли рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.
Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.
Работа токаПоследовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:
А = I х U х t, где А – работа тока, t – время течения по проводнику.
Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:
А=I х (U1 + U2) х t
Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.
Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:
А = А1+А2
Мощность токаПри рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:
Р=U х I
После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:
Р=Р1 + Р2
Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.
Влияние схемы соединения на новогоднюю гирляндуПосле перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.
При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.
Последовательное и параллельное соединение для конденсаторовПри последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:
qобщ= q1 = q2 = q3
Для определения напряжения на любом конденсаторе, необходима формула:
U= q/С
Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:
С= q/(U1 + U2 + U3)
Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:
1/С= 1/С1 + 1/С2 + 1/C3
Немного иначе рассчитывается параллельное соединение конденсаторов.
Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:
С= (q1 + q2 + q3)/U
Это значение рассчитывается как сумма каждого прибора в схеме:
С=С1 + С2 + С3
Смешанное соединение проводниковВ электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.
Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.
Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.
Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.
Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.
Теперь используем формулу расчета сопротивления:
- Первая формула для последовательного вида соединения.
- Далее, для параллельной схемы.
- И окончательно для последовательной схемы.
Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.
Сопротивление проводников. Параллельное и последовательное соединение проводников.
Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождению электрического тока и равная отношениюнапряжения на концах проводника к силе тока, протекающего по нему [1] . Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса и волнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления.
Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как
U — разность электрических потенциалов (напряжение) на концах проводника;
I — сила тока, протекающего между концами проводника под действием разности потенциалов.
При последовательном соединении проводников (рис. 1.9.1) сила тока во всех проводниках одинакова:
Последовательное соединение проводников
По закону Ома, напряжения U1 и U2 на проводниках равны
Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:
где R – электрическое сопротивление всей цепи. Отсюда следует:
При последовательном соединении полное сопротивление цепи равно сумме сопротивлений отдельных проводников.
Этот результат справедлив для любого числа последовательно соединенных проводников.
При параллельном соединении (рис. 1.9.2) напряжения U1 и U2 на обоих проводниках одинаковы:
Сумма токов I1 + I2, протекающих по обоим проводникам, равна току в неразветвленной цепи:
Этот результат следует из того, что в точках разветвления токов (узлы A и B) в цепи постоянного тока не могут накапливаться заряды. Например, к узлу A за время Δt подтекает заряд IΔt, а утекает от узла за то же время заряд I1Δt + I2Δt. Следовательно,I = I1 + I2.
Параллельное соединение проводников
Записывая на основании закона Ома
где R – электрическое сопротивление всей цепи, получим
При параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.
Этот результат справедлив для любого числа параллельно включенных проводников.
Формулы для последовательного и параллельного соединения проводников позволяют во многих случаях рассчитывать сопротивление сложной цепи, состоящей из многих резисторов. На рис. 1.9.3 приведен пример такой сложной цепи и указана последовательность вычислений.
Расчет сопротивления сложной цепи. Сопротивления всех проводников указаны вомах (Ом)
Следует отметить, что далеко не все сложные цепи, состоящие из проводников с различными сопротивлениями, могут быть рассчитаны с помощью формул для последовательного и параллельного соединения. На рис. 1.9.4 приведен пример электрической цепи, которую нельзя рассчитать указанным выше методом.
Пример электрической цепи, которая не сводится к комбинации последовательно и параллельно соединенных проводников
Течение тока в электрической цепи осуществляется по проводникам, в направлении от источника к потребителям. В большинстве подобных схем используются медные провода и электрические приемники в заданном количестве, обладающие различным сопротивлением. В зависимости выполняемых задач, в электрических цепях используется последовательное и параллельное соединение проводников. В некоторых случаях могут быть применены оба типа соединений, тогда этот вариант будет называться смешанным. Каждая схема имеет свои особенности и отличия, поэтому их нужно обязательно заранее учитывать при проектировании цепей, ремонте и обслуживании электрооборудования.
Последовательное соединение проводников
В электротехнике большое значение имеет последовательное и параллельное соединение проводников в электрической цепи. Среди них часто используется схема последовательного соединения проводников предполагающая такое же соединение потребителей. В этом случае включение в цепь выполняется друг за другом в порядке очередности. То есть, начало одного потребителя соединяется с концом другого при помощи проводов, без каких-либо ответвлений.
Свойства такой электрической цепи можно рассмотреть на примере участков цепи с двумя нагрузками. Силу тока, напряжение и сопротивление на каждом из них следует обозначить соответственно, как I1, U1, R1 и I2, U2, R2. В результате, получились соотношения, выражающие зависимость между величинами следующим образом: I = I1 = I2, U = U1 + U2, R = R1 + R2. Полученные данные подтверждаются практическим путем с помощью проведения измерений амперметром и вольтметром соответствующих участков.
Таким образом, последовательное соединение проводников отличается следующими индивидуальными особенностями:
- Сила тока на всех участках цепи будет одинаковой.
- Общее напряжение цепи составляет сумму напряжений на каждом участке.
- Общее сопротивление включает в себя сопротивления каждого отдельного проводника.
Данные соотношения подходят для любого количества проводников, соединенных последовательно. Значение общего сопротивления всегда выше, чем сопротивление любого отдельно взятого проводника. Это связано с увеличением их общей длины при последовательном соединении, что приводит и к росту сопротивления.
Если соединить последовательно одинаковые элементы в количестве n, то получится R = n х R1, где R – общее сопротивление, R1 – сопротивление одного элемента, а n – количество элементов. Напряжение U, наоборот, делится на равные части, каждая из которых в n раз меньше общего значения. Например, если в сеть с напряжением 220 вольт последовательно включаются 10 ламп одинаковой мощности, то напряжение в любой из них составит: U1 = U/10 = 22 вольта.
Проводники, соединенные последовательно, имеют характерную отличительную особенность. Если во время работы отказал хотя-бы один из них, то течение тока прекращается во всей цепи. Наиболее ярким примером является елочная гирлянда, когда одна перегоревшая лампочка в последовательной цепи, приводит к выходу из строя всей системы. Для установления перегоревшей лампочки понадобится проверка всей гирлянды.
Параллельное соединение проводников
В электрических сетях проводники могут соединяться различными способами: последовательно, параллельно и комбинированно. Среди них параллельное соединение это такой вариант, когда проводники в начальных и конечных точках соединяются между собой. Таким образом, начала и концы нагрузок соединяются вместе, а сами нагрузки располагаются параллельно относительно друг друга. В электрической цепи могут содержаться два, три и более проводников, соединенных параллельно.
Если рассматривать последовательное и параллельное соединение, сила тока в последнем варианте может быть исследована с помощью следующей схемы. Берутся две лампы накаливания, обладающие одинаковым сопротивлением и соединенные параллельно. Для контроля к каждой лампочке подключается собственный амперметр. Кроме того, используется еще один амперметр, контролирующий общую силу тока в цепи. Проверочная схема дополняется источником питания и ключом.
После замыкания ключа нужно контролировать показания измерительных приборов. Амперметр на лампе № 1 покажет силу тока I1, а на лампе № 2 – силу тока I2. Общий амперметр показывает значение силы тока, равное сумме токов отдельно взятых, параллельно соединенных цепей: I = I1 + I2. В отличие от последовательного соединения, при перегорании одной из лампочек, другая будет нормально функционировать. Поэтому в домашних электрических сетях используется параллельное подключение приборов.
С помощью такой же схемы можно установить значение эквивалентного сопротивления. С этой целью в электрическую цепь добавляется вольтметр. Это позволяет измерить напряжение при параллельном соединении, сила тока при этом остается такой же. Здесь также имеются точки пересечения проводников, соединяющих обе лампы.
В результате измерений общее напряжение при параллельном соединении составит: U = U1 = U2. После этого можно рассчитать эквивалентное сопротивление, условно заменяющее все элементы, находящиеся в данной цепи. При параллельном соединении, в соответствии с законом Ома I = U/R, получается следующая формула: U/R = U1/R1 + U2/R2, в которой R является эквивалентным сопротивлением, R1 и R2 – сопротивления обеих лампочек, U = U1 = U2 – значение напряжения, показываемое вольтметром.
Следует учитывать и тот фактор, что токи в каждой цепи, в сумме составляют общую силу тока всей цепи. В окончательном виде формула, отражающая эквивалентное сопротивление будет выглядеть следующим образом: 1/R = 1/R1 + 1/R2. При увеличении количества элементов в таких цепях – увеличивается и число слагаемых в формуле. Различие в основных параметрах отличают друг от друга и источников тока, позволяя использовать их в различных электрических схемах.
Параллельное соединение проводников характеризуется достаточно малым значением эквивалентного сопротивления, поэтому сила тока будет сравнительно высокой. Данный фактор следует учитывать, когда в розетки включается большое количество электроприборов. В этом случае сила тока значительно возрастает, приводя к перегреву кабельных линий и последующим возгораниям.
Законы последовательного и параллельного соединения проводников
Данные законы, касающиеся обоих видов соединений проводников, частично уже были рассмотрены ранее.
Для более четкого их понимания и восприятия в практической плоскости, последовательное и параллельное соединение проводников, формулы следует рассматривать в определенной последовательности:
- Последовательное соединение предполагает одинаковую силу тока в каждом проводнике: I = I1 = I2.
- Закон ома параллельное и последовательное соединение проводников объясняет в каждом случае по-своему. Например, при последовательном соединении, напряжения на всех проводниках будут равны между собой: U1 = IR1, U2 = IR2. Кроме того, при последовательном соединении напряжение составляет сумму напряжений каждого проводника: U = U1 + U2 = I(R1 + R2) = IR.
- Полное сопротивление цепи при последовательном соединении состоит из суммы сопротивлений всех отдельно взятых проводников, независимо от их количества.
- При параллельном соединении напряжение всей цепи равно напряжению на каждом из проводников: U1 = U2 = U.
- Общая сила тока, измеренная во всей цепи, равна сумме токов, протекающих по всем проводникам, соединенных параллельно между собой: I = I1 + I2.
Для того чтобы более эффективно проектировать электрические сети, нужно хорошо знать последовательное и параллельное соединение проводников и его законы, находя им наиболее рациональное практическое применение.
Смешанное соединение проводников
В электрических сетях как правило используется последовательное параллельное и смешанное соединение проводников, предназначенное для конкретных условий эксплуатации. Однако чаще всего предпочтение отдается третьему варианту, представляющему собой совокупность комбинаций, состоящих из различных типов соединений.
В таких смешанных схемах активно применяется последовательное и параллельное соединение проводников, плюсы и минусы которых обязательно учитываются при проектировании электрических сетей. Эти соединения состоят не только из отдельно взятых резисторов, но и довольно сложных участков, включающих в себя множество элементов.
Смешанное соединение рассчитывается в соответствии с известными свойствами последовательного и параллельного соединения. Метод расчета заключается в разбивке схемы на более простые составные части, которые считаются отдельно, а потом суммируются друг с другом.
Последовательное и параллельное соединение проводников
Последовательное и параллельное соединение очень широко используется в электронике и электротехнике и порой даже необходимо для правильной работы того или иного узла электроники. И начнем, пожалуй, с самых простых компонентов радиоэлектронных цепей – проводников.
Для начала давайте вспомним, что такое проводник? Проводник – это вещество или какой-либо материал, который отлично проводит электрический ток. Если какой-либо проводник отлично проводит электрический ток, то он в любом случае обладает каким-либо сопротивлением. Сопротивление проводника мы находим по формуле:
формула сопротивление проводникаρ – это удельное сопротивление, Ом × м
R – сопротивление проводника, Ом
S – площадь поперечного сечения, м2
l – длина проводника, м
Более подробно об этом я писал здесь.
Следовательно, любой проводник представляет из себя резистор с каким-либо сопротивлением. Значит, любой проводник можно нарисовать так.
обозначение резистора на схемахПоследовательное соединение проводников
Сопротивление при последовательном соединении проводников
Последовательное соединение проводников – это когда к одному проводнику мы соединяем другой проводник и так по цепочке. Это и есть последовательное соединение проводников. Их можно соединять с друг другом сколь угодно много.
последовательное соединение резисторовЧему же будет равняться их общее сопротивление? Оказывается, все просто. Оно будет равняться сумме всех сопротивлений проводников в этой цепи.
Получается, можно записать, что
формула при последовательном соединении резисторовПример
У нас есть 3 проводника, которые соединены последовательно. Сопротивление первого 3 Ома, второго 5 Ом, третьего 2 Ома. Найти их общее сопротивление в цепи.
Решение
Rобщее =R1 + R2 + R3 = 3+5+2=10 Ом.
То есть, как вы видите, цепочку из 3 резисторов мы просто заменили на один резистор RAB .
показать на реальном примере с помощью мультиметра
Видео где подробно расписывается про эти соединения:
Сила тока через последовательное соединение проводников
Что будет, если мы подадим напряжение на концы такого резистора? Через него сражу же побежит электрический ток, сила которого будет вычисляться по закону Ома I=U/R.
Получается, если через резистор RAB течет какой-то определенный ток, следовательно, если разложить наш резистор на составляющие R1 , R2 , R3 , то получится, что через них течет та же самая сила тока, которая текла через резистор RAB .
сила тока через последовательное соединение проводниковПолучается, что при последовательном соединении проводников сила тока, которая течет через каждый проводник одинакова. То есть через резистор R1 течет такая же сила тока, как и через резистор R2 и такая же сила тока течет через резистор R3 .
Напряжение при последовательном соединении проводников
Давайте еще раз рассмотрим цепь с тремя резисторами
Как мы уже знаем, при последовательном соединении через каждый резистор проходит одна и та же сила тока. Но вот что будет с напряжением на каждом резисторе и как его найти?
Оказывается, все довольно таки просто. Для этого надо снова вспомнить закон дядюшки Ома и просто вычислить напряжение на любом резисторе. Давайте так и сделаем.
Пусть у нас будет цепь с такими параметрами.
Мы теперь знаем, что сила тока в такой цепи будет везде одинакова. Но какой ее номинал? Вот в чем загвоздка. Для начала нам надо привести эту цепь к такому виду.
Получается, что в данном случае RAB =R1 + R2 + R3 = 2+3+5=10 Ом. Отсюда уже находим силу тока по закону Ома I=U/R=10/10=1 Ампер.
Половина дела сделано. Теперь осталось узнать, какое напряжение падает на каждом резисторе. То есть нам надо найти значения UR1 , UR2 , UR3 . Но как это сделать?
Да все также, через закон Ома. Мы знаем, что через каждый резистор проходит сила тока 1 Ампер, мы уже вычислили это значение. Закон ома гласит I=U/R , отсюда получаем, что U=IR.
Следовательно,
UR1 = IR1 =1×2=2 Вольта
UR2 = IR2 = 1×3=3 Вольта
UR3 = IR3 =1×5=5 Вольт
Теперь начинается самое интересное. Если сложить все падения напряжений на резисторах, то можно получить… напряжение источника! Он у нас равен 10 Вольт.
Получается
U=UR1+UR2+UR3
Мы получили самый простой делитель напряжения.
Вывод: сумма падений напряжений при последовательном соединении равняется напряжению питания.
Параллельное соединение проводников
Параллельное соединение проводников выглядит вот так.
параллельное соединение резисторовНу что, думаю, начнем с сопротивления.
Сопротивление при параллельном соединении проводников
Давайте пометим клеммы как А и В
В этом случае общее сопротивление RAB будет находиться по формуле
Если же мы имеем только два параллельно соединенных проводника
То в этом случае можно упростить длинную неудобную формулу и она примет вид такой вид.
Напряжение при параллельном соединении проводников
Здесь, думаю ничего гадать не надо. Так как все проводники соединяются параллельно, то и напряжение у всех будет одинаково.
Получается, что напряжение на R1 будет такое же как и на R2, как и на R3, так и на Rn
Сила тока при параллельном соединении проводников
Если с напряжением все понятно, то с силой тока могут быть небольшие затруднения. Как вы помните, при последовательном соединении сила тока через каждый проводник была одинакова. Здесь же совсем наоборот. Через каждый проводник будет течь своя сила тока. Как же ее вычислить? Придется опять прибегать к Закону Ома.
Чтобы опять же было нам проще, давайте рассмотрим все это дело на реальном примере. На рисунке ниже видим параллельное соединение трех резисторов, подключенных к источнику питания U.
Как мы уже знаем, на каждом резисторе одно и то же напряжение U. Но будет ли сила тока такая же, как и во всей цепи? Нет. Поэтому для каждого резистора мы должны вычислить свою силу тока по закону Ома I=U/R. В результате получаем, что
I1 = U/R1
I2 = U/R2
I3 = U/R3
Если бы у нас еще были резисторы, соединенные параллельно, то для них
In = U/Rn
В этом случае, сила тока в цепи будет равна:
Задача
Вычислить силу тока через каждый резистор и силу тока в цепи, если известно напряжение источника питания и номиналы резисторов.
Решение
Воспользуемся формулами, которые приводили выше.
I1 = U/R1
I2 = U/R2
I3 = U/R3
Если бы у нас еще были резисторы, соединенные параллельно, то для них
In = U/Rn
Следовательно,
I1 = U/R1 = 10/2=5 Ампер
I2 = U/R2 = 10/5=2 Ампера
I3 = U/R3 = 10/10=1 Ампер
Далее, воспользуемся формулой
чтобы найти силу тока, которая течет в цепи
I=I1 + I2 + I3 = 5+2+1=8 Ампер
2-ой способ найти I
I=U/Rобщее
Чтобы найти Rобщее мы должны воспользоваться формулой
Чтобы не париться с вычислениями, есть онлайн калькуляторы. Вот один из них. Я за вас уже все вычислил. Параллельное соединение 3-ех резисторов номиналом в 2, 5, и 10 Ом равняется 1,25 Ом, то есть Rобщее = 1,25 Ом.
I=U/Rобщее = 10/1,25=8 Ампер.
Параллельное соединение резисторов в электронике также называется делителем тока, так как резисторы делят ток между собой.
Ну а вот вам бонусом объяснение, что такое последовательное и параллельное соединение проводников от лучшего преподавателя России.
Подробное объяснение на видео:
Прикольный набор радиолюбителя по ссылке <<<
Похожие статьи по теме “последовательное и параллельное соединение”
Закон Ома
Проводник (электрический проводник)
Что такое резистор
Делитель напряжения
Делитель тока
Что такое напряжение
Что такое сила тока
Закон Ома для цепи переменного тока. Мощность
RIR=UR; 1ωCIC=UC; ωLIL=UL.
Указанные выше формулы внешне могут напоминать закон Ома на участке цепи постоянного тока, но стоит заметить, что в этом случае вместо величин постоянных токов и напряжений на участке цепи, в них входят амплитудные значения напряжений и переменных токов.
Формулы, указанные выше, выражают собой закон Ома для переменного тока, который содержит один из элементов R, L и C.
Определение 1R – активное сопротивление резистора.
1ωС – емкостное сопротивление конденсатора.
ωL – индуктивное сопротивление катушки в цепи переменного тока.
Движение переменного тока по участку цепи провоцирует электромагнитное поле выполнять работу, благодаря чему выделяется джоулево тепло.
Определение 2Мгновенной мощностью в цепи называется произведение мгновенных значений тока и напряжения: p=J·u.
Прикладной интерес у нас вызывает среднее значение мощности за некоторый период переменного тока:
P=Pcα=I0U0cos ωt cos ωt+φ.
В приведенной выше формуле I0 и U0 являются амплитудными значениями тока и напряжения на выбранном участке цепи, а φ – фазовым сдвигом между током и напряжением. Черта же представляет собой символ усреднения. В случае, когда цепь содержит только резистор с сопротивлением R, то фазовый сдвиг φ будет равен нулю:
PR=IRURcos2ωt=IRUR2=IR2R2.
Действующие значения силы тока и напряжения
Определение 3По причине необходимости совпадения с уравнением для мощности постоянного тока, нам приходится ввести определения действующих значений силы тока и напряжения:
IД=l02; UД=U02.
Мощность переменного тока на участке цепи
Определение 4Средняя величина мощности переменного тока на участке цепи, включающем в себя резистор, равняется:
PR=IДUД.
Если в цепи содержится лишь конденсатор емкости C, то φ=π2. Отсюда, справедливо следующее выражение:
PC=ICUCcos ωt cosωt+π2=ICUCcos ωt-sin ωt=0.
Таким же способом можно проиллюстрировать, что PL=0.
Исходя из описанного выше получим следующие определение.
Определение 5Мощность в цепи переменного тока выделяется только на активном сопротивлении, а среднее значение мощности переменного тока на конденсаторе и катушке индуктивности равняется нулю.
Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!
Описать заданиеТеперь стоит рассмотреть электрическую цепь, включающую последовательно соединенные резистор, конденсатор и катушки, и подключенную к источнику переменного тока некой частоты ω. Следует выделить, что на всех участках цепи, соединенных последовательно, проходит один и тот же ток. Между напряжением внешнего источника e(t) и током J(t) проявляется фазовый сдвиг на определенный угол φ.
Исходя из приведенных выше фактов, мы можем записать:
J(t)=I0cos ωt; e(t)=δ0cos ωt+φ.
Данные формулы мгновенных значений тока и напряжения подходят к построениям, выполненным на векторной диаграмме (рис. 2.3.2).
Рисунок 2.3.2. Гармонические колебания A cos (ωt+φ1), B cos (ωt+φ2) и их суммы C cos (ωt+φ) на векторной диаграмме.
Средняя величина мощности, развиваемой источником переменного тока, может быть найдена из следующего выражения:
P=I0δ0cos ωt cos ωt+φ=I0δ02cos φ=IДδД cos φ.
Исходя из данных векторной диаграммы можно заявить, что UR=δ0·cos φ, следовательно,
P=I0UR2, а вся мощность, которую развивает источник питания, теряется в виде джоулева тепла на резисторе.
В прошлых темах нами было получено выражение, являющееся соотношением амплитуд тока I0 и напряжений δ0 в условиях последовательной RLC-цепи:
I0=δ0R2+ωL-1ωC2
Определение 6Z=R2+ωL-1ωC2– это величина, имеющая название полное сопротивление цепи переменного тока.
Определение 7Связь между амплитудными значениями тока и напряжения в цепи имеет вид:
ZI0=δ0.
Данное выражение представляет собой закон Ома для цепи переменного тока.
Закон Ома в условиях параллельной RLC-цепи
В различных расчетах, связанных с работой над цепями переменного тока, очень важное место занимает понятие полного сопротивления. Для его определения в цепи в большей части случаев практично использовать метод векторных диаграмм. В качестве примера, приведем параллельный подключенный к внешнему источнику переменного тока (рис. 2.4.1) RLC-контур:
Рисунок 2.4.1. Параллельный RLC-контур.
При построении диаграммы важно учесть, что в условиях параллельного соединения напряжение на всех элементах R, C и L идентично и равняется напряжению внешнего источника питания. Ток, текущий в разных ветвях цепи, различается не только по значениям амплитуд, но и по фазовым сдвигам относительно приложенного напряжения. Следовательно, полное сопротивление цепи невозможно вычислить опираясь на законы параллельного соединения цепей постоянного тока. Векторную диаграмму для параллельного RLC-контура можно увидеть на рис. 2.4.2.
Рисунок 2.4.2. Векторная диаграмма для параллельного RLC-контур.
Исходя из вида диаграммы, следует:
I0=δ01R2+ωL-1ωC2.
Определение 8Соответственно, полное сопротивление параллельного RLC-контура выражается в виде следующего соотношения:
Z=11R2+ωL-1ωC2.
Определение 9При параллельном резонансе (ω2=1LC) полное сопротивление цепи принимает свое максимальное значение, которое эквивалентно активному сопротивлению резистора:
Z=Zmax=R.
А значение фазового сдвига φ между током и напряжением при параллельном резонансе равняется нулю.
Закон Ома | Справочник радиолюбителя
Сила тока в участке цепи прямо пропорциональна напряжению, и обратно пропорциональна электрическому сопротивлению данного участка цепи.
Закон Ома записывается формулой:
Где: I — сила тока (А), U — напряжение (В), R — сопротивление (Ом).
Следует иметь в виду, что закон Ома является фундаментальным (основным) и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков .
Закон Ома определяет связь трех фундаментальных величин: силы тока, напряжения и сопротивления. Он утверждает, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
Ток течет из точки с избытком электронов в точку с дефицитом электронов. Путь, по которому следует ток, называется электрической цепью. Все электрические цепи состоят из источника тока, нагрузки и проводников. Источник тока обеспечивает разность потенциалов, которая позволяет течь току. Источником тока может быть батарея, генератор или другое устройство. Нагрузка оказывает сопротивление протеканию тока. Это сопротивление может быть высоким или низким, в зависимости от назначения цепи. Ток в цепи течет через проводники от источника к нагрузке. Проводник должен легко отдавать электроны. В большинстве проводников используется медь.
Путь электрического тока к нагрузке может проходить через три типа цепей: последовательную цепь, параллельную или последовательно-параллельную цепи.Ток электронов в электрической цепи течет от отрицательного вывода источника тока, через нагрузку к положительному выводу источника тока.
Пока этот путь не нарушен, цепь замкнута и ток течет.
Однако если прервать путь, цепь станет разомкнутой и ток не сможет по ней идти.
Силу тока в электрической цепи можно изменять, изменяя либо приложенное напряжение, либо сопротивление цепи. Ток изменяется в таких же пропорциях, что и напряжение или сопротивление. Если напряжение увеличивается, то ток также увеличивается. Если напряжение уменьшается, то ток тоже уменьшается. С другой стороны, если сопротивление увеличивается, то ток уменьшается. Если сопротивление уменьшается, то ток увеличивается. Это соотношение между напряжением, силои тока и сопротивлением называется законом Ома.
Закон Ома утверждает, что ток в цепи (последовательной, параллельной или последовательно-параллельной) прямо пропорционален напряжению и обратно пропорционален сопротивлению
.
При определении неизвестных величин в цепи, следуйте следующим правилам:
- Нарисуйте схему цепи и обозначьте все известные величины.
- Проведите расчеты для эквивалентных цепей и перерисуйте цепь.
- Рассчитайте неизвестные величины.
Помните: закон Ома справедлив для любого участка цепи и может применяться в любой момент. По последовательной цепи течет один и тот же ток, а к любой ветви параллельной цепи приложено одинаковое напряжение.
История закона Ома
Георг Ом, проводя эксперименты с проводником, установил, что сила тока в проводнике пропорциональна напряжению, приложенному к его концам. Коэффициент пропорциональности назвали электропроводностью, а величину принято именовать электрическим сопротивлением проводника. Закон Ома был открыт в 1826 году.
Ниже приведены анимации схем иллюстрирующих закон Ома. Обратите внимание, что (на первой картинке) Амперметр (А) является идеальным и имеет нулевое сопротивление.
Данная анимация показывает как меняется ток в цепи при изменении приложенного напряжения.
Следующая анимация показывает как меняется сила тока в цепи при изменении сопротивления.
Следующие изображения покажут какие процессы и изменения происходят в цепи при паралельном подключении сопротивлений (резисторов)
При смешанном, параллельно-последовательном включении сопротивлений происходят следующие процесы.
Рассеивание мощности в резестивной цепи.
Закон Ома для участка цепи. Сопротивление. Соединение проводников.
Металлический проводник, подключенный к источнику тока является примером однородного участка цепи.
Немецкий физик Георг Симон Ом экспериментально изучил зависимость силы тока в металлических проводниках от напряжения, пришел к выводу: если состояние проводника с течением времени не меняется, а его температура постоянна, то для каждого проводника существует однозначная связь между I и U — вольт-амперная характеристика.
Закон Ома для участка цепи:
Сила тока на участке цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
Электрическое сопротивление проводника
Это физическая скалярная величина, характеризующая свойство проводника уменьшать скорость упорядоченного движения свободных зарядов.Сопротивление однородного металлического проводника постоянного сечения зависит от его геометрических размеров, формы и вещества, из которого изготовлен проводник.
Удельное сопротивление проводника зависит от рода вещества и его состояния, например, температуры. Удельное сопротивление для определенного вещества имеет постоянное табличное значение.Величина, обратная сопротивлению, называется электрической проводимостью данного проводника.
Параллельное и последовательное соединение проводников
Резистор — элемент электрической цепи, характеризуемый только сопротивлением электрическому току. На схемах резистор обозначается прямоугольником: Реостат — прибор, служащий для регулировки и получения требуемой величины сопротивления. Обозначение на схемах:Резисторы Реoстат
???Вопросы
- Что называют вольт-амперной зависимостью?
- Как зависит сила тока от напряжения? от сопротивления?
- Сформулируйте закон Ома для участка цепи?
- Что называют сопротивлением?
- От каких величин зависит сопротивление? Формула?
- Назовите единицы измерения I, U,R?
- Какие вы знаете соединения проводников?
- Какое соединение называют последовательным?
- Запишите законы последовательного соединения?
- Какое соединение называют параллельным?
- Запишите законы параллельного соединения?
- Какое соединение больше применяется на практике? Почему?
- Как называется этот прибор? Какова цена деления?
| Последовательные и параллельные схемы
На этой странице мы изложим три принципа, которые вы должны понимать в отношении последовательных цепей:
- Ток : величина тока одинакова для любого компонента в последовательной цепи.
- Сопротивление : Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.
- Напряжение : напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.
Давайте взглянем на несколько примеров последовательных цепей, демонстрирующих эти принципы.
Начнем с последовательной схемы, состоящей из трех резисторов и одной батареи:
Первый принцип, который нужно понять о последовательных схемах, заключается в следующем:
Величина тока в последовательной цепи одинакова для любого компонента в цепи.
Это связано с тем, что в последовательной цепи существует только один путь прохождения тока.Поскольку электрический заряд проходит через проводники, как шарики в трубке, скорость потока (скорость мрамора) в любой точке цепи (трубки) в любой конкретный момент времени должна быть одинаковой.
Использование закона Ома в последовательных цепях
По расположению 9-вольтовой батареи мы можем сказать, что ток в этой цепи будет течь по часовой стрелке от точки 1 к 2, к 3 к 4 и обратно к 1. Однако у нас есть один источник напряжение и три сопротивления. Как мы можем использовать здесь закон Ома?
Важная оговорка к закону Ома заключается в том, что все величины (напряжение, ток, сопротивление и мощность) должны относиться друг к другу в терминах одних и тех же двух точек в цепи.Мы можем увидеть эту концепцию в действии на примере схемы с одним резистором ниже.
Использование закона Ома в простой цепи с одним резистором
В схеме с одной батареей и одним резистором мы можем легко вычислить любое количество, потому что все они относятся к одним и тем же двум точкам в цепи:
Поскольку точки 1 и 2 соединены вместе проводом с незначительным сопротивлением, как и точки 3 и 4, мы можем сказать, что точка 1 электрически является общей с точкой 2, а точка 3 электрически общей с точкой 4.Поскольку мы знаем, что у нас есть 9 вольт электродвижущей силы между точками 1 и 4 (непосредственно через батарею), и поскольку точка 2 является общей для точки 1, а точка 3 — общей для точки 4, мы также должны иметь 9 вольт между точками 2 и 3. (прямо через резистор).
Следовательно, мы можем применить закон Ома (I = E / R) к току через резистор, потому что мы знаем напряжение (E) на резисторе и сопротивление (R) этого резистора. Все термины (E, I, R) относятся к одним и тем же двум точкам в цепи, к одному и тому же резистору, поэтому мы можем безоговорочно использовать формулу закона Ома.
Использование закона Ома в схемах с несколькими резисторами
В схемах, содержащих более одного резистора, мы должны соблюдать осторожность при применении закона Ома. В приведенном ниже примере схемы с тремя резисторами мы знаем, что у нас есть 9 вольт между точками 1 и 4, что является величиной электродвижущей силы, управляющей током через последовательную комбинацию R 1 , R 2 и R . 3 . Однако мы не можем взять значение 9 вольт и разделить его на 3 кОм, 10 кОм или 5 кОм, чтобы попытаться найти значение тока, потому что мы не знаем, какое напряжение есть на любом из этих резисторов по отдельности.
Цифра 9 вольт составляет всего величин для всей цепи, тогда как цифры 3 кОм, 10 кОм и 5 кОм представляют собой отдельных величин для отдельных резисторов. Если бы мы включили цифру для общего напряжения в уравнение закона Ома с цифрой для отдельного сопротивления, результат не будет точно соответствовать какой-либо величине в реальной цепи.
Для R 1 закон Ома будет связывать величину напряжения на R 1 с током через R 1 , учитывая сопротивление R 1 , 3 кОм:
Но, поскольку мы не знаем напряжение на R 1 (только полное напряжение, подаваемое батареей на комбинацию из трех последовательно соединенных резисторов), и мы не знаем ток через R 1 , мы можем ‘ t делать какие-либо расчеты по любой из формул.То же самое касается R 2 и R 3 : мы можем применять уравнения закона Ома тогда и только тогда, когда все члены представляют свои соответствующие величины между одними и теми же двумя точками в цепи.
Итак, что мы можем сделать? Нам известно напряжение источника (9 вольт), приложенное к последовательной комбинации R 1 , R 2 и R 3 , и мы знаем сопротивление каждого резистора, но поскольку эти величины не входят в В том же контексте мы не можем использовать закон Ома для определения тока в цепи.Если бы мы только знали, что такое общее сопротивление для цепи: тогда мы могли бы вычислить общий ток с нашей цифрой для общего напряжения (I = E / R).
Объединение нескольких резисторов в эквивалентный общий резистор
Это подводит нас ко второму принципу последовательной схемы:
Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.
Это должно иметь интуитивный смысл: чем больше последовательно подключенных резисторов, через которые должен протекать ток, тем труднее будет протекать ток.
В примере задачи у нас были последовательно подключены резисторы 3 кОм, 10 кОм и 5 кОм, что дало нам общее сопротивление 18 кОм:
По сути, мы вычислили эквивалентное сопротивление для R 1 , R 2 и R 3 вместе взятых. Зная это, мы могли бы перерисовать схему с одним эквивалентным резистором, представляющим последовательную комбинацию R 1 , R 2 и R 3 :
.Расчет тока цепи с использованием закона Ома
Теперь у нас есть вся необходимая информация для расчета тока цепи, потому что у нас есть напряжение между точками 1 и 4 (9 вольт) и сопротивление между точками 1 и 4 (18 кОм):
Расчет напряжений компонентов по закону Ома
Зная, что ток одинаков во всех компонентах последовательной цепи (и мы только что определили ток через батарею), мы можем вернуться к нашей исходной принципиальной схеме и отметить ток через каждый компонент:
Теперь, когда мы знаем величину тока, протекающего через каждый резистор, мы можем использовать закон Ома для определения падения напряжения на каждом из них (применяя закон Ома в его надлежащем контексте):
Обратите внимание на падение напряжения на каждом резисторе и на то, как падает сумма напряжений (1.5 + 5 + 2,5) равно напряжению аккумулятора (питания): 9 вольт.
Это третий принцип последовательных цепей:
Напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.
Анализ простых последовательных цепей с помощью «табличного метода» и закона Ома
Однако метод, который мы только что использовали для анализа этой простой последовательной схемы, можно упростить для лучшего понимания. Используя таблицу для перечисления всех напряжений, токов и сопротивлений в цепи, становится очень легко увидеть, какие из этих величин могут быть правильно связаны в любом уравнении закона Ома:
Правило с такой таблицей — применять закон Ома только к значениям в каждом вертикальном столбце.Например, E R1 только с I R1 и R 1 ; E R2 только с I R2 и R 2 ; и т.д. Вы начинаете свой анализ с заполнения тех элементов таблицы, которые даны вам с самого начала:
Как вы можете видеть из расположения данных, мы не можем подать 9 вольт ET (полное напряжение) ни на одно из сопротивлений (R 1 , R 2 или R 3 ) ни при каких условиях. Формула закона Ома, потому что они находятся в разных столбцах.Напряжение батареи 9 В составляет , а не , приложенное непосредственно к R 1 , 2 R или 3 R. Однако мы можем использовать наши «правила» для последовательных цепей, чтобы заполнить пустые места в горизонтальном ряду. В этом случае мы можем использовать правило ряда сопротивлений для определения общего сопротивления из суммы отдельных сопротивлений:
Теперь, когда значение общего сопротивления вставлено в крайний правый столбец («Всего»), мы можем применить закон Ома I = E / R к общему напряжению и общему сопротивлению, чтобы получить общий ток 500 мкА:
Затем, зная, что ток распределяется поровну между всеми компонентами последовательной цепи (еще одно «правило» последовательной схемы), мы можем заполнить токи для каждого резистора из только что вычисленного значения тока:
Наконец, мы можем использовать закон Ома для определения падения напряжения на каждом резисторе, по столбцу за раз:
Проверка расчетов с помощью компьютерного анализа (SPICE)
Ради удовольствия, мы можем использовать компьютер для автоматического анализа этой самой схемы.Это будет хороший способ проверить наши расчеты, а также познакомиться с компьютерным анализом. Во-первых, мы должны описать схему компьютеру в формате, распознаваемом программным обеспечением.
Программа SPICE, которую мы будем использовать, требует, чтобы все электрически уникальные точки в цепи были пронумерованы, а размещение компонентов понималось по тому, какие из этих пронумерованных точек или «узлов» они разделяют. Для ясности я пронумеровал четыре угла схемы в нашем примере с 1 по 4. SPICE, однако, требует, чтобы где-то в схеме был нулевой узел, поэтому я перерисую схему, немного изменив схему нумерации:
Все, что я здесь сделал, это перенумеровал нижний левый угол цепи 0 вместо 4.Теперь я могу ввести несколько строк текста в компьютерный файл, описывающий схему в терминах, понятных SPICE, вместе с парой дополнительных строк кода, предписывающих программе отображать данные о напряжении и токе для нашего удовольствия от просмотра. Этот компьютерный файл известен как список цепей в терминологии SPICE:
последовательная цепь v1 1 0 г1 1 2 3к r2 2 3 10к r3 3 0 5k .dc v1 9 9 1 .print dc v (1,2) v (2,3) v (3,0) .конец
Теперь все, что мне нужно сделать, это запустить программу SPICE для обработки списка соединений и вывода результатов:
версия 1 | в (1,2) | в (2,3) | в (3) | я (v1) |
---|---|---|---|---|
9.000E + 00 | 1.500E + 00 | 5.000E + 00 | 2.500E + 00 | -5.000E-04 |
Эта распечатка сообщает нам, что напряжение аккумулятора составляет 9 вольт, а падение напряжения на R 1 , R 2 и R 3 составляет 1,5 В, 5 В и 2,5 В соответственно. Падения напряжения на любом компоненте в SPICE обозначаются номерами узлов, между которыми находится компонент, поэтому v (1,2) относится к напряжению между узлами 1 и 2 в цепи, которые являются точками, между которыми находится R 1 . .
Порядок номеров узлов важен: когда SPICE выводит число для v (1,2), он учитывает полярность так же, как если бы мы держали вольтметр с красным измерительным проводом на узле 1 и черным измерительным проводом на узел 2. У нас также есть дисплей, показывающий ток (хотя и с отрицательным значением) на уровне 0,5 мА или 500 мкА. Итак, наш математический анализ подтвержден компьютером. Эта цифра отображается как отрицательное число в анализе SPICE из-за необычного способа обработки текущих вычислений SPICE.
Таким образом, последовательная цепь определяется как имеющая только один путь, по которому может течь ток. Из этого определения следуют три правила последовательных цепей: все компоненты имеют одинаковый ток; сопротивления складываются, чтобы равняться большему общему сопротивлению; а падение напряжения в сумме дает большее общее напряжение. Все эти правила находят корень в определении последовательной цепи. Если вы полностью понимаете это определение, то правила — не что иное, как сноски к определению.
ОБЗОР:
- Компоненты в последовательной цепи имеют одинаковый ток: I Всего = I 1 = I 2 =.. . Я n
- Общее сопротивление в последовательной цепи равно сумме отдельных сопротивлений: RTotal = R 1 + R 2 +. . . R n
- Общее напряжение в последовательной цепи равно сумме отдельных падений напряжения E Всего = E 1 + E 2 +. . . En
Попробуйте наш Калькулятор закона Ома в разделе Инструменты .
СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Правильное использование закона Ома | Последовательные и параллельные схемы
Напоминания при использовании закона Ома
Одна из наиболее распространенных ошибок, которые делают начинающие студенты-электронщики при применении законов Ома, — это смешивание контекстов напряжения, тока и сопротивления. Другими словами, ученик может ошибочно использовать значение I (ток) через один резистор и значение E (напряжение) через набор соединенных между собой резисторов, полагая, что они придут к сопротивлению этого резистора.
Не так! Помните это важное правило: переменные, используемые в уравнениях закона Ома, должны быть , общими для одних и тех же двух точек в рассматриваемой цепи. Я не могу переоценить это правило. Это особенно важно в последовательно-параллельных комбинированных схемах, где соседние компоненты могут иметь разные значения для падения напряжения и тока .
При использовании закона Ома для вычисления переменной, относящейся к отдельному компоненту, убедитесь, что напряжение, на которое вы ссылаетесь, относится только к этому отдельному компоненту, а ток, который вы указываете, проходит исключительно через этот единственный компонент, а сопротивление, на которое вы ссылаетесь, равно исключительно для этого единственного компонента.Аналогичным образом, при вычислении переменной, относящейся к набору компонентов в цепи, убедитесь, что значения напряжения, тока и сопротивления относятся только к этому полному набору компонентов!
Хороший способ запомнить это — обратить пристальное внимание на две точки , , завершающие анализируемый компонент или набор компонентов, убедившись, что напряжение, о котором идет речь, проходит через эти две точки, что рассматриваемый ток является потоком электрический заряд от одной из этих точек до другой точки, что рассматриваемое сопротивление эквивалентно одному резистору между этими двумя точками, и что рассматриваемая мощность — это полная мощность, рассеиваемая всеми компонентами между этими двумя точками .
Примечания к «табличному» методу анализа цепей
«Табличный» метод, представленный как для последовательных, так и для параллельных цепей в этой главе, является хорошим способом сохранить контекст закона Ома правильным для любой конфигурации цепи. В таблице, подобной приведенной ниже, вам разрешено применять уравнение закона Ома только для значений одного вертикального столбца за раз:
Получение значений по горизонтали по столбцам допускается в соответствии с принципами последовательных и параллельных цепей:
«Табличный» метод не только упрощает управление всеми соответствующими величинами, но также облегчает перекрестную проверку ответов, упрощая поиск исходных неизвестных переменных другими методами или работая в обратном направлении для решения исходных данные значения из ваших решений.Например, если вы только что решили для всех неизвестных напряжений, токов и сопротивлений в цепи, вы можете проверить свою работу, добавив строку внизу для расчета мощности на каждом резисторе, чтобы посмотреть, добавляются ли все отдельные значения мощности до полной мощности. Если нет, значит, вы где-то ошиблись!
Хотя в этом методе «перекрестной проверки» вашей работы нет ничего нового, использование таблицы для упорядочивания всех данных для перекрестной проверки (-ий) приводит к минимуму путаницы.
ОБЗОР:
- Примените закон Ома к вертикальным столбцам таблицы.
- Применить правила последовательного / параллельного горизонтального ряда в таблице.
- Проверьте свои расчеты, работая «в обратном направлении», чтобы попытаться прийти к первоначально заданным значениям (из ваших первых рассчитанных ответов), или путем решения для количества с использованием более чем одного метода (из разных заданных значений).
Попробуйте наш Калькулятор закона Ома в разделе Инструменты . СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:
Применение закона Ома к последовательным и параллельным цепям
Давайте начнем с выяснения того, что такое закон Ома и как он применяется к тому, что мы рассмотрим сегодня. Закон Ома был назван в честь Георга Ома, который обнаружил, что ток, протекающий по проводнику, напрямую связан с напряжением и сопротивлением. Это означает, что напряжение можно найти, умножив ток и сопротивление в цепи или компоненте.
Примеры: V = I x R, R = V / I, I = V / R
Где:
В = Напряжение
I = Ток
R = Сопротивление
Теперь, как мы применим это к схеме? Ну, сначала мы должны расшифровать, является ли схема последовательной или параллельной, поскольку у каждой есть свои собственные правила, чтобы придумать общую сумму для каждого значения.Уравнения серии идут как таковые (C ниже — емкость):
В Т = В 1 + В 2 + …
I T = I 1 = I 2 = …
R T = R 1 + R 2 + …
1 / C T = 1 / C 1 + 1 / C 2 + …
Хорошо, теперь на рисунке ниже показана последовательная цепь с указанием только пары значений. Используя приведенные выше уравнения ряда в сочетании с законом Ома, мы можем решить для всех значений.
На следующем рисунке показана таблица, заполненная всеми правильными значениями. Начните с добавления сопротивления, чтобы получить в сумме 8,1 кОм. Поскольку у нас также есть общее напряжение 12 В, мы можем решить для общего тока следующим образом: (12 В) / (8100 Ом) = 0,00148 А или 1,48 мА. Этот ток одинаков во всей цепи, потому что все идет последовательно. Теперь, когда у нас есть все текущие значения и все значения сопротивления, мы можем решить для всех общих значений напряжения, используя V = I x R.Чтобы найти мощность (P), используйте P = I x V. Вуаля, это так просто.
Теперь давайте рассмотрим уравнения для параллельной цепи:
В T = V 1 = V 2 = …
I T = I 1 + I 2 + …
1 / R T = 1 / R 1 + 1 / R 2 + …
C T = C 1 + C 2 + …
Что изменилось? В параллельной цепи общее напряжение равно напряжению в каждой линии параллельной цепи.Ток суммируется, чтобы найти итог. Уравнения для сопротивления и емкости поменяны местами.
Ниже приведен график параллельной цепи с указанием нескольких значений. Используя приведенные выше параллельные уравнения в сочетании с законом Ома, мы можем решить для всех значений.
График ниже представляет собой таблицу со всеми заполненными правильными значениями. Пока мы знаем, что напряжение составляет 10 В, поэтому мы добавили это значение по всем направлениям. Затем мы можем вычислить общее сопротивление следующим образом: 1 / (330 Ом) + 1 / (1200 Ом) + 1 / (4700 Ом) + 1 / (6800 Ом) = 0.0042234 / Ом. Затем мы берем обратную величину и получаем 236,96 Ом. Чтобы заполнить остальную часть доски, мы можем использовать закон Ома. I = V / R даст нам каждый текущий общий итог. Затем снова используйте P = I x V для значений мощности.
Вы заметите, что мы не использовали все ряды или параллельные уравнения, а вместо этого использовали закон Ома для некоторых. Их можно использовать в комбинации для проверки правильности первоначального ответа. Эти уравнения уместны при планировании любой схемы, поэтому жизненно важно изучить их, если вы планируете возиться с электроникой.Не волнуйтесь, у Digi-Key есть онлайн-калькуляторы, которые могут в этом помочь. Практика ведет к совершенству. Удачного обучения!
Об авторе
Эшли Аволт (Ashley Awalt) — разработчик технического контента, работающая в Digi-Key Electronics с 2011 года. Она получила степень младшего специалиста по прикладным наукам в области электронных технологий и автоматизированных систем в Общественном и техническом колледже Northland через стипендиальную программу Digi-Key. В настоящее время ее роль заключается в оказании помощи в создании уникальных технических проектов, документировании процесса и, в конечном итоге, в участии в создании видеоматериалов, освещающих эти проекты.В свободное время Эшли любит — подожди, а есть ли свободное время, когда ты мама?
Цепи серии— базовое электричество
Три закона для последовательных цепей
Существует три основных соотношения, касающихся сопротивления, тока и напряжения для всех последовательных цепей. Важно, чтобы вы усвоили три основных закона для последовательных цепей.
Сопротивление
Когда отдельные сопротивления соединяются последовательно, они действуют так же, как одно большое комбинированное сопротивление.Поскольку существует только один путь для протекания тока в последовательной цепи, и поскольку каждый из резисторов включен в линию, чтобы действовать как противодействие этому протеканию тока, общее сопротивление представляет собой комбинированное противодействие всех линейных резисторов.
Общее сопротивление последовательной цепи равно сумме всех отдельных сопротивлений в цепи .
Rt = R1 + R2 + R3…
Используя эту формулу, вы обнаружите, что полное сопротивление цепи равно:
RT = 15 Ом + 5 Ом + 20 Ом = 40 Ом
Рисунок 16.Последовательная цепь
Текущая
Поскольку существует только один путь для электронного потока в последовательной цепи, ток имеет одинаковую величину в любой точке цепи.
Общий ток в последовательной цепи такой же, как ток через любое сопротивление цепи.
IT = I1 = I2 = I3…
Учитывая 120 В как общее напряжение и определив общее сопротивление цепи как 40 Ом, теперь вы можете применить закон Ома для определения полного тока в этой цепи:
IT = 120 В / 40 Ом = 3 А
Этот общий ток цепи останется неизменным для всех отдельных резисторов цепи.
Напряжение
Прежде чем какой-либо ток пройдет через сопротивление, должна быть доступна разность потенциалов или напряжение.Когда резисторы соединены последовательно, они должны «делить» общее напряжение источника.
Общее напряжение в последовательной цепи равно сумме всех отдельных падений напряжения в цепи.
Когда ток проходит через каждый резистор в последовательной цепи, он устанавливает разность потенциалов на каждом отдельном сопротивлении. Это обычно называется падением напряжения, и его величина прямо пропорциональна величине сопротивления.Чем больше значение сопротивления, тем выше падение напряжения на этом резисторе.
ET = E1 + E2 + E3…
Используя закон Ома, вы можете определить напряжение на каждом резисторе.
3 А × 15 Ом = 45 В
3 А × 5 Ом = 15 В
3 А × 20 Ом = 60 В
Общее напряжение источника равно сумме отдельных падений напряжения:
45 В + 15 В + 60 В = 120 В
Обрыв в последовательной цепи
При появлении обрыва ток в цепи прерывается.Если нет тока, падение напряжения на каждом из резистивных элементов равно нулю. Однако разность потенциалов источника очевидна. Если вольтметр подключен через разрыв, показания такие же, как если бы он был подключен непосредственно к клеммам источника питания.
Рисунок 17. Обрыв цепиВлияние обрыва линии и потери линии
Медь и алюминий используются в качестве проводников, потому что они мало препятствуют прохождению тока.Хотя сопротивлением часто пренебрегают при простом анализе цепей, в практических приложениях может возникнуть необходимость учитывать сопротивление линий.
Line Drop
Рисунок 18. Падение напряженияКогда ток 10 А протекает через каждую линию с сопротивлением 0,15 Ом, на каждой линии появляется небольшое падение напряжения. Это падение напряжения на линейных проводниках обычно обозначается как линейное падение .
Поскольку есть две линии, общее падение составляет 2 × 1.5 В = 3 В. Напряжение сети на нагрузке (117 В) меньше напряжения источника.
В некоторых ситуациях может потребоваться использование более крупных проводов с меньшим сопротивлением, чтобы падение напряжения в линии не слишком сильно уменьшало напряжение нагрузки.
Потеря линии
Другой термин, связанный с проводниками, — потери в линии. Это потеря мощности, выраженная в ваттах, и связана с рассеиванием тепловой энергии, когда ток течет через сопротивление проводов линии.Потери в линии рассчитываются с использованием одного из уравнений мощности.
Используя предыдущий пример:
P = I 2 × R
P = (10A) 2 × 0,3 Ом
P = 30 Вт
* Помните:
- Падение напряжения в линии выражается в вольтах.
- Потери в линии выражаются в ваттах.
Атрибуция
резисторов серии
Электрические цепи используются в авиакосмической технике, от систем управления полетом до приборов в кабине и двигателей системы управления, чтобы аэродинамическая труба приборостроение и эксплуатация.Самая простая схема включает один резистор и источник электрического потенциала или напряжения . Электроны проходят через схема вырабатывает тока электричества. Сопротивление, напряжение и ток связаны друг с другом соотношением Закон Ома. Обычно в практической схеме используется более одного резистора. При анализе сложной схемы мы часто можем группировать компоненты вместе и разработать схему замещения .При анализе схем с несколько резисторов, мы должны определить, подвержены ли резисторы какое-то напряжение или такой же ток. Несколько резисторов в параллельная цепь подвергаются одинаковому напряжению. Несколько резисторов в Цепь серии подвергаются одинаковому току. На этой странице мы обсуждаем эквивалентную схему для резисторов последовательно.
На рисунке изображена схема, состоящая из источника питания и трех резисторов. соединены последовательно.Если обозначить сопротивление R , ток i и напряжение В , то закон Ома гласит, что для каждого резистора в цепи:
V = i Rя = V / R
Если рассматривать каждый резистор по отдельности, каждый резистор имеет свой ток. ( i1 , i2 и i3 ), сопротивление ( R1 , R2 и R3 ), и напряжение ( V1 , V2 и V3 ).Резисторы соединены между собой в узлах . Узлы обозначены маленькие кружочки на фигуре. Для этой схемы есть четыре узла, соединяющие три резистора и источник питания. В каждом узле ток, поступающий в узел должен равняться току, выходящему из узла, согласно закону Фарадея . При таком расположении резисторов есть только один провод, входящий и выходящий. каждый узел. Следовательно, ток через каждый резистор должен быть одинаковым.
я = я1 = я2 = я3Падение напряжения на каждом резисторе определяется законом Ома:
V1 = i R1V2 = я R2
V3 = i R3
Сумма падений напряжения на каждом резисторе должна равняться подаваемому напряжению. по источнику питания:
V = V1 + V2 + V3Теперь мы знаем напряжение, сопротивление и ток в каждой части цепи.
Если бы мы построили эквивалентную схему, как показано в правом нижнем углу, мы бы имеют одинаковое напряжение В , такой же ток от источника питания ie = i , и один эквивалентный резистор Re . Для нашей эквивалентной схемы закон Ома указывает, что:
V = i ReМы можем определить значение Re , используя развитые выше соотношения и немного алгебры:
я Re = я R1 + я R2 + я R3Re = R1 + R2 + R3
Мы можем использовать эти знания о цепи последовательного резистора для анализа Мост Уитстона схема, которая используется для контроля температуры в аэродинамической трубе баланс сил используя электронные тензодатчики.
Навигация ..
- Руководство для начинающих Домашняя страница
ТОПОЛОГИЯ ЦЕПЕЙ И ЗАКОНЫ — Прикладное промышленное электричество
На этой странице мы изложим три принципа, которые вы должны понимать в отношении последовательных цепей:
Ток : величина тока одинакова для любого компонента в последовательной цепи.
Сопротивление : Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.
Напряжение : напряжение питания в последовательной цепи равно сумме индивидуальных падений напряжения.
Давайте взглянем на несколько примеров последовательных цепей, демонстрирующих эти принципы. Начнем с последовательной схемы, состоящей из трех резисторов и одной батареи:
Рисунок 3.1Первый принцип, который нужно понять о последовательных схемах, заключается в следующем:
Величина тока в последовательной цепи одинакова для любого компонента в цепи.
Общий ток серии
[латекс] \ tag {3.1} I_ {Total} = I_1 = I_2 = … = I_n [/ latex]
Это связано с тем, что в последовательной цепи существует только один путь прохождения тока. Поскольку электрический заряд проходит через проводники, как шарики в трубке, скорость потока (скорость мрамора) в любой точке цепи (трубки) в любой конкретный момент времени должна быть одинаковой.
По расположению 9-вольтовой батареи мы можем сказать, что ток в этой цепи будет течь по часовой стрелке от точки 1 к 2, к 3 к 4 и обратно к 1.Однако у нас есть один источник напряжения и три сопротивления. Как мы можем использовать здесь закон Ома?
Важная оговорка к закону Ома заключается в том, что все величины (напряжение, ток, сопротивление и мощность) должны относиться друг к другу в терминах одних и тех же двух точек в цепи. Мы можем увидеть эту концепцию в действии на примере схемы с одним резистором ниже.
Использование закона Ома в простой цепи с одним резисторомВ схеме с одной батареей и одним резистором мы можем легко вычислить любое количество, потому что все они относятся к одним и тем же двум точкам в цепи:
[латекс] I \: = \ frac {E} {R} [/ латекс]
[латекс] I \: = \ frac {9V} {3k \ Omega} [/ латекс]
[латекс] \ pmb {I = 3 мА} [/ латекс]
Поскольку точки 1 и 2 соединены вместе проводом с незначительным сопротивлением, как и точки 3 и 4, мы можем сказать, что точка 1 электрически является общей с точкой 2, а точка 3 электрически общей с точкой 4.Поскольку мы знаем, что у нас есть 9-вольтная электродвижущая сила между точками 1 и 4 (непосредственно через батарею), и поскольку точка 2 является общей для точки 1, а точка 3 — общей для точки 4, мы также должны иметь 9-вольт между точками 2. и 3 (прямо через резистор).
Следовательно, мы можем применить закон Ома ( I = E / R) к току через резистор, потому что мы знаем напряжение (E) на резисторе и сопротивление (R) этого резистора. Все термины (E, I, R) относятся к одним и тем же двум точкам в цепи, к одному и тому же резистору, поэтому мы можем безоговорочно использовать формулу закона Ома.
Использование закона Ома в схемах с несколькими резисторамиВ схемах, содержащих более одного резистора, мы должны соблюдать осторожность при применении закона Ома. В приведенном ниже примере схемы с тремя резисторами мы знаем, что у нас есть 9 вольт между точками 1 и 4, что является величиной электродвижущей силы, управляющей током через последовательную комбинацию R 1 , R 2 и R . 3 . Однако мы не можем взять значение 9 вольт и разделить его на 3 кОм, 10 кОм или 5 кОм, чтобы попытаться найти значение тока, потому что мы не знаем, сколько напряжения присутствует на любом из этих резисторов по отдельности.
Цифра 9 вольт составляет всего величин для всей цепи, тогда как цифры 3 кОм, 10 кОм и 5 кОм представляют собой отдельных величин для отдельных резисторов. Если бы мы включили цифру для общего напряжения в уравнение закона Ома с цифрой для отдельного сопротивления, результат не будет точно соответствовать какой-либо величине в реальной цепи.
Для R 1 закон Ома будет связывать величину напряжения на R 1 с током через R 1 , учитывая сопротивление R 1 , 3 кОм:
[латекс] I_ {R1} \: = \ frac {E_ {R1}} {R_1} [/ latex] или [латекс] E_ {R1} = I_ {R1} {(R_1)} [/ latex]
Но, поскольку мы не знаем напряжение на R 1 (только полное напряжение, подаваемое батареей на комбинацию из трех последовательно соединенных резисторов), и мы не знаем ток через R 1 , мы можем ‘ t делать какие-либо расчеты по любой из формул.То же самое касается R 2 и R 3 : мы можем применять уравнения закона Ома тогда и только тогда, когда все члены представляют свои соответствующие величины между одними и теми же двумя точками в цепи.
Итак, что мы можем сделать? Нам известно напряжение источника (9 вольт), приложенное к последовательной комбинации R 1 , R 2 и R 3 , и мы знаем сопротивление каждого резистора, но поскольку эти величины не входят в В том же контексте мы не можем использовать закон Ома для определения тока в цепи.Если бы мы только знали, каково общее сопротивление для цепи: тогда мы могли бы вычислить общий ток с нашим значением для общего напряжения ( I = E / R ).
Объединение нескольких резисторов в эквивалентный общий резисторЭто подводит нас ко второму принципу последовательной схемы:
Общее сопротивление любой последовательной цепи равно сумме отдельных сопротивлений.
[латекс] \ tag {3.2} R_ {total} = R_1 + R_2 + … + R_n [/ латекс]
Это должно иметь интуитивный смысл: чем больше последовательно подключенных резисторов, через которые должен протекать ток, тем труднее будет протекать ток.
В примере задачи у нас были последовательно подключены резисторы 3 кОм, 10 кОм и 5 кОм, что дало нам общее сопротивление 18 кОм:
[латекс] R_ {total} = R_1 + R_2 + R_3 [/ латекс]
[латекс] R_ {total} = 3 \ text {k} \ Omega + 10 \ text {k} \ Omega + 5 \ text {k} \ Omega [/ latex]
[латекс] \ pmb {R_ {total} = 18 \ text {k} \ Omega} [/ latex]
По сути, мы вычислили эквивалентное сопротивление для R 1 , R 2 и R 3 вместе взятых.Зная это, мы могли бы перерисовать схему с одним эквивалентным резистором, представляющим последовательную комбинацию R 1 , R 2 и R 3 :
. Расчет тока цепи с использованием закона ОмаТеперь у нас есть вся необходимая информация для расчета тока цепи, потому что у нас есть напряжение между точками 1 и 4 (9 вольт) и сопротивление между точками 1 и 4 (18 кОм):
[латекс] I_ {total} \: = \ frac {E_ {total}} {R_ {total}} [/ латекс]
[латекс] \: = \ frac {9V} {18k \ Omega} [/ латекс]
[латекс] \ pmb {I_ {total} = 500 мкА} [/ латекс]
Расчет напряжений компонентов по закону ОмаЗная, что ток одинаков во всех компонентах последовательной цепи (и мы только что определили ток через батарею), мы можем вернуться к нашей исходной принципиальной схеме и отметить ток через каждый компонент:
Теперь, когда мы знаем величину тока, протекающего через каждый резистор, мы можем использовать закон Ома для определения падения напряжения на каждом из них (применяя закон Ома в его надлежащем контексте):
[латекс] E_ {R1} = I_ {R1} {R_1} [/ латекс]
[латекс] = (500 мкА) {(3кОм)} [/ латекс]
[латекс] \ pmb {E_ {R1} = 1.5V} [/ латекс]
[латекс] E_ {R2} = I_ {R2} {R_2} [/ латекс]
[латекс] = (500 мкА) {(10 кОм)} [/ латекс]
[латекс] \ pmb {E_ {R2} = 5V} [/ латекс]
[латекс] E_ {R3} = I_ {R3} {R_3} [/ латекс]
[латекс] = (500 мкА) {(5 кОм)} [/ латекс]
[латекс] \ pmb {E_ {R3} = 2.5V} [/ латекс]
Обратите внимание на падение напряжения на каждом резисторе, и как сумма падений напряжения (1,5 + 5 + 2,5) равна напряжению батареи (источника питания): 9 вольт.
Это третий принцип последовательных цепей:
Напряжение питания в последовательной цепи равно сумме отдельных падений напряжения.
Общее последовательное напряжение
[латекс] E_ {total} = E_1 + E_2 + … E_n \ tag {3.3} [/ latex]
Анализ схем простых последовательностей с помощью «табличного метода» и закона ОмаОднако метод, который мы только что использовали для анализа этой простой последовательной схемы, можно упростить для лучшего понимания.Используя таблицу для перечисления всех напряжений, токов и сопротивлений в цепи, становится очень легко увидеть, какие из этих величин могут быть правильно связаны в любом уравнении закона Ома:
Таблица 3.1
Правило для такой таблицы — применять закон Ома только к значениям в каждом вертикальном столбце. Например, E R1 только с I R1 и R 1 ; E R2 только с I R2 и R 2 ; и т.д. Вы начинаете свой анализ с заполнения тех элементов таблицы, которые даны вам с самого начала:
Как видно из расположения данных, мы не можем подать 9 вольт ET (полное напряжение) ни на одно из сопротивлений (R 1 , R 2 или R 3 ) в любая формула закона Ома, потому что они находятся в разных столбцах. Напряжение батареи 9 В составляет , а не , приложенное непосредственно к R 1 , 2 R или 3 R. Однако мы можем использовать наши «правила» для последовательных цепей, чтобы заполнить пустые места в горизонтальном ряду. В этом случае мы можем использовать правило ряда сопротивлений для определения общего сопротивления из суммы отдельных сопротивлений:
Теперь, введя значение общего сопротивления в крайний правый столбец («Общее»), мы можем применить закон Ома I = E / R к общему напряжению и общему сопротивлению, чтобы получить общий ток 500 мкА. :
Затем, зная, что ток распределяется поровну между всеми компонентами последовательной цепи (еще одно «правило» последовательной схемы), мы можем заполнить токи для каждого резистора из только что рассчитанного значения тока:
Наконец, мы можем использовать закон Ома для определения падения напряжения на каждом резисторе, по столбцу за раз:
Таблица 3.6Таким образом, последовательная цепь определяется как имеющая только один путь, по которому может течь ток. Из этого определения следуют три правила последовательных цепей: все компоненты имеют одинаковый ток; сопротивления складываются, чтобы равняться большему общему сопротивлению; а падение напряжения в сумме дает большее общее напряжение. Все эти правила находят корень в определении последовательной цепи. Если вы полностью понимаете это определение, то правила — не что иное, как сноски к определению.
- Компоненты в последовательной цепи имеют одинаковый ток:
[латекс] I_ {Всего} = I_1 = I_2 = I_3 =… = I_n [/ latex]
- Общее сопротивление в последовательной цепи равно сумме отдельных сопротивлений:
[латекс] R_ {Всего} = R_1 + R_2 + … + R_n [/ латекс]
- Общее напряжение в последовательной цепи равно сумме отдельных падений напряжения:
[латекс] E_ {Всего} = E_1 + E_2 + … + E_n [/ латекс]
В этом разделе мы изложим три принципа, которые вы должны понимать в отношении параллельных цепей:
Напряжение: Напряжение одинаково на всех компонентах параллельной цепи.
Ток: Полный ток цепи равен сумме токов отдельных ветвей.
Сопротивление: Отдельные сопротивления уменьшают , чтобы равняться меньшему общему сопротивлению, вместо прибавляют , чтобы получить общее.
Давайте взглянем на несколько примеров параллельных цепей, демонстрирующих эти принципы.
Начнем с параллельной схемы, состоящей из трех резисторов и одной батареи:
Рисунок 3.5 Напряжение в параллельных цепяхПервый принцип для понимания параллельных цепей заключается в том, что напряжение одинаково на всех компонентах в цепи . Это связано с тем, что в параллельной цепи есть только два набора электрически общих точек, и напряжение, измеренное между наборами общих точек, всегда должно быть одинаковым в любой момент времени.
[латекс] E_ {Total} = E_1 = E_2 = … = E_n \ tag {3.4} [/ latex]
Следовательно, в приведенной выше схеме напряжение на R 1 равно напряжению на R 2 , которое равно напряжению на R 3 , которое равно напряжению на батарее.
Это равенство напряжений можно представить в другой таблице для наших начальных значений:
Таблица 3.7. Применение закона Ома для простых параллельных схемКак и в случае с последовательными цепями, применимо то же предостережение для закона Ома: значения напряжения, тока и сопротивления должны быть в одном контексте, чтобы вычисления работали правильно.
Однако в приведенном выше примере схемы мы можем немедленно применить закон Ома к каждому резистору, чтобы найти его ток, потому что мы знаем напряжение на каждом резисторе (9 вольт) и сопротивление каждого резистора:
[латекс] I_ {R1} \: = \ frac {E_ {R1}} {R_1} [/ латекс]
[латекс] \: = \ frac {(9V)} {(10kΩ)} [/ latex]
[латекс] \ pmb {I_ {R1} \: = 0.9mA} [/ латекс]
[латекс] I_ {R2} \: = \ frac {E_ {R2}} {R_2} [/ латекс]
[латекс] \: = \ frac {(9V)} {(2kΩ)} [/ латекс]
[латекс] \ pmb {I_ {R2} \: = 4,5 мА} [/ латекс]
[латекс] I_ {R3} \: = \ frac {E_ {R3}} {R_3} [/ латекс]
[латекс] \: = \ frac {(9V)} {(1kΩ)} [/ латекс]
[латекс] \ pmb {I_ {R3} = 9mA} [/ латекс]
Таблица 3.8На данный момент мы еще не знаем, каков полный ток или полное сопротивление для этой параллельной цепи, поэтому мы не можем применить закон Ома к крайнему правому столбцу («Всего»). Однако, если мы внимательно подумаем о том, что происходит, должно стать очевидным, что общий ток должен равняться сумме всех токов отдельных резисторов («ответвлений»):
Рисунок 3.6По мере того, как полный ток выходит из положительной (+) клеммы аккумулятора в точке 1 и проходит по цепи, часть потока разделяется в точке 2, чтобы пройти через R 1 , еще часть разделяется в точке 3, чтобы уйти. через 2 рандов, а оставшаяся часть идет через 3 рандов.Подобно реке, разветвляющейся на несколько меньших ручьев, общий расход всех потоков должен равняться расходу всей реки.
То же самое происходит, когда токи через R 1 , R 2 и R 3 соединяются, чтобы течь обратно к отрицательной клемме батареи (-) в направлении точки 8: поток тока из точки 7 до точки 8 должно равняться сумме токов (ответвлений) через R 1 , R 2 и R 3 .
Это второй принцип параллельных цепей: полный ток цепи равен сумме токов отдельных ветвей .
Используя этот принцип, мы можем заполнить место ИТ на нашем столе суммой I R1 , I R2 и I R3 :
Таблица 3.9 Как рассчитать полное сопротивление в параллельных цепяхНаконец, применив закон Ома к крайнему правому столбцу («Всего»), мы можем вычислить полное сопротивление цепи:
Таблица 3.10 Уравнение сопротивления в параллельных цепяхОбратите внимание на кое-что очень важное.Общее сопротивление цепи составляет всего 625 Ом: на меньше , чем у любого из отдельных резисторов. В последовательной цепи, где полное сопротивление было суммой отдельных сопротивлений, общее сопротивление должно было быть на больше, чем , чем у любого из резисторов по отдельности.
Здесь, в параллельной цепи, верно обратное: мы говорим, что отдельных сопротивлений уменьшают , а не прибавляют , чтобы получить общее .
Этот принцип завершает нашу триаду «правил» для параллельных цепей, точно так же, как было обнаружено, что у последовательных цепей есть три правила для напряжения, тока и сопротивления.
Математически соотношение между общим сопротивлением и отдельными сопротивлениями в параллельной цепи выглядит следующим образом:
Уравнение сопротивления в параллельных цепях[латекс] R_ {total} = \ frac {1} {\ frac {1} {R_1} + \ frac {1} {R_2} + … + \ frac {1} {R_n}} \ tag {3.5 } [/ латекс]
Три правила параллельных цепейТаким образом, параллельная цепь определяется как цепь, в которой все компоненты подключены между одним и тем же набором электрически общих точек.Другими словами, все компоненты подключены друг к другу через клеммы.
Из этого определения следуют три правила параллельных цепей:
Все компоненты имеют одинаковое напряжение.
Сопротивления уменьшаются до меньшего общего сопротивления.
Токи ответвления в сумме равняются большему общему току.
Как и в случае с последовательными цепями, все эти правила находят корень в определении параллельной цепи. Если вы полностью понимаете это определение, то правила — не что иное, как сноски к определению.
- Компоненты в параллельной цепи имеют одинаковое напряжение:
[латекс] E_ {Всего} = E_1 = E_2 = … = E_n [/ латекс]
- Общее сопротивление в параллельной цепи на меньше , чем любое из отдельных сопротивлений:
[латекс] R_ {Total} = \ frac {1} {\ frac {1} {R_1} + \ frac {1} {R_2} + … + \ frac {1} {R_n}} [/ латекс]
- Полный ток в параллельной цепи равен сумме токов отдельных ответвлений:
[латекс] I_ {Всего} = I_1 + I_2 +.2R} [/ латекс]
Этим легко управлять, добавив еще одну строку в нашу знакомую таблицу напряжений, токов и сопротивлений:
Таблица 3.11 Мощностьдля любого конкретного столбца таблицы может быть найдена с помощью соответствующего уравнения закона Ома ( соответствует на основе того, какие цифры представлены для E, I и R в этом столбце).
Интересное правило для общей мощности по сравнению с индивидуальной мощностью состоит в том, что оно является аддитивным для любой конфигурации цепи : последовательной, параллельной, последовательной / параллельной или другой.Мощность — это мера скорости работы, и поскольку рассеиваемая мощность должна равняться полной мощности, подаваемой источником (источниками) (в соответствии с Законом сохранения энергии в физике), конфигурация схемы не влияет на математику.
- Мощность складывается в любая конфигурация резистивной цепи:
[латекс] P_ {Всего} = P_1 + P_2 + … + P_n [/ латекс]
Напоминания при использовании закона ОмаОдна из наиболее распространенных ошибок, которые делают начинающие студенты-электронщики при применении законов Ома, — это смешивание контекстов напряжения, тока и сопротивления.Другими словами, ученик может ошибочно использовать значение I (ток) через один резистор и значение E (напряжение) через набор соединенных между собой резисторов, полагая, что они придут к сопротивлению этого резистора.
Не так! Помните это важное правило: переменные, используемые в уравнениях закона Ома, должны быть , общими для одних и тех же двух точек в рассматриваемой цепи. Я не могу переоценить это правило. Это особенно важно в последовательно-параллельных комбинированных схемах, где соседние компоненты могут иметь разные значения для падения напряжения и тока .
При использовании закона Ома для вычисления переменной, относящейся к отдельному компоненту, убедитесь, что напряжение, на которое вы ссылаетесь, относится только к этому отдельному компоненту, а ток, который вы указываете, проходит исключительно через этот единственный компонент, а сопротивление, на которое вы ссылаетесь, равно исключительно для этого единственного компонента. Аналогичным образом, при вычислении переменной, относящейся к набору компонентов в цепи, убедитесь, что значения напряжения, тока и сопротивления относятся только к этому полному набору компонентов!
Хороший способ запомнить это — обратить пристальное внимание на две точки , , завершающие анализируемый компонент или набор компонентов, убедившись, что напряжение, о котором идет речь, проходит через эти две точки, что рассматриваемый ток является потоком электрический заряд от одной из этих точек до другой точки, что рассматриваемое сопротивление эквивалентно одному резистору между этими двумя точками, и что рассматриваемая мощность — это полная мощность, рассеиваемая всеми компонентами между этими двумя точками .
Примечания к «Табличному» методу анализа цепей«Табличный» метод, представленный как для последовательных, так и для параллельных цепей в этой главе, является хорошим способом сохранить контекст закона Ома правильным для любой конфигурации цепи. В таблице, подобной приведенной ниже, вам разрешено применять уравнение закона Ома только для значений одного вертикального столбца за раз:
Таблица 3.12Получение значений по горизонтали по столбцам допустимо в соответствии с принципами последовательных и параллельных цепей:
Таблица 3.13 Таблица 3.14«Табличный» метод не только упрощает управление всеми соответствующими величинами, но также облегчает перекрестную проверку ответов, упрощая поиск исходных неизвестных переменных другими методами или работая в обратном направлении для решения исходных данные значения из ваших решений. Например, если вы только что решили для всех неизвестных напряжений, токов и сопротивлений в цепи, вы можете проверить свою работу, добавив строку внизу для расчета мощности на каждом резисторе, чтобы посмотреть, добавляются ли все отдельные значения мощности до полной мощности.Если нет, значит, вы где-то ошиблись! Хотя в этой технике «перекрестной проверки» вашей работы нет ничего нового, использование таблицы для упорядочивания всех данных для перекрестной проверки (-ий) приводит к минимуму путаницы.
- Примените закон Ома к вертикальным столбцам таблицы.
- Применить правила последовательного / параллельного горизонтального ряда в таблице.
- Проверьте свои расчеты, работая «в обратном направлении», чтобы попытаться прийти к первоначально заданным значениям (из ваших первых рассчитанных ответов), или путем решения для количества с использованием более чем одного метода (из разных заданных значений).
Принцип, известный как Закон напряжения Кирхгофа (открытый в 1847 году немецким физиком Густавом Р. Кирхгофом), можно сформулировать так:
«Алгебраическая сумма всех напряжений в контуре должна равняться нулю»
[латекс] E_ {T} = E_1 + E_2 + … + E_n = 0 [/ латекс]
Под алгебраическим я подразумеваю учет знаков (полярностей), а также величин.Под петлей я подразумеваю любой путь, прослеживаемый от одной точки в цепи до других точек в этой цепи и, наконец, обратно в исходную точку.
Демонстрация закона напряжения Кирхгофа в последовательной цепиДавайте еще раз посмотрим на нашу примерную последовательную схему, на этот раз пронумеровав точки в цепи для опорного напряжения:
Рис. 3.7.. Если бы мы подключили вольтметр между точками 2 и 1, красный измерительный провод к точке 2 и черный измерительный провод к точке 1, измеритель зарегистрировал бы +45 вольт.Обычно знак «+» не отображается, а скорее подразумевается для положительных показаний на дисплеях цифровых счетчиков. Однако для этого урока очень важна полярность показаний напряжения, поэтому я буду явно показывать положительные числа: E 2-1 = + 45V
Когда напряжение указано с двойным нижним индексом (символы «2-1» в обозначении «E 2-1 »), это означает напряжение в первой точке (2), измеренное относительно второй точки. (1). Напряжение, указанное как «E cd », будет означать напряжение, указанное цифровым измерителем с красным измерительным проводом в точке «c» и черным измерительным проводом в точке «d»: напряжение на «c» относительно «D».
Рис. 3.8.Если бы мы взяли тот же вольтметр и измерили падение напряжения на каждом резисторе, обходя цепь по часовой стрелке с красным измерительным проводом нашего измерителя на точке впереди и черным измерительным проводом на точке сзади, получим следующие показания:
[латекс] E_ {3-2} = -10V [/ латекс]
[латекс] E_ {4-3} = -20 В [/ латекс]
[латекс] E_ {1-4} = -15 В [/ латекс]
Рисунок 3.9Мы уже должны быть знакомы с общим принципом для последовательных цепей, согласно которому отдельные падения напряжения в сумме составляют общее приложенное напряжение, но измерение падения напряжения таким образом и внимание к полярности (математическому знаку) показаний показывает другое. аспект этого принципа: все измеренные напряжения в сумме равны нулю:
В приведенном выше примере петля образована следующими точками в следующем порядке: 1-2-3-4-1.Не имеет значения, с какой точки мы начинаем или в каком направлении идем, отслеживая петлю; сумма напряжений по-прежнему будет равна нулю. Чтобы продемонстрировать это, мы можем подсчитать напряжения в контуре 3-2-1-4-3 той же цепи:
Это может иметь больше смысла, если мы перерисуем наш пример последовательной схемы так, чтобы все компоненты были представлены в виде прямой линии:
Рисунок 3.10Это все та же последовательная схема, только компоненты расположены в другой форме.Обратите внимание на полярность падения напряжения на резисторе по отношению к батарее: напряжение батареи отрицательное слева и положительное справа, тогда как все падения напряжения на резисторе ориентированы в другую сторону: положительное слева и отрицательное справа. Это потому, что резисторы сопротивляются потоку электрического заряда, проталкиваемого батареей. Другими словами, «толчок», оказываемый резисторами против , поток электрического заряда должен быть в направлении, противоположном источнику электродвижущей силы.
Здесь мы видим, что цифровой вольтметр покажет на каждом компоненте в этой цепи, черный провод слева и красный провод справа, как показано горизонтально:
Рисунок 3.11Если бы мы возьмем тот же вольтметр и измерим напряжение между комбинациями компонентов, начиная с единственного R 1 слева и продвигаясь по всей цепочке компонентов, мы увидим, как напряжения складываются алгебраически (до нуля):
Рисунок 3.12Тот факт, что последовательные напряжения складываются, не должен быть загадкой, но мы заметили, что полярность этих напряжений сильно влияет на то, как складываются цифры. При считывании напряжения на R 1 —R 2 и R 1 —R 2 —R 3 (я использую символ «двойное тире» «-» для обозначения серии соединение между резисторами R 1 , R 2 и R 3 ), мы видим, как напряжения измеряют последовательно большие (хотя и отрицательные) величины, потому что полярности отдельных падений напряжения имеют одинаковую ориентацию (положительный левый , отрицательный справа).Сумма падений напряжения на R 1 , R 2 и R 3 равна 45 вольт, что соответствует выходу батареи, за исключением того, что полярность батареи противоположна падению напряжения на резисторе (отрицательный слева, положительный справа), поэтому мы получаем 0 вольт, измеренный на всей цепочке компонентов.
То, что мы должны получить ровно 0 вольт на всей струне, тоже не должно быть тайной. Глядя на схему, мы видим, что крайний левый угол струны (левая сторона R 1 : точка номер 2) напрямую соединен с крайним правым концом струны (правая сторона батареи: точка номер 2), так как необходимо для завершения схемы.Поскольку эти две точки соединены напрямую, они электрически общие друг с другом. И, как таковое, напряжение между этими двумя электрически общими точками должно быть равно нулю .
Демонстрация закона напряжения Кирхгофа в параллельной цепиЗакон Кирхгофа о напряжении (иногда для краткости обозначаемый как KVL ) будет работать для любой конфигурации цепи вообще, а не только для простой серии. Обратите внимание, как это работает для этой параллельной цепи:
Рисунок 3.13При параллельной схеме напряжение на каждом резисторе такое же, как и напряжение питания: 6 вольт. Суммируя напряжения вокруг контура 2-3-4-5-6-7-2, получаем:
Обратите внимание, как я обозначил конечное (суммарное) напряжение как E 2-2 . Поскольку мы начали нашу пошаговую последовательность в точке 2 и закончили в точке 2, алгебраическая сумма этих напряжений будет такой же, как напряжение, измеренное между той же точкой (E 2-2 ), которое, конечно, должно быть равно нулю. .
Действие закона Кирхгофа о напряжении независимо от топологии цепиТот факт, что эта цепь является параллельной, а не последовательной, не имеет ничего общего с правомерностью закона Кирхгофа о напряжении. В этом отношении схема может быть «черным ящиком» — конфигурация ее компонентов полностью скрыта от нашего взгляда, с набором открытых клемм для измерения напряжения между ними — и KVL все равно останется верным:
Рис. 3.14.Попробуйте выполнить любой порядок шагов с любого терминала на приведенной выше диаграмме, возвращаясь к исходному терминалу, и вы обнаружите, что алгебраическая сумма напряжений всегда равна нулю.
Более того, «петля», которую мы отслеживаем для KVL, даже не обязательно должна быть реальным током в прямом смысле этого слова. Все, что нам нужно сделать, чтобы соответствовать KVL, — это начинать и заканчивать в одной и той же точке цепи, подсчитывая падения напряжения и полярности при переходе между следующей и последней точкой. Рассмотрим этот абсурдный пример, отслеживая «петлю» 2-3-6-3-2 в той же параллельной цепи резистора:
Рисунок 3.15 Использование закона напряжения Кирхгофа в сложной цепиKVL можно использовать для определения неизвестного напряжения в сложной цепи, где известны все другие напряжения вокруг определенного «контура».В качестве примера возьмем следующую сложную схему (на самом деле две последовательные цепи, соединенные одним проводом внизу):
Рисунок 3.16Чтобы упростить задачу, я опустил значения сопротивления и просто указал падение напряжения на каждом резисторе. Две последовательные цепи имеют общий провод между собой (провод 7-8-9-10), что позволяет измерять напряжение между двумя цепями.
Если бы мы хотели определить напряжение между точками 4 и 3, мы могли бы составить уравнение KVL с напряжением между этими точками как неизвестным:
[латекс] E_ {4-3} + E_ {9-4} + E_ {8-9} + E_ {3-8} = 0 [/ латекс]
[латекс] E_ {4-3} + 12 В + 0 В + 20 В = 0 В [/ латекс]
[латекс] E_ {4-3} + 32V = 0 [/ латекс]
[латекс] \ pmb {E_ {4-3} = -32V} [/ латекс]
Рисунок 3.17 Рисунок 3.18 Рисунок 3.19 Рисунок 3.20Обходя контур 3-4-9-8-3, мы записываем значения падения напряжения так, как их регистрировал цифровой вольтметр, измеряя с помощью красного измерительного провода на острие впереди и черного измерительного провода на точка позади, когда мы продвигаемся по петле. Следовательно, напряжение от точки 9 до точки 4 является положительным (+) 12 вольт, потому что «красный провод» находится в точке 9, а «черный провод» — в точке 4. Напряжение от точки 3 до точки 8 является положительным (+) 20 вольт, потому что «красный провод» находится в точке 3, а «черный провод» — в точке 8.Напряжение от точки 8 до точки 9, конечно, равно нулю, потому что эти две точки электрически общие.
Наш окончательный ответ для напряжения от точки 4 до точки 3 — отрицательное (-) 32 вольта, говорящее нам, что точка 3 на самом деле положительна по отношению к точке 4, именно то, что цифровой вольтметр показал бы красным проводом в точке 4. и черный отрыв в точке 3:
Рис. 3.21.Другими словами, первоначальное размещение наших «выводов счетчика» в этой проблеме KVL было «задом наперед».«Если бы мы сгенерировали наше уравнение KVL, начиная с E 3-4 вместо E 4-3 , шагая по той же петле с противоположной ориентацией измерительных проводов, окончательный ответ был бы E 3-4 = + 32 вольта:
Рис. 3.22Важно понимать, что ни один из подходов не является «неправильным». В обоих случаях мы приходим к правильной оценке напряжения между двумя точками 3 и 4: точка 3 положительна по отношению к точке 4, а напряжение между ними составляет 32 вольта.
- Закон Кирхгофа о напряжении (KVL): «Алгебраическая сумма всех напряжений в контуре должна равняться нулю»
Закон Кирхгофа о течениях, часто сокращаемый до KCL, гласит, что «алгебраическая сумма всех токов, входящих и выходящих из узла, должна равняться нулю».
Этот закон используется для описания того, как заряд входит и покидает точку соединения или узел на проводе.
Вооружившись этой информацией, давайте теперь рассмотрим пример применения закона на практике, почему он важен и как он был получен.
Обзор параллельной цепиДавайте внимательнее рассмотрим эту последнюю параллельную схему примера:
Рисунок 3.23 Таблица 3.15Решение для всех значений напряжения и тока в этой цепи:
На данный момент мы знаем значение тока каждой ветви и полного тока в цепи. Мы знаем, что полный ток в параллельной цепи должен равняться сумме токов ответвления, но в этой цепи происходит нечто большее, чем просто это.Взглянув на токи в каждой точке соединения проводов (узле) в цепи, мы должны увидеть кое-что еще:
Рисунок 3.24 3.7. 3 тока на входе и выходе из узлаВ каждом узле положительной «шины» (провода 1-2-3-4) у нас есть разделение тока от основного потока к каждому последующему резистору ответвления. В каждом узле на отрицательной «шине» (провод 8-7-6-5) у нас есть ток, сливающийся вместе, чтобы сформировать основной поток от каждого последовательного резистора ответвления.Этот факт должен быть довольно очевиден, если вы подумаете об аналогии контура водопровода с каждым ответвлением, действующим как тройник, разделением или слиянием потока воды с основным трубопроводом, когда он движется от выхода водяного насоса к обратному каналу. резервуар или отстойник.
Если мы внимательно рассмотрим один конкретный узел «тройник», такой как узел 6, мы увидим, что ток, входящий в узел, равен по величине току, выходящему из узла:
Рисунок 3.25Сверху и справа у нас есть два тока, входящие в соединение проводов, обозначенное как узел 6.Слева у нас есть единственный ток, выходящий из узла, равный по величине сумме двух входящих токов. Обратимся к аналогии с водопроводом: пока в трубопроводе нет утечек, поток, поступающий в фитинг, должен также выходить из фитинга. Это верно для любого узла («подгонки»), независимо от того, сколько потоков входит или выходит. Математически мы можем выразить это общее соотношение как таковое: [латекс] I_ {существующий} = I_ {ввод} [/ латекс]
Действующий закон Кирхгофаг.Кирхгоф решил выразить его в несколько иной форме (хотя и математически эквивалентной), назвав его Текущий закон Кирхгофа (KCL):
.[латекс] I_ {ввод} = -I_ {существующий} = 0 [/ латекс]
Текущий закон Кирхгофа, кратко изложенный в одной фразе, гласит:
«Алгебраическая сумма всех токов, входящих и выходящих из узла, должна равняться нулю»
[латекс] I_ {T} = I_1 + I_2 + … + I_n = 0 [/ латекс]
То есть, если мы присвоим каждому току математический знак (полярность), обозначающий, входят ли они (+) или выходят (-) из узла, мы можем сложить их вместе, чтобы получить гарантированно нулевое значение.
Взяв наш пример узла (номер 6), мы можем определить величину тока, выходящего слева, задав уравнение KCL с этим током в качестве неизвестного значения:
[латекс] I_2 + I_3 + I_ {2 + 3} = 0 [/ латекс]
[латекс] 2 мА + 3 мА + I_ {2 + 3} = 0 [/ латекс]
[латекс] \ text {… решение для I …} [/ латекс]
[латекс] I = -2 мА-3 мА [/ латекс]
[латекс] \ pmb {I = -5mA} [/ латекс]
Отрицательный знак (-) на значении 5 миллиампер говорит нам, что ток равен на выходе из узла, в отличие от токов 2 миллиампер и 3 миллиампер, которые оба должны быть положительными (и, следовательно, входит в узел) .Независимо от того, обозначает ли отрицательное или положительное значение текущий вход или выход, совершенно произвольно, если они являются противоположными знаками для противоположных направлений и мы остаемся последовательными в наших обозначениях, KCL будет работать.
Вместе законы напряжения и тока Кирхгофа представляют собой замечательную пару инструментов, полезных при анализе электрических цепей. Их полезность станет еще более очевидной в следующей главе («Сетевой анализ»), но достаточно сказать, что эти законы заслуживают того, чтобы их запомнил изучающий электронику не меньше, чем закон Ома.
- Текущий закон Кирхгофа (KCL): «Алгебраическая сумма всех токов, входящих и выходящих из узла, должна равняться нулю»
резисторов последовательно и параллельно
Резисторысерии
Общее сопротивление в цепи с последовательно включенными резисторами равно сумме отдельных сопротивлений.
Цели обучения
Рассчитайте общее сопротивление в цепи с последовательно включенными резисторами
Основные выводы
Ключевые моменты
- Одинаковый ток протекает последовательно через каждый резистор.
- Отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его.
- Общее сопротивление в последовательной цепи равно сумме отдельных сопротивлений: [латекс] \ text {RN} (\ text {series}) = \ text {R} _1 + \ text {R} _2 + \ text {R} _3 +… + \ text {R} _ \ text {N} [/ latex].
Ключевые термины
- серия : ряд элементов, которые следуют одно за другим или связаны друг за другом.
- сопротивление : Противодействие прохождению электрического тока через этот элемент.
Обзор
В большинстве схем имеется более одного компонента, называемого резистором, который ограничивает поток заряда в цепи. Мера этого предела для потока заряда называется сопротивлением. Самыми простыми комбинациями резисторов являются последовательное и параллельное соединение. Общее сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения.
Цепи серии : Краткое введение в анализ последовательных и последовательных цепей, включая закон Кирхгофа по току (KCL) и закон Кирхгофа по напряжению (KVL).
Резисторы серии
Резисторы включены последовательно всякий раз, когда заряд или ток должны проходить через компоненты последовательно.
Резисторы в серии : Эти четыре резистора подключены последовательно, потому что, если бы ток подавался на один конец, он бы протекал через каждый резистор последовательно до конца.
показывает резисторы, последовательно подключенные к источнику напряжения. Общее сопротивление в цепи равно сумме отдельных сопротивлений, поскольку ток должен проходить через каждый резистор последовательно через цепь.
Резисторы, подключенные последовательно. : Три резистора, подключенные последовательно к батарее (слева), и эквивалентное одиночное или последовательное сопротивление (справа).
Использование закона Ома для расчета изменений напряжения в резисторах серии
Согласно закону Ома падение напряжения V на резисторе при протекании через него тока рассчитывается по формуле V = IR, где I — ток в амперах (A), а R — сопротивление в омах (Ω). .
Таким образом, падение напряжения на R 1 составляет В 1 = IR 1 , на R 2 составляет В 2 = IR 2 , а на R 3 равно V 3 = IR 3 .Сумма напряжений будет равна: V = V 1 + V 2 + V 3 , исходя из сохранения энергии и заряда. Если подставить значения отдельных напряжений, получим:
[латекс] \ text {V} = \ text {IR} _1 + \ text {IR} _2 + \ text {IR} _3 [/ latex]
или
[латекс] \ text {V} = \ text {I} (\ text {R} _1 + \ text {R} _2 + \ text {R} _3) [/ латекс]
Это означает, что полное сопротивление в серии равно сумме отдельных сопротивлений. Следовательно, для каждой цепи с Н количество резисторов, включенных последовательно:
[латекс] \ text {RN} (\ text {series}) = \ text {R} _1 + \ text {R} _2 + \ text {R} _3 +… + \ text {R} _ \ text {N }.[/ латекс]
Поскольку весь ток должен проходить через каждый резистор, он испытывает сопротивление каждого, а последовательно соединенные сопротивления просто складываются.
Поскольку напряжение и сопротивление имеют обратную зависимость, отдельные последовательно включенные резисторы не получают полное напряжение источника, а делят его. Об этом свидетельствует пример, когда две лампочки соединены в последовательную цепь с аккумулятором. В простой схеме, состоящей из одной батареи 1,5 В и одной лампочки, падение напряжения на лампе будет равно 1.5V через него. Однако, если бы две лампочки были соединены последовательно с одной и той же батареей, на каждой из них было бы падение напряжения 1,5 В / 2 или 0,75 В. Это будет очевидно по яркости света: каждая из двух последовательно соединенных лампочек будет в два раза слабее, чем одиночная лампочка. Следовательно, резисторы, соединенные последовательно, потребляют такое же количество энергии, как и один резистор, но эта энергия распределяется между резисторами в зависимости от их сопротивлений.
Параллельные резисторы
Общее сопротивление в параллельной цепи равно сумме обратных сопротивлений каждого отдельного сопротивления.
Цели обучения
Рассчитайте общее сопротивление в цепи с резисторами, включенными параллельно
Основные выводы
Ключевые моменты
- Общее сопротивление в параллельной цепи меньше наименьшего из отдельных сопротивлений.
- Каждый резистор, включенный параллельно, имеет то же напряжение, что и приложенный к нему источник (напряжение в параллельной цепи постоянно).
- Параллельные резисторы не получают суммарный ток каждый; они делят его (ток зависит от номинала каждого резистора и общего количества резисторов в цепи).
Ключевые термины
- сопротивление : Противодействие прохождению электрического тока через этот элемент.
- параллельно : Расположение электрических компонентов, при котором ток течет по двум или более путям.
Обзор
Резисторы в цепи могут быть включены последовательно или параллельно. Общее сопротивление комбинации резисторов зависит как от их индивидуальных значений, так и от способа их подключения.
Parallel Circuits : Краткий обзор анализа параллельных цепей с использованием таблиц VIRP для студентов-физиков средней школы.
Параллельные резисторы
Резисторы включены параллельно, когда каждый резистор подключен непосредственно к источнику напряжения путем соединения проводов с незначительным сопротивлением. Таким образом, к каждому резистору приложено полное напряжение источника.
Параллельное соединение резисторов : Параллельное соединение резисторов.
Каждый резистор потребляет такой же ток, как если бы он был единственным резистором, подключенным к источнику напряжения. Это верно для схем в доме или квартире. Каждая розетка, подключенная к устройству («резистор»), может работать независимо, и ток не должен проходить через каждое устройство последовательно.
Закон и параллельные резисторы Ом
Каждый резистор в цепи имеет полное напряжение. Согласно закону Ома, токи, протекающие через отдельные резисторы, равны [латекс] \ text {I} _1 = \ frac {\ text {V}} {\ text {R} _1} [/ latex], [latex] \ text {I} _2 = \ frac {\ text {V}} {\ text {R} _2} [/ latex] и [latex] \ text {I} _3 = \ frac {\ text {V}} {\ text {R} _3} [/ латекс].Сохранение заряда подразумевает, что полный ток является суммой этих токов:
Параллельные резисторы : три резистора, подключенные параллельно батарее, и эквивалентное одиночное или параллельное сопротивление.
[латекс] \ text {I} = \ text {I} _1 + \ text {I} _2 + \ text {I} _3. [/ Latex]
Подстановка выражений для отдельных токов дает:
[латекс] \ text {I} = \ frac {\ text {V}} {\ text {R} _1} + \ frac {\ text {V}} {\ text {R} _2} + \ frac {\ текст {V}} {\ text {R} _3} [/ latex]
или
[латекс] \ text {I} = \ text {V} (\ frac {1} {\ text {R} _1} + \ frac {1} {\ text {R} _2} + \ frac {1} { \ text {R} _3}) [/ latex]
Это означает, что полное сопротивление в параллельной цепи равно сумме обратных сопротивлений каждого отдельного сопротивления.Следовательно, для каждой схемы с числом [latex] \ text {n} [/ latex] или резисторов, подключенных параллельно,
[латекс] \ text {R} _ {\ text {n} \; (\ text {parallel})} = \ frac {1} {\ text {R} _1} + \ frac {1} {\ text { R} _2} + \ frac {1} {\ text {R} _3}… + \ frac {1} {\ text {R} _ \ text {n}}. [/ Latex]
Это соотношение приводит к общему сопротивлению, которое меньше наименьшего из отдельных сопротивлений. Когда резисторы соединены параллельно, от источника течет больше тока, чем протекает для любого из них по отдельности, поэтому общее сопротивление ниже.
Каждый резистор, включенный параллельно, имеет такое же полное напряжение источника, как и источник, но делит общий ток между ними. Примером может служить соединение двух лампочек в параллельную цепь с аккумулятором на 1,5 В. В последовательной цепи две лампочки будут вдвое менее тусклыми при подключении к одному источнику батареи. Однако, если бы две лампочки были подключены параллельно, они были бы столь же яркими, как если бы они были подключены к батарее по отдельности. Поскольку к обеим лампочкам подается одинаковое полное напряжение, батарея также разряжается быстрее, поскольку она по существу обеспечивает полную энергию для обеих лампочек.В последовательной цепи батарея будет работать столько же, сколько и с одной лампочкой, только тогда яркость будет разделена между лампочками.
Комбинированные схемы
Комбинированная схема может быть разбита на аналогичные части, которые работают последовательно или параллельно.
Цели обучения
Описать расположение резисторов в комбинированной цепи и его практическое значение
Основные выводы
Ключевые моменты
- Более сложные соединения резисторов иногда представляют собой просто комбинации последовательного и параллельного.
- Различные части комбинированной схемы могут быть идентифицированы как последовательные или параллельные, уменьшены до их эквивалентов, а затем уменьшены до тех пор, пока не останется единственное сопротивление.
- Сопротивление в проводах снижает ток и мощность, подаваемые на резистор. Если сопротивление в проводах относительно велико, как в изношенном (или очень длинном) удлинительном шнуре, то эти потери могут быть значительными и влиять на выходную мощность в устройствах.
Ключевые термины
- серия : ряд элементов, которые следуют одно за другим или связаны друг за другом.
- параллельно : Расположение электрических компонентов, при котором ток течет по двум или более путям.
- Комбинированная схема : электрическая цепь, содержащая несколько резисторов, которые соединены как последовательным, так и параллельным соединением.
Комбинированные схемы
Более сложные соединения резисторов иногда представляют собой просто комбинации последовательного и параллельного. Это часто встречается, особенно если учитывать сопротивление проводов.В этом случае сопротивление провода включено последовательно с другими сопротивлениями, включенными параллельно.
Комбинированная схема может быть разбита на аналогичные части, которые являются последовательными или параллельными, как показано на схеме. На рисунке общее сопротивление может быть вычислено путем соединения трех резисторов друг с другом последовательно или параллельно. R 1 и R 2 соединены параллельно друг другу, поэтому мы знаем, что для этого подмножества сопротивление, обратное сопротивлению, будет равно:
Сеть резисторов : В этой комбинированной схеме цепь может быть разбита на последовательный компонент и параллельный компонент.
Комбинированные схемы : два параллельных резистора, соединенные последовательно с одним резистором.
[латекс] \ frac {1} {\ text {R} _1} + \ frac {1} {\ text {R} _2} [/ latex] или [латекс] \ frac {\ text {R} _1 \ text {R} _2} {\ text {R} _1 + \ text {R} _2} [/ latex]
R 3 соединены последовательно с и R 1 и R 2 , поэтому сопротивление будет рассчитываться как:
[латекс] \ text {R} = \ frac {\ text {R} _1 \ text {R} _2} {\ text {R} _1 + \ text {R} _2} + \ text {R} _3 [/ latex ]
Сложные комбинированные схемы
Для более сложных комбинированных схем различные части могут быть идентифицированы как последовательные или параллельные, уменьшены до их эквивалентов, а затем уменьшены до тех пор, пока не останется единственное сопротивление, как показано на.На этом рисунке комбинация из семи резисторов была идентифицирована как включенные последовательно или параллельно. На исходном изображении две обведенные кружком секции показывают резисторы, включенные параллельно.
Уменьшение комбинированной схемы : Эта комбинация из семи резисторов имеет как последовательные, так и параллельные части. Каждое из них идентифицируется и приводится к эквивалентному сопротивлению, а затем уменьшается до тех пор, пока не будет достигнуто единичное эквивалентное сопротивление.
Уменьшение этих параллельных резисторов до одного значения R позволяет нам визуализировать схему в более упрощенном виде.На верхнем правом изображении мы видим, что обведенная кружком часть содержит два последовательно соединенных резистора. Мы можем дополнительно уменьшить это до другого значения R, добавив их. Следующий шаг показывает, что два обведенных резистора включены параллельно. Уменьшение тех бликов, что последние два соединены последовательно и, таким образом, могут быть уменьшены до одного значения сопротивления для всей цепи.
Одним из практических следствий комбинированной схемы является то, что сопротивление в проводах снижает ток и мощность, подаваемую на резистор.Комбинированная цепь может быть преобразована в последовательную цепь на основе понимания эквивалентного сопротивления параллельных ветвей комбинированной цепи. Последовательная цепь может использоваться для определения общего сопротивления цепи. По сути, сопротивление провода является последовательным с резистором. Таким образом, увеличивается общее сопротивление и уменьшается ток. Если сопротивление провода относительно велико, как в изношенном (или очень длинном) удлинителе, то эти потери могут быть значительными. Если потребляется большой ток, падение ИК-излучения в проводах также может быть значительным.
Зарядка аккумулятора: последовательные и параллельные ЭДС
При последовательном включении источников напряжения их ЭДС и внутренние сопротивления складываются; параллельно они остаются прежними.
Цели обучения
Сравнить сопротивления и электродвижущие силы для источников напряжения, подключенных с одинаковой и противоположной полярностью, последовательно и параллельно
Основные выводы
Ключевые моменты
- ЭДС, соединенные последовательно с одинаковой полярностью, являются аддитивными и приводят к более высокой общей ЭДС.
- Две ЭДС, соединенные последовательно с противоположной полярностью, имеют общую ЭДС, равную разнице между ними, и могут использоваться для зарядки источника более низкого напряжения.
- Два источника напряжения с идентичными ЭДС, соединенные параллельно, имеют чистую ЭДС, эквивалентную одному источнику ЭДС, однако чистое внутреннее сопротивление меньше и, следовательно, дает более высокий ток.
Ключевые термины
- параллельно : расположение электрических компонентов, при котором ток течет по двум или более путям.
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- серия : ряд элементов, которые следуют одно за другим или связаны друг за другом.
Когда используется более одного источника напряжения, они могут быть подключены последовательно или параллельно, аналогично резисторам в цепи.Когда источники напряжения включены последовательно в одном направлении, их внутренние сопротивления складываются, а их электродвижущая сила или ЭДС складываются алгебраически. Эти типы источников напряжения распространены в фонариках, игрушках и других приборах. Обычно ячейки включены последовательно, чтобы обеспечить большую суммарную ЭДС.
Фонарик и лампочка : Последовательное соединение двух источников напряжения в одном направлении. Эта схема представляет собой фонарик с двумя последовательно включенными ячейками (источниками напряжения) и одной лампочкой (сопротивление нагрузки).
Батарея — это соединение нескольких гальванических элементов. Однако недостатком такого последовательного соединения ячеек является то, что их внутреннее сопротивление увеличивается. Иногда это может быть проблематично. Например, если вы поместите в машину две батареи на 6 В вместо обычной батареи на 12 В, вы добавите как ЭДС, так и внутреннее сопротивление каждой батареи. Таким образом, у вас будет такая же ЭДС 12 В, хотя внутреннее сопротивление тогда будет удвоено, что вызовет у вас проблемы, когда вы захотите запустить двигатель.
Но, если ячейки противостоят друг другу — например, когда одна вставляется в прибор задом наперед, — общая ЭДС меньше, так как это алгебраическая сумма отдельных ЭДС. Когда он перевернут, он создает ЭДС, которая противодействует другой, и приводит к разнице между двумя источниками напряжения.
Зарядное устройство : представляет собой два источника напряжения, соединенных последовательно с противоположными ЭДС. Ток течет в направлении большей ЭДС и ограничивается суммой внутренних сопротивлений.(Обратите внимание, что каждая ЭДС представлена на рисунке буквой E.) Зарядное устройство, подключенное к аккумулятору, является примером такого подключения. Зарядное устройство должно иметь большую ЭДС, чем батарея, чтобы через него протекал обратный ток.
Когда два источника напряжения с идентичными ЭДС соединены параллельно и также подключены к сопротивлению нагрузки, общая ЭДС равна индивидуальным ЭДС. Но общее внутреннее сопротивление уменьшается, поскольку внутренние сопротивления параллельны. Таким образом, параллельное соединение может производить больший ток.
Две идентичные ЭДС : Два источника напряжения с одинаковыми ЭДС (каждый помечен буквой E), подключенные параллельно, создают одинаковую ЭДС, но имеют меньшее общее внутреннее сопротивление, чем отдельные источники. Параллельные комбинации часто используются для подачи большего тока.
ЭДС и напряжение на клеммах
Выходное напряжение или напряжение на клеммах источника напряжения, такого как батарея, зависит от его электродвижущей силы и внутреннего сопротивления.
Цели обучения
Выразите взаимосвязь между электродвижущей силой и напряжением на клеммах в форме уравнения
Основные выводы
Ключевые моменты
- Электродвижущая сила (ЭДС) — это разность потенциалов источника при отсутствии тока.
- Напряжение на клеммах — это выходное напряжение устройства, измеренное на его клеммах.
- Напряжение на клеммах рассчитывается по формуле V = ЭДС — Ir.
Ключевые термины
- электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея. Она измеряется в вольтах, а не в ньютонах, и поэтому на самом деле не является силой.
- напряжение на клеммах : выходное напряжение устройства, измеренное на его клеммах.
- разность потенциалов : разница в потенциальной энергии между двумя точками в электрическом поле; разница в заряде между двумя точками в электрической цепи; Напряжение.
Когда вы забываете выключить автомобильные фары, они постепенно тускнеют по мере разрядки аккумулятора. Почему они просто не мигают, когда батарея разряжена? Их постепенное затемнение означает, что выходное напряжение батареи уменьшается по мере разряда батареи. Причина снижения выходного напряжения для разряженных или перегруженных батарей заключается в том, что все источники напряжения состоят из двух основных частей — источника электрической энергии и внутреннего сопротивления.
Электродвижущая сила
Все источники напряжения создают разность потенциалов и могут подавать ток, если подключены к сопротивлению. В небольшом масштабе разность потенциалов создает электрическое поле, которое воздействует на заряды, вызывая ток. Мы называем эту разность потенциалов электродвижущей силой (сокращенно ЭДС). ЭДС — это вообще не сила; это особый тип разности потенциалов источника при отсутствии тока. Единицы измерения ЭДС — вольты.
Электродвижущая сила напрямую связана с источником разности потенциалов, например, с конкретной комбинацией химических веществ в батарее.Однако при протекании тока ЭДС отличается от выходного напряжения устройства. Напряжение на выводах батареи, например, меньше, чем ЭДС, когда батарея подает ток, и оно падает дальше, когда батарея разряжается или разряжается. Однако, если выходное напряжение устройства можно измерить без потребления тока, то выходное напряжение будет равно ЭДС (даже для сильно разряженной батареи).
Напряжение на клеммах
представляет схематическое изображение источника напряжения.Выходное напряжение устройства измеряется на его выводах и называется напряжением на выводах В . Напряжение на клеммах определяется уравнением:
Схематическое изображение источника напряжения : Любой источник напряжения (в данном случае углеродно-цинковый сухой элемент) имеет ЭДС, связанную с источником разности потенциалов, и внутреннее сопротивление r, связанное с его конструкцией. (Обратите внимание, что сценарий E означает ЭДС.) Также показаны выходные клеммы, на которых измеряется напряжение на клеммах V.Поскольку V = ЭДС-Ir, напряжение на клеммах равно ЭДС, только если ток не течет.
[латекс] \ text {V} = \ text {emf} — \ text {Ir} [/ latex],
где r — внутреннее сопротивление, а I — ток, протекающий во время измерения.
I является положительным, если ток течет от положительного вывода. Чем больше ток, тем меньше напряжение на клеммах. Точно так же верно, что чем больше внутреннее сопротивление, тем меньше напряжение на клеммах.