Site Loader

Содержание

Первый и второй законы Кирхгофа для электрических цепей

Понятия узла, ветви и контура электрической цепи.
Решения систем линейных уравнений, составленных на основе правил Кирхгофа.
Преобразование электрической цепи треугольник-звезда с онлайн калькулятором.

Законы Кирхгофа, они же правила Кирхгофа (ибо фундаментальными законами не являются) – это ряд условий (в количестве двух штук) для составления системы линейных уравнений, описывающих соотношения между токами и напряжениями в разветвлённых электрических цепях.
Законы Кирхгофа довольно универсальны. Они справедливы для линейных и нелинейных цепей, постоянного и переменного токов и в совокупности с законом Ома позволяют определить параметры электрических цепей любой сложности.

Для формулирования своих правил Кирхгоф ввёл несколько понятий, таких как: узел, ветвь и контур, значение которых поясним на простом примере (Рис.1).


 
Рис.1 Пример схемы электрической цепи


Узлом называется точка соединения трёх и более ветвей (на принципиальных схемах обычно обозначается жирной точкой).
На Рис.1, приведённом в качестве примера электрической цепи – это точки А, В, С.

Ветвью называют участок электрической цепи с одним и тем же значением тока.
На Рис.1 – это 5 ветвей с токами I1…I5.

Контуром

называется замкнутый путь, по которому протекает электрический ток, проходя через несколько участков цепи, включающих в себя узлы и ветви. На Рис.1 контуры изображены круглыми стрелками.


Теперь, определившись с терминами, можно переходить к формулированию законов Кирхгофа.

Первый закон или правило Кирхгофа вытекает из закона сохранения заряда и провозглашает, что алгебраическая сумма токов, сходящихся в каждом узле любой цепи, равна нулю.
Иными словами, сколько тока втекает в узел, столько из него и вытекает. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.

Если следовать примеру, приведённому на Рис.1, то для узла А:   I1+I4-I3=0.

Переходим ко второму закону Кирхгофа, который вытекает из третьего уравнения Максвелла и формулируется следующим образом:
Алгебраическая сумма ЭДС в замкнутом контуре равна алгебраической (т. е. с учётом знака) сумме падений напряжений на всех элементах этого контура. Если в контуре нет источников ЭДС (генераторов напряжения), то суммарное падение напряжений равно нулю.
Направление обхода ветвей контура выбирается произвольно. Падение напряжения считают положительным, если направление тока ветви совпадает с ранее выбранным направлением обхода, в противном случае – отрицательным.

Припадаем к рисунку Рис.1, выбираем один из трёх контуров и констатируем:
UR2 + UR4 + UR3 = Е2.

Законы законами, да и правила – вещь не самая бесполезная в радиолюбительском хозяйстве, только как воспользоваться всей этой полученной информацией на практике? Давайте с этим разберёмся и рассмотрим схему более приближённую к реальной жизни, чем та, которую мы приводили ранее в качестве примера, а конкретно – схему несбалансированного резистивного моста (Рис.2).


Рис.2 Пример применения правил
Кирхгофа

Для расчёта токов, протекающих в цепях, для начала воспользуемся первым правилом Кирхгофа:
Iобщ = I1 + I4 = I2 + I5 ;
I1 = I2 + I3 .
.

Согласно второму правилу и закону Ома:
I1*R1 + I2*R2 = E ;
I4*R4 + I5*R5 = E ;
I1*R1 + I3*R3 + I5*R5 = E .

Ну и хватит: пять уравнений, пять неизвестных – вполне достаточно, для того чтобы получить искомые значения всех токов.


Правда возникает резонный вопрос – КАК? Отвечу – матричным методом решения систем линейных алгебраических уравнений с ненулевым определителем. Согласен – геморрой! А поскольку мы ребята ленивые, но местами сообразительные, то и не станем искать сложных путей, а воспользуемся широко известным в узких кругах методом эквивалентного преобразования пассивных цепей – треугольник-звезда. Как это выглядит?

Рис.3 Преобразование треугольник-звезда


Преобразование треугольник ⇒ звезда:

R1з=R1т*R3т /(R1т+R2т+R3т) ;
R2з=R1т*R2т /(R1т+R2т+R3т) ;
R3з=R2т*R3т /(R1т+R2т+R3т) .

И обратное преобразование:
R1т=R1з+R2з+ R1з*R2з /R3з ;
R2т=R2з+R3з+ R2з*R3з /R1з ; R3т=R1з+R3з+ R1з*R3з /R2з .

Сопроводим рисунок простыми онлайн калькуляторами.

Калькулятор рсчёта элементов эквивалентного преобразования треугольник ⇒ звезда

Калькулятор рсчёта элементов эквивалентного преобразования звезда ⇒ треугольник

Вот теперь в схеме несбалансированного резистивного моста (Рис.2) можно выделить треугольник, состоящий из резисторов R2, R3 и R5, и заменить его на звезду (R1з…R3з, Рис.4 б).


Рис.4 Эквивалентное преобразование треугольник-звезда

Нужно нам это для того, чтобы, используя правила параллельного и последовательного соединения резисторов, свести всю нашу многозвенную цепь к одному элементу (Rэкв, Рис.4 г), после чего посредством простейшей манипуляции на калькуляторе или деревянных счётах вычислить величину:

Iобщ = Е/Rэкв = 10В/2.239кОм = 4.47мА.
Теперь, перемещаясь к Рис.4 в) и воспользовавшись первым правилом Кирхгофа, констатируем:
IR1з = I1 + I4 = Iобщ = 4.47мА.
Далее напрочь забываем о Густаве Робертовиче Кирхгофе вместе с его правилами и юзаем исключительно закон Ома в самом что ни на есть его чистом виде:
UC = IR1з * R1з = Iобщ * R1з = 4.47мА * 1кОм = 4.47В
(Рис.4 в).
I1 * (R1 + R2з) = E — UC (Рис.4 б),
отсюда:
I1 = (10В — 4.47В) / (1кОм + 600Ом) = 3.46мА.
Точно так же:
I4 = (E — UC) / (R4 + R3з) = (10В — 4.47В) / (4кОм + 1.5кОм) = 1.01мА.
И последний финишный рывок мы совершим, вернувшись к первоначальной схеме (Рис.4 а):
UА = Е — R1 * I1 = 10 В — 1кОм * 3.46мА = 6.54В.
UВ = Е — R4 * I4 = 10 В — 4кОм * 1.01мА = 5.96В.
I3 = (UА — UВ) / R3 = (6.54В — 5.96В) / 3кОм = 0.19мА
.
I2 = UА / R2 = 6.54В / 2кОм = 3.27мА.
I5 = UВ / R5 = 5.96В / 5кОм = 1.19мА.

Всё, расчёт окончен! Ну а поскольку мы ребята не только сообразительные, но и пытливые умом и трезвым взглядом на вещи, то нам будет не влом проверить полученные результаты на симуляторе:

Вот теперь – точно всё! Отныне мы не только освоили оба правила Кирхгофа, но и основательно освежили в памяти основной закон электротехники – закон Ома.

 

Законы Кирхгофа

Законы Кирхгофа:   Первый и второй законы Кирхгофа.

Вытекает из закона сохранения заряда.
Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.

где i – число токов, сходящихся в данном узле.
Например, для узла электрической цепи ( рис. 1 ) уравнение по первому закону Кирхгофа можно записать в виде
I1 — I2 + I3 — I4 + I5 = 0

Рис. 1
В этом уравнении токи, направленные к узлу, приняты положительными.

Второй закон Кирхгофа.

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii, Ri – ток и сопротивление i — й ветви.
Рис. 2
Так, для замкнутого контура схемы ( рис. 2 ) Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4
Замечание о знаках полученного уравнения:
1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;
2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.

Расчет разветвленной электрической цепи с помощью законов Кирхгофа.

Точечные тела (материальные точки) взаимодействуют с силами, равными по величине и противоположными по направлению и направленными вдоль прямой, соединяющей эти тела.

Метод заключается в составлении уравнений по первому и второму законам Кирхгофа для узлов и контуров электрической цепи и решении этих уравнений с целью определения неизвестных токов в ветвях и по ним – напряжений. Поэтому число неизвестных равно числу ветвей b, следовательно, столько же независимых уравнений необходимо составить по первому и второму законам Кирхгофа.
Число уравнений, которые можно составить на основании первого закона, равно числу узлов цепи, причем только ( y – 1) уравнений являются независимыми друг от друга.
Независимость уравнений обеспечивается выбором узлов. Узлы обычно выбирают так, чтобы каждый последующий узел отличался от смежных узлов хотя бы одной ветвью. Остальные уравнения составляются по второму закону Кирхгофа для независимых контуров, т.е. число уравнений b — ( y — 1 ) = b — y + 1.
Контур называется независимым, если он содержит хотя бы одну ветвь, не входящую в другие контуры.
Составим систему уравнений Кирхгофа для электрической цепи ( рис. 3 ). Схема содержит четыре узла и шесть ветвей.
Поэтому по первому закону Кирхгофа составим y — 1 = 4 — 1 = 3 уравнения, а по второму b — y + 1 = 6 — 4 + 1 = 3, также три уравнения.
Произвольно выберем положительные направления токов во всех ветвях ( рис. 4 ). Направление обхода контуров выбираем по часовой стрелке.

Рис. 3
Составляем необходимое число уравнений по первому и второму законам Кирхгофа
Полученная система уравнений решается относительно токов. Если при расчете ток в ветви получился с минусом, то его направление противоположно принятому направлению.

Формула второго закона Кирхгофа

Какой бы сложной не была электрическая цепь, она имеет элементы двух видов: узлы и замкнутые контуры. Узлом цепи называют точку разветвления цепи, в которой сходятся три или более проводника с током. Расчеты в любой самой сложной цепи можно провести, используя закон Ома и закон сохранения заряда. Для упрощения расчетов цепей постоянного тока используют правила (законы) Кирхгофа, которые позволяю составить линейные уравнения вычисления сил токов, текущих в элементах цепи.

Падение напряжения это произведение силы тока на сопротивление (). Если в цепи источников ЭДС будет несколько, то следует ЭДС суммировать, учитывая знаки. ЭДС принято считать положительной, если при обходе контура первым встречается отрицательный полюс источника. Направление обхода контура выбирают произвольно, (по часовой стрелке или против нее). Один раз выбрав направление обхода контура при решении задачи не следует его изменять.

Теперь к самой формуле, отображающей второй закон Кирхгофа:

   

Формула второго закона Кирхгофа говорит о том, что сумма произведений силы токов (I) (с учетом знака) на внешние и внутренние сопротивления всех участков замкнутого контура равны сумме величин ЭДС () источников, которые включены в данный контур (суммирование ЭДС происходит с учетом знаков). При составлении и уравнений с использованием формулы второго закона Кирхгофа необходимо внимательно следить за расстановкой знаков токов и ЭДС.

Система уравнений, которая получается при использовании первого и второго правил Кирхгофа является полной и дает возможность отыскать все токи. При составлении уравнений, используя правила Кирхгофа, надо следить за тем, чтобы новое уравнение имело хотя бы одну величину, которая еще не вошла в предыдущие уравнения. Кроме того, необходимо, чтобы система уравнений имела число уравнений равное количеству неизвестных.

Второе правило Кирхгофа следует из того, что электрическое напряжение по замкнутому контуру равно нулю, то есть это правило является следствием основного свойства электростатического поля, которое заключается в том, что работа поля при движении заряда по замкнутой траектории равна нулю.

Примеры решения задач по теме «Второй закон Кирхгофа»

§ 10. Законы Кирхгофа | Электротехника

Закон Ома устанавливает зависимость между силой тока, напряжением и сопротивлением для простейшей электрической цепи, представляющей собой один замкнутый контур. В практике встречаются более сложные (разветвленные) электрические цепи, в которых имеются несколько замкнутых контуров и несколько узлов, к которым сходятся токи, проходящие по отдельным ветвям. Значе­ния токов и напряжений для таких цепей можно находить при помощи законов Кирхгофа.

Первый закон Кирхгофа устанавливает зависимость между то­ками для узлов электрической цепи, к которым подходит несколько ветвей. Согласно этому закону алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю:

?I = 0 (16)

При этом токи, направленные к узлу, берут с одним знаком (например, положительным), а токи, направленные от узла,— с противоположным знаком (отрицательным). Например, для узла А (рис. 23, а)

I1 + I2 + I3 – I4 – I5 = 0 (17)

Преобразуя это уравнение, получим, что сумма токов, направленных к узлу электрической цепи, равна сумме токов, направленных от этого узла:

I1 + I2 + I3 = I4 + I5 (17′)

В данном случае имеет место полная аналогия с распределением потоков воды в соединенных друг с другом трубопроводах (рис. 23, б).
Второй закон Кирхгофа устанавливает зависимость между э. д. с. и напряжением в замкнутой электрической цепи. Согласно этому закону во всяком замкнутом контуре алгебраическая сумма э. д. с. равна алгебраической сумме падений напряжения на сопротивлениях, входящих в этот контур:

?E = ?IR (18)

При составлении формул, характеризующих второй закон Кирхгофа, значения э. д. с. E и падений напряжений IR считают положительными, если направления э. д. с. и токов на соответствующих участках контура совпадают с произвольно выбранным направлением обхода контура. Если же направления э. д. с. и токов на соответствующих участках контура противоположны выбранному направлению обхода, то такие э. д. с. и падения напряжения считают отрицательными.
Рассмотрим в качестве примера электрическую цепь, в которой имеются два источника с электродвижущими силами E1 и E2

(рис. 24, а), внутренними сопротивлениями Ro1, Ro2 и два приемника с сопротивлениями R1 и R2. Применяя второй закон Кирхгофа для «этой цепи и выбирая направление ее обхода по часовой стрелке,
получим:

E1 – E2 = IR01 + IR02 + IR1 + IR

При этом э. д. с. E1 и ток I совпадают с выбранным направлением обхода контура и считаются положительными, а э. д. с. Е2, противоположная этому направлению, считается отрицательной.
Если в электрической цепи э. д. с. источников электрической энергии при обходе соответствующего контура направлены навстречу друг другу (см. рис. 24, а), то такое включение называют встречным. В этом случае на основании второго закона Кирхгофа ток I = (E1-E2)/(R1+R2+R01+R02).
Встречное направление э. д. с. имеет место, например, на э. п. с.при включении электродвигателей постоянного тока (их можно
рассматривать как некоторые источники э. д. с.) в две параллельные группы, а также при параллельном включении аккумуляторов в батарее
Если же э. д. с. источников электрической энергии имеют по контуру одинаковое направление (рис. 24, б), то такое включение называют согласным и ток I = (E1-E2)/(R1+R2+R01+R02). В неко-

Рис 24. Схемы электрических цепей с несколькими источниками и приемниками электрической энергии: а и б — неразветвленных; в — разветвленной

торых случаях такое включение недопустимо, так как ток в цепи резко возрастает.
Если в электрической цепи имеются ответвления (рис. 24, в), то по отдельным ее участкам проходят различные токи I1 и I2. Согласно второму закону Кирхгофа E1-E2=I1R01+I1R1-I2R2-I2R02-I2R3+I1R4
При составлении этого уравнения э. д. с. Е1 и ток I1 считаются положительными, так как совпадают с принятым направлением обхода контура, э. д. с. Е2 и ток I2 — отрицательными.

Правило напряжений Кирхгофа (второй закон Кирхгофа)

Добавлено 14 января 2021 в 05:47

Сохранить или поделиться

Что такое правило напряжений Кирхгофа (второй закон Кирхгофа)?

Принцип, известный как правило напряжений Кирхгофа (открытое в 1847 году немецким физиком Густавом Р. Кирхгофом), можно сформулировать следующим образом:

«Алгебраическая сумма всех напряжений в замкнутом контуре равна нулю»

Под алгебраической я подразумеваю, помимо учета величин, учет и знаков (полярностей). Под контуром я подразумеваю любой путь, прослеживаемый от одной точки в цепи до других точек в этой цепи, и, наконец, обратно в исходную точку.

Демонстрация закона напряжений Кирхгофа в последовательной цепи

Давайте еще раз посмотрим на наш пример последовательной схемы, на этот раз нумеруя точки цепи для обозначения напряжений:

Рисунок 1 – Демонстрация закона напряжений Кирхгофа в последовательной цепи

Если бы мы подключили вольтметр между точками 2 и 1, красный измерительный провод к точке 2 и черный измерительный провод к точке 1, вольтметр зарегистрировал бы значение +45 вольт. Для положительных показаний на дисплеях цифровых счетчиков знак «+» обычно не отображается, а скорее подразумевается. Однако для этого урока полярность показаний напряжений очень важна, поэтому я буду явно показывать положительные числа:

E2-1 = +45 В

Когда напряжение указывается с двойным нижним индексом (символы «2-1» в обозначении «E2-1»), это означает напряжение в первой точке (2), измеренное по отношению ко второй точке (1). Напряжение, указанное как «Ecd», будет означать значение напряжения, показанное цифровым мультиметром с красным измерительным проводом в точке «c» и черным измерительным проводом в точке «d»: напряжение в точке «c» относительно точки «d».

Рисунок 2 – Значение Ecd

Если бы мы взяли тот же вольтметр и измерили падение напряжения на каждом резисторе, обходя цепь по часовой стрелке с красным измерительным проводом нашего мультиметра на точке впереди и черным измерительным проводом на точке позади, мы получили бы следующие показания:

E3-2 = -10 В

E4-3 = -20 В

E1-4 = -15 В

Рисунок 3 – Определение напряжений в последовательной цепи

Нам уже должен быть знаком общий для последовательных цепей принцип, утверждающий, что отдельные падения напряжения в сумме составляют общее приложенное напряжение, но измерение падения напряжения таким образом и уделение внимания полярности (математическому знаку) показаний открывает еще один аспект этого принципа: все измеренные напряжения в сумме равны нулю:

\[\begin{matrix} E_{2-1} = & +45 \ В &\text{напряжение в точке 2 относительно точки 1} \\ E_{3-2} = & -10 \ В & \text{напряжение в точке 3 относительно точки 2} \\ E_{4-3} = & -20 \ В & \text{напряжение в точке 4 относительно точки 3} \\ E_{1-4} = & -15 \ В & \text{напряжение в точке 1 относительно точки 4} \\ \hline \\ \ & 0 \ В \end{matrix}\]

В приведенном выше примере контур образован следующими точками в следующем порядке: 1-2-3-4-1. Не имеет значения, с какой точки мы начинаем или в каком направлении движемся при следовании по контуру; сумма напряжений по-прежнему будет равна нулю. Чтобы продемонстрировать это, мы можем той же цепи подсчитать напряжения в контуре 3-2-1-4-3:

\[\begin{matrix} E_{2-3} = & +10 \ В &\text{напряжение в точке 2 относительно точки 3} \\ E_{1-2} = & -45 \ В & \text{напряжение в точке 1 относительно точки 2} \\ E_{4-1} = & +15 \ В & \text{напряжение в точке 4 относительно точки 1} \\ E_{3-4} = & +20 \ В & \text{напряжение в точке 3 относительно точки 4} \\ \hline \\ \ & 0 \ В \end{matrix}\]

Этот пример может быть более понятен, если мы перерисуем нашу последовательную схему так, чтобы все компоненты были представлены на одной прямой линии:

Рисунок 4 – Изменение представления последовательной цепи

Это всё та же последовательная схема, только с немного перераспределенными компонентами. Обратите внимание на полярность падений напряжения на резисторах по отношению к напряжению батареи: напряжение батареи отрицательное слева и положительное справа, тогда как все падения напряжения на резисторах ориентированы в другую сторону (положительное слева и отрицательное справа). Это потому, что резисторы сопротивляются потоку электрического заряда, проталкиваемого батареей. Другими словами, «толкание», прилагаемое резисторами против потока электрического заряда, должно происходить в направлении, противоположном источнику электродвижущей силы.

Здесь мы видим, что цифровой вольтметр покажет на каждом компоненте в этой цепи, если черный провод будет слева, а красный провод – справа:

Рисунок 5 – Измерение напряжений в последовательной цепи

Если бы мы взяли тот же вольтметр и измерили напряжение между комбинациями компонентов, начиная с единственного R1 слева и продвигаясь по всей цепочке компонентов, мы увидели бы, как напряжения складываются алгебраически (до нуля):

Рисунок 6 – Измерение суммы напряжений в последовательной цепи

Тот факт, что последовательные напряжения складываются, не должен быть тайной, но мы заметили, что полярность этих напряжений имеет большое значение в том, как эти значения складываются. При измерении напряжения на R1 – R2 и R1 – R2 – R3 (я использую символ «двойное тире» «–» для обозначения последовательного соединения между резисторами R1, R2 и R3), мы видим, как измеряются бо́льшие значения напряжений (хотя и отрицательные), потому что полярности отдельных падений напряжения имеют одинаковую ориентацию (плюс слева, минус справа).

Сумма падений напряжения на R1, R2 и R3 равна 45 вольт, что соответствует выходному напряжению батареи, за исключением того, что полярность напряжения батареи (минус слева, плюс справа) противоположна падениям напряжения на резисторах, поэтому при измерении напряжения на всей цепочке компонентов мы получаем 0 вольт.

То, что мы должны получить ровно 0 вольт на всей линии, тоже не должно быть тайной. Глядя на схему, мы видим, что крайняя левая часть линии (левая сторона R1, точка номер 2) напрямую соединена с крайней правой частью линии (правая сторона батареи, точка номер 2), что необходимо для завершения схемы.

Поскольку эти две точки соединены напрямую, они являются электрически общими друг с другом. Таким образом, напряжение между этими двумя электрически общими точками должно быть равно нулю.

Демонстрация закона напряжений Кирхгофа в параллельной цепи

Правило напряжений Кирхгофа (второй закон Кирхгофа) будет работать вообще для любой конфигурации схемы, а не только для простых последовательных цепей. Обратите внимание, как это работает для следующей параллельной схемы:

Рисунок 7 – Параллельная схема из резисторов

При параллельной схеме напряжение на каждом резисторе равно напряжению питания: 6 вольт. Суммируя напряжения вдоль контура 2-3-4-5-6-7-2, мы получаем:

\[\begin{matrix} E_{3-2} = & 0 \ В &\text{напряжение в точке 3 относительно точки 2} \\ E_{4-3} = & 0 \ В & \text{напряжение в точке 4 относительно точки 3} \\ E_{5-4} = & -6 \ В & \text{напряжение в точке 5 относительно точки 4} \\ E_{6-5} = & 0 \ В & \text{напряжение в точке 6 относительно точки 5} \\ E_{7-6} = & 0 \ В & \text{напряжение в точке 7 относительно точки 6} \\ E_{2-7} = & +6 \ В & \text{напряжение в точке 2 относительно точки 7} \\ \hline \\ E_{2-2} = & 0 \ В \end{matrix}\]

Обратите внимание, что конечное (суммарное) напряжение я обозначил как E2-2. Поскольку мы начали наше пошаговое прохождение по контуру в точке 2 и закончили в точке 2, алгебраическая сумма этих напряжений будет такой же, как напряжение, измеренное между той же точкой (E2-2), которое, конечно, должно быть равно нулю.

Справедливость закона Кирхгофа о напряжениях независимо от топологии цепи

Тот факт, что эта цепь является параллельной, а не последовательной, не имеет ничего общего со справедливостью закона Кирхгофа о напряжениях. В этом отношении схема может быть «черным ящиком» (конфигурация ее компонентов полностью скрыта от нашего взгляда) с набором открытых клемм, между которыми мы можем измерить напряжение, – и правило напряжений Кирхгофа всё равно останется верным:

Рисунок 8 – Справедливость закона Кирхгофа напряжениях независимо от топологии схемы

Попробуйте на приведенной выше диаграмме выполнить обход в любом порядке, начиная с любого вывода, и вернувшись к исходному выводу, и вы обнаружите, что алгебраическая сумма напряжений всегда равна нулю.

Более того, «контур», который мы отслеживаем для второго закона Кирхгофа, даже не обязательно должен быть реальным путем протекания тока в прямом смысле этого слова. Всё, что нам нужно сделать, чтобы соответствовать правилу напряжений Кирхгофа, – это начинать и заканчивать в одной и той же точке цепи, подсчитывая падения напряжения и полярности при переходе между точками. Рассмотрим следующий абсурдный пример, проходя по «контуру» 2-3-6-3-2 в той же параллельной резисторной цепи:

Рисунок 9 – Параллельная схема из резисторов

\[\begin{matrix} E_{3-2} = & 0 \ В &\text{напряжение в точке 3 относительно точки 2} \\ E_{6-3} = & -6 \ В & \text{напряжение в точке 6 относительно точки 3} \\ E_{3-6} = & +6 \ В & \text{напряжение в точке 3 относительно точки 6} \\ E_{2-3} = & 0 \ В & \text{напряжение в точке 2 относительно точки 3} \\ \hline \\ E_{2-2} = & 0 \ В \end{matrix}\]

Использование закона Кирхгофа о напряжениях в сложной цепи

Закон Кирхгофа о напряжениях можно использовать для определения неизвестного напряжения в сложной цепи, где известны все другие напряжения вдоль определенного «контура». В качестве примера возьмем следующую сложную схему (на самом деле две последовательные цепи, соединенные одним проводом внизу):

Рисунок 10 – Правило напряжений Кирхгофа в сложной цепи

Чтобы упростить задачу, я опустил значения сопротивлений и просто указал падение напряжения на каждом резисторе. Две последовательные цепи имеют между собой общий провод (провод 7-8-9-10), что делает возможными измерения напряжения между этими двумя цепями. Если бы мы хотели определить напряжение между точками 4 и 3, мы могли бы составить уравнение правила напряжений Кирхгофа с напряжением между этими точками как неизвестным:

E4-3 + E9-4 + E8-9 + E3-8 = 0

E4-3 + 12 + 0 + 20 = 0

E4-3 + 32 = 0

E4-3 = -32 В

Рисунок 11 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3Рисунок 12 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 9 и 4Рисунок 13 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 8 и 9Рисунок 14 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 8

Обойдя контур 3-4-9-8-3, мы записываем значения падений напряжения так, как их регистрировал бы цифровой вольтметр, измеряя с красным измерительным проводом в точке впереди и черным измерительным проводом на точке позади, когда мы продвигаемся вперед по контуру. Следовательно, напряжение в точке 9 относительно точки 4 является положительным (+) 12 вольт, потому что «красный провод» находится в точке 9, а «черный провод» – в точке 4.

Напряжение в точке 3 относительно точки 8 составляет положительные (+) 20 вольт, потому что «красный провод» находится в точке 3, а «черный провод» – в точке 8. Напряжение в точке 8 относительно точки 9, конечно, равно нулю, потому что эти две точки электрически общие.

Наш окончательный ответ для напряжения в точке 4 относительно точки 3 – это отрицательные (-) 32 вольта, говорящие нам, что точка 3 на самом деле положительна относительно точки 4, именно это цифровой вольтметр показал бы при красном проводе в точке 4 и черном проводе в точке 3:

Рисунок 15 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3

Другими словами, первоначальное размещение наших «измерительных щупов» в этой задаче правила напряжений Кирхгофа было «обратным». Если бы мы сформировали наше уравнение второго закона Кирхгофа, начиная с E3-4, вместо E4-3, обходя тот же контур с противоположной ориентацией измерительных проводов, окончательный ответ был бы E3-4 = +32 вольта:

Рисунок 16 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 4

Важно понимать, что ни один из подходов не является «неправильным». В обоих случаях мы приходим к правильной оценке напряжения между двумя точками 3 и 4: точка 3 положительна по отношению к точке 4, а напряжение между ними составляет 32 вольта.

Резюме

  • Правило напряжений Кирхгофа (второй закон Кирхгофа): «Алгебраическая сумма всех напряжений в контуре равна нулю».

Оригинал статьи:

Теги

Анализ цепейДля начинающихОбучениеПараллельная цепьПолярностьПоследовательная цепьПравило напряжений Кирхгофа / Второй закон КирхгофаЭлектрическое напряжение

Сохранить или поделиться

Формулировка и физический смысл закона утечки энергии в пределах замкнутой цепи

В 1845 г. Густав Кирхгоф, физик из Германии, вывел два правила, позволяющих рассматривать соответствия между разностью потенциалов и силой тока на участках электроцепи. Их ещё называют законами, но это скорее условия, которые позволяют составить систему уравнений. Решая подобные уравнения, рассчитывают любую самую сложную электрическую цепь.

Густав Роберт Кирхгоф – немецкий физик

Формулировка правил

Каждое правило Кирхгофа обладает универсальными свойствами. Как первое, так и второе, хоть и не относятся к фундаментальным законам, но твёрдо обоснованы.

Внимание! Правила Кирхгофа одинаково применимы к цепям любого рода тока.

Определения

Прежде, чем рассматривать простые принципы и смысл решения СУ (систем уравнений), нужно определиться с применяемыми формулировками. В типологии цепей пользуются следующими понятиями:

  • ветвь;
  • узел;
  • контур.

Всё это – элементы электрической цепи (ЭЦ).

Элементы ЭЦ

Часть электроцепи, через которую проходит электричество одной и той же величины, называется ветвью. Место, в котором соединяются три и более ветви, именуют узлом. Обычно на схемах узлы обозначаются крупными точками. Контуром называется путь, по которому протекает электрический ток, проходя через несколько участков ЭЦ, включающих в себя узлы и ветви.

Важно! Ток (I), выходя из одной точки контура и единожды проходя по разветвлениям и узлам, должен обязательно вернуться в начало. Контур – это замкнутая цепь.

Узлы и ветви, подлежащие изучаемому в определённый момент контуру, могут входить в состав других контуров: являться общими для нескольких замкнутых ЭЦ одновременно.

Первое правило

Первая закономерность Кирхгофа звучит так: «Сумма всех токов в узлах ЭЦ равна нулю». Если придать направление токам, текущим сквозь пересечения проводников, имеющих общий контакт (узел), то можно промаркировать стрелками, указывающими на узел, втекающие токи. Стрелками, имеющими направленность от узла, удобно отмечать вытекающие токи:

I1 + I2 – I3 – I4 – I5 = 0

Изображение направления движения электричества

Условно считая, что входящие I имеют плюсовой знак, а выходящие – минусовой, можно перефразировать утверждение. Согласно закону сохранения заряда, алгебраические суммы входящих в узел и выходящих из него I по значению равны.

Первый закон

Убедиться в истинности первого правила можно, собрав смешанную схему включения резисторов, в качестве нагрузки, для источника питания U = 3 В.

Включенные в ветви амперметры позволяют визуально зафиксировать значения токов, входящих и выходящих из первого узла. Их алгебраическая сумма (учитывая знаки) будет равна нулю.

Схема цепи с установкой амперметров

Второе правило

Его называют правилом напряжений, оно утверждает, что сумма всех E (ЭДС), входящих в контур, равняется сумме падений напряжений на резистивных элементах, при условии, что контур замкнутый:

ΣE = ΣI*R.

Например, для цепи с элементом питания и резистором напряжение на резисторе U = I*R будет равно ЭДС батарейки. По второму определению Кирхгофа выражение будет иметь вид:

E = I*R.

Схема с одной ЭДС и одним резистором

По аналогии, если количество резисторов увеличить, то падение напряжения на них распределится так, что в сумме они сравняются со значением ЭДС источника питания:

E = I*R1 + I*R2 + I*R.

Включение одной ЭДС и трёх резисторов одного номинала

Объяснение было бы не полным, если не рассмотреть схему с несколькими ЭДС, входящими в контур. В этом случае выражать равенство следует следующим образом:

E1 + E2 = I*R1 + I*R2 + I*R3.

К сведению. При подключении нескольких источников в один контур необходимо соблюдать полярность, выполняя последовательное соединение плюса одного источника с минусом другого, таким образом, значения ЭДС будут суммироваться.

Включение двух источников в контур

Расчеты электрических цепей с помощью законов Кирхгофа

Для выполнения подобных расчётов электрических цепей существует определённый алгоритм, при котором вычисляются токи для каждой ветви и напряжения на выводах всех элементов, включённых в ЭЦ. Для того чтобы рассчитать любую схему, придерживаются следующего порядка:

  1. Разбивают ЭЦ на ветви, контуры и узлы.
  2. Стрелками намечают предполагаемые направления движения I в ветвях. Произвольно намечают направление, по которому при написании уравнений обходят контур.
  3. Пишут уравнения, применяя первое и второе правило Кирхгофа. При этом учитывают правила знаков, а именно:
  • «плюс» имеют токи, втекающие в узел, «минус» – токи, вытекающие из узла;
  • Е (ЭДС) и снижение напряжения на резисторах (R*I) обозначают знаком «плюс», если ток и обход совпадают по направлению, или «минус», если нет.
  1. Решая полученные уравнения, находят нужные величины токов и падения напряжений на резистивных элементах.

Информация. Независимыми узлами называют такие, которые отличаются от других как минимум одной новой веткой. Ветви, содержащие ЭДС именуют активными, без ЭДС – пассивными.

В качестве примера можно рассмотреть схему с двумя ЭДС и рассчитать токи.

Пример схемы для расчёта с двумя E

Произвольно выбирают направление токов и контурного обхода.

Намеченные направления на схеме

Составляются следующие уравнения с применением первого и второго закона Кирхгофа:

  • I1 – I3 – I4 = 0 – для узла a;
  • I2 + I4 – I5 = 0 – для узла b;
  • R1*I1 + R3*I3 = E1 – контур acef;
  • R4*I4 — R2*I2 – R3*I3 = — E2 – контур abc;
  • R6*I5 + R5*I5 + R2*I2 = E2 – контур bdc.

Уравнения решаются с помощью методов определителей или подстановки. Также можно использовать онлайн-калькуляторы.

О значении для электротехники

Кирхгоф вывел правила, носящие абсолютный прикладной характер для решения практических вопросов в электротехнике. Комплексные применения вместе с иными методами дают возможность рассчитывать участки схем любой сложности. Эти два закона можно употребить для нахождения электрических параметров линейной алгебры.

Законы Кирхгофа для магнитной цепи

Магнитная цепь (МЦ), как электрическая (ЭЦ), может быть рассчитана по данным правилам. По аналогии цепей можно выделить следующую связь:

  • магнитный поток – электрический ток;
  • МДС (магнитодвижущая сила) – ЭДС.

Первое правило для МЦ – магнитные потоки в узлах в алгебраической сумме дают ноль (ΣΦк= 0). Оно основано на физическом принципе непрерывности Φ.

Второе правило говорит о том, что падения магнитного напряжения (напряжённости) Uм в сомкнутом контуре в алгебраической сумме равны сумме МДС этого контура:

ΣUм = ΣI*ω, где:

  • I – ток, проходящий по проводнику;
  • ω – количество витков в обмотке.

Второй закон Кирхгофа – это по-другому записанная форма закона полного тока.

Внимание! Для магнитных цепей алгоритм составления уравнений тот же самый, как и для ЭЦ. Правила знаков действуют аналогично.

Закон излучения Кирхгофа

Когда электромагнитное излучение (ЭИ) падает на тело, то оно частично отражается, частично поглощается, какая-то доля проходит через него. Всё зависит от способности тела поглощать излучения. Чёрное тело (абсолютное) поглощает все попадающие на него световые волны.

Как гласит закон излучения, при определённых температуре и частоте величина, равная отношению излучательных r (ω, T) к поглощательным способностям a (ω, T), у всех тел одинаковая.

Формула имеет вид:

r(ω, T)/ a(ω, T) = f(ω,T),

где:

  • ω – частота;
  • T – температура.

Закон Кирхгофа в химии

Когда в ходе химреакции система меняет свою теплоёмкость, вместе с тем меняется и температурный коэффициент возникающего в результате этого процесса теплового эффекта. Применяя уравнение, вытекающее из этого закона, можно рассчитывать тепловые эффекты в любом диапазоне температур. Дифференциальная форма этого уравнения имеет вид:

∆Cp = d∆Q/dT,

где:

  • ∆Cp – температурный коэффициент;
  • d∆Q – изменение теплового эффекта;
  • dT – изменение температуры.

Важно! Коэффициент определяет, как изменится тепловой эффект при изменении температуры на 1 К (2730С).

Теорема Кирхгофа для термодинамики

Третье уравнения Максвелла, а также принцип сохранения зарядов позволили Густаву Кирхгофу создать два правила, которые применяются в электротехнике. Имея данные о значениях сопротивлений резисторов и ЭДС источников питания, можно рассчитывать протекающий I или приложенное U для любого элемента цепи.

Видео

Изучение законов Кирхгофа в применении

К многоконтурной цепи

Цель работы: Изучить законы Кирхгофа на практике, научиться применять их на практике. Экспериментальная проверка законов Кирхгофа.

Краткое пояснение к работе:

Основными законами электрических цепей, наряду с законом Ома, являются законы баланса токов в разветвлениях (первый закон Кирхгофа) и баланса напряжений на замкнутых участках цепи (второй закон Кирхгофа). В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:

Возьмем схему на рис. 1.8 и запишем для нее уравнение по первому закону Кирхгофа.

Токам, направленным к узлу, присвоим знак «плюс», а токам, направленным от узла — знак «минус». Получим следующее уравнение:


Рис. 1.8

или

 

Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре

Возьмем схему на рис. 1.9 и запишем для внешнего контура этой схемы уравнение по второму закону Кирхгофа.

Для этого выберем произвольно направление обхода контура, например, по часовой стрелке. ЭДС и падения напряжений записываются в левую и правую части уравнения со знаком «плюс», если направления их совпадают с направлением обхода контура, и со знаком «минус», если не совпадают.
При определении тока в ветви, содержащей источник ЭДС, используют закон Ома для активной ветви.

 


Рис. 1.9


Возьмем ветвь, содержащую сопротивления и источники ЭДС. Ветвь включена к узлам a-b, известно направление тока в ветви (рис. 1.10).

 

 

Возьмем замкнутый контур, состоящий из активной ветви и стрелки напряжения Uab, и запишем для него уравнение по второму закону Кирхгофа. Выберем направление обхода контура по часовой стрелке.



 

 

Рис.1.10

 

Получим

Из этого уравнения выведем формулу для тока

В общем виде:

,

где R — сумма сопротивлений ветви;
E — алгебраическая сумма ЭДС.

ЭДС в формуле записывается со знаком «плюс», если направление ее совпадает с направлением тока и со знаком «минус», если не совпадает.

Ответить на вопросы:

1. Что называется ветвью, узлом, контуром?

2. Как читается первый закон Кирхгофа?

3. К какому участку электрической цепи он применим?

4. Как читается второй закон Кирхгофа?

5. К какому участку электрической цепи он применим?

Перечень приборов

1. Два источника энергии­­ – 4,5 В.

2. Вольтметр – 1 шт. (0÷30) В.

3. Амперметр – 1 шт. (0÷2) А.

4. Магазин сопротивлений – 3 шт.

План работы

1. Определить размещение приборов на столе, ключи S1 и S2 установить в положение «отключено». Собрать электрическую схему цепи (рис. 1).

 

2. Определить цену деления приборов, исходя из установленного предела измерения.

3. Установить на магазинах сопротивлений заданные преподавателем параметры сопротивлений и их данные записать в таблицу № 1.

4. Предъявить собранную электрическую схему для проверки преподавателю.

5. Измерить переносным вольтметром ЭДС источников и записать в таблицу № 1.

6. Включить ключ S1, S2 – отключен, проверить работу приборов.

7. Записать показания амперметров А1 и А3 в таблицу № 1 (контур АБДЕА).

8. Для контура (АБДЕА) составить уравнение по второму закону Кирхгофа и определить внутреннее сопротивление источника Е1. Результаты записать в таблицу № 1.

9. Отключить ключ S1, включить S2, проверить работу приборов.

10. Записать показания амперметров А2 и А3 в таблицу № 1 (контур БВГДБ).

11. Для контура (БВГДБ) составить уравнение по второму закону Кирхгофа. Пользуясь составленным уравнением, определить внутреннее сопротивление источника Е2. Результаты записать в таблицу № 1.

12. Включить ключи S1 и S2, проверить работу приборов.

13. Записать показания амперметров А1, А2 и А3 в таблицу № 1 (контур АВГЕА).

14. Для контура (АВГЕА) составить уравнение по второму закону Кирхгофа, подставить числовые значения и убедиться, что

15. На основании опытных данных произвести проверку законов Кирхгофа. Результаты записать в таблицу № 1.

Таблица № 1

№ п/п контур R1 R2 R3 r01 r02 I1 I2 I3 ∑I E1 E2 ∑E ∑IR I3R3 I1(R1+r01) I2(R2+r02)
Ом Ом Ом Ом Ом А А А А В В В В В В В
АБДеА                                
БВГДБ                                
АВГеА                                

Расчетные формулы

1. ;

2. ;

3. ;

4. .

Лабораторная работа № 3


Второй закон Кирхгофа | Мини-физика

Второй закон Кирхгофа гласит, что чистая электродвижущая сила вокруг замкнутого контура равна сумме падений потенциала вокруг контура. ИЛИ Алгебраическая сумма изменений потенциала, встречающихся при полном обходе замкнутого контура, должна быть равна нулю.

Второй закон Кирхгофа или закон напряжения является следствием закона сохранения энергии.

  • Если заряд движется по замкнутому контуру в цепи, он должен получить столько энергии, сколько теряет.
  • Следовательно, выигрыш в электрической энергии за счет заряда = соответствующие потери энергии через сопротивления.

Примечание: Возможно, вы лучше поймете это, просмотрев примеры. Вы можете найти больше примеров законов Кирхгофа здесь.

Применение Второго закона Кирхгофа

  • Определение нашего соглашения о знаках (ВАЖНО!)

Обучение на примере

Шаг 1: Нарисуйте замкнутые контуры в схеме.

Шаг 2: Определите направление протекания тока в цепи. (Как видно на диаграмме выше) Обратите внимание, что направление не обязательно должно быть ФАКТИЧЕСКИМ направлением, в котором течет ток.

Используя Первый закон Кирхгофа,

В A и B,

$$ I_ {1} + I_ {2} = I_ {3} $$

Используя Второй закон Кирхгофа и указанное выше соглашение о знаках,

Выход за петлю 1:

$$ \ begin {align} 10 & = R_ {1} \ times I_ {1} + R_ {3} \ times I_ {3} \\ & = 10I_ {1} + 40 I_ {3} \\ 1 & = I_ {1} + 4 I_ {3} \ end {align} $$

Выход за цикл 2:

$$ \ begin {align} 20 & = R_ {2} \ times I_ {2} + R_ {3} \ times I_ {3} \\ & = 20I_ {2} + 40 I_ {3} \\ 1 & = I_ {2} + 2 I_ {3} \ end {align} $$

Выход за петлю 3:

$$ \ begin {align} 10 — 20 & = 10 I_ {1} — 20 I_ {2} \\ 1 & = \, — I_ {1} + 2 I_ {2} \ end {align} $$

Использование $ I_ {1} + I_ {2} = I_ {3} $ из Первого закона Кирхгофа,

Уравнение из цикла 1 сводится к следующему: (подставьте в уравнение $ I_ {3} = I_ {1} + I_ {2} $)

$$ 1 = 5 I_ {1} + 4 I_ {2} $$

Уравнение из цикла 2 сводится к следующему: (подставьте $ I_ {3} = I_ {1} + I_ {2} $ в уравнение)

$$ 1 = 2 I_ {1} + 3 I_ {2} $$

Это даст:

$$ I_ {1} = \, — \ frac {1} {3} I_ {2} $$

Используя уравнение последнего цикла 3,

$$ \ begin {align} 1 & = \ frac {1} {3} I_ {2} + 2 I_ {2} \\ I_ {2} & = 0.429 \, A \\ I_ {1} & = \, — 0,143 \, A \\ I_ {3} & = 0,286 \, A \ end {align} $$

Еще примеры законов Кирхгофа:

% PDF-1.7 % 387 0 объект > эндобдж xref 387 126 0000000016 00000 н. 0000003964 00000 н. 0000004109 00000 н. 0000004145 00000 п. 0000005507 00000 н. 0000006007 00000 н. 0000006589 00000 н. 0000007257 00000 н. 0000007882 00000 н. 0000007983 00000 п. 0000008020 00000 н. 0000008513 00000 н. 0000008625 00000 н. 0000008739 00000 н. 0000009135 00000 н. 0000010243 00000 п. 0000010879 00000 п. 0000011259 00000 п. 0000011620 00000 н. 0000012199 00000 п. 0000012468 00000 п. 0000012746 00000 п. 0000012976 00000 п. 0000013327 00000 п. 0000014325 00000 п. 0000015441 00000 п. 0000016293 00000 п. 0000017125 00000 п. 0000018093 00000 п. 0000045987 00000 п. 0000046981 00000 п. 0000063752 00000 п. 0000067230 00000 н. 0000072243 00000 п. 0000074892 00000 п. 0000075017 00000 п. 0000075096 00000 п. 0000075193 00000 п. 0000075342 00000 п. 0000075455 00000 п. 0000078613 00000 п. 0000097513 00000 п. 0000097544 00000 п. 0000097619 00000 п. 0000141645 00000 н. 0000141973 00000 н. 0000142039 00000 н. 0000142155 00000 н. 0000142230 00000 н. 0000142546 00000 н. 0000142601 00000 н. 0000142717 00000 н. 0000142748 00000 н. 0000142823 00000 п. 0000144331 00000 п. 0000144658 00000 н. 0000144724 00000 н. 0000144840 00000 н. 0000144871 00000 н. 0000144946 00000 н. 0000145275 00000 п. 0000145341 00000 п. 0000145457 00000 н. 0000145488 00000 н. 0000145563 00000 н. 0000145892 00000 н. 0000145958 00000 н. 0000146074 00000 н. 0000146105 00000 н. 0000146180 00000 н. 0000146509 00000 н. 0000146575 00000 н. 0000146691 00000 н. 0000146722 00000 н. 0000146797 00000 н. 0000147126 00000 н. 0000147192 00000 н. 0000147308 00000 н. 0000147339 00000 н. 0000147414 00000 н. 0000147741 00000 н. 0000147807 00000 н. 0000147923 00000 п. 0000148649 00000 н. 0000148930 00000 н. 0000149252 00000 н. 0000165053 00000 н. 0000165092 00000 н. 0000165479 00000 н. 0000165576 00000 н. 0000165722 00000 н. 0000166124 00000 н. 0000166221 00000 н. 0000166367 00000 н. 0000166442 00000 н. 0000166567 00000 н. 0000166869 00000 н. 0000166944 00000 н. 0000167070 00000 н. 0000167145 00000 н. 0000167892 00000 н. 0000167940 00000 н. 0000169975 00000 н. 0001195510 00000 п. 0001195897 00000 п. 0001196487 00000 п. 0001196562 00000 п. 0001196852 00000 п. 0001196927 00000 н. 0001197221 00000 п. 0001197296 00000 п. 0001197590 00000 п. 0001197665 00000 п. 0001197959 00000 п. 0001198034 00000 п. 0001198328 00000 п. 0001198403 00000 п. 0001198697 00000 п. 0001208025 00000 п. 0001213050 00000 п. 0001673491 00000 п. 0001677530 00000 п. 0001681569 00000 п. 0001701973 00000 п. 0001771455 00000 п. 0000002816 00000 н. трейлер ] / Назад 4188790 >> startxref 0 %% EOF 512 0 объект > поток h ތ T [lTU]>) v

j-M «4B2ь1BÏ2

+» W0UBV && «~? B ܧ Cc sg {(@ QT ه m% V

законы Кирхгофа

законы Кирхгофа

Кирхгофа законы

Большинство проблем со схемой мы сталкиваемся, может быть решена путем многократного применения правил добавления резисторы, включенные последовательно или параллельно, пока проблема не будет уменьшена до одна из батареи, подключенной к единственному резистору.

Но для решения более сложных схемных проблем, например, с большим количеством чем одна батарея, иногда необходимо вместо этого писать уравнения основанный на законах Кирхгофа, которые являются формальными математическими утверждениями двух физических фактов, которые вы уже знаете:

  • Закон Кирхгофа № 1 гласит, что напряжение изменяется вокруг замкнутого пути в цепи сложить до нуля, где изменение напряжения D V = ЭДС в проходящем Считается, что аккумулятор от минусовой к плюсовой клемме быть позитивным, и изменение напряжения D V = I R в проходе резистор в предполагаемом направлении тока I считается отрицательным.,
  • Закон Кирхгофа № 2 гласит, что сумма токов, входящих в любой узел (т. е. любое соединение провода) равняется сумме токов, выходящих из этого узла.
  • Первый закон просто повторяет то, что вы уже знаете об электрическом потенциале: каждая точка в цепь имеет уникальное значение потенциала, поэтому путешествуя по цепь по любому пути должна вернуть вас к тому потенциалу, который вы началось с.Используя аналогию на возвышенность, если вы идете пешком с любой начальной точки в горах и бродить по любому пути, но закончить на исходном старте точка, сумма изменения высоты вдоль вашего пути в сумме будут равны нулю.

    Второй закон просто подтверждает тот факт, что электрический заряд сохраняется: электроны или протоны не создаются и не разрушаются в узле (или, если они есть, античастицы с противоположным зарядом) создаются или уничтожаются вместе с ними), поэтому в любой момент времени Интервал, входящий заряд равен заряду листьев.Предполагается, что узел имеет пренебрежимо малую емкость, поэтому заряд не может просто создавай там. Например, в точке подключения трех проводов, как в диаграмме ниже, сохранение заряда требует, чтобы i 1 = i 2 + i 3 .


    Примеры Законы Кирхгофа индекс Указатель лекций

Электроника 101 пт.2: Законы Кирхгофа

Два года назад мы написали в блоге об основах теории электроники: Напряжение, ток и сопротивление . Теперь мы чувствуем, что пора снова вернуться к этой теме, познакомив вас с Законы Кирхгофа .

Густав Кирхгоф, человек, стоящий за указанными законами, красиво оделся для фотосессии (источник: https://en.wikipedia.org/wiki/File:Gustav_Robert_Kirchhoff.jpg)

Краткое введение

Не только законы Кирхгофа являются хорошими инструментами для анализа и проектирования конкретных схем.Все они также являются фундаментальными законами, которые дают вам понимание того, как работают электричество и физика в целом. Итак, даже если вы не будете использовать эти законы в качестве математических инструментов, вы должны знать эти принципы наизусть. И поверьте нам: они очень простые и банальные !

Термин Законы Кирхгофа включает два отдельных закона:

  • Действующий закон Кирхгофа aka. KCL
  • Закон Кирхгофа о напряжении aka. КВЛ

Мы рассмотрим эти два закона один за другим, но сначала мы объясним два важных термина, связанных с этими законами.

Узлы и замкнутые пути

Важно знать, что означает узлов и закрытые пути , прежде чем двигаться дальше.

Узлы

Узел — это точка в цепи, где встречаются два или более элемента схемы. Эти узлы часто являются перекрестками, но также могут быть точкой между двумя компонентами.Узлы важны в KCL.

Закрытые пути

A закрытый путь aka. цикл — это путь в цепи от узла через набор элементов схемы и обратно к начальному узлу без прохождения какого-либо другого узла более одного раза . Неудобное объяснение, но все это будет иметь смысл на изображении ниже.

Na, Nb и Nc — узлы. La, Lb и Lc — закрытые пути.

Направление, которое вы определяете для пути, важно для математических операций в KVL.Это не обязательно должно быть то же направление, в котором течет ток, но, тем не менее, вы должны определить виртуальное направление.

Действующий закон Кирхгофа (KCL)

KCL гласит:

Алгебраическая сумма всех токов в любом узле цепи равна нулю.

Это означает, что текущее , входящее в узел, всегда равно , равному текущему , выходящему из узла.

Узел может иметь любое количество «входов» и любое количество «выходов».В приведенном выше примере Na имеет один вход и один выход. Nb имеет один вход и два выхода. Nc имеет два входа и один выход.

ПРИМЕЧАНИЕ: На самом деле мы не работаем с входами и выходами в KCL, так как мы не всегда знаем, в каком направлении течет ток. Вместо этого мы определяем положительные направления для токов вокруг узла. Они не обязательно должны быть физически правильными, но их нужно определять. Затем мы решаем уравнения, и если результат положительный, текущее направление совпадает с направлением, которое мы определили как положительное, и наоборот.

На изображении выше мы видим тривиальный пример, где

i1 = i2 + i3

или эквивалент

i1 — i2 — i3 = 0

для того узла в верхнем центре, который мы раньше называли Nb . Знаки токов (положительные или отрицательные) в этих уравнениях такие же, как и они, только потому, что мы определили направления на рисунке выше, как и мы.

Закон Кирхгофа о напряжении (KVL)

Алгебраическая сумма всех напряжений вокруг любого замкнутого пути в цепи равна нулю.

Другими словами: сумма приложенных напряжений вокруг замкнутого пути равна , равной сумме падений напряжения вокруг этого замкнутого пути.

Давайте посмотрим на этот пример и назовем источник напряжения E1 . Назовем падений напряжения над R1 , R2 и R3 Vr1 , Vr2 и Vr3 .

По пути Lc получаем

E1 = Vr1 + Vr3

или

E1 — Vr1 — Vr3 = 0.

Дополнительные источники напряжения

Если мы вставим другой источник напряжения E2 где-то вдоль Lc с противоположной полярностью из E1 , мы получим

E1 — Vr1 — Vr3 — E2 = 0.

E2 в этом случае считается падением напряжения, поскольку мы определили направление по часовой стрелке для Lc .

Идем дальше

Вы можете спросить, что такого особенного в этих законах?

Ну, во-первых, это фундаментальные принципы для всего электричества.Во-вторых, KCL и KVL вместе с Законом Ома могут применяться для анализа цепей постоянного тока, и их комбинация может быть довольно мощной. Это то, что мы рассмотрим в одной из следующих публикаций.

Законы Кирхгофа (ток и напряжение): что это такое и почему это важно?

Обновлено 28 декабря 2020 г.

Автор: GAYLE TOWELL

По мере того, как электрические цепи становятся более сложными, с множеством ветвей и элементов, становится все сложнее определить, какой ток может протекать через любую заданную ветвь, и как это отрегулировать.Полезно иметь систематический способ анализа цепей.

Важные определения

Чтобы понять законы Кирхгофа, необходимо несколько определений:

  • Напряжение В — это разность потенциалов на элементе схемы. Он измеряется в вольтах (В).
  • Ток I — это мера скорости потока заряда через точку в цепи. Он измеряется в амперах (А).
  • Сопротивление R — это мера сопротивления элемента схемы протеканию тока.Он измеряется в омах (Ом).
  • Закон Ома связывает эти три величины следующим уравнением: V = IR.

Что такое законы Кирхгофа?

В 1845 году немецкий физик Густав Кирхгоф формализовал следующие два правила о схемах:

1. Правило соединения (также известное как закон Кирхгофа или KCL): Сумма всех токов, протекающих в переходе в цепь должна равняться полному току, протекающему из перехода.

Другой способ выражения этого закона состоит в том, что алгебраическая сумма токов, текущих в переход, равна 0. Это означало бы рассматривать любые токи, протекающие в переход, как положительные, а любые токи, протекающие через переход, как отрицательные. Поскольку общий приток должен равняться общему оттоку, это эквивалентно утверждению, что суммы будут равны 0, поскольку это равносильно перемещению оттекающих к другой стороне уравнения с отрицательным знаком.

Этот закон выполняется при простом применении сохранения заряда.Все, что входит, должно равняться тому, что вытекает. Представьте, что водопроводные трубы соединяются и разветвляются подобным образом. Точно так же, как вы ожидаете, что общая вода, текущая в переход, будет равна общему количеству воды, вытекающей из перехода, так и с текущими электронами.

2. Правило цикла (также известное как закон напряжения Кирхгофа или KVL): Сумма разностей потенциалов (напряжений) вокруг замкнутого контура в цепи должна равняться 0.

Чтобы понять второй закон Кирхгофа, представьте себе что бы случилось, если бы это было неправдой.Рассмотрим одноконтурный контур, в котором есть несколько батарей и резисторов. Представьте, что вы начинаете с точки A и двигаетесь по петле по часовой стрелке. Вы набираете напряжение, когда идете через батарею, а затем падаете, когда вы проходите через резистор, и так далее.

Обойдя весь круг, вы снова окажетесь в точке A . Сумма всех разностей потенциалов при обходе контура должна тогда равняться разнице потенциалов между точкой A и самой собой.Что ж, одна точка не может иметь два разных значения потенциала, поэтому эта сумма должна быть 0.

В качестве аналогии рассмотрим, что произойдет, если вы пойдете по круговой пешеходной тропе. Предположим, вы начинаете с точки A и начинаете поход. Часть похода ведет в гору, часть — под гору и так далее. После завершения цикла вы снова вернетесь в точку A . Это обязательно тот случай, когда сумма ваших приростов и перепадов высоты в этом замкнутом контуре должна быть равна 0 именно потому, что высота в точке A должна равняться самой себе.

Почему важны законы Кирхгофа?

При работе с простой последовательной цепью для определения тока в контуре требуется только знание приложенного напряжения и суммы сопротивлений в контуре (с последующим применением закона Ома).

В параллельных цепях и электрических цепях с комбинациями При использовании последовательных и параллельных элементов задача определения тока, протекающего через каждую ветвь, быстро усложняется. Ток, входящий в соединение, будет разделяться по мере того, как он входит в разные части цепи, и не очевидно, сколько будет проходить в каждую сторону без тщательного анализа.

Два правила Кирхгофа позволяют анализировать все более сложные схемы. Хотя требуемые алгебраические шаги по-прежнему довольно сложны, сам процесс прост. Эти законы широко используются в области электротехники.

Возможность анализа цепей важна во избежание перегрузки элементов цепи. Если вы не знаете, какой ток будет протекать через устройство или какое напряжение упадет на нем, вы не будете знать, какой будет выходная мощность, и все это имеет значение для функционирования устройства.

Как применять законы Кирхгофа

Правила Кирхгофа можно применить для анализа принципиальной схемы, выполнив следующие шаги:

    Для каждой ветви i схемы пометьте неизвестный ток, протекающий через это как I i и выберите направление для этого тока. (Направление не обязательно должно быть правильным. Если окажется, что этот ток на самом деле течет в противоположном направлении, то вы просто получите отрицательное значение при решении для этого тока позже.)

    Для каждой петли в цепи выберите направление. (Это произвольно. Вы можете выбрать против часовой стрелки или по часовой стрелке. Это не имеет значения.)

    Для каждого цикла начните с одной точки и двигайтесь в выбранном направлении, складывая разности потенциалов по каждому элементу. Эти разности потенциалов можно определить следующим образом:

    • Если ток проходит в положительном направлении через источник напряжения, это положительное значение напряжения. Если ток проходит через источник напряжения в отрицательном направлении, напряжение должно иметь отрицательный знак.
    • Если ток проходит в положительном направлении через резистивный элемент, вы используете закон Ома и добавляете -I i × R (падение напряжения на этом резисторе) для этого элемента. Если ток проходит в отрицательном направлении через резистивный элемент, вы добавляете + I i × R для этого элемента.
    • После того, как вы обошли контур, установите эту сумму всех напряжений равной 0. Повторите эти действия для всех контуров в цепи.

    Для каждого перехода сумма токов, протекающих в этот переход, должна равняться сумме токов, вытекающих из этого перехода.Запишите это в виде уравнения.

    Теперь у вас должен быть набор одновременных уравнений, который позволит вам определять ток (или другие неизвестные величины) во всех ветвях цепи. Последний шаг — решить эту систему алгебраически.

Примеры

Пример 1: Рассмотрим следующую схему:

Применяя шаг 1, для каждой ветви мы маркируем неизвестные токи.

••• na

Применяя Шаг 2, мы выбираем направление для каждой петли в схеме следующим образом:

••• na

Теперь мы применяем Шаг 3: Для каждой петли, начиная с одной точки и обходя в выбранном направлении складываем разности потенциалов по каждому элементу и устанавливаем сумму равной 0.

Для цикла 1 на диаграмме мы получаем:

-I_1 \ times 40 — I_3 \ times 100 + 3 = 0

Для цикла 2 на диаграмме получаем:

-I_2 \ times 75-2 + I_3 \ times 100 = 0

Для шага 4 мы применяем правило соединения. На нашей диаграмме есть два соединения, но оба они дают эквивалентные уравнения. А именно:

I_1 = I_2 + I_3

Наконец, на шаге 5 мы используем алгебру для решения системы уравнений для неизвестных токов:

Используйте уравнение соединения, чтобы подставить в уравнение первого контура:

— (I_2 + I_3) \ times 40 — I_3 \ times 100 + 3 = -40I_2 — 140I_3 + 3 = 0

Решите это уравнение для I 2 :

I_2 = \ frac {3-140I_3} {40}

Подставьте это в уравнение второго цикла:

— [(3-140I_3) / 40] \ times 75-2 + 100I_3 = 0

-3 \ times 75/40 + (140 \ times 75/40) I_3 — 2 + 100I_3 = 0 \\ \ подразумевает I_3 = (2 + 3 \ times 75/40) / (140 \ times 75/40 + 100) = 0.021 \ text {A}

Используйте значение I 3 , чтобы найти I 2 :

I_2 = (3-140 \ times (0,021)) / 40 = 0,0015 \ text {A}

I_1 = I_2 + I_3 = 0,021 + 0,0015 = 0,0225 \ text {A}

Итак, окончательный результат таков: I 1 = 0,0225 A, I 2 = 0,0015 A и I 3 = 0,021 A.

Подстановка этих текущих значений в исходные уравнения проверяет, поэтому мы можем быть достаточно уверены в результате!

Попробуйте повторить эту же задачу еще раз, но сделайте другой выбор для ваших текущих меток и направлений петли.Если все будет сделано осторожно, вы должны получить тот же результат, показывая, что первоначальный выбор действительно произвольный.

(Обратите внимание, что если вы выберете разные направления для обозначенных токов, тогда ваши ответы для них будут отличаться знаком минус; однако результаты все равно будут соответствовать тому же направлению и величине тока в цепи.)

Пример 2: Какова электродвижущая сила (ЭДС) ε батареи в следующей цепи? Какой ток в каждой ветке?

••• na

Сначала мы маркируем все неизвестные токи.Пусть I 2 = ток вниз через среднюю ветвь и I 1 = ток вниз через крайнюю правую ветвь. Изображение уже показывает текущий I в крайнем левом ответвлении с пометкой.

Выбор направления по часовой стрелке для каждого контура и применение законов Кирхгофа дает следующую систему уравнений:

\ begin {align} & I_1 = I-I_2 \\ & \ varepsilon — 4I — 6I_2 + 8 = 0 \\ & — 12I_1 — 8 + 6I_2 = 0 \ end {align}

Для решения замените I — I 2 на I 1 в третьем уравнении, а затем подставьте данное значение для I и решите это уравнение относительно I 2 .Как только вы узнаете I 2 , вы можете вставить I и I 2 в первое уравнение, чтобы получить I 1 . Затем вы можете решить второе уравнение относительно ε . Следуя этим шагам, вы получите окончательное решение:

\ begin {align} & I_2 ​​= 16/9 = 1,78 \ text {A} \\ & I_1 = 2/9 = 0,22 \ text {A} \\ & \ varepsilon = 32/3 = 10.67 \ text {V} \ end {align}

Опять же, вы всегда должны проверять свои окончательные результаты, вставляя их в исходные уравнения.Совершать простые алгебраические ошибки очень легко!

Второй закон Кирхгофа — Заявление, ограничения, применения и примеры

Густав Кирхгоф, физик из Германии, исследовал и обнаружил два закона, касающихся электрических цепей с сосредоточенными электрическими элементами. В 1845 году он исследовал концепции закона Ома и закона Максвелла и определил первый закон Кирхгофа (KCL) и второй закон Кирхгофа (KVL).

Текущий закон Кирхгофа или KCL основан на законе сохранения заряда.В соответствии с этим входной ток узла должен быть равен выходному току узла. Далее второй закон подробно обсуждается ниже.

Государство Второй закон Кирхгофа

Второй закон Кирхгофа также известен как закон напряжения Кирхгофа (KVL). Согласно KVL, сумма разности потенциалов в замкнутой цепи должна быть равна нулю. Или электродвижущая сила, действующая на узлы в замкнутом контуре, должна быть равна сумме разности потенциалов, найденной на этом замкнутом контуре.

2-й закон Кирхгофа также следует закону сохранения энергии, и это можно вывести из следующих утверждений.

  • В замкнутом контуре полученный заряд равен количеству энергии, которую он теряет. Эта потеря энергии происходит из-за резисторов, включенных в эту замкнутую цепь.

  • Кроме того, сумма падений напряжения в замкнутой цепи должна быть равна нулю. Математически это можно представить как ∑V = 0.

Ограничение и применение закона Кирхгофа

Согласно Кирхгофа, закон выполняется только при отсутствии флуктуирующих магнитных полей в этой цепи.Таким образом, его нельзя применять при наличии флуктуирующего магнитного поля. Взгляните на приложения KVL.

Обратитесь к этому изображению выше, чтобы найти признаки напряжения, когда направление тока в этой петле такое, как показано.

Давайте разберемся с законом напряжения Кирхгофа на примере.

  1. Возьмите замкнутую схему или нарисуйте ее, как показано на рисунке.

  2. Нарисуйте направление тока в цепи, которое может не совпадать с фактическим направлением тока.

  3. В точках A и B I3 становится суммой I1 и I2. Итак, мы можем написать I3 = I1 + I2.

  4. Согласно второму закону Кирхгофа сумма падения потенциала в замкнутой цепи будет равна напряжению. Из этого оператора получаем

В цикле 1: I1 * R1 + I3 * R3 = 10.

В цикле 2: I2 * R2 + I3 * R3 = 20.

В цикле 3: 10 * I1 — 20 * I2 = 10-20.

Подставив значения R1, R2 и R3 в приведенные выше уравнения, мы получим

В цикле 1: 10 I1 + 40 I3 = 10 или I1 + 4I3 = 1.

В цикле 2:20 I2 + 40 I3 = 20 или I2 + 2 I3 = 1.

В цикле 3: 2 I2 — I1 = 1.

  1. Согласно 1-му закону Кирхгофа I3 = I1 + I2. Подставляя это во все 3 уравнения, мы получаем

В цикле 1: I1 + 4 (I1 + I2) = 1 или 5 I1 + I2 = 1. ………………… (1)

В цикле 2: I2 + 2 (I1 + I2) = 1 или 2I1 + 3I2 = 1. ………………. (2)

Приравняв уравнение 1 и 2, мы имеем

5 I1 + I2 = 2I1 + 3I2, или 3 I1 = 2 I2

Следовательно, I1 = -1/3 I2

Подставляя значение I1 в уравнение цикла 3, мы получаем

I1 = -0.143 A.

I2 = 0,429 A.

I3 = 0,286 A.

Приведенные выше предположения и расчеты доказывают, что закон Кирхгофа по напряжению справедлив для этих сосредоточенных электрических цепей.

Впоследствии вы сможете лучше понять KVL, приобретя учебные материалы из нашего приложения Vedantu. Вы можете скачать приложение, чтобы начать обучение, не выходя из дома.

20.3: Правила Кирхгофа — Physics LibreTexts

цели обучения

  • Опишите взаимосвязь между законами цепи Кирхгофа и энергией и зарядом в электрических цепях.

Введение в законы Кирхгофа

Законы цепи Кирхгофа — это два уравнения, впервые опубликованные Густавом Кирхгофом в 1845 году.По сути, они касаются сохранения энергии и заряда в контексте электрических цепей.

Хотя законы Кирхгофа можно вывести из уравнений Джеймса Клерка Максвелла, Максвелл не публиковал свою систему дифференциальных уравнений (которые составляют основу классической электродинамики, оптики и электрических цепей) до 1861 и 1862 годов. Кирхгоф, скорее, использовал Георга. Работа Ома как основа для закона Кирхгофа (KCL) и закона напряжения Кирхгофа (KVL) .

Законы Кирхгофа чрезвычайно важны для анализа замкнутых цепей. Рассмотрим, например, схему, показанную на рисунке ниже, состоящую из пяти резисторов, соединенных последовательно и параллельно. Упрощение этой схемы до комбинации последовательного и параллельного включения невозможно. Однако, используя правила Кирхгофа, можно проанализировать схему, чтобы определить параметры этой схемы, используя значения резисторов (R 1 , R 2 , R 3 , r 1 и r 2 ) .Также важно в этом примере то, что значения E 1 и E 2 представляют источники напряжения (например, батареи).

Замкнутая цепь : Чтобы определить все переменные (т. Е. Падение тока и напряжения на различных резисторах) в этой цепи, необходимо применить правила Кирхгофа.

В заключение, законы Кирхгофа зависят от определенных условий. Закон напряжения представляет собой упрощение закона индукции Фарадея и основан на предположении, что в замкнутом контуре нет нет флуктуирующего магнитного поля .Таким образом, хотя этот закон может быть применен к схемам, содержащим резисторы и конденсаторы (а также другие элементы схемы), его можно использовать только как приближение к поведению схемы при изменении тока и, следовательно, магнитного поля.

Правило перекрестка

Правило соединений Кирхгофа гласит, что в любом соединении цепи сумма токов, протекающих в это соединение и выходящих из него, равна.

цели обучения

  • Опишите взаимосвязь между законами цепи Кирхгофа и энергией и зарядом в электрических цепях.

Правило соединения Кирхгофа, также известное как текущий закон Кирхгофа (KCL), первый закон Кирхгофа, правило точки Кирхгофа и узловое правило Кирхгофа, является применением принципа сохранения электрического заряда.

Правило соединений Кирхгофа гласит, что в любом соединении (узле) в электрической цепи сумма токов, протекающих в этом соединении, равна сумме токов, вытекающих из этого соединения. Другими словами, при условии, что ток будет положительным или отрицательным в зависимости от того, течет ли он к стыку или от него, алгебраическая сумма токов в сети проводников, встречающихся в одной точке, равна нулю. Визуальное представление можно увидеть на.

Закон соединения Кирхгофа : Закон соединения Кирхгофа, проиллюстрированный как токи, текущие в соединение и выходящие из него.{\ mathrm {n}} \ mathrm {I} _ {\ mathrm {k}} = 0 \]

, где n — общее количество ветвей, по которым ток идет к узлу или от него.

Этот закон основан на сохранении заряда (измеряемого в кулонах), который является произведением силы тока (в амперах) и времени (в секундах).

Ограничение

Закон о соединении Кирхгофа ограничен в своем применении. Это справедливо для всех случаев, когда полный электрический заряд (Q) постоянен в рассматриваемой области.На практике это всегда так, если закон применяется к определенной точке. Однако в определенной области плотность заряда может быть непостоянной. Поскольку заряд сохраняется, это возможно только при наличии потока заряда через границу области. Этот поток был бы током, что нарушало бы закон Кирхгофа.

Правило петли

Правило петли Кирхгофа гласит, что сумма значений ЭДС в любом замкнутом контуре равна сумме падений потенциала в этом контуре.

цели обучения

  • Сформулируйте правило петли Кирхгофа, отметив его допущения.

Правило петли Кирхгофа (также известное как закон напряжения Кирхгофа (KVL), правило сетки Кирхгофа, второй закон Кирхгофа, или второе правило Кирхгофа ) — это правило, относящееся к схемам и основанное на принципе сохранения энергия.

Сохранение энергии — принцип, согласно которому энергия не создается и не разрушается — широко используется во многих исследованиях в области физики, включая электрические схемы.Применительно к схемотехнике подразумевается, что направленная сумма разностей электрических потенциалов (напряжений) вокруг любой замкнутой сети равна нулю. Другими словами, сумма значений электродвижущей силы (ЭДС) в любом замкнутом контуре равна сумме падений потенциала в этом контуре (которые могут исходить от резисторов).

Другое эквивалентное утверждение состоит в том, что алгебраическая сумма произведений сопротивлений проводников (и токов в них) в замкнутом контуре равна общей электродвижущей силе, имеющейся в этом контуре.{\ mathrm {n}} \ mathrm {V} _ {\ mathrm {k}} = 0 \]

Здесь V k — напряжение на элементе k, а n — общее количество элементов в замкнутой цепи. Иллюстрация такой схемы показана на. В этом примере сумма v 1 , v 2 , v 3 и v 4 (и v 5 , если он включен), нуль.

Правило петли Кирхгофа : Правило петли Кирхгофа утверждает, что сумма всех напряжений вокруг петли равна нулю: v1 + v2 + v3 — v4 = 0.

Учитывая, что напряжение является мерой энергии на единицу заряда, правило петли Кирхгофа основано на законе сохранения энергии, который гласит: общая энергия, полученная на единицу заряда, должна равняться количеству энергии, потерянной на единицу заряда .

Пример \ (\ PageIndex {1} \):

иллюстрирует изменения потенциала в простой петле последовательной цепи. Второе правило Кирхгофа требует, чтобы ЭДС-Ir-IR 1 -IR 2 = 0. В перестановке это ЭДС = Ir + IR 1 + IR 2 , что означает, что ЭДС равна сумме падений IR (напряжения) в контуре.ЭДС подает 18 В, которое уменьшается до нуля из-за сопротивлений, с 1 В на внутреннем сопротивлении и 12 В и 5 В на двух сопротивлениях нагрузки, всего 18 В.

Правило цикла : пример второго правила Кирхгофа, согласно которому сумма изменений потенциала вокруг замкнутого контура должна быть равна нулю. (a) В этой стандартной схеме простой последовательной цепи ЭДС подает 18 В, которое снижается до нуля из-за сопротивлений, с 1 В на внутреннем сопротивлении и 12 В и 5 В на двух сопротивлениях нагрузки для всего 18 В.(b) Этот вид в перспективе представляет потенциал как что-то вроде американских горок, где потенциал повышается за счет ЭДС и понижается за счет сопротивлений. (Обратите внимание, что сценарий E означает ЭДС.)

Ограничение

Правило петли Кирхгофа является упрощением закона индукции Фарадея и выполняется при предположении, что нет флуктуирующего магнитного поля, связывающего замкнутый контур. В присутствии переменного магнитного поля могут индуцироваться электрические поля и возникать ЭДС, и в этом случае правило петли Кирхгофа нарушается.

Приложения

Правила Кирхгофа можно использовать для анализа любой схемы и модифицировать для схем с ЭДС, резисторами, конденсаторами и т. Д.

цели обучения

  • Опишите условия, при которых полезно применять правила Кирхгофа.

Обзор

Правила

Кирхгофа можно использовать для анализа любой схемы, изменяя их для схем с электродвижущими силами, резисторами, конденсаторами и т. Д. Однако с практической точки зрения правила полезны только для характеристики тех цепей, которые нельзя упростить, комбинируя элементы последовательно и параллельно.

Последовательные и параллельные комбинации, как правило, намного проще выполнить, чем применение любого из правил Кирхгофа, но правила Кирхгофа применимы более широко и должны использоваться для решения проблем, связанных со сложными схемами, которые нельзя упростить, комбинируя элементы схемы последовательно или параллельно.

Пример правил Кирхгофа

показывает очень сложную схему, но можно применить правила Кирхгофа для петель и соединений. Чтобы решить схему для токов I 1 , I 2 и I 3 , необходимы оба правила.

Правила Кирхгофа: пример задачи : На этом изображении показана очень сложная схема, которую можно сократить и решить с помощью правил Кирхгофа.

Применяя правило Кирхгофа в точке a, находим:

\ [\ mathrm {I} _ {1} = \ mathrm {I} _ {2} + \ mathrm {I} _ {3} \]

, потому что I 1 течет в точку a, а I 2 и I3 вытекает. То же самое можно найти в точке e. Теперь мы должны решить это уравнение для каждой из трех неизвестных переменных, что потребует трех разных уравнений.

Рассматривая цикл abcdea, мы можем использовать правило цикла Кирхгофа:

\ [- \ mathrm {I} _ {2} \ mathrm {R} _ {2} + \ mathrm {emf} _ {1} — \ mathrm {I} _ {2} \ mathrm {r} _ {1 } — \ mathrm {I} _ {1} \ mathrm {R} _ {1} = — \ mathrm {I} _ {2} \ left (\ mathrm {R} _ {2} \ right) + \ mathrm { r} _ {1}) + \ mathrm {emf} _ {1} — \ mathrm {I} _ {1} \ mathrm {R} _ {1} = 0 \]

Подставляя значения сопротивления и ЭДС из рисунка-диаграммы и отменяя единицу измерения ампер, получаем:

\ [- 3 \ mathrm {I} _ {2} + 18 — 6 \ mathrm {I} _ {1} = 0 \]

Это вторая часть системы трех уравнений, которую мы можем использовать, чтобы найти все три текущих значения.Последний можно найти, применив правило цикла к циклу aefgha, которое дает:

\ [\ mathrm {I} _ {1} \ mathrm {R} _ {1} + \ mathrm {I} _ {3} \ mathrm {R} _ {3} + \ mathrm {I} _ {3} \ mathrm {r} _ {2} — \ mathrm {emf} _ {2} = \ mathrm {I} _ {1} \ mathrm {R} _ {1} + \ mathrm {I} _ {3} \ left (\ mathrm {R} _ {3} + \ mathrm {r} _ {2} \ right) — \ mathrm {emf} _ {2} = 0 \]

Используя замену и упрощение, это становится:

\ [6 \ mathrm {I} _ {1} + 2 \ mathrm {I} _ {3} — 45 = 0 \]

В этом случае знаки поменялись местами по сравнению с другим циклом, потому что элементы перемещаются в противоположном направлении.

Теперь у нас есть три уравнения, которые можно использовать в системе. Второй будет использоваться для определения I 2 и может быть изменен на:

\ [\ mathrm {I} _ {2} = 6–2 \ mathrm {I} _ {1} \]

Третье уравнение может использоваться для определения I 3 и может быть преобразовано в:

\ [\ mathrm {I} _ {3} = 22,5 — 3 \ mathrm {I} _ {1} \]

Подставляя новые определения I 2 и I 3 (которые являются общими терминами I 1 ) в первое уравнение (I 1 = I 2 + I 3 ), получаем:

\ [I \ mathrm {I} _ {1} = \ left (6-2 \ mathrm {I} _ {1} \ right) + \ left (22.5 — 3 \ mathrm {I} _ {1} \ right) = 28,5 — 5 \ mathrm {I} _ {1} \]

Упрощая, получаем, что I 1 = 4,75 A. Подставляя это значение в два других уравнения, мы находим, что I 2 = -3,50 A и I 3 = 8,25 A.

Ключевые моменты

  • Кирхгоф использовал работу Георга Ома в качестве основы для создания закона Кирхгофа (KCL) и закона напряжения Кирхгофа (KVL) в 1845 году. Их можно вывести из уравнений Максвелла, появившихся 16-17 лет спустя.
  • Невозможно проанализировать некоторые схемы с обратной связью путем упрощения в виде суммы и / или ряда компонентов. В этих случаях можно использовать законы Кирхгофа.
  • Законы Кирхгофа — частные случаи сохранения энергии и заряда.
  • Правило соединения Кирхгофа — это приложение принципа сохранения электрического заряда: ток — это поток заряда за время, и если ток постоянный, то, что течет в точку в цепи, должно быть равно тому, что вытекает из нее.{n} I _ {k} = 0} \) где I k — ток k, а n — общее количество проводов, входящих и выходящих из рассматриваемого соединения.
  • Закон перехода Кирхгофа ограничен в своей применимости в регионах, в которых плотность заряда может быть непостоянной. Поскольку заряд сохраняется, это возможно только при наличии потока заряда через границу области. Этот поток был бы текущим, что нарушало бы закон.
  • Правило петли Кирхгофа — это правило, относящееся к схемам, основанное на принципе сохранения энергии.{n} V _ {k} = 0} \).
  • Правило петли Кирхгофа является упрощением закона индукции Фарадея и выполняется при предположении, что нет флуктуирующего магнитного поля, связывающего замкнутый контур.
  • Правила Кирхгофа применимы к любой цепи, независимо от ее состава и структуры.
  • Поскольку часто легко комбинировать элементы параллельно и последовательно, не всегда удобно применять правила Кирхгофа.
  • Для определения тока в цепи можно применить правила петли и соединения.Как только все токи связаны правилом соединения, можно использовать правило петли для получения нескольких уравнений, которые будут использоваться в качестве системы для нахождения каждого значения тока в терминах других токов. Их можно решить как систему.

Ключевые термины

  • резистор : электрический компонент, который передает ток прямо пропорциональный напряжению на нем.
  • электродвижущая сила : (ЭДС) — напряжение, генерируемое батареей или магнитной силой в соответствии с законом Фарадея.Она измеряется в вольтах (не в ньютонах, Н; ЭДС — это не сила).
  • конденсатор : Электронный компонент, состоящий из двух проводящих пластин, разделенных пустым пространством (иногда вместо этого между пластинами помещается диэлектрический материал), и способный хранить определенное количество заряда.
  • электрический заряд : квантовое число, определяющее электромагнитные взаимодействия некоторых субатомных частиц; по соглашению, электрон имеет электрический заряд -1, а протон +1, а кварки имеют дробный заряд.
  • ток : временная скорость протекания электрического заряда.

ЛИЦЕНЗИИ И АТРИБУЦИИ

CC ЛИЦЕНЗИОННЫЙ КОНТЕНТ, ПРЕДЫДУЩИЙ РАЗДЕЛ

CC ЛИЦЕНЗИОННОЕ СОДЕРЖАНИЕ, СПЕЦИАЛЬНЫЙ АТРИБУЦИЯ

  • Окружные законы Кирхгофа. Источник : Википедия. Расположен по адресу : en.Wikipedia.org/wiki/Kirchhoff’s_circuit_laws . Лицензия : CC BY-SA: Attribution-ShareAlike
  • Конденсатор
  • . Источник : Викисловарь. Расположен по адресу : en.wiktionary.org/wiki/capacitor . Лицензия : CC BY-SA: Attribution-ShareAlike
  • резистор. Источник : Викисловарь. Расположен по адресу : en.wiktionary.org/wiki/resistor . Лицензия : CC BY-SA: Attribution-ShareAlike
  • электродвижущая сила. Источник : Википедия. Расположен по адресу : en.Wikipedia.org/wiki/electromotive%20force . Лицензия : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, Kirchhoffu, Правила 2019. 14 января 2013 г. Предоставлено : OpenStax CNX. Расположен по адресу : http://cnx.org/content/m42359/latest/ . Лицензия : CC BY: Attribution
  • Законы Кирхгофа для цепей. Источник : Википедия. Расположен по адресу : en.Wikipedia.org/wiki/Kirchhoff’s_circuit_laws . Лицензия : CC BY-SA: Attribution-ShareAlike
  • ток. Источник : Викисловарь. Расположен по адресу : en.wiktionary.org/wiki/current . Лицензия : CC BY-SA: Attribution-ShareAlike
  • электрического заряда. Источник : Викисловарь. Адрес: : en.wiktionary.org/wiki/electric_charge . Лицензия : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, Kirchhoffu, Правила 2019. 14 января 2013 г. Предоставлено : OpenStax CNX. Расположен по адресу : http://cnx.org/content/m42359/latest/ . Лицензия : CC BY: Attribution
  • KCL — Цепные законы Кирхгофа. Источник : Википедия. Расположен по адресу : en.Wikipedia.org/wiki/File:KCL_-_Kirchhoff’s_circuit_laws.svg . Лицензия : CC BY-SA: Attribution-ShareAlike
  • Теория правил петель и соединений Кирхгофа. Расположен по адресу : http://www.youtube.com/watch?v=IlyUtYRqMLs . Лицензия : Общественное достояние: неизвестно Авторские права . Условия лицензии : Стандартная лицензия YouTube
  • Законы Кирхгофа для цепей. Источник : Википедия. Расположен по адресу : en.Wikipedia.org/wiki/Kirchhoff’s_circuit_laws . Лицензия : CC BY-SA: Attribution-ShareAlike
  • электродвижущая сила. Источник : Википедия. Расположен по адресу : en.Wikipedia.org/wiki/electromotive%20force . Лицензия : CC BY-SA: Attribution-ShareAlike
  • резистор. Источник : Викисловарь. Расположен по адресу : en.wiktionary.org/wiki/resistor . Лицензия : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, Kirchhoffu, Правила 2019. 14 января 2013 г. Предоставлено : OpenStax CNX. Адрес: : http: // cnx.org / content / m42359 / latest / . Лицензия : CC BY: Attribution
  • KCL — Цепные законы Кирхгофа. Источник : Википедия. Расположен по адресу : en.Wikipedia.org/wiki/File:KCL_-_Kirchhoff’s_circuit_laws.svg . Лицензия : CC BY-SA: Attribution-ShareAlike
  • Теория правил петель и соединений Кирхгофа. Адрес: : http: // www.youtube.com/watch?v=IlyUtYRqMLs . Лицензия : Общественное достояние: неизвестно Авторские права . Условия лицензии : Стандартная лицензия YouTube
  • Закон Кирхгофа по напряжению. Источник : Википедия. Расположен по адресу : en.Wikipedia.org/wiki/File:Kirchhoff_voltage_law.svg . Лицензия : CC BY-SA: Attribution-ShareAlike
  • Теория правил петель и соединений Кирхгофа. Расположен по адресу : http://www.youtube.com/watch?v=IlyUtYRqMLs . Лицензия : Общественное достояние: неизвестно Авторские права . Условия лицензии : Стандартная лицензия YouTube
  • OpenStax College, Kirchhoffu, Правила 2019. 15 февраля 2013 г. Предоставлено : OpenStax CNX. Расположен по адресу : http://cnx.org/content/m42359/latest/ . Лицензия : CC BY: Attribution
  • OpenStax College, Kirchhoffu, Правила 2019.17 сентября 2013 г. Предоставлено : OpenStax CNX. Расположен по адресу : http://cnx.org/content/m42359/latest/ . Лицензия : CC BY: Attribution
  • электродвижущая сила. Источник : Википедия. Расположен по адресу : en.Wikipedia.org/wiki/electromotive%20force . Лицензия : CC BY-SA: Attribution-ShareAlike
  • OpenStax College, Kirchhoffu, Правила 2019.14 января 2013 г. Предоставлено : OpenStax CNX. Расположен по адресу : http://cnx.org/content/m42359/latest/ . Лицензия : CC BY: Attribution
  • KCL — Цепные законы Кирхгофа. Источник : Википедия. Расположен по адресу : en.Wikipedia.org/wiki/File:KCL_-_Kirchhoff’s_circuit_laws.svg . Лицензия : CC BY-SA: Attribution-ShareAlike
  • Теория правил петель и соединений Кирхгофа. Расположен по адресу : http://www.youtube.com/watch?v=IlyUtYRqMLs . Лицензия : Общественное достояние: неизвестно Авторские права . Условия лицензии : Стандартная лицензия YouTube
  • Закон Кирхгофа по напряжению. Источник : Википедия. Расположен по адресу : en.Wikipedia.org/wiki/File:Kirchhoff_voltage_law.svg . Лицензия : CC BY-SA: Attribution-ShareAlike
  • Теория правил петель и соединений Кирхгофа. Расположен по адресу : http://www.youtube.com/watch?v=IlyUtYRqMLs . Лицензия : Общественное достояние: неизвестно Авторские права . Условия лицензии : Стандартная лицензия YouTube
  • OpenStax College, Kirchhoffu, Правила 2019. 15 февраля 2013 г. Предоставлено : OpenStax CNX. Расположен по адресу : http://cnx.org/content/m42359/latest/ . Лицензия : CC BY: Attribution
  • OpenStax College, Kirchhoffu, Правила 2019.14 января 2013 г. Предоставлено : OpenStax CNX. Расположен по адресу : http://cnx.org/content/m42359/latest/ . Лицензия : CC BY: Attribution
.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *