Site Loader

Содержание

Высоковольтные силовые трансформаторы, характеристики, конструкция, применение, как работает

Высоковольтные трансформаторы 1 Трансформатор – это электромагнитное статическое устройство с двумя (или более) обмотками, преобразующее электроэнергию напряжения переменного тока с одними характеристиками в электроэнергию с другими характеристиками (такими как напряжение, частота, форма напряжения, фазность). Преобразование электроэнергии в трансформаторах реализуется посредством переменного магнитного поля.

Наиболее распространенным и востребованным электротехническим устройством сегодня является силовые высоковольтные трансформаторы, напряжения, номинальные мощности которых варьируются очень в широких пределах от нескольких десятков киловатт до сотен мегаватт при напряжении от 6кВ до 1150 — 1500кВ.

Поскольку потери электроэнергии в электросетях пропорциональны квадрату тока, протекающего по воздушной линии, то для передачи электроэнергии выгодно использовать высокие напряжения и, соответственно, малые токи. Электроэнергия на электростанциях вырабатывается генераторными установками (турбо-, гидрогенераторами и пр.) на напряжении 16 — 24кВ, реже 35кВ. Поскольку этот уровень напряжения является довольно высоким для использования его в быту и на производстве, но и при этом является и недостаточно выгодным и обоснованным, для наиболее экономичной передачи электроэнергии на значительные расстояния.

Поэтому и используют повышающие трансформаторы, служащие для преобразования электроэнергии до уровней 110, 150, 220, 330, 500, 750 и 1150 кВ, и понижающие трансформаторы, которые позволяют снизить напряжение до стандартных значений 10; 6; 3; 0,66; 0,38 и 0,22 кВ, предназначенных для использования в быту, сельском хозяйстве и промышленности. Помимо этого, выпуск приемников электроэнергии (вращающихся машин, осветительных приборов и пр.) с высокими номинальными напряжениями обуславливает значительные конструктивные сложности, требующие усиленной изоляции и, следовательно, повышенных материальных затрат. В связи с этим высокое номинальное напряжение не может быть напрямую использовано, питание осуществляется через понижающие трансформаторы.

Таким образом, электроэнергию, вырабатываемую электростанциями, на пути от генераторной установки до потребителей преобразуют по 3-4 раза. Понижающие трансформаторы используют с целью распределения электроэнергии между потребителями, а повышающие – для передачи электрической энергии на большие расстояния.

Высоковольтные трансформаторы

Многообразие применения высоковольтных трансформаторов обусловило весьма значительную номенклатуру этих устройств. В зависимости от напряжения, режима нейтрали и номинальной мощности, высоковольтные трансформаторы классифицируют на несколько, так называемых габаритов:

— I — до 100 кВА и до 35кВ;

— II — более 100 до 1000кВА и до 35кВ;

— III — более 1000 до 6300кВА и до 35кВ;

— IV – более 6300кВА и до 35кВ;

— V — до 32000кВА и более 35 до 110кВ;

— VI — более 32000 до 80000кВА и до 330кВ;

— VII — более 80000 до 200000кВА и до 330кВ;

— VIII – более 200000кВА и свыше 330кВ.

В зависимости от типа охлаждения

В зависимости от типа охлаждения трансформаторы разделяют на:

— масляные;

— сухие;

— трансформаторы, в качестве изоляции у которых выступает жидкий диэлектрик.

Условно силовые трансформаторы обозначаются как определенными буквами (тип, количество фаз, число обмоток, способ охлаждения, вид переключения ответвлений), так и цифрами (мощность, напряжение).

Буквенные обозначения (некоторые могут отсутствовать) строго в той последовательности, что приведена ниже, позволяют получить следующую информацию:

1.Назначение

— автотрасформатор – А;

— электропечной – Э;

2.Число фаз

— однофазные – О;

— трехфазные – Т;

3.Присутствие расщепленной обмотки НН – Р;

4.Способ охлаждения

4.1. У сухих трансформаторов:

— естественное воздушное: в открытом исполнении – С, в закрытом –СЗ, в герметичном СГ;

— принудительное воздушное – СД;

4.2.У масляных трансформаторов:

— естественная циркуляция воздуха и масла – М; при наличии дополнительной защиты в виде азотной подушки без применения расширителя – МЗ;

— принудительная циркуляция воздуха: с естественной масляной – Д, с принудительной масляной – ДЦ;

— принудительная водомасляная циркуляция – Ц;

4.3. С применением в качестве охлаждающего теплоносителя негорючего жидкого диэлектрика:

— естественное – Н;

— с дутьем – НД:

5.Конструктивные особенности

— литая изоляция — Л;

— трехобмоточный – Т;

— наличие РНТ – Н;

— с выводами, расположенными во фланцах стенок корпуса: с азотной подушкой и без расширителя — З; с расширителем –Ф;

— без расширителя в гофробаке – Г;

— с симметрирующим устройством – У;

— подвесное исполнение для размещения на опорах ВЛ– П;

— энергосберегающий (с пониженными потерями в режиме х.х.) – э.

6.Область применения

— обеспечение собственных потребностей электростанций – С;

— ЛЭП постоянного тока – П;

— металлургическая отрасль – М;

— обеспечение электропитания: погружных насосов – ПН; экскаваторов – Э;

— подогрев (при необходимости) грунта, бетона, а также использование в буровых установках – Б;

— термическая обработка грунта и бетона, питание ручного электроинструмента различного назначения, а также обустройство временного освещения – ТО.

Затем числовой дробью в числителе дается информация о номинальной мощности (кВ*А), а в знаменателе — класс напряжения обмотки (кВ).

Использование силовых трансформаторов в зависимости от климатических условий

Информация о возможностях использования силовых трансформаторов в зависимости от климатических условий (в соответствие с ГОСТом 15150-69):

— умеренный климат– У;

— холодный – ХЛ;

-тропический – Т;

Кроме того, в зависимости от месторасположения, трансформаторы делят на следующие категории, допускающие их эксплуатацию:

— на открытом воздухе – 1;

— в помещениях с несущественными отличиями колебаний температуры и влажности относительно внешней среды – 2;

— в закрытых помещениях, где, благодаря естественной вентиляции, перепады температуры и влажности существенно ниже, чем с внешней стороны – 3;

— в закрытых помещениях со специально созданными и регулируемыми климатическими параметрами -4;

— в помещениях с повышенной влажностью — 5.

Трансформатор напряжения , назначение и принцип действия

Трансформатор напряжения — это одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.

измерительный трансформатор напряженияизмерительный трансформатор напряжения

Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.

Трансформатор напряжения назначение и принцип действия

Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.

Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чего он обеспечивает безопасность их обслуживания на подстанции.

Основное принципиальное отличие измерительных трансформаторов напряжения (ТН) от трансформаторов тока (ТТ) состоит в том, что они, как и все силовые модели, рассчитаны на обычную работу без закороченной вторичной обмотки.

В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.

трансформатор напряжения измерительныйизмерительный трансформатор напряжения

Принципы работы трансформатора напряжения

Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:

  • первичной;
  • вторичной.

Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.

Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.

Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.

Устройство однофазного трансформатора напряжения

устройство трансформатора напряженияустройство однофазного трансформатора напряжения

Устройство однофазного трансформатора напряжения:

  • а — общий вид трансформатора напряжения;
  • б — выемная часть;
  • 1,5 — проходные изоляторы;
  • 2 — болт для заземления;
  • 3 — сливная пробка;
  • 4 — бак;
  • 6 — обмотка;
  • 7 — сердечник;
  • 8 — винтовая пробка;
  • 9 — контакт высоковольтного ввода

Однофазные трансформаторы напряжения получили наибольшее распространение. Они выпускаются на рабочие напряжения от 380 В до 500 кВ.

Конструктивные размеры и масса ТН определяются не мощностью, как у силовых трансформаторов, а в основном объемом изоляции первичной обмотки и размерами её выводов высокого напряжения.

Трансформаторы напряжения с номинальным напряжением от 380 В до 6 кВ имеют исполнение с сухой изоляцией (обмотки выполняются проводом марки ПЭЛ и пропитываются асфальтовым лаком).

Свердловский завод трансформаторов тока выпускает трансформаторы напряжения на 6, 10, 35 кВ с литой изоляцией.

У трансформаторов напряжением 10 — 500 кВ изоляция масляная (магнитопровод погружен в трансформаторное масло).

Пример назначение и область применение трансформаторов напряжения ЗНОЛ-НТЗ

Трансформаторы предназначены для наружной установки в открытых распределительных устройствах (ОРУ). Трансформаторы обеспечивают передачу сигнала измерительной информации измерительным приборам и устройствам защиты и управления, предназначены для использования в цепях коммерческого учета электроэнергии в электрических установках переменного тока на класс напряжения 35 кВ. Трансформаторы выполнены в виде опорной конструкции.

устройство трансформатора напряжения

Корпус трансформаторов выполнен из компаунда на основе гидрофобной циклоалифатической смолы «Huntsman», который одновременно является основной изоляцией и обеспечивает защиту обмоток от механических и климатических воздействий. Рабочее положение трансформаторов в пространстве — вертикальное, высоковольтными выводами вверх.

схема включения обмоток схема включения обмоток трансформатора напряжения ЗНОЛ-НТЗ

Схемы включения  трансформаторов напряжения

Измерительные трансформаторы применяются для замера линейных и/или фазных первичных величин. Для этого силовые обмотки включают между:

  • проводами линии с целью контроля линейных напряжений;
  • шиной или проводом и землей, чтобы снимать фазное значение.

Важным элементом безопасности измерительных трансформаторов напряжения является заземление их корпуса и вторичной обмотки.

На заземление трансформаторов напряжения обращается повышенное внимание, ведь при пробое изоляции первичной обмотки на корпус или во вторичные цепи в них появится высоковольтный потенциал, способный травмировать людей и сжечь оборудование.

Преднамеренное заземление корпуса и одной вторичной обмотки отводит этот опасный потенциал на землю, чем предотвращает дальнейшее развитие аварии.

Трансформатор напряжения при напряжении до 35 кВ

Трансформатор напряжения при напряжении до 35 кВ по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из магнитопровода, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. На рис. 2.1. показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение Ub a напряжение вторичной обмотки U2 подведено к измерительному прибору.

Схема включения однофазного трансформатора напряжениярис. 2.1  Схема включения однофазного трансформатора напряжения

Трансформаторы применяются в наружных (типа НОМ-35, серий ЗНОМ и НКФ) или внутренних установках переменного тока напряжением 0,38-500 кВ и номинальной частотой 50 Гц. Трехобмоточные трансформаторы НТМИ предназначены для сетей с изолированной нейтралью, серии НКФ (кроме НКФ-110-5 8) — с заземленной нейтралью.

В электроустановках используются однофазные, трехфазные (пятистержневые) и каскадные ТН. Выбор того или иного типа трансформатора напряжения  зависит от напряжения сети, значения и характера нагрузки вторичных цепей и назначения трансформатора напряжения (для целей изменения, для контроля однофазных замыканий на землю, для питания устройств релейной защиты и автоматики).

Ввиду относительно высокой стоимости ТН для сетей 110-750 кВ они в ряде случаев, там, где это возможно по условиям работы систем измерения, защиты и автоматики электроустановок, заменяются емкостными делителями напряжения.

По изоляции различают трансформаторы напряжения с сухой и масляной изоляцией.

Обозначение трансформатора напряжения на схеме

Обозначение трансформатора напряжения на схемеОбозначение трансформатора напряжения на схеме

Предохранители  трансформаторов осуществляют защиту трансформаторов напряжения от повреждения в случае их работы в ненормальном режиме — при однофазном замыкании на землю, при возникновении в сети феррорезонансных явлений или в случае наличия короткого замыкания в первичной обмотке трансформатора напряжения.

Видео: Трансформаторы напряжения

Технические характеристики трансформаторов напряжения, схемы включения. Факторы, влияющие на класс точности. Виды трансформаторов напряжения, расшифровка маркировки.

Источник высокого напряжения из ТДКС своими руками

Источник высокого напряжения из ТДКС
Сейчас очень часто можно найти на помойке устаревшие кинескопные телевизоры, с развитием технологий они стаи не актуальны, поэтому теперь от них в основном избавляются. Пожалуй, каждый видел на задней стенке такого телевизора надпись в духе «Высокое напряжение. Не открывать». И висит она там не с проста, ведь в каждом телевизоре с кинескопом имеется весьма занятная вещица, называемая ТДКС. Аббревиатура расшифровывается как «трансформатор диодно-каскадный строчный», в телевизоре он служит, в первую очередь, для формирования высокого напряжения для питания кинескопа. На выходе такого трансформатора можно получить постоянное напряжение величиной аж 15-20 кВ. Переменное напряжение с высоковольтной катушки в таком трансформаторе увеличивается и выпрямляется с помощью встроенного диодно-конденсаторного умножителя.
Выглядят трансформаторы ТДКС вот так:
Источник высокого напряжения из ТДКС
Толстый красный провод, отходящий от верхушки трансформатора, как не трудно догадаться, и предназначен для снятия с него высокого напряжения. Для того, чтобы запустить такой трансформатор, необходимо намотать на него свою первичную обмотку и собрать не сложную схему, которая зовётся ZVS-драйвером.

Схема


Схема представлена ниже:
Источник высокого напряжения из ТДКС
Эта же схема в другом графическом представлении:
Источник высокого напряжения из ТДКС
Несколько слов о схеме. Ключевое её звено – полевые транзисторы IRF250, сюда хорошо подойдут так же IRF260. Вместо них можно ставить и другие аналогичные полевые транзисторы, но лучше всего в этой схеме себя зарекомендовали именно эти. Между затвором каждого из транзисторов и минусом схемы устанавливаются стабилитроны на напряжение 12-18 вольт, я поставил стабилитроны BZV85-C15, на 15 вольт. Также к каждому из затворов подключаются ультрабыстрые диоды, например, UF4007 или HER108. Между стоками транзисторов подключается конденсатор 0,68 мкФ на напряжение не меньше 250 вольт. Его ёмкость не так критична, можно спокойно ставить конденсаторы в диапазоне 0,5-1 мкФ. Через этот конденсатор протекают довольно значительные токи, поэтому возможен его нагрев. Желательно поставить несколько конденсаторов параллельно, либо же взять конденсатор на большее напряжение, 400-600 вольт. На схеме присутствует дроссель, номинал которого также не сильно критичен и может находиться в пределах 47 – 200 мкГн. Можно намотать 30-40 витков провода на ферритовом колечке, работать будет в любом случае.

Изготовление


Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Если дроссель сильно нагревается, значит следует убавить количество витков, либо взять провод сечением потолще. Главное преимущество схемы – большой КПД, ведь транзисторы в ней почти не нагреваются, но, тем не менее, их стоит установить на небольшой радиатор, для надёжности. При установке обоих транзисторов на общий радиатор обязательно нужно использовать теплопроводящую изолирующую прокладку, т.к. металлическая спинка транзистора соединена с его стоком. Напряжение питания схемы лежит в пределах 12 – 36 вольт, при напряжении в 12 вольт на холостом ходе схема потребляет примерно 300 мА, при горящей дуге ток повышается до 3-4 ампер. Чем больше напряжение питания, тем большее напряжение будет на выходе трансформатора.
Если внимательно присмотреться к трансформатору, то можно увидеть зазор между его корпусом и ферритовым сердечником примерно 2-5 мм. На сам сердечник нужно намотать 10-12 витков провода, желательно медного. Наматывать провод можно в любую сторону. Чем больше сечение провода, тем лучше, однако провод слишком большого сечения может не пройти в зазор. Также можно использовать эмалированную медную проволоку, она пролезет даже в самый узкий зазор. Затем необходимо сделать отвод от середины этой обмотки, оголив проводов в нужном месте, как показано на фото:
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Можно намотать в одну сторону две обмотки по 5-6 витков и соединить их, в этом случае также получается отвод от середины.
При включении схемы электрическая дуга будет возникать между высоковольтным выводом трансформатора (толстый красный провод наверху) и его минусом. Минус – это одна из ножек. Определить нужную минусовую ножку можно достаточно просто, если поочерёдно подносить «+» к каждой ножке. Воздух пробивается на расстоянии 1 – 2.5 см, поэтому между нужной ножкой и плюсом сразу возникнет плазменная дуга.
Можно использовать такой высоковольтный трансформатор для создания другого интересного устройства – лестницы Иакова. Достаточно расположить два прямых электрода буквой «V», к одному подключить плюс, к другому минус. Разряд возникнет внизу, начнёт ползти вверх, наверху разорвётся и цикл повторится.
Скачать плату можно тут:

Испытания


На фотографиях лестница Иакова выглядит весьма зрелищно:
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Напряжение на выходе трансформатора является смертельно опасным, поэтому в обязательном порядке нужно соблюдать технику безопасности. После отключения питания на выходе трансформатора продолжает присутствовать высокое напряжение, поэтому его следует разряжать, замыкая высоковольтные выводы между собой. Успешной сборки!
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС
Источник высокого напряжения из ТДКС

Смотрите видеоролики испытаний


Эксперименты с высоким напряжением всегда очень красочные и завораживающие.

Трансформатор напряжения НТМИ-10 | Заметки электрика

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Счетчики электрической энергии, установленные в электроустановках напряжением 10 (кВ), подключаются через измерительные трансформаторы напряжения и трансформаторы тока (вот пример).

В данной статье я хотел бы остановиться на измерительных трансформаторах напряжения и более подробно рассказать Вам про конструкцию и схему подключения трехфазного трансформатора напряжения НТМИ-10.

Помимо трехфазных трансформаторов НТМИ-10, у нас на предприятии установлены и однофазные трансформаторы типа НОМ-10 и ЗНОЛ.06-10, но о них я расскажу Вам в следующий раз — подписывайтесь на рассылку новостей сайта, чтобы не пропустить выход новых статей.

Внешний вид трансформатора НТМИ-10:

Расшифровка НТМИ-10:

  • Н — трансформатор напряжения
  • Т — трехфазный
  • М — масляный (естественное масляное охлаждение)
  • И — измерительный с дополнительной обмоткой для контроля изоляции (КИЗ)
  • 10 — класс напряжения

Трансформаторы напряжения (ТН) необходимы для снижения уровня высокого напряжения 10 (кВ) до стандартного значения 100 (В). Таким образом, мы изолируем вторичные цепи напряжения от первичных цепей 10 (кВ).

По принципу работы трансформаторы напряжения (ТН) аналогичны обычным силовым понижающим трансформаторам. Они имеют стандартные коэффициенты трансформации в зависимости от уровня первичного напряжения сети: 10000/100 (В), 6000/100 (В), 3000/100 (В), 500/100 (В) и т.д.

Коэффициент ТН указывается через дробь: в числителе — номинальное значение первичного напряжения, а в знаменателе — номинальное значение вторичного напряжения.

В нашем примере у НТМИ-10 коэффициент трансформации равен 10000/100 (В). Это значит, что трансформатор напряжения предназначен для работы в сети напряжением 10 (кВ) и имеет коэффициент трансформации 100. Хотел бы напомнить, что этот коэффициент нужно учитывать при вычислении расчетного коэффициента счетчика электроэнергии.

Независимо от того, какой измерительный трансформатор напряжения у Вас установлен — вторичное напряжение у него должно быть всегда 100 (В).

Ко вторичным цепям подключаются различные измерительные приборы, устройства релейной защиты, автоматики и сигнализации: киловольтметры, счетчики электрической энергии, приборы для измерения мощности (ваттметры, варметры), различные преобразователи напряжения и мощности, реле контроля напряжения, реле защиты минимального напряжения, пусковые органы АВР, блоки регулирования напряжения (РКТ) и управления ступенями переключающих устройств РПН силовых трансформаторов и т.д.

 

Технические характеристики НТМИ-10

Основные технические характеристики НТМИ-10 (1967 года выпуска) указаны на его бирке:

Как видите, один и тот же трансформатор может работать с разными классами точности, правда для каждого класса точности определена его номинальная вторичная нагрузка (мощность).

Рассматриваемый НТМИ-10 предназначен для питания расчетных счетчиков коммерческого учета, а значит должен работать в классе точности 0,5 (ПУЭ, п.1.5.16):

Напомню, что класс точности расчетных счетчиков для потребителей мощностью до 670 (кВт) при напряжении 10 (кВ) должен быть не ниже 1,0.

Для работы трансформатора напряжения в классе точности 0,5 его номинальная нагрузка (мощность) не должна превышать 120 (ВА). Но в связи с массовым переходом от индукционных счетчиков к электронным (читайте статью о преимуществах и недостатках того или иного типа) я столкнулся со следующей проблемой.

У электронных счетчиков потребляемая мощность в несколько раз меньше, чем у индукционных, поэтому трансформатор напряжения получился не перегружен, а наоборот — не загружен, что отрицательно сказывается на его погрешности. В методике измерений МИ 3023-2006, п.3 говорится, что фактическая мощность трансформатора напряжения должна быть в пределах от 25% до 100% от его номинальной мощности. Читайте статью о том, как после замены счетчиков я производил измерение фактической мощности трансформатора напряжения, и что нужно делать, чтобы нагрузить ТН для работы в нужном классе точности.

Так, что не забывайте об этом.

Максимальная предельная мощность — это предельная мощность трансформатора, которая в несколько раз превышает номинальную мощность, но при которой трансформатор может работать с допустимым нагревом обмоток.

Остальные характеристики приведены ниже:

  • схема и группа соединений обмоток — Унн — 0 (Унн -12)
  • режим работы — продолжительный
  • температура эксплуатации от -45°С до +40°С (исполнение У3)
  • срок службы — не менее 20 лет (по факту уже более 47 лет)
  • масса 190 (кг)

Устройство и конструкция НТМИ-10

Рассмотрим конструкцию трансформатора напряжения НТМИ-10.

Пришел очередной срок поверки трансформатора напряжения НТМИ-10, установленного в ячейке ТН-2 сек. распределительной подстанции 10 (кВ). Мы пригласили метрологов и по результатам поверки данный НТМИ-10 был забракован по причине повышенной погрешности при работе в классе точности 0,5.

Данный трансформатор пришлось демонтировать с ячейки, а на его место установить новые однофазные 3хЗНОЛ.06-10. Об этом я еще расскажу Вам в ближайшее время.

Ну раз демонтировали НТМИ-10 с ячейки, то это и стало поводом для написания подробной статьи о нем.

Бак трансформатора НТМИ-10 имеет круглую форму и сварен из листовой стали (на фотографии ниже виден сварной шов).

Для его транспортировки имеются специальные крюки, приваренные к баку трансформатора.

На крышке бака расположены 3 высоковольтных ввода (А, В , С), нулевой вывод первичной обмотки (О), выводы вторичных обмоток (основной и дополнительной), пробка для заливки (доливки) масла.

Вводы трансформатора состоят из фарфоровых проходных изоляторов.

Пробка для заливки трансформаторного масла имеет мерную пластину для контроля его уровня в баке.

Внизу бака имеется пробка для слива или отбора масла для испытаний на пробой и проведения химического анализа.

Сливную пробку и крышку бака трансформатора можно опломбировать.

Кстати, наша ЭТЛ занимается испытанием трансформаторного масла на пробой, что подтверждается нашим решением. Для этого у нас имеется специальная установка — АИМ-90.

С другой стороны от сливной пробки находится болт для заземления корпуса трансформатора.

Активная часть трансформатора состоит из пятистержневого магнитопровода броневого типа, собранного из пластин электротехнической холоднокатанной стали. Обмотки (А, В, С) насажены на средние стержни магнитопровода. Свободные по краям стержни необходимы для замыкания магнитных потоков нулевой последовательности.

 

Схема подключения НТМИ-10

Схему подключения трансформатора напряжения НТМИ-10 рассмотрим на этой же распределительной подстанции, только на соседней ячейке ТН-1 сек, где установлен аналогичный НТМИ-10.

Однолинейная принципиальная схема:

Питание первичной обмотки НТМИ-10 осуществляется со сборных шин 10 (кВ) через шинный разъединитель.

Как видите, цветовая маркировка шин полностью соблюдена. На каждой фазе имеются участки шин без краски, которые необходимы для установки переносных заземлений.

В качестве защиты в каждой фазе установлены предохранители ПКТ-10. Эти предохранители защищают от короткого замыкания только первичные обмотки ТН. Если повреждение возникнет во вторичной цепи и даже на ее выводах, значение тока в первичной цепи будет недостаточно для перегорания плавкой вставки предохранителя.

1. Первичная обмотка ТН

Первичная обмотка НТМИ-10 соединена в звезду с нулевым выводом (Ун). Нулевой вывод выведен на крышку трансформатора и должен быть обязательно заземлен.

Заземляется он к стальной полосе, которая соединена с заземляющим устройством подстанции.

Маркировка первичной обмотки:

У трансформатора НТМИ-10 имеется две вторичные обмотки:

  • основная
  • дополнительная (для контроля изоляции)

2. Основная вторичная обмотка

Основная вторичная обмотка соединена в звезду с нулевым выводом (Ун). Ее нулевой вывод выведен на крышку трансформатора.

Маркировка выводов основной вторичной обмотки:

  • a — начало обмотки фазы А
  • b — начало обмотки фазы В
  • c — начало обмотки фазы С
  • o — нулевой вывод (концы всех обмоток соединены в одной точке)

На вторичных выводах имеются металлические бирки, на которых выбита маркировка.

Вторичные цепи ТН маркируются следующим образом (в скобках указаны старые обозначения):

  • а — А601 (501)

  • b — В600 (521)
  • c — С601 (541)
  • o — О601 (500)

У нас на подстанциях в основном сохранилась старая маркировка, но кое-где имеется и новая.

Для информации: почитайте статью о том, как выполняется маркировка вторичных цепей трансформаторов тока.

Для безопасности обслуживания (в случае попадания высокого напряжения во вторичные цепи), один из выводов вторичной обмотки ТН должен обязательно заземляться. Об этом отчетливо говорится в ПУЭ, п.3.4.24:

Заземление должно по возможности быть ближе к трансформатору напряжения. Обычно это выполняется, либо на самих вторичных выводах ТН, либо на ближайшем от ТН клеммнике.

В цепи заземления не должно быть установлено никаких коммутационных аппаратов (рубильников, переключателей, автоматов, предохранителей).

Иногда встречаются схемы, где у вторичной обмотки трансформатора напряжения заземлена не нейтраль, а фаза В. Вот пример схемы подключения НТМИ-10 с заземленной фазой В:

При заземленной фазе В гораздо легче перепроверить себя при подключении счетчиков и других приборов. Еще, фазу В заземляют по причине того, что она по конструкции ближе находится к первичной обмотке — так утверждают специалисты. Пока сам не разберу ТН — подтвердить данный факт не могу.

Но лично я привык, что заземлена всегда нейтраль (нулевая точка у звезды), поэтому при монтаже всегда заземляю именно нулевой вывод.

Для защиты ТН от перегрузок и коротких замыканий во вторичных цепях ~100 (В) устанавливается автоматический выключатель или предохранители. В моем случае установлен трехполюсный автомат АП-50Б, имеющий электромагнитную и тепловую защиты. В случае отключения автомата на панели сигнализации сработает указательное реле (в разговор. — блинкер) «автомат отключен» или «неисправность в цепях напряжения», который выдаст предупредительный сигнал на диспетчерский пульт.

Автомат или предохранители должны быть установлены как можно ближе к ТН. Если это ячейка КСО, то на самой панели, если же это КРУ, то на выкатном элементе или в релейном отсеке.

3. Дополнительная вторичная обмотка (для КИЗ)

Дополнительная обмотка соединена в схему разомкнутого треугольника (сумма фазных напряжений) и является фильтром напряжения нулевой последовательности. К ней подключается реле напряжения (реле контроля изоляции), например, РН53/60Д, которое реагирует и выдает сигнал при замыкании на землю в сети 10 (кВ).

Напряжение на дополнительной обмотке в симметричном режиме составляет около 2-3 (В). При однофазном замыкании какой-либо фазы 10 (кВ) на землю в ней возникает напряжение 3Uо, приблизительно равное 100 (В).

Маркировка выводов дополнительной обмотки для контроля изоляции (КИЗ):

Провода дополнительной обмотки ТН маркируются следующим образом (в скобках указаны старые обозначения):

  • ад — Н601 (561)

  • хд — Н600 (562)

Дополнительную обмотку также необходимо заземлить, например, на выводе хд.

В связи с малой протяженностью вторичных цепей дополнительной обмотки, аппараты защиты в ней можно не устанавливать.

Для защиты трансформатора напряжения от перенапряжений, возникающих при самопроизвольных смещениях нейтрали, в цепь дополнительной вторичной обмотки необходимо установить резисторы номиналом 25 (Ом) мощностью 400 (Вт). Эти резисторы устанавливаются только там, где нет компенсирующих устройств (дугогасящих катушек). Дугогасящие катушки на рассматриваемой подстанции имеются в наличии, но выведены из работы.

Дополнение про НТМИ-10-66

В завершении статьи я решил упомянуть про трансформатор напряжения НТМИ-10 с приставкой «66» (НТМИ-10-66).

Трансформаторы напряжения НТМИ-10-66 стали выпускаться в более позднее время. По принципу действия, техническим характеристикам и схеме подключения они полностью аналогичны с рассмотренным в данной статье НТМИ-10, правда есть небольшие отличия по габаритным размерам и высоковольтным вводам, которые Вы увидите на фотографиях ниже.

Внешний вид.

Бирка с техническими характеристиками НТМИ-10-66.

Сливная пробка.

Маркировка выводов.

А вот видеоролик, который я снял по материалам данной статьи:

P.S. Если у Вас возникли вопросы по тематике данной статьи, то буду рад Вам помочь. Спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Особенности эксплуатации трансформаторов напряжения с литой изоляцией классов напряжения 6–35 кВ

Трансформаторы с литой изоляцией уже прочно заняли свои позиции на рынке электротехнических изделий. Если говорить о трансформаторах с литой изоляцией в целом, то они имеют неоспоримые преимущества перед масляными трансформаторами, а именно:  меньшие массу и  габаритные размеры; возможность установки в любом положении; пожаробезопасность.

Кроме того, одним из основных преимуществ трансформаторов с литой изоляцией является герметичность конструкции. Т.е. литая изоляция, герметизируя и жестко фиксируя активные части трансформаторов, исключает влияние на них внешних воздействий, таких как влажность, механические удары, вибрации и т.д. Это значительно повышает надежность трансформаторов, позволяет применять их как в условиях тропического климата, так и в районах с умеренным и холодным климатом, а также для наружной установки.

Трансформаторы напряжения могут выполняться с одним или двумя высоковольтными вводами первичной обмотки. У заземляемых трансформаторов один ввод первичной обмотки, имеющий неполную изоляцию, во время работы должен быть заземлен. Вводы первичной обмотки незаземляемых трансформаторов напряжения имеют полную изоляцию.

При эксплуатации незаземляемые трансформаторы включаются между фазами сети, т.е. они рассчитаны для работы на линейном напряжении. Заземляемые однофазные трансформаторы напряжения собираются в трехфазную группу по схеме «звезда»/«звезда»/ «разомкнутый треугольник». Заземляемые трехфазные группы ТН выполняют все функции незаземляемых ТН, плюс осуществляют контроль изоляции сети. При нормальном симметричном режиме фазные напряжения основной вторичной обмотки равны 100/V3 В, междуфазные равны 100 В, а на выводах дополнительной вторичной обмотки имеется небольшое напряжение небаланса не более 3 В. При однофазных замыканиях сети на землю одно из фазных напряжений снижается до нуля, а два других повышаются до 100 В. Междуфазные напряжения остаются неизменными, а напряжение дополнительной вторичной обмотки повышается до 100 В.

Заземляемые ТН из-за своей связи с землей подвержены разнообразным опасным воздействиям со стороны сетей и для обеспечения своей надежности нуждаются в квалифицированном подходе. В частности, заземляемый вывод Х обмотки ВН должен быть обязательно заземлен даже тогда, когда контроль изоляции не требуется.

Одна из основных функций трехфазных групп заземляемых трансформаторов напряжения в сетях с изолированной нейтралью — это обеспечение измерения напряжения нулевой последовательности (для осуществления контроля изоляции сети).

Практика эксплуатации ТН в электрических сетях разного назначения и различного напряжения показала, что в процессе эксплуатации этих сетей могут возникать ситуации, приводящие к феррорезонансным явлениям в эквивалентных контурах, содержащих емкость электрооборудования сети и нелинейную индуктивность намагничивания ТН. При этом на изоляции электрооборудования могут возникать как перенапряжения, так и повышенные значения токов в обмотке ВН ТН.

В электрических сетях 6–24 кВ, эксплуатируемых с изолированной нейтралью, такие условия могут возникнуть чаще всего при однофазных дуговых замыканиях на землю (ОДЗ). Очевидно, что условия феррорезонанса соблюдаются при определенном соотношении емкостного сопротивления сети и характеристики намагничивания ТН.

В эксплуатации заземляемых ТН можно выделить несколько режимов, приводящих к ненормальной работе ТН или к их повреждению.

Первый режим — самопроизвольное смещение нейтрали, или, как называют его энергетики, эффект «ложной земли». Он заключается в искажении фазных напряжений сети с изолированной нейтралью и появлении напряжения нулевой последовательности при отсутствии однофазных замыканий на землю. Он возникает, как правило, при включении ненагруженных шин или непротяженных сетей 6–10 кВ и связан с компенсацией тока намагничивания одной (или нескольких) фаз ТН емкостным током этой фазы. Так как в феррорезонанс может войти любая из трех фаз, «ложная земля» может «переходить» с одной фазы на другую. Обычно в таком режиме ТН не повреждается, но релейная защита не позволяет включить оборудование из-за ложного сигнала.

Второй режим возникает при однофазных дуговых замыканиях на землю в воздушных сетях. Такие сети имеют небольшой (до 10А) ток замыкания на землю и открытую перемежающуюся дугу, подверженную воздействию ветра, что способствует ее попеременному зажиганию и гашению. В таком режиме емкость нулевой последовательности сети в бестоковую паузу перемежающейся дуги разряжается через ТН, насыщая его магнитопровод и перегревая обмотки. Повторное зажигание дуги вновь заряжает емкость, которая затем разряжается через ТН. Такой процесс может длиться несколько минут или даже часов, в результате чего ТН нередко повреждается.

Третий режим может возникнуть как в воздушных, так и в кабельных сетях. Режим феррорезонанса возможен при замыкании на землю одной фазы малонагруженного трансформатора 20–400 кВА. Напряжение нулевой последовательности сети при этом может достигать трехкратных значений, в результате чего повреждение ТН наступает менее чем за одну минуту. При этом факты повреждения ТН именно из-за «внешнего» феррорезонанса, вследствие его быстротечности, очень трудно надежно зафиксировать.

Явление феррорезонанса в сетях с изолированной нейтралью достаточно хорошо изучено и предусмотрен ряд мер для его предотвращения или демпфирования. В трехфазных группах производства ОАО «СЗТТ» 3хЗНОЛ.06 и 3хЗНОЛП для борьбы с феррорезонансами сети нейтраль первичной обмотки, соединенной в звезду, заземляется через три параллельно соединенных резистора, которые ограничивают токи, протекающие через трансформатор при феррорезонансе.

Также для повышения устойчивости к феррорезонансу в дополнительные обмотки, соединенные в разомкнутый треугольник, используемые для контроля изоляции сети, рекомендуется включать резистор сопротивлением 25 Ом, рассчитанный на длительное протекание тока 4 А (мощность резистора не менее 400 Вт). Эта мера не является абсолютно эффективной, но в большинстве случаев приводит к положительным результатам.

Зачастую перед эксплуатирующими организациями встает вопрос: применять ли трансформаторы напряжения с защитными предохранительными устройствами или без них?

С одной стороны, трансформаторы без защитных предохранительных устройств (ЗНОЛ.06) стоят дешевле, а для защиты трансформаторов напряжения традиционно применяются предохранители ПКН. Казалось бы, вопрос решен, но необходимо учесть следующее: предохранители ПКН применяются для защиты трансформаторов напряжения и выбираются по классу напряжения трансформатора, ток срабатывания не нормируется. По данным эксплуатации время срабатывания ПКН составляет около 10 с. при токе 2,5 А.

Поскольку это значение близко к значениям токов короткого замыкания трансформаторов ЗНОЛ.06, а по ГОСТ 1983-2001 трансформаторы должны выдерживать токи короткого замыкания между вторичными выводами без повреждения в течение 1 с, то протекание тока такой величины в течении 10 с может привести к выходу из строя трансформатора. В связи с этим, становится понятно, что предохранители ПКН предназначены, прежде всего, для защиты шин и другого оборудования, а трансформаторы напряжения в данном случае являются расходным материалом.

С другой стороны использование трансформатора с защитными предохранительными устройствами (ЗНОЛП, ЗНОЛПМ(И), ЗНОЛ.01ПМИ) позволяет сохранить трансформатор в работоспособном состоянии при возникновении аварийных режимов.

Встроенное защитное предохранительное устройство трансформаторов ЗНОЛП, ЗНОЛПМ(И), ЗНОЛ.01ПМИ позволяет защитить эти трансформаторы от повреждений при возникновении различных аварийных режимов.

Принцип действия предохранительного устройства основан на перегорании (расплавлении) плавкой вставки под действием чрезмерного тока цепи, длительно превышающего предельно допустимое значение тока высоковольтной обмотки трансформатора.

Выбор резисторов, применяемых в защитных предохранительных устройствах трансформаторов, производится с учетом конкретных значений номинальных и предельно допустимых токов высоковольтной обмотки трансформатора, в котором оно используется. Так как номинальные и предельные допустимые длительные токи высоковольтной обмотки трансформаторов напряжения имеют малые значения, не превышающие 0,12 А, резистор выбирается с такими характеристиками, чтобы обеспечить отключение при токах короткого замыкания трансформатора, которые во много раз превышают номинальные значения токов. Время отключения трансформатора с помощью защитного предохранительного устройства не превышает 2–5 секунд, что исключает вероятность возникновения сквозного тока короткого замыкания непосредственно в трансформаторе. Также нужно отметить, что выполнение предохранителей встроенными в гнездо литого корпуса трансформатора полностью исключает междуфазное короткое замыкание.

При испытаниях заземляемых ТН (электрической прочности изоляции трансформаторов и при определении тока холостого хода) вывод «Х» должен быть заземлен! Это требование связано с особенностями конструкции заземляемых трансформаторов напряжения (высоковольтный вывод Х имеет неполную изоляцию).

Испытание электрической прочности изоляции первичной обмотки проводится индуктированным напряжением частотой 400 Гц величиной, указанной в ГОСТ 1516.3-96 (для уровня изоляции «б»). Смысл этого испытания в проверке качества внутренней изоляции обмотки ВН. Проведение этого испытания напряжением частоты 50 Гц недопустимо, поскольку ток намагничивания превысит допустимое значение, и ТН выйдет из строя. Поэтому в ГОСТ 1516.3-96 (п.4.16.2) отмечено, что при отсутствии у потребителей источника напряжения повышенной частоты испытание трансформатора, не вводившегося в эксплуатацию, допускается проводить при частоте 50 Гц напряжением не выше 1,3 номинального при длительности выдержки 1 мин. Разземле-ние вывода «Х» высоковольтной обмотки (для заземляемых ТН) недопустимо.

В эксплуатации нередки случаи повреждения заземляемых ТН во время проведения испытаний другого оборудования с присоединенными к нему ТН. Это происходит по тем же причинам: разземление вывода «Х» обмотки ВН либо испытание повышенным напряжением частоты 50 Гц.

Изоляция между заземляемым выводом высоковольтной обмотки и заземленными частями трансформатора испытывается напряжением 3 кВ.

Для унификации проводимых испытаний заземляемых и незаземляемых трансформаторов напряжения, в частности, измерение электрического сопротивления изоляции первичной обмотки , были внесены изменения в конструкцию заземляемых трансформаторов, что позволило проводить указанное испытание мегаомметром на 2500 В.

В настоящее время во многих регионах происходит модернизация существующих электрических сетей с внедрением нового оборудования, которое имеет целый ряд преимуществ перед оборудованием, долгое время находившимся в эксплуатации. Однако использование нового оборудования совместно с традиционным может привести к увеличению интенсивности технологических нарушений. Для их снижения требуется тщательный анализ всех возможных штатных и нештатных ситуаций в конкретной электрической сети. При проектировании необходимо учитывать возможность появления резонансных перенапряжений в различных режимах работы сети. К сожалению, такой анализ проводится далеко невсегда и после модернизации электрической сети возникают различные ситуации, мешающие нормальной ее эксплуатации.

И. А. СОБОВА,
ведущий конструктор
отдела измерительных трансформаторов
ОАО «Свердловский завод трансформаторов тока»

Литература:

  1. Евдокунин Г. А., Титенков С. С. Внутренние перенапряжения в сетях 6–35 кВ. СПб: Терция, 2004. 188 с.
  2. Кадомская К. П., Лаптев О. А. Антирезонансные трансформаторы напряжения. Эффективность применения // Новости ЭлектроТехники. 2006. №6(42).
  3. Степанов Ю. А, Овчинников А. Г. Трансформаторы напряжения контроля изоляции 6–10 кВ. Сравнительный анализ // Новости ЭлектроТехники. 2008. №4(52).
  4. ГОСТ 1983-2001: Трансформаторы напряжения. Общие технические условия.
  5. Зихерман М. Х. Трансформаторы напряжения для сетей 6–10 кВ. Причины повреждаемости // Новости ЭлектроТехники. 2004. №1(25).
  6. Зихерман М. Х. Антирезонансные трансформаторы напряжения. Достижения и перспективы // Новости ЭлектроТехники. 2007. №2(44).

Высоковольтные трансформаторы

Предназначены для преобразования электроэнергии в сетях энергосистем и служат для понижения напряжения трехфазного переменного тока. Номинальное верхнее напряжение 10 или 6 кВ, низкое напряжение 400В или 230 В. Высоковольтные трансформаторы ТС-100 применяются в электрических установках общего назначения, в стационарных тиристорных выпрямителях гальванических установок, а также на объектах с требованиями особой пожаробезопасности. Например, зоны отдыха, больницы, метрополитены общественные и жилые помещения, производственные здания, шахты, а так же для применения на атомных электростанциях и в подземных сооружениях. Сухие трансформаторы серии ТС надежны экономичны и просты в работе. Номинальная частота тока — 50 Гц.

Трансформатор высоковольтный ТС-63

Силовой сухой трансформатор ТС трехфазный с применением изоляции «Номекс» напряжением обмотки ВН до 10 кВ, используется для преобразования электроэнергии в электросетях энергосистем и сетях потребителей электроэнергии переменного тока номинальной частоты 50 Гц.

Тип

Номинальное напряжение трансфор- матора кВ

Схема и группа соеди- нения обмоток

Потери х.х., Вт

Потери к.з., Вт

Напря- жение к.з., %

Габаритные размеры трансформатора мм

Масса трансфор- матора кг

BH

HH

L

B

H

Сухой трансформатор ТС-63/6-У3

6

0.4

У/Ун-0 Д/Ун-11

300

1280

4,5

850

650

930

370

Сухой трансформатор ТС-63/10-У3

10

0.4

У/Ун-0 Д/Ун-11

300

1280

4,5

850

650

930

370

 

Трансформатор высоковольтный ТС-100

Тип

Класс напряжения, кВ

Мощность, кВА

Длина, мм

Ширина, мм

Высота, мм

Масса, кг

U КЗ, %

Потери, Вт

ХХ*

КЗ**

Суммарные

ТС-100

ТСТ-100

0,66

100

885

410

860

650

3,8

390

1450

1840

ТС-100

ТСТ-100

6;10

100

1300

600

1050

850

5,2

410

1720

2130

Трансформатор высоковольтный ТС-160

Высоковольтный трансформатор ТС-160 применяется во многих отраслях электроснабжения, он предназначен для преобразования электрической энергии в электросетях трехфазного переменного тока частотой 50Гц.

Тип

Класс напряжения, кВ

Мощность, кВА

Длина, мм

Ширина, мм

Высота, мм

Масса, кг

U КЗ, %

Потери, Вт

ХХ*

КЗ**

Суммарные

ТС-160

ТСТ-160

0,66

160

1070

600

1050

860

3,8

490

1950

2480

ТС-160

ТСТ-160

6;10

160

1300

600

1300

1200

5,2

510

2250

2760

Трансформатор высоковольтный ТСЗ-63

Тип

Класс напряжения, кВ

Мощность, кВА

Длина, мм

Ширина, мм

Высота, мм

Масса, кг

U КЗ, %

Потери, Вт

ХХ*

КЗ**

Суммарные

ТСЗ-63

0,66

63

780

500

920

585

3,5

550

1200

1750

ТСЗ-63

6;10

63

900

650

985

655

3,5

450

1450

1900

Трансформатор высоковольтный ТСЗ-100

Трансформатор серии ТС мощностью 100 кВА не предназначен для работы в условиях тряски, вибрации, ударов, во взрывоопасной и химически активной среде. Режим работы – длительный. Высота установки над уровнем моря не более 1000 м. Температура окружающего воздуха не выше +40°С, не ниже -45°С. Климатическое исполнение и категория размещения – У3. Трансформатор ТСЗ-100 используется во многих отраслях народного хозяйства, он предназначен для преобразования электрической энергии в электросетях трехфазного переменного тока частотой 50Гц. Трансформатор оборудован металлическим защитным кожухом и благодаря этому имеет степень защиты IP21.

Тип

Класс напряжения, кВ

Мощность, кВА

Длина, мм

Ширина, мм

Высота, мм

Масса, кг

U КЗ, %

Потери, Вт

ХХ*

КЗ**

Суммарные

ТСЗ-100

0,66

100

780

500

920

585

3,5

550

1200

1750

ТСЗ-100

6;10

100

900

650

985

655

3,5

450

1450

1900

Трансформатор высоковольтный ТСЗ-160

Трансформатор ТСЗ-160 используется во многих отраслях народного хозяйства, он предназначен для преобразования электрической энергии в электросетях трехфазного переменного тока частотой 50Гц. Трансформатор оборудован металлическим защитным кожухом и благодаря этому имеет степень защиты IP21. Они устанавливаются в промышленных помещениях и общественных зданиях, к которым представляются повышенные требования в части пожаробезопасности, взрывозащищенности, экологической чистоты, обмотки и изоляционные детали активной части трансформаторов выполнены из материалов, не поддерживающих горения. Трансформаторы имеют высокую надежность, требуют минимальных затрат на обслуживание, экономичны, просты в эксплуатации.

Тип

Класс напр., кВ

Мощность, кВА

Длина, мм

Ширина, мм

Высота, мм

Масса, кг

U КЗ, %

Потери, Вт

ХХ*

КЗ**

Сумм

ТСЗ-160

0,66

160

700

1150

435

910

3,5

800

2150

2950

ТСЗ-160

6;10

160

980

650

1175

1010

3,5

650

2150

2800

Высоковольтный трансформатор ТСКС-25/10(6)

Номинальное напряжение, кВ: ВН — 6; 6,3; 10; 10,5 и НН — 0,23; 0,4. Схема и группа соединения У / Ун — 0, в обоснованных случаях по согласованию сторон допускается схема и группа соединения Л / Ун -11. Сопротивление изоляции обмоток ВН более 500 МОм, обмоток НН не менее 100 МОм при температуре окружающего воздуха 25°С±10°С. Обмотки трансформатора изготовлены из медного провода с применением изоляционных материалов класса нагревостойкости «В» по ГОСТ 8865. Трансформатор выполнен с облегченной изоляцией по ГОСТ 1516.1. Стойкость трансформатора при коротком замыкании соответствует ГОСТ 11677. Длительность короткого замыкания на зажимах трансформатора — 2 с. По условиям эксплуатации в части воздействия механических факторов внешней среды трансформатор удовлетворяет требованиям группы М 18 по ГОСТ 17516.1. Крен и деферент до 15 °.

Установленная безотказная наработка — не менее 25000 ч; — вероятность безотказной работы в течение 8800 ч — не менее 0,995; — срок службы до первого капитального ремонта — не менее 12 лет; — срок службы — не менее 25 лет; — гарантийный срок эксплуатации — 3 года со дня ввода в эксплуатацию, но не более 4 лет с момента отгрузки.

Трансформатор допускает работу с номинальной нагрузкой, при повышении напряжения на 10 % сверх номинального, не более двух раз в сутки, продолжительностью не более 2 минут. Корректированный уровень звуковой мощности трансформатора при его работе на холостом ходу не превышает 65 дБА на расстоянии 0,3 м от трансформатора.

Тип трансформатора

Мощн.,
кВт

Характер нагрузки

Номинальное
напряжение
ВН.кВ

Наиб.
раб.
напр.
ВН, кВ

Номинальное
напряжение
ВН.кВ

Потери КЗ, Вт

Напр. КЗ, %

Ток холост., %

Габ. разм.
В*С*Н

Масса, кг

ТСКС 25/10-УЗ

25

Ном. (длит. -непрер.)

10; 10,5

10,5; 11

0,23; 0,4.

180, 750, 930

6

3,2

600*360*1050

215

ТСКС 25/6 — УЗ

25

Ном. (длит. -непрер.)

6; 6,3

6,3; 6,6

0,23; 0,4

180, 750, 930

6

3,2

600*360*1050

21

Высоковольтный трансформатор ТСКС-40/145/10(6)

Трансформатор типа ТСКС — 40 /145/10(6) — УЗ трехфазный сухой специального назначения предназначен для питания собственных нужд шкафов КРУ класса напряжения 6 и 10 кВ. Изготавливается в климатическом исполнении У категории 3 по ГОСТ 15150-69 и ГОСТ 15543.1-89. Класс нагревостойкости изоляции обмоток «F» по ГОСТ 8865-93. Выполнен с облегченной изоляцией по ГОСТ 1516.1-76. Охлаждение естественное воздушное. Исполнение — открытое (без кожуха).

Трансформатор устанавливается внутри помещений с естественной вентиляцией без искусственно регулируемых климатических условий. Устанавливается в шкаф, в стенках которого должны быть предусмотрены отверстия для охлаждения трансформатора.

Верхнее значение рабочей температуры для исполнения УЗ — плюс 40°С, при этом высота над уровнем моря не более 1000 м. Окружающая среда должна быть невзрывоопасной, не содержащей токопроводящей пыли, агрессивных газов и паров.

Мощность, кВА

Напряжение, В

Потери ХХ, Вт

Потери КЗ, Вт

Напря-
жение КЗ, %

Ток ХХ,%

Размеры, мм

Масса, кг, не более

первич-
ное

вторич-
ное

38

6000
6300
10000
10500

230; 400
230; 400
230; 400
230; 400

500

500

1,5

12

695 x 290 x 705

370

Что такое трансформатор напряжения / Описание

Трансформатор напряжения это электромагнитное устройство которое предназначено для преобразования одного переменного напряжения в переменное напряжение которое имеет другое назначение.  Иными словами говоря с помощью трансформатора напряжения происходит соединение цепей высокого и низкого напряжения. Кроме вышесказанного трансформаторы напряжения также применяют для обеспечения безопасности жизни персонала который занимается периодическим проведением обслуживающих профилактических и ремонтных работ на вторичных цепях трансформаторной подстанции. Также трансформатор тока исполняет важную роль в защите реле и приборов от высокого напряжения.

Трансформаторы тока ЗНОЛ-СЭЩ

Трансформатор напряжения работает на повышение или понижения электрической энергии, от сюда и исходят его два основных вида: трансформаторы понижающего и трансформаторы повышающего типа. Благодаря именного трансформатору напряжения конечный потребитель получает электрическую энергию нужного значения.

Трансформаторы напряжения имеют для своего обозначения следующие аббревиатуры:

  • ТН — трансформатор напряжения
  • Т — трансформатор трехобмотачный
  • Д и Е — делитель имеющий определенную емкость
  • Т и О — буквы  обозначающие количество фаз
  • З — наличие в трансформаторе напряжения заземляющего вывода
  • Л — литая изоляция трансформатора
  • С — сухая изоляция трансформатора
  • У1 — климатическое исполнение и категория размещения
  • М — естественное охлаждение трансформатора
  • И — трансформатор содержит дополнительные подключенные к нему приборы
  • К — дополнительная обмотка

Устройство трансформатора напряжения является относительно простым. Конструктивно он состоит из сердечника (магнитопровода), который собран из изолированных листов специальной электротехнической стали, и расположенных в нем обмоток, как правило не менее двух. Применение изолированной электротехнической стали в сердечнике трансформатора напряжения обуславливается тем, что благодаря ей снижаются вихревые токи.

Трансформаторы напряжения имеют различные виды, которые отличаются друг от друга своим внутренним строением, областью применения и характеристиками. Об этом по порядку.

Виды трансформаторов напряжения:

  1. Заземляемый трансформатор напряжения. Является электромагнитным однофазным или трехфазным устройством. Свое название заземляемый трансформатор напряжения получил из за одной особенности, один конец трансформатора напряжения, а именно нейтраль первичной обмотки подвергается обязательному заземлению.
  2. Двухобмотачный трансформатор напряжения. Имеет в своем внутреннем строении два вида обмоток: первичную и вторичную.
  3. Каскадный трансформатор напряжения. Внутренне строение каскадного трансформатора напряжения представляет собой первичную обмотку строго разделенную на определенное число секций. Свое название каскадный трансформатор напряжения он получил именно из за секций которые расположены в виде каскада на разном уровне от земли. Соединение всех этих составляющих частей между собой происходит с помощью дополнительных связующих обмоток.
  4. Емкостный трансформатор напряжения. Свое название емкостный трансформатор напряжения получил из за дополнительной встраиваемой в него детали — емкостного делителя.
  5. Трансформатор напряжения малой мощности. Служит в основном для питания различной бытовой техники, а также используется для различных электронных устройств в их схемах.
  6. Силовой трансформатор напряжения. Имеют большую мощность. Область их применения это сфера электроснабжения. Делятся на два вида: повышающего и понижающего. Повышающий силовой трансформатор напряжения способен передавать электрическое напряжение на большое расстояние, понижающий силовой трансформатор напряжения работает на уменьшение электрической энергии по потребительской.
  7. Измерительные трансформаторы напряжения. Применяются для измерительных целей, а также предназначены для расширения пределов измерения электронных приборов.
  8. Не заземляемый трансформатор напряжения. Данный вид трансформатора получил свое название из за того что он не подвергается заземлению. В не заземляемом трансформаторе в обязательном порядке изолируются все уровни включая и зажимы. Отдельные части трансформатора нужно поднимать на некоторую высоту, высота поднимаемых частей зависит напрямую от уровня напряжения. Конструкция не заземляемого трансформатора напряжения располагается полностью на поверхности земли.
  9. Трехобмотачный трансформатор напряжения. Имеет в своем строении одну первичную обмотку и две вторичные.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *