Site Loader

Содержание

4. Выпрямление переменного тока

Для питания электронных устройств требуется постоянное напряжение различных значений. Наиболее распространенным источником электрической энергии является промышленная сеть переменного напряжения частотой 50 Гц. Для преобразования переменного напряжения в постоянное (однополярное) применяют выпрямительные устройства. Существует однополупериодное и двухполупериодное выпрямление переменного тока.

Рис. 9. Схема однополупериодного выпрямителя.

Схема полупроводникового однополупериодного выпрямителя приведена на рис. 9. В этом выпрямителе полупроводниковый диодVDвключен последовательно с нагрузочным резисторомRн и вторичной обмоткой трансформатораT. Первичная обмотка трансформатора питается, как правило, от сети.

Из временных диаграмм (рис. 10) видно, что ток Iнв нагрузке имеет импульсный характер. В течение первого полупериода напряженияUАБ, когда потенциал точкиаположителен по отношению к потенциалу точкиб,диод открыт и через нагрузку протекает ток.

Во второй полупериод полярность напряжений на вторичной обмотке трансформатора изменяется на противоположную и потенциал точки астановится отрицательным по отношению к потенциалу точкиб.При такой полярности диод включен в обратном направлении и ток в нагрузке будет равен нулю.

Рис. 10. Временные диаграммы однополупериодного выпрямителя.

Широкое применение нашли двухполупериодные выпрямители, в которых, в отличие от однополупериодных выпрямителей, используются оба полупериода напряжения сети. Из них наибольшее распространение получил мостовой двухполупериодньгй выпрямитель (рис. 11), состоящий из трансформатора, четырех полупроводниковых диодов VD1 VD4(включенных по мостовой схеме) и нагрузочного резистора.

Рис. 11. Схема двухполупериодного выпрямителя.

В один из полупериодов напряжения сети, когда точка

аимеет положительный по отношению к точкеб потенциал, диодыVD2 иVD3открыты, а диодыVD1 иVD4закрыты. Ток в этот полупериод имеет направление: зажимавторичной обмотки трансформатора, диодVD2, нагрузочный резисторRн, диодVD3и зажимб.В следующий полупериод, когда потенциал точкиастановится отрицательным по отношению к точкеб, открыты диодыVD1иVD4,а диодыVD2иVD3закрыты. Протекающий в схеме ток имеет следующее направление: точкаб, диодVD4, нагрузочный резисторRн, диодVD1и точка
а
вторичной обмотки трансформатора. Таким образом, в течение всего периода ток в нагрузочном резистореRнимеет одно и то же направление. На рис. 12 представлены временные диаграммы токов и напряжений мостового двухполупериодного выпрямителя.

Рис. 12. Временные диаграммы двухполупериодного выпрямителя.

Мостовой выпрямитель по сравнению с однополупериодным имеет ряд преимуществ. В частности, при одном и том же напряжении вторичной обмотки трансформатора и сопротивлении нагрузки Rн средний выпрямленный ток /

н сри напряжениеUн срв мостовом выпрямителе почти в два раза больше, чем в однополупериодном.

Недостатком мостовой схемы выпрямителя является необходимость применения четырех диодов.

Для того, чтобы избежать пульсирующего характера напряжения Uни токаIннагрузки, в выпрямительных устройствах применяются различныесглаживающие фильтры. Простейшим из них является ёмкостной фильтр. Для этого параллельно сопротивлению нагрузки подключается конденсатор.

Рис. 13. Схема однополупериодного выпрямителя со сглаживающим фильтром.

На рис. 13 приведена схема однополупериодного выпрямителя с ёмкостным сглаживающим фильтром, а на рис.14 – диаграммы, иллюстрирующие его работу.

По мере роста напряжения на зажимах вторичной обмотки трансформатора UАБконденсаторCзаряжается и напряжение на нём повышается. Во время положительного полупериода диодVDпропускает ток, который заряжает конденсатор (практически до амплитудного значения переменного напряжения) и одновременно питает сопротивление нагрузки. Затем напряжениеUАБуменьшается и, когда оно становится меньше, чем напряжение на конденсаторе, диодVDзапирается, а конденсатор начинает разряжаться на резисторRн. Скорость разряда конденсатора определяется постоянной времени

разр=RнС. В дальнейшем описанный процесс периодически повторяется.

Рис. 14. Временные диаграммы двухполупериодного выпрямителя со сглаживающим фильтром.

При работе такого выпрямителя существенно уменьшаются пульсации выпрямленного напряжения. Однако следует помнить, что в выпрямителе с ёмкостным сглаживающим фильтром наблюдается значительная зависимость среднего значения выпрямленного напряжения от тока нагрузки.

Выпрямители переменного тока

Содержание:
  1. Принцип работы выпрямителя тока
  2. Однополупериодные выпрямители
  3. Работа двухполупериодных выпрямителей
  4. Как происходит выпрямление переменного тока

В электрических сетях используется преимущественно переменный ток, питающий большинство промышленных и бытовых потребителей. Однако существует немало электрических устройств – магнитофонов, приемников и других приборов, основой которых служат полупроводники или лампы. Для их работы требуется только постоянный ток. Кроме того, он используется во многих заводских производственных процессах.

Преимущественная выработка переменного тока связана с удобством его трансформации в разные значения напряжений. Другим положительным моментом считается передача переменного тока по ЛЭП с минимальными потерями. Поэтому все необходимые преобразования выполняют выпрямители переменного тока, позволяющие получить необходимое напряжение, обеспечивающее нормальную работу электрических приборов.

Принцип работы выпрямителя тока

Основной функцией выпрямителя тока является преобразование переменного напряжения в постоянное. Принцип работы этих устройств основан на свойствах переменного тока, величина и направление которого изменяются во времени.

Согласно стандартного значения изменение направления тока в сети составляет 50 раз в течение одной секунды. Такое колебание является частотой и составляет 50 герц или периодов. То есть значение электротока в определенный период достигает нулевой отметки, а затем постепенно набирает максимальное значение. Этот процесс постоянно повторяется и протекает в периодической форме. Значение тока постоянно изменяется в соответствии с синусоидальным законом.

Основная задача выпрямителя заключается в получении устойчивого постоянного напряжения, не изменяющего своей величины и направления. Сам процесс выпрямления заключается в работе вентиля, пропускающего ток лишь в одном направлении. В результате односторонней проводимости вентиля, прохождение тока через него осуществляется исключительно в положительные полупериоды. Во время отрицательных периодов ток в цепи отсутствует.

При наличии положительной полуволны, сопротивление в вентиле минимальное, что обеспечивает свободное прохождение тока. Отрицательная полуволна подвергается значительному сопротивлению, задерживается и не проходит через вентиль. В результате включения вентиля в цепь, переменный ток будет полностью отсутствовать. Изменения оставшегося в цепи тока будут касаться только его величины, а направление останется неизменным. Это так называемый первичный или пульсирующий ток. С его помощью можно зарядить аккумулятор, но, он не годится для питания, например, радиоэлектронной аппаратуры. Необходимо выполнить процедуру сглаживания, чтобы пульсирующий ток превратился в постоянный. С этой целью используется специальный фильтр.

В качестве такого фильтра используется конденсатор с большой емкостью. Выпрямляемый ток сглаживается или фильтруется за счет зарядки конденсатора током, идущим от вентиля. В результате, создается определенный запас электроэнергии. При уменьшении тока, проходящего через вентиль и падении напряжения на нагрузке в конце каждого положительного полупериода, происходит отдача конденсатором накопленной энергии.

Однополупериодные выпрямители

Далеко не все фильтры способны полностью избавить ток от резких пульсаций. Для этих целей требуются более совершенные фильтры, обеспечивающие на нагрузке лишь незначительные пульсации постоянного тока. Такие пульсации не оказывают решающего влияния на основные функции электронного устройства, получающего питание через выпрямитель.

К наиболее простым приборам относится однополупериодный выпрямитель. Основным принципом его работы является использование для выпрямления только положительных полупериодов. Выпрямленный ток и сетевое напряжение имеют одинаковую частоту пульсаций. Поэтому для их сглаживания в однополупериодном выпрямителе должен применяться хороший фильтр. С помощью данных устройств осуществляется питание аппаратуры с потреблением незначительного тока. В случае возрастания токовых значений, необходимо использовать более сложные фильтры.

Работа двухполупериодных выпрямителей

Более широкое распространение получили двухполупериодные выпрямители переменного тока, с использованием сразу двух вентилей. Течение тока в нагрузке происходит всегда в одном направлении.

Схема выпрямления действует следующим образом. В определенное время на одном из выводов вторичной обмотки трансформатора напряжение будет положительным по отношению к другому выводу. Ток проходит через первый вентиль с небольшим сопротивлением, после этого он идет по нагрузке к средней точке вторичной обмотки. Такое положение будет сохраняться весь положительный полупериод. Когда ток не первом выводе трансформатор изменится, напряжение станет отрицательным. Прохождения тока через первый вентиль не будет в связи с его большим сопротивлением. Второй конец обмотки будет с положительным напряжением, и ток начнет проходить по второму вентилю, нагрузке с выходом к средней точке вторичной обмотки трансформатора.

Данная схема выпрямления тока позволяет использовать два полупериода напряжения. Высокая частота пульсаций значительно облегчает фильтрацию выпрямленного напряжения.

Как происходит выпрямление переменного тока

Выпрямители тока: принцип работы, схема

Выпрямитель — это устройство, которое создано для преобразования тока. Многие модели устанавливаются с фильтрами. Сфера применения выпрямителей очень широкая. Они активно используются в блоках питания, подстанциях, а также сварочных аппаратах.

В первую очередь модели делятся по фазам. Существуют двухфазные, а также трехфазные модификации. Мостовые устройства изготавливаются исключительно для преобразователей. По мощности выделяют силовые элементы, а также модели сигналов. По наличию устройств стабилизации они делятся на полноволновые, неполноволновые, двухпериодные и трансформаторные модификации. Для того чтобы разобраться в выпрямителях, необходимо рассмотреть схему обычной модели.

выпрямители тока

Схема выпрямителя

Схема выпрямителя тока включает в себя проводники с различной проводимостью тока. Также в устройствах используются каналы. Электронные вентили устанавливаются различной чувствительности. Если рассматривать мостовые модификации, то у них применяются стабилитроны. Также на рынке представлены диодные устройства.

Принцип действия

Принцип работы выпрямителя основывается на преобразовании тока. Осуществляется данный процесс за счет изменения частоты. Для этого в устройстве имеется электронный вентиль. Для стабилизации процесса преобразования используются каналы. Чтобы избежать проблем с отрицательной полярностью, устанавливаются стабилитроны. Непосредственно подключение устройства осуществляется через проводники.

выпрямитель тока 220

Силовые устройства

Выпрямители тока данного типа используются в различных блоках питания. Наиболее часто их можно встретить в персональных компьютерах. Схема устройства предполагает использование векторного транзистора. Если рассматривать двухканальную модификацию, то подключение осуществляется через расширитель.

В некоторых устройствах используются тетроды. Если рассматривать трехканальные элементы, то они рассчитаны для блоков питания на 20 В. В данном случае тетроды никогда не применяются. Принцип работы выпрямителей построен на изменении частоты. Многие модификации продаются с электронными вентилями. Если говорить про параметры, то чувствительность устройства колеблется в районе 23 мВ. Непосредственно проводимость тока у моделей не превышает 2 мк.

Принцип работы выпрямителей сигналов

Выпрямители сигналов работают от обратной связи. Использоваться модели могут только в сети с переменным током. Если рассматривать устройства на 12 Вт, то следует отметить, что фильтры применяются только полудуплексного типа. Также стандартная схема выпрямителя подразумевает использование транзистора с ресивером.

У моделей на три канала обязательно используются триггеры. Данные устройства устанавливаются через изоляторы. Выходное напряжение у моделей, как правило, не превышает 20 В. Силовая электроника у выпрямителей позволила решить проблему с перепадами напряжения за счет установки диодных мостов.

выпрямитель напряжения тока

Мостовые устройства

Мостовые выпрямители продаются для блоков питания и преобразователей. Действуют устройства в сети с переменным током. Непосредственно изменение частоты осуществляется за счет работы расширителя. Указанный элемент в выпрямителе играет роль проводника. В некоторых случаях он устанавливается с изоляторами. По системе защиты мостовые выпрямители довольно сильно отличаются.

Если рассматривать модификации на три канала, то у них используются триггеры. Данные элементы могут устанавливаться с обкладкой и без нее. Модификации на четыре канала встречаются очень редко. Показатель проводимости тока у выпрямителей не превышает 40 мк. В данном случае чувствительность устройства равняется 2,5 мк.

Двухфазные модификации

Двухфазные выпрямители тока производятся для транспортных средств. Работают модели по принципу изменения частоты. Осуществляться этот процесс может за счет расширителя либо триггера. Наиболее часто модели встречаются без тетродов. Параметр предельной перегрузки у модификаций не превышает 6 А. Фильтры используются, как правило, проводного типа.

Если рассматривать модификации на три канала, то у них есть двухразрядный триггер. Показатель его чувствительности составляет не более 3 мк. В свою очередь, выходное напряжение максимум равняется 35 В. Силовая электроника у двухфазных устройств дала возможность решить проблему с перегрузками напряжения благодаря использованию диодных мотов.

Трехфазные модели

Трехфазный выпрямитель встретить можно только в трансформаторных подстанциях. Работают устройства от высоковольтной чети. В данном случае принцип работы модели построен то резком увеличении частоты. Параметр выходного напряжения при этом остается неизменными. Выпускаются модели на три и четыре канала. Подсоединение у них происходит через проводники.

Трехфазный выпрямитель на три канала выпускается с тетродами. В некоторых случаях для стабилизации процесса преобразования применяются расширители. Если говорить про выпрямители на четыре канала, то важно отметить, что они производятся всегда с усилителями. В данном случае показатель проводимости тока лежит в пределах 70 мк. Чувствительность выпрямителя равняется не более 4,2 мВ.

трехфазный выпрямитель

Полноволновые устройства

Полноволновый выпрямитель напряжения тока работает за счет смены полярности на расширителях. Транзисторы, как правило, используются открытого типа. Подходят данные устройства для преобразователей на 20 и 30 В. Непосредственно параметр чувствительности у них равняется 3 мВ. В свою очередь, проводимость тока находится в районе 4,5 мк.

Если говорить про модификации на три канала, то они устанавливаются только в блоки питания с усилителями. Фильтры для выпрямителей подходят в основном расширительного типа. Если говорить про устройства на четыре канала, то у них показатель проводимости тока лежит в районе 3 мк. Для трансформаторных подстанций модели не подходят.

схема выпрямителя тока

Неполноволновые модификации

Неполноволновые выпрямители тока отличаются отсутствием электронного вентиля. Выпускаются элементы только с двумя каналами. Непосредственно подсоединение модификации осуществляется через контакты. Изоляторы используются как с обкладкой, так и без нее. В некоторых случаях применяются усилители.

Также важно отметить, что устанавливаются выпрямители данного типа в контроллерах. Параметр выходного напряжения у них, как правило, не превышает 30 В. В среднем чувствительность устройств составляет 75 мВ. В данном случае проводимость тока зависит от типа используемых фильтров.

Однопериодные модификации

Однопериодные выпрямители тока производятся для различных ресиверов. Отличительной чертой элементов принято считать высокий параметр проводимости тока. Работают устройства от обратной полярности. Выпускаются модели на два и три канала. Если рассматривать первый вариант, то важно отметить, что проводники используются с обкладкой. В данном случае расширители устанавливаются редко. Параметр проводимости тока у выпрямителей колеблется в районе 3 мк.

Если говорить про устройства на три канала, то они всегда выпускаются с тетродами. Также схема модификации подразумевает использование модуляторов. Для низкочастотных ресиверов указанные выпрямители подходят идеально. В данном случае чувствительность составляет не более 60 мВ.

Схема двухпериодных устройств

Двухпериодный выпрямитель тока 220 В производится для преобразования тока от приводных устройств. В данном случае процесс происходит за счет изменения частоты напряжения. Расширители у моделей используются, как правило, отрытого типа. Если говорить про модификации на два канала, то у них применяются распределительные фильтры. В некоторых случаях устанавливаются триггеры. Для подключения устройств к приводным установкам необходимы транзисторы полевого типа. Выпускаются они с различной емкостью. Как правило, на рынке представлены модификации на 20 пФ.

Особенности трансформаторных устройств

Трансформаторный выпрямитель (преобразователь электрической энергии) способен работать в сети с постоянным и переменным током. В данном случае триггеры используются трехразрядного типа. Для подключения устройств применяются проводники. Встретить трансформаторные выпрямители можно на подстанциях. Данные устройства рассчитаны на высокое выходное напряжение.

Система защиты у них устанавливается с хроматическими фильтрами. В данном случае параметр чувствительности лежит в пределах 80 мВ. Для приводных механизмов указанные устройства не подходят однозначно. Показатель приводимости тока у них равняется 20 мк. Триггеры для цепей подбираются как открытого, так и закрытого типа. В среднем параметр пороговой перегрузки находится на уровне 5 А.

силовая электроника

Модели с умножением напряжения

Выпрямители данного типа на сегодняшний день активно используются в преобразователях. Стандартная схема модификации включает в себя вентиль, а также транзисторы. В среднем показатель их емкости равняется 2 пФ. Непосредственно проводимость тока составляет не более 3 мк.

Если говорить про модификации на два канала, то у них используются расширители. Устанавливаются они как открытого, так и закрытого типа. Во многих моделях есть регуляторы. Если говорить про выпрямители на четыре канала, то они производятся с модуляторами. Для их работы используются различные триггеры. Чаще всего они встречаются трехразрядного типа.

мостовые выпрямители

Модификации с гальванической развязкой

Устройства с гальванической развязкой работают по принципу понижения частоты. Подключаются они только от сети с переменным током. В данном случае транзисторы устанавливаются на 20 пФ. Непосредственно показатель чувствительности равняется 88 мВ. Если говорить про модификации на три канала, то у них применяются импульсные модуляторы. Во многих моделях есть защитные системы, которые помогают справляться с перегрузами. Фильтры используются с лучевыми тетродами.

Выпрямитель тока — это… Что такое Выпрямитель тока?

        преобразователь электрического тока переменного направления в ток постоянного направления. Большинство мощных источников электрической энергии вырабатывают ток переменного направления (см. Переменный ток). Однако многие электрические устройства на городском и железнодорожном транспорте, в химической и радиотехнической промышленности, в цветной металлургии и др. работают на токе постоянного направления (см. Постоянный ток) различного напряжения. В простейшем случае переменный ток выпрямляется вентилем электрическим (См. Вентиль электрический), пропускающим ток (например, синусоидальный) только или преимущественно в одном направлении. По видам применяемых вентилей В. т. подразделяют на электроконтактные, кенотронные, газотронные, тиратронные, ртутные, полупроводниковые и тиристорные.

         Различают схемы В. т. однополупериодные, двухполупериодные с нулевым выводом и мостовые. На рис. 1, а приведена однополупериодная схема выпрямителя однофазного тока. Основные элементы В. т.: трансформатор Тр, вентиль В и сглаживающий фильтр С. Напряжение U1, обычно синусоидальное, от источника переменного тока через трансформатор Тр подаётся на вентиль В. Ток J в нагрузке Rн течёт только при положительной полярности подводимого напряжения, т. е. при открытом состоянии В. Конденсатор С заряжается положительными полуволнами пульсирующего тока, а в паузах, соответствующих по времени отрицательным полуволнам, разряжается на нагрузку. Таким образом, пульсирующий ток сглаживается, усредняется.

         Однополупериодные однофазные схемы В. т. применяют главным образом в маломощных устройствах с ёмкостным или индуктивным сглаживающим фильтром. Основное преимущество — простота и малое число вентилей; недостатки — большие пульсации выпрямленного напряжения и высокое обратное напряжение на вентилях (при ёмкостном фильтре).

         В двухполупериодной схеме В. т. (рис. 1, б) применяют трансформатор со средней точкой во вторичной обмотке. Благодаря такому соединению обмотки с вентилями выпрямленный ток формируется из обеих полуволн тока. Частота пульсаций выпрямленного тока при этом возрастает в два раза по сравнению с однополупериодным В. т. (так, если U1 — напряжение промышленной частоты 50 гц, то частота пульсации тока на нагрузке будет 100 гц), что облегчает сглаживание. Мостовая схема В. т. (рис. 1, в) также двухполупериодная, но вторичная обмотка трансформатора выполнена без средней точки и имеет в два раза меньшее количество витков по сравнению со вторичной обмоткой трансформатора на рис. 1, б. Дополнительное сглаживание выпрямленного тока в этих схемах обеспечивается индуктивно-ёмкостными либо резистивно-ёмкостными фильтрами (см. Электрический фильтр). Указанные схемы В. т. применяют обычно в системах питания устройств, у которых потребляемая мощность не превышает нескольких квт (радиоприёмники, телевизоры, некоторые устройства автоматики и телемеханики и др.), и лишь в отдельных случаях для питания мощных (до тысячи квт) устройств (например, двигателей электровозов). Существуют В. т., в которых наряду с выпрямлением тока осуществляется умножение выпрямленного напряжения. Схемы с умножением обычно применяют в высоковольтных установках, предназначенных для испытания электрической изоляции, а также в рентгеновских установках, электронных осциллографах и т.п.          В трёхфазных цепях (См. Трёхфазная цепь) для питания мощных промышленных установок, во избежание несимметричности нагрузки на сеть электроснабжения, применяют схемы трёхфазных В. т. Первичная обмотка трансформатора в таких В. т. соединяется в звезду или треугольник. В зависимости от числа вторичных обмоток трансформатора различают 3-, 6-, 12-, 18-фазные и т.д. однополупериодные и мостовые выпрямители трёхфазного тока. На рис. 2, а приведена трёхфазная однополупериодная схема. Первичная обмотка трансформатора соединена треугольником, а вторичная — звездой. Фазные токи i1, i2, i3 выпрямляются и суммируются, образуя выпрямленный выходной ток J. В мостовой трёхфазной схеме (рис. 2, б) обе обмотки трансформатора соединены звездой. Основные преимущества её такие же, как и у однофазных схем В. т.

         Лит.: Каганов И. Л., Электронные и ионные преобразователи, ч. 1—3, М. — Л., 1950—56.

         М. М. Гельман.

        Рис. 1. Схемы выпрямителей однофазного тока: а — однополупериодная; б — двухполупернодная; в — мостовая.

        Рис. 1. Схемы выпрямителей однофазного тока: а — однополупериодная; б — двухполупернодная; в — мостовая.

        Рис. 2. Схемы выпрямителей трёхфазного тока: а — однополупериодная; б — двухполупериодная мостовая.

        Рис. 2. Схемы выпрямителей трёхфазного тока: а — однополупериодная; б — двухполупериодная мостовая.

выпрямление переменного тока | Электрознайка. Домашний Электромастер.




data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8969066382″>
   Самая простая двух-полупериодная схема выпрямления переменного тока получается из двух однополупериодных схем.  

    Вторичная обмотка трансформатора состоит из двух одинаковых обмоток II и III, каждая из которых выдает нужное переменное напряжение Uвых.
Через диоды проходит только положительная полуволна синусоидального переменного тока.

   Работает поочередно или обмотка II и диод VD1, или обмотка III и диод VD2. Средняя величина тока проходящего через каждую обмотку и диод, в двухполупериодном выпрямителе, равна половине выходного тока выпрямителя. В этом случае обмотки можно мотать проводом с вдвое меньшим сечением и применять диоды с меньшим допустимым током.

   Такие схемы двухполупериодного выпрямления предпочтительны тогда, когда на выходе выпрямителя нужно получить большой ток (5 — 10 ампер и более) при небольших напряжениях (5 – 20 вольт).
    Желательно применять германиевые диоды (на них меньше падение напряжения, чем на кремниевых диодах) они меньше греются. Мощные диоды, при больших токах нагрузки, нужно обязательно ставить на радиатор.
    При таком способе включения, оба диода можно ставить на один радиатор, так как аноды (плюсы) их имеют вывод на корпус, под гайку. Конструктивно это очень удобно. Два диода и радиатор составляют одну конструкцию и ее ставят на одну изолирующую подставку.
    Форма выходного напряжения двухполупериодного выпрямителя представляет собой пульсирующее напряжение: полусинусоиды положительной и, перевернутой вверх, полусинусоиды отрицательной.

   На рисунках приведены варианты таких схем получения, на выходе выпрямителя, выходного напряжения положительной (рис. 1) или отрицательной (рис. 2) полярности относительно корпуса.

   Достоинства такой схемы двухполупериодного выпрямления против одно полупериодной схемы:

— трансформатор работает без токов подмагничивания;

— частота пульсаций на выходе выпрямителя f = 100 герц;

 — коэффициент пульсаций существенно меньше.

Недостатки такой схемы:

  •    — обратное напряжение на каждом диоде превышает выходное напряжение выпрямителя Uвых. в два раза (напряжение обоих обмоток складывается).

   В случае, если нет возможности достать диоды на рассчитываемый ток, можно включать их параллельно по два, а то и по три в каждом плече, как на рисунке 3.


    В этой схеме все диоды можно ставить на один радиатор, без изоляционных прокладок. Резисторы ставятся для того, чтобы уравнять внутренние «тепловые» сопротивления диодов.
    Резисторы должны быть равны между собой и иметь величину соответствующую динамическому сопротивлению диода — от 0,2 до 1 Ом, и мощность 1 ватт и более.
    Недостаток схемы:  – большая потеря мощности на резисторах.

   Разберем на примере применение данных схем.
Пусть нам нужно построить выпрямитель на напряжение 12 вольт и номинальный ток до 15 ампер.

    Рассмотрим сначала схему на рис. 1. Каждая вторичная обмотка трансформатора (обмотки II и III) должна быть рассчитана на переменное напряжение 13 – 14 вольт, с учетом падения напряжения на самой обмотке и самом сопротивлении диода.

Эти обмотки включаются последовательно – конец обмотки II с началом обмотки III. Средняя точка – общий, минусовой вывод. Два диода соединенные анодами вместе – это плюсовой вывод.


    Выходной ток двухполупериодного выпрямителя состоит из двух полуволн. Каждая из полуволн, за один период проходит сначала по одной половинке и диоду, затем по второй и диоду и имеет величину по 15 ампер. После диодов они сливаются вместе и имеют во времени форму пульсирующего напряжения.
    В каждой паре (обмотка и диод) ток, в течении одного периода, половину периода идет, половину периода не идет. Электрическая мощность, проходящая по каждой паре (обмотка — диод) в течение периода, равна половине общей мощности за это время. А следовательно, средний ток через каждую пару (обмотка — диод) равен, как бы, половине общего тока.
    Сечение провода вторичных обмоток и максимально допустимый ток диодов так же подбирается из этого расчета.
    Из этого следует, что в нашем примере сечение провода вторичных обмоток может быть рассчитано на ток в 7,5 ампер, то есть в два раза меньше. Диоды подбираются на ток до 10 ампер (всегда берутся с запасом), а не 7,5 ампер.
    Те же самые рекомендации по сечению провода относятся к схеме на рис. 2 и рис.3.

   Пример на схеме рис.3 относится к случаю, когда у нас нет в наличии диодов рассчитанных на ток 10 ампер, а есть диоды на 5 ампер. В этом случае ставим 4 диода: в «плечо» по два диода в параллель.Через каждый диод будет протекать ток  15 : 4 = 3,75 ампера.
    Определим величину омического сопротивления резисторов R1 – R4. Падение напряжения на диоде, при протекании через него максимального тока, равно около Uд = 1,0 вольта. Его динамическое сопротивление при токе I = 3,75 ампер будет примерно равно:

R = Uд : I = 1,0 : 3,75 = 0,266 Ом.
 Сопротивление каждого из резисторов R1 – R4 должно быть 1 – 2 Uд = 0,26 – 0,5 Ома.R1 – R4 д
При резисторе R = (0,26 — 0,5) Ома падение напряжения на нем будет:
   U = R х I = (0,26 — 0,5) х 3,75 = от 0,975 до 1,875 вольта.
    Электрическая мощность выделяемая на каждом резисторе равна:
   P = I х U = 3,75 (0,95 – 1,875) = от 3,56 до 7,03 ватта.

Такие резисторы изготавливают из толстого высокоомного провода, рассчитанного на ток 3,75 ампер и сильное выделение тепла.

   Это довольно существенная потеря мощности на резисторах.
 Такова расплата за использование не соответствующих току диодов.
     Если же не ставить эти уравнительные резисторы, одни диоды будут работать с перегрузкой и сильно греться (тепловой пробой), другие будут работать с малыми токами.


data-ad-client=»ca-pub-5076466341839286″
data-ad-slot=»8969066382″>

Выпрямители тока часть 2. Виды однофазных и трехфазных схем

Продолжаем рассматривать выпрямители тока, их различные схемы сборки. Всевозможные схемы обеспечивают применение таких устройств в разных отраслях промышленности и в быту.

Производство и передача электроэнергии чаще всего выполняется на переменном токе, так как трансформация напряжения является наиболее простым способом. Но, довольно весомая часть выработанной электрической энергии применяется в виде постоянного тока, даже для транспортировки на значительные расстояния. Эта доля составляет около 30% от всей произведенной электроэнергии.

Выпрямители тока
Двухтактная схема

В устройствах низкого напряжения используют однофазный двухтактный выпрямитель с нулевым отводом обмотки. Это дает возможность снизить потери и количество диодов в два раза. Однако при этом коэффициент использования трансформатора намного ниже, размеры прибора больше, в отличие от однофазного устройства.

Обязательным компонентом такого прибора является трансформатор, у которого имеется две низковольтные обмотки. По сути дела, подключение к средней точке делает выпрямитель двухфазным, так как образуются две ЭДС, которые равны между собой по значению, а направлены в разные стороны. В результате схема подключения заключается в том, что равные напряжения на выходе обмотки сдвинуты от средней точки по фазе на 180 градусов.

К анодам диодных вентилей присоединены вторичные обмотки, на которых напряжение находятся в противофазе, вследствие чего ток по диодам протекает по очереди в определенных полупериодах напряжения.

Отличием прибора со средней точкой от простого исполнения является протекание выпрямленного тока в обоих полупериодах. Но каждая половина обмотки нагружена током в одном полупериоде. Подмагничивание сердечника отсутствует, так как магнитные силы направлены во встречном направлении.

Мостовая схема

Характерна повышенным коэффициентом применения трансформатора. Вследствие этого, ее использование целесообразно в устройствах высокой мощности с напряжением на выходе в сотни вольт. Пульсации в такой схеме аналогичны предыдущей схеме.

Действие мостовой схемы практически не имеет отличий от предыдущей схемы, кроме того, что используются два вентиля вместо одного. Они соединены по последовательной схеме. Для полупериода применяется полностью вся обмотка. Это увеличивает эффективность применения трансформатора.

Преимуществом схемы моста является пониженное обратное напряжение, малые размеры, высокий коэффициент использования трансформатора. К недостатку можно отнести значительное падение напряжения на вентилях.

Напряжение на выходе при активной нагрузке представлено в виде однополярных полуволн. Это возникает из-за поочередного открывания диодов.

По аналогии кривых udдля приборов со средней точкой и мостовых схем, работают такие же формулы напряжений:

Вследствие этого пульсации остаются такими же. Ток Id разделяется на равные части между вентилями. Обратное напряжение на два непроводящих диода подается в одно время на диапазоне проводимости других диодов, его наибольшая величина вычисляется амплитудой напряжения u2:

Нагрузочный ток проходит в обоих полупериодах как во вторичной обмотке. Действующий ток вторичной обмотки вычисляется:

Это объясняется тем, что ток синусоидальный. Поэтому трансформатор выполнен с одной вторичной обмоткой.

Если учесть, что трансформатор оснащен одной вторичной обмоткой, то габаритная мощность двух обмоток одинакова, а суммарная габаритная мощность Sгаб совпадает с мощностью первичной обмотки, которая рассматривалась выше, и равна 1,23 Рd.

Выпрямительный диодный мост в различных источниках изображают по-разному. Чаще всего это делают упрощенно.

Диодный мост

Такую условность применяют для упрощения внешнего вида схемы. Диодная сборка состоит из четырех диодов с равными характеристиками. Они расположены в одном корпусе, что является технологичным решением. Такая сборка занимает незначительное место на монтажной плате.

В последнее время популярны селеновые и кенотронные выпрямители тока, которые применяются для радиоаппаратуры. В выпрямительных мостах все больше используют полупроводниковые диоды на основе германия.

Трехфазные выпрямители тока

Приборы, способные выпрямлять 3-фазное напряжение переменного тока, имеют трансформатор с первичной обмоткой, состоящей из 3-х отдельных обмоток, соединенных по схеме треугольника или звезды. Схема выпрямляющего устройства для трехфазной сети используется чаще всего для подключения нагрузки большой и средней мощности.

По методу подключения диодов к выходной обмотке схемы разделяют на мостовые с изолированной нулевой точкой, и нулевые со средней точкой обмотки.

Применяя специальные схемы подключения вторичной обмотки и выпрямителя, в общем, получают выпрямленное напряжение с количеством импульсов, кратным трем, за один период. При повышении количества импульсов в напряжении на выходе прибора, можно значительно уменьшить габариты фильтрующих элементов. 3-фазные выпрямители тока создают равномерную нагрузку на линию питания, и имеют повышенный процент использования трансформатора.

Трехфазная нулевая схема

В такую схему включен трансформатор. Выводы обмоток по схеме подключены к анодам трех диодов. Потребляющая нагрузка соединена с общей точкой катодов диодов.

На диаграмме показано действие идеального 3-фазного выпрямителя, имеющего среднюю точку на выходной обмотке, подключенную к нагрузке. В такой идеальной схеме, где не учитывается индуктивность обмоток, а вентили считаются идеальными, при переходе тока между вентилями, их коммутация осуществляется мгновенно, и в любое время ток проходит по одному диоду, имеющему самый большой потенциал.

В трехфазном устройстве выпрямления, нагрузочный ток со средней точки обмотки образуется фазным напряжением этой обмотки. За один период напряжения по каждой вторичной обмотке один раз проходит ток одной полярности. При этом диапазон проводимости одного вентиля равен 120 градусам.

Открытый диод подает напряжение соответствующей фазы к потребляющей нагрузке. В итоге на нагрузку действует импульсное однополярное напряжение, которое является участком напряжений фаз вторичных обмоток, и имеющее тройные импульсы за один период.

Достоинства
  • Малое количество вентилей.
  • Незначительное падение напряжения на диодах, вследствие чего возможно применение этой схемы для выравнивания низких напряжений при высоких мощностях более 0,5 киловатт.
  • Высокая частота импульсов выходного напряжения, так как имеется три частоты на трех фазах сети. Иногда это дает возможность применять такую схему без фильтрации.
Недостатки
  • Повышенное обратное напряжение на вентилях.
  • Малый коэффициент использования трансформатора из-за эффекта подмагничивания.

Однако такие недостатки нулевой схемы не ограничивают использовать выпрямители тока в определенных областях, и нашли определенную популярность.

Трехфазная мостовая схема

Позволяет наилучшим образом использовать трансформатор по его мощности, имеет малое обратное напряжение на вентилях и повышенную частоту импульсов выходного напряжения. Мостовая 3-фазная схема стала популярной в широком интервале мощностей и напряжений.

Выпрямители тока по мостовой трехфазной схеме имеется мост выпрямления, состоящий из шести диодов, соединенных двумя группами последовательно. Одна из групп – катодная, так как диоды соединены катодами, а вторая анодная. Питание на нагрузку подается от точек соединения анодов и катодов диодов. Обмотки допускается соединять треугольником или звездой.

Каждая группа вентилей устройства работает по принципу, подобному схеме прибора со средней точкой, на выходе среднее напряжение повышается в 2 раза.

Если рассматривать отличия двух последних схем, то в схеме со средней точкой нагрузочный ток создается фазным напряжением, в отличие от мостовой схемы, в которой ток нагрузки создается при воздействии линейного напряжения. Здесь нагрузочный ток проходит по двум диодам: одному с максимальным потенциалом анода по отношению к нулевой точке, другому – с минимальным потенциалом катода. Другими словами, в состоянии проводимости будут такие два вентиля моста, которые имеют максимальное линейное напряжение в сторону проводимости.

За один период напряжения осуществляется шесть коммутаций диодов, поэтому схема функционирует в шесть тактов. Такую схему называют шестиимпульсной. В результате выходное напряжение выпрямителя содержит шестикратные импульсы, однако угол проводимости отдельного диода равен углу 120 градусов.

График тока вторичной обмотки зависит от токов двух диодов, подключенных к этой фазе. Один из диодов состоит в анодной группе, а другой – в катодной. Выходной ток переменный, с промежутком между пульсациями 60 градусов, при закрытых двух диодах этой фазы. Подмагничивания сердечника в этой схеме нет.

Похожие темы:

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *