Site Loader

Содержание

Тиристорный выпрямитель

  Изготовим промышленный тиристорный выпрямитель, выпрямительные агрегаты напряжениями до 12кВ и токами до 30кА. Выпрямители изготавливаются по ГОСТ 18142.1-85 (ТУ-3416-002-51724389-2015). Выпрямитель предназначен для питания напряжением постоянного тока активной (нагревательные элементы), активно-индуктивной (обмотки возбуждения) или емкостной (конденсаторные батареи, аккумуляторы) нагрузки.

  Выпрямители промышленные с нашими системами управления (аналоговые и цифровые) поставляются в полностью укомплектованном виде включая силовые автоматы, если требуется понижающий или повышающим трансформатором, ЗИП, комплект кабельной продукции. Комплектация и исполнение выпрямителя может меняться по заявке заказчика, так же поставляем только системы управления без силовой части.

   Выпрямители предназначены для тяжёлых условий работы с диапазоном температур от -35 до +45°С

, с повышенными вибрациями, в агрессивных средах и плохим качеством питающего напряжения (не требуют дополнительного стабилизированного напряжения для системы управления).

Обозначение:

ТВ3-440/500 УХЛ3 — трёхфазный тиристорный выпрямитель, выпрямленное напряжение 440В, номинальный ток 500А, с аналоговой системой управления.

ТВ3-220/100-Ц УХЛ3 — трёхфазный тиристорный выпрямитель, выпрямленное напряжение 220В, номинальный ток 100А, с цифровой системой управления.

Скачать опросный лист ТВ

Таблица стандартных типов трёхфазных выпрямителей.

Тип
Параметры
Примечание
ТВ3-440/100УХЛ4Uпит=380В, Ud=440B, Id=100AUпит=380В, f=50Гц
ТВ3-440/200УХЛ4Uпит=380В, Ud=440B, Id=200AUпит=380В, f=50Гц
ТВ3-440/300УХЛ4Uпит=380В, Ud=440B, Id=300AUпит=380В, f=50Гц
ТВ3-440/500УХЛ4Uпит=380В, Ud=440B, Id=500AUпит=380В, f=50Гц
ТВ3-440/600УХЛ4Uпит=380В, Ud=440B, Id=600AUпит=380В, f=50Гц
ТВ3-440/700УХЛ4Uпит=380В, Ud=440B, Id=700AUпит=380В, f=50Гц
ТВ3-440/800УХЛ4Uпит=380В, Ud=440B, Id=800AUпит=380В, f=50Гц
ТВ3-440/1000УХЛ4Uпит=380В, Ud=440B, Id=1000AUпит=380В, f=50Гц
ТВ3-440/2000УХЛ4Uпит=380В, Ud=440B, Id=2000AUпит=380В, f=50Гц

При необходимости выпрямителя с нестандартными параметрами или дополнительными опциями, просим заполнить опросный лист и выслать нам на электронную почту для просчёта цены.

Система управления выпрямителей обеспечивает все необходимые виды защит по току и напряжению. Так же возможно введение дополнительных не стандартных видов защит по заявке заказчика.

Тиристорный выпрямитель, обеспечивает:

регулирование выходного напряжения (тока) в диапазоне от нуля до номинальной величины;
возможность регулирования выходного напряжения (тока) по входным сигналам с датчиков температуры, давления и т.п.;
необходимые виды защит (максимальная, тепловая, нулевая, контроль наличия и правильности чередования фаз) и индикацию.
Исполнение выпрямителя может быть трехфазным, однофазным или специальным. Выходные параметры выпрямителя зависят от технического задания заказчика и могут обсуждаться в каждом конкретном случае.
Выпрямитель тиристорный комплектуется по необходимости и заказу силовым согласующим (повышающим или понижающим) трансформатором и сглаживающим дросселем.

Изготовим аналоги выпрямителей В-ОПЕ, В-ТПЕ, В-ТПВ, ВАК, ВАКР, ВАКЭЛ, ОПЕ, ОТЕР, ТВР, ТВ, ТЕ, ТПВ, ТПЕ и других производителей.

Тиристорные выпрямители — Дом сварки


Origo™ Mig 400t и 500t – тиристорные сварочные источники для МИГ/МАГ сварки в тяжелых условиях эксплуата ции. Плавная регули ровка напряжения и скорости подачи проволоки, а также 3 разъема индуктивности и удобные панели управления на выносном подающем механизме, позволяют легко задавать параметры для различных режимов сварки. Origo™ Mig 400t/500t могут поставляться с блоком водяного охлаждения горелки. Широкий диапазон регулирования напряжения и тока и три выхода с различной индуктивностью позволяют легко подобрать нужный режим для различных условий сварки. Origo™ Mig 400t/500t работают совместно с отдельными механизмами подачи проволоки: Origo™ FeedAirmatic; Origo™ Feed 304/484 M13 и Origo™ YardFeed 200. Корпус из гальванизированной стали плюс класс защиты IP 23 гарантируют долговечность и надежность при работе в самых тяжелых условиях.

Комплект поставки:

  • Сетевой кабель 5 м
  • колеса
  • обратный кабель с зажимом
  • подставка для газового баллона
  • штырь для монтажа механизма подачи проволоки. 
 

Origo™ Mig 400t

Origo™ Mig 500t

Вес, кг

   

209

235

 

Напряжение сети В/Гц

400-415/50, 230/400-415/500, 50Hz; 230/440-460, 60Hz

400-415/50, 230/400-415/500, 50Hz; 230/440-460, 60Hz

Предохранитель, A

   

25

35

 

Сечение кабеля,O мм2

4×4

4×6

Макс сварочный ток при ПВ 45%, А

400

Макс сварочный ток при ПВ 60%, А

350

500

Макс. сварочный ток при ПВ 100%, А

280

400

Напряжение хол. хода В

53-58

53-60

Диапазон тока, A

50-400

50-500

 

Origo™ Mig 400t (400-415 V 50 Hz)

0349 302 242

Origo™ Mig 400t*

0349 302 243

Origo™ Mig 400tw (400-415 V 50 Hz)

0349 302 244

Origo™ Mig 400tw*

0349 302 245

Origo™ Mig 500t (400-415 V 50 Hz)

0349 302 246

Origo™ Mig 500t*

0349 302 247

Origo™ Mig 500tw (400-415 V 50 Hz)

0349 302 248

Origo™ Mig 500tw*

0349 302 249

Цифровой В/А

0455 173 882

Трансформатор для подогревателя CO2

0349 302 250

Пылевой фильтр

0349 302 252

Датчик защиты помпы

0349 302 251

Держатель кабеля

0349 303 362

 230/400-415/500 V 50 Hz; 230/440-460 V 60 Hz


Origo™ Mig 630t MAGMA –Источник для МИГ/МАГ, ММА сварки и для воздушно-дуговой строжки, собранный в прочном оцинкованном корпусе и имеющий класс защиты IP 23, позволяет эксплуатировать источник в агрессивной окружающей среде. Бесступенчатое плавное регулирования напряжения и тока и три выхода с различной индуктивностью позволяют легко подобрать нужный режим для различных условий сварки, обеcпечивая точность регулирования и возможность применения дистанционного управления. Встроенный блок водяного охлаждения с насосом ELP (ESAB LogicPump), обеспечивает автоматическое включение водяного насоса при подсоединении водоохлаждаемой горелки. Origo™ Mig 630t MAGMA работает совместно с отдельными механизмами подачи проволоки Origo™ FeedAirmatic; Origo™ Feed 304/484 M13 и Origo™ YardFeed 200 (с /без Вольтметра/Амперметра)

Комплект поставки:

  • Сетевой кабель 5 м
  • колеса
  • обратный кабель с зажимом
  • подставка для газового баллона
  • штырь для монтажа механизма подачи проволоки. 
  Origo™ Mig 630t MAGMA
Вес, кг 254
Вес, кг 268 (жидкостное охлаждение)
Класс защиты IP 23
Напряжение сети В/Гц 230/400/415/500-50, 230/440/550/60
Предохранитель, A 50
Сечение кабеля,O мм2 4X10
Макс сварочный ток при ПВ 60%, А 630
Макс. сварочный ток при ПВ 100%, А 500
Напряжение хол. хода В. 18-55
Диапазон тока, A 75-630
Origo™ Mig 630tw MAGMA 0349 310 100
Origo™ Mig 630t MAGMA (без водяного охлаждения) 0349 310 110
Трансформатор для подогревателя CO2 0349 302 250
Пылевой фильтр 0349 302 251
Держатель кабеля 0349 303 362
Цифровой В/А 0455 173 882
Усилитель (Start booster) 0349 306 125

ТИРИСТОРНЫЕ УПРАВЛЯЕМЫЕ ВЫПРЯМИТЕЛИ И РЕГУЛЯТОРЫ МОЩНОСТИ

⇐ ПредыдущаяСтр 7 из 12Следующая ⇒

7.7.1. ОДНОФАЗНЫЕ УПРАВЛЯЕМЫЕ ВЫПРЯМИТЕЛИ

 
 

Управлять амплитудой напряжения можно различными способами. Можно установить автотрансформатор, на выходе которого напряжение изменяется в зависимости от положения бегунка автотрансформатора. Другим вариантом управления напряжением является подмагничивание сердечника трансформатора или применение дросселей насыщения, которые при подмагничивании изменяют переменную составляющую магнитного поля и соответственно напряжения. Оба приведенных метода требуют наличия громоздких и тяжелых установок.

Решение данной проблемы возможно при использовании тиристоров, которые позволяют управлять как выпрямленным действующим напряжением, так и действующим значением переменного напряжения.

На рис. 7.8, а и б представлены тиристорный управляемый выпрямитель и тиристорный регулятор мощности. Эти схемы отличаются друг от друга тем, что нагрузка в случает тиристорного управляемого выпрямителя включена после выпрямителя, а в случае тиристорного регулятора мощности — до выпрямителя. В первом случае происходит управление действующим значением выпрямленного напряжения, а во втором — действующим значением переменного напряжения.

 
 

По нагрузке, включенной после выпрямителя, протекает постоянный по направлению ток. По нагрузке, включенной перед выпрямителем, протекает переменный по направлению ток. При отсутствии запускающего импульса формирователя тиристор не открывается, поэтому ток по нагрузке не идет и падение напряжения на ней отсутствует. При отсутствии запускающих импульсов формирователя тиристор закрыт. Напряжение на тиристоре растет до того момента, пока не произойдет отпирание тиристора. При этом напряжение с открывшегося тиристора перераспределяется на нагрузку. На рис. 7.9. (под пунктирной линией) — падение напряжения на закрытом тиристоре, а заштрихованная площадь — соответствует действующему значению напряжения на нагрузке.

Угол управления тиристора отсчитывается от момента прохождения напряжения через нулевую точку. Чем больше угол управления тиристора, тем дольше он остается закрытым, тем позже тиристор открывается, тем меньше действующее значение напряжения на нагрузке. Для однофазной цепи предельный угол управления тиристора составляет 180.электрическ. градусов. При этом угле мгновенное значение напряжения тиристора равно нулю и следовательно с подачей управляющего импульса в этот момент действующее значение напряжения на нагрузке равно нулю.

Тиристорные регуляторы мощности могут быть выполнены по разнообразным схемам. Одна из таких схем представлена на рис. 7.10. Открывание тиристоров VS1 и VS2 происходит поочередно. В первый полупериод открывается тиристор VS1, а во второй — VS2. Запускающие импульсы управления поступают с формирователя импульсов на тиристор по заданному углу управления. Пусть требуется получить напряжение на выходе тиристорного управляемого выпрямителя, равное половине входного, что соответствует углу управления 90о, при максимальном углеуправления 180о. Частота сети 50 Гц, что соответствует периоду колебаний

или 20 мС.

Одна полуволна имеет длительность 10 мС, что соответствует углу управления 180о. Для получения угла управления в 90о необходимо запустить тиристор через 5мС после момента достижения напряжением нулевой отметки.

Схема простейшего тиристорного управляемого выпрямителя представлена на рис. 7.11.

Особенностью тиристорных регуляторов является необходимость синхронизации работы формирователя импульсов и напряжения сети. При отсутствии таковой незначительный уход частоты приведет к существенному изменению угла управления, а следовательно, и требуемое напряжение не будет соответствовать реальному напряжению.

Тиристорный управляемый выпрямитель состоит из силового блока и синхронизируемого формирователя импульсов. В состав силового блока входит выпрямитель на диодах VD1-VD4, тиристор VS и нагрузка. При больших мощностях нагрузки тиристор и диоды должны выдерживать тот ток, который требуется потребителю. Расчет этих элементов приведен в разделе «Полупроводниковые диоды».

Формирователь импульсов состоит из параметрического стабилизатора напряжения, который одновременно выполняет функции синхронизатора и блока формирования импульсов по заданному углу управления.

Параметрический стабилизатор состоит из балластного сопротивления Rб и стабилитрона VD5. Резисторы R1 и R2 — делитель напряжения, задающий режим работы аналога тиристора с управлением по аноду на транзисторах VT1 и VT2. Фазовращатель или времязадающая цепь построена на резисторе R4 и конденсаторе С.

Переменный ток не пойдет через диоды выпрямителя до тех пор, пока тиристор VS не получит запускающий импульс от формирователя. Для получения запускающего импульса необходимо чтобы открылся аналог тиристора. С приходом выпрямленного напряжения на параметрический стабилизатор избытки напряжения, превышающие напряжение стабилизации падают на резистор Rб, а на стабилитроне остается напряжение стабилизации, зависящее от параметров стабилитрона. На выходе параметрического стабилизатора возникают импульсы трапециидальной формы. Одновременно нулевому значению входного напряжения соответствует нулевое значение напряжения на выходе стабилизатора, т.е. происходит синхронизация напряжения питания и формирователя импульсов.

При появлении напряжения на выходе стабилитрона начинает заряжаться конденсатор С через резистор R4. Когда напряжение на конденсаторе достигнет напряжения срабатывания аналога тиристора, произойдет его открытие. Возникнет импульс тока разряда конденсатора С через транзисторы VT1,VT2, и резистор R3на корпус схемы. На рис 7.11 ток разряда конденсатора показан пунктирной линией. Всплеск тока через резистор R3 приведет к всплеску напряжения на управляющем электроде тиристора и запуску последнего. Время заряда конденсатора С относительно нулевого значения напряжения определяется параметрами резистора R4 и емкостью конденсатора С. Цепь R4 – C задает угол управления тиристора, соответствующий времени задержки запуска тиристора относительно нулевого напряжения. Для рассматриваемой схемы максимальный угол управления для однофазного тиристорного регулятора на частоте 50 Гц составляет 10 мС, что соответствует углу управления 180о. Для угла управления в 90о задержка запуска тиристора относительно нулевого значения напряжения составляет 5 мС. Изменяя положение ручки реостата R4 можно задать любое время заряда конденсатора, т.е. задать угол управления тиристора. При перемещении бегунка реостата вверх растет сопротивление реостата, увеличивается время заряда конденсатора до напряжения включения тиристора, а, следовательно, растет угол управления тиристора и снижается действующее значение напряжения на нагрузке.

Действующее значение напряжения на нагрузке определяется по формуле

где Ud— действующее значение напряжения на нагрузке; U – максимальное значение напряжения на нагрузке при угле управления j = 00; φ— угол управления тиристора.

При включении нагрузки Rн2 до выпрямителя, по ней протекает переменный по направлению ток только в том случае, если тиристор будет открыт. Тогда форма выходного напряжения, (т.е. на нагрузке) будет соответствующей рис. 7.12, е. Заштрихована действующая часть напряжения на нагрузке. При включении нагрузки перед выпрямителем по ней протекает переменный по направлению ток, действующее значение которого определяется временем открытого состояния тиристора, а форма выходного напряжения имеет вид рис. 7.1, ж.

Тиристор остается в схеме на прежнем месте, и формирователь остается тем же. В зависимости от того, в какой части схемы установлен резистор нагрузки, ток по ней протекает постоянный или переменный по направлению. Если по нагрузке проходит постоянный по направлению регулируемый ток, схема называется «Тиристорный управляемый выпрямитель». При включении нагрузки перед выпрямителем по ней протекает переменный по направлению ток, и схема называется «Тиристорный регулятор мощности».

Регулятор мощности можно построить и на симисторе (рис. 7.13).

Последовательно с симистором VS включена нагрузка HL. Для открытия симистора необходимы управляющие импульсы, формирователь которых построен на парах транзисторов VT1-VT2 и VT3-VT4. Каждая па
ра транзисторов представляющих собой аналоги тиристоров: VT1-VT2–с управлением по катоду, а VT3 и VT4 — с управлением по аноду. Балластное сопротивление Rб и стабилитроны VD1 и VD2 образуют стабилизатор переменного напряжения. Угол управления симистора задается сопротивлением резистора (Rо+R1) и емкостью конденсатора С. При положительной полуволне верхняя обкладка конденсатора заряжается положительно, и когда напряжение на нем достигнет напряжения включения аналога тиристора происходит открытие аналога тиристора и запуск симистора VS.

Импульс тока разряда конденсатора проходит через резистор R6 и открывает симистор.

При отрицательном полупериоде открывается аналог тиристора, построенный на транзисторах VT3VT4 и снова запускает симистор.

При работе тиристорных управляемых выпрямителей на индуктивную нагрузку (обмотки возбуждения и якорь двигателей постоянного тока) возникают проблемы выключения тиристоров, связанные с отставанием тока от напряжения. Для выключения тиристора требуется принудительная коммутация, так как ток самоиндукции обмоток возбуждения или якоря двигателя продолжает идти после достижения напряжением нулевого уровня. Этот вопрос в учебном пособии не рассматривается.

 

©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.

ГП176251 Попозиционная Тиристорные выпрямители для нужд ПАО Ижсталь

Условия оплаты и поставки товаров/выполнения работ/оказания услуг

Оплата по факту поставки в течение 60 дней(СТРОГОЕ СООТВЕТСТВИЕ ТЕНДЕРНЫМ УСЛОВИЯМ). Транспортные расходы включены в стоимость оборудования. Комментарии: Внимание участников!!! Предъявление сертификатов диллерства обязательна!!! Безусловное принятие и подписание нашего договора. Для заключения договора прошу предоставить копии следующих докуменов : Безусловное принятие проекта договора на поставку продукции ОАО «Ижсталь». Организация-победитель, не имеющая действующего договора с ОАО «Ижсталь» в течение одних суток должна загрузить в систему следующие документы, необходимые для заключения договора: Копия выписки из ЕГРЮЛ, ЕГРИП на контрагента, выданной инспекцией ФНС РФ (не позже чем месячной давности). Копия решения о назначении руководителя контрагента (протокол собрания участников (акционеров), решение единственного учредителя). Копия Устава с отметкой ФСН. Копии лицензий при осуществлении лицензируемых видов деятельности. Анкета контрагента Копии доверенностей на лиц, имеющих право подписывать документы от имени контрагента. Карточка образцов подписей лиц, имеющих право первой подписи. Копии паспортов руководителей, имеющих право первой подписи, при отсутствии паспортных данных в иных документах. Копия свидетельства о государственной регистрации контрагента (ОГРН, ОГРНИП) Копия свидетельства о постановке на учет (ИНН) Копия декларации по НДС (1,2 листы, по возможности еще 3 лист) или Копия заявления с отметкой ФНС о переходе УСН или ЕНВД Справка об отсутствии налоговых задолженностей Справка ИФНС об открытых расчетных счетах Обращаем Ваше внимание на то, что настоящий запрос не является извещением о проведении конкурса(публичного конкурса) или публичной офертой и не регулируется ст.447-449 ч.1 ГК РФ, ст.1057-1061 ч.2 ГК РФ. Таким образом, указанная процедура не накладывает на Организатора соответствующего объема гражданско-правовых обязательств и оставляет за ним право отказаться от всех полученных Предложений по любой причине или прекратить процедуру отбора в любой момент, не неся при этом никакой ответственности перед Участниками. Место проведения процедуры: Данная процедура проводится в электронной форме на ЭТП группы B2B-Center (www.b2b-center.ru). Предложения участников подаются в форме электронного документа, подписанного электронной цифровой подписью.

Получить финансирование в виде Факторинга (при наличии отсрочки платежей)

Основные преимущества транзисторных выпрямителей перед тиристорными | Преобразовательная техника

Основные преимущества транзисторных выпрямителей перед тиристорными.

     Основные отличия выпрямителей, использующих высокочастотное преобразование (транзисторные), от традиционных тиристорных.

 Принципиальных отличий немного:

-Высокая частота преобразования;

-Транзисторный ключ коммутирует сравнительно небольшой ток;

-Энергия может коммутироваться с использованием резонансных явлений.

Однако, эти три отличия коренным образом меняют технологию построения выпрямителя и кардинально отражаются на потребительских характеристиках выпрямителя.

Высокочастотное преобразование позволяет существенно уменьшить размеры трансформатора, а, значит, и всего выпрямителя.

Коммутируя ток в десятки раз меньше выходного, мы повышаем надежность, а значит, снижаем риск аварийного отказа.

Несколько слов о системе защиты, которая использует преимущества транзистора перед тиристором. Тиристор устроен так, что его невозможно выключить в момент перегрузки. А значит, какая бы ни была совершенная схема защиты – ток перегрузки будет продолжать течь через него до своего окончания, вызывая чрезмерный перегрев и ускоренное старение элемента, тем самым катастрофически приближает его выход из строя.

Транзистор же можно выключить в любой момент времени, т.е. защитный механизм работает без задержки.

В результате, система защиты в большинстве аварийных ситуаций «спасает» выпрямитель, и для нормального продолжения работы достаточно будет просто выключить его и включить снова, устранив причину аварии.

Используя резонансные явления при коммутации энергии, можно добиться минимальных потерь и снизить нагрузку на коммутирующий элемент. Так же существенно улучшается КПД и повышается надежность.

Еще очень важной особенностью является форма тока на выходе выпрямителя во всем диапазоне регулирования – здесь она имеет непрерывный гладкий вид. Пульсации тока могут быть уменьшены практически до нуля. А это означает, что можно более аккуратно и качественно осуществлять процессы зарядки АКБ.

Вот и получается, что современные технологии высокочастотного преобразования позволяют строить компактные, эффективные, надежные и удобные выпрямители.

Во всем диапазоне регулировок КПД выпрямителя остается высоким, более 85%. К сведению, для тиристорного выпрямителя на токе 50% от номинального, КПД составляет всего лишь около 50%. Это значит, что наш выпрямитель будет экономить вашу электроэнергию.

Форма выходного тока, как я упоминал ранее, является неразрывной и гладкой во всем диапазоне, пульсации на выходе не превышают 1%.

Благодаря модульности конструкции, мы имеем возможность на этапе составления спецификации согласовывать с заказчиком конкретную конфигурацию выпрямителя, необходимую для его техпроцесса и не заставляем платить за функциональность, которая заказчику не нужна.

Серия выпрямителей УЗ 220В/20А…..УЗ 220В/160А построены с использованием новейших электронных компонентов (MOSFET и IGBT транзисторов и высокочастотных магнитных материалов) по современным технологиям на уровне ведущих мировых производителей по качеству, функциональным возможностям, дизайну и имеет более выгодную для потребителя стоимость, меньшие габариты и вес по сравнению с тиристорными выпрямителями, повышенную надежность, масштабируемость.

Имеет возможность разрабатывать и изготавливать выпрямители по Вашему ТЕХЗАДАНИЮ

< Предыдущая   Следующая >

Современные выпрямители для гальваники: заменяем тиристоры на IGBT

17 января 2018

До сих пор во многих отраслях промышленности нанесению защитных и декоративных покрытий посредством гальваники нет альтернативы. Но XXI век предъявляет новые требования к гибкости и экологичности производства, из-за чего возросли требования к аппаратуре, управляющей электрическими параметрами гальваники. К счастью, одновременно появилась элементная база, отвечающая новым требованиям, в частности – IGBT-модули Infineon.

Уже на заре развития гальваники встала проблема, связанная с тем, что для процесса нанесения покрытия нужен был постоянный ток, в то время как повсеместно развивались сети переменного тока. Поначалу установки для гальваники питались от гальванических элементов. Потом, с изобретением в начале XX века ртутных выпрямителей, стало возможным наносить покрытия, получая энергию из сети переменного тока. С тех пор оборудование, обеспечивающее заданные параметры электропитания гальванической ванны, именуется среди специалистов по гальванике «выпрямителем». Хотя сейчас это гораздо более сложное устройство, включающее в себя не только преобразователь напряжения и, собственно, выпрямитель, но также стабилизатор и некоторые другие узлы, обеспечивающие дополнительные функции (например, таймеры). С точки зрения электротехники такие системы правильно называть «блоками питания». Тем не менее, в статье мы будем использовать уже устоявшийся термин.

Для каждого типа гальванического процесса и каждого материала, применяемого для покрытия, существуют свои электрические параметры. В каких-то случаях необходимо стабилизировать напряжение, в каких-то – плотность тока (отношение силы тока к площади поверхности покрываемого изделия).

Возможность регулировки параметров в выпрямителях на полупроводниковых диодах реализовывалась путем переключения отводов от обмотки трансформатора. При этом для обеспечения высокого качества покрытия требовался дополнительный стабилизатор напряжения на входе выпрямителя (феррорезонансный, релейный, электромеханический). Пришедшие в 60-е годы XX века на смену диодным более совершенные тиристорные выпрямители позволяли осуществлять плавную регулировку параметров. Появилась возможность совместить выпрямитель и стабилизатор в едином устройстве. Тем не менее вплоть до 2000-х годов обычной практикой была поставка на промышленные предприятия выпрямителей, специально предназначенных для определенного гальванического процесса.

Мировой экономический кризис 2008 года привел к тому, что предприятия, занимающиеся гальваникой, стали нести убытки. Выход был найден в создании гибких производств, способных подстраиваться под нужды самых разнообразных заказчиков [1]. В результате на гальваническом производстве стали востребованы выпрямители, параметры которых можно быстро менять.

На момент написания статьи в России также наблюдался рост интереса к выпрямителям для гальваники на основе IGBT-транзисторов, что обусловлено курсом на импортозамещение, а также стремлением отечественных предприятий нарастить экспорт, для чего требуется повышать качество и снижать энергоемкость продукции.

Особенности конструкции выпрямителя для гальваники

Распространено ошибочное мнение, что конструкция выпрямителя для гальваники мало чем отличается от других типов блоков питания. Поскольку выпрямители для гальваники стоят дорого, в Интернете можно встретить немало описаний, как сделать такой выпрямитель из обычного блока питания. Но подобное решение применимо лишь для любительского изготовления вещей в единичном экземпляре. На промышленном производстве возможно использование только специально предназначенных для гальваники выпрямителей. Причиной тому – некоторые особенности работы таких устройств:

  • Малое выходное напряжение (как правило, оно лежит в пределах 6…48 В) в сочетании с высоким (до 12000 А) значением силы тока. Неудивительно, что часто выпрямитель соединен с гальванической ванной не кабелем, а шинопроводом.
  • Сопротивление нагрузки в процессе работы может меняться в несколько раз.
  • Установленные сила тока или напряжение должны выдерживаться на выходе с точностью не хуже 3%. Это необходимо для обеспечения высокого качества покрытия (что выполняется в определенном оптимальном режиме) и повторяемости серийной продукции.
  • Малый уровень пульсаций на выходе, так как пульсации с частотами 50…300 Гц плохо сказываются на качестве покрытия, особенно когда речь идет о современных экологически чистых технологиях гальванического нанесения никеля и его сплавов.
  • Для получения более ровной поверхности желательно наличие реверсивного режима, когда можно периодически менять полярность подключения к ванне с интервалом от единиц до десятков секунд.
  • Желательно наличие функции ограничения по току на заданном пользователем уровне при стабилизации напряжения (если сила тока превышает заданное значение, то выходное напряжение уменьшается).

Большая мощность, требуемая для гальваники, обуславливает питание выпрямителя от трехфазной сети. Исключением являются выпрямители, используемые в небольших ремонтных мастерских, на предприятиях народных промыслов, а также в домашних условиях любителями что-либо мастерить (при этом следует соблюдать меры предосторожности, чтобы вредные вещества не попали к соседям!).

Экологические требования

Точность задания режима по току или напряжению (в зависимости от процесса) способствует уменьшению выбросов вредных веществ. Например, при превышении оптимального значения плотности тока из гальванической ванны интенсивность выделения вредных веществ значительно увеличивается.

Современной тенденцией при нанесении защитного и декоративного покрытия является переход от хромирования к никелированию, что обусловлено необходимостью защиты окружающей среды, поскольку хром считается более вредным материалом. Распространенность хромирования связана с простотой получения прочного гальванического покрытия на прежнем технологическом уровне. Прочное покрытие никелем и его сплавами можно получить, используя технологию восстановления металла из ионных расплавов на основе карбамида. Данный процесс, как показали результаты исследований [2], чувствителен к напряжению на выходе выпрямителя. В зависимости от разницы потенциалов, осаждается либо чистый никель, либо сплав никеля, либо же никель или сплав никеля, загрязненный углеродом. Это требует высокой точности стабилизации напряжения. При данной технологии нанесения покрытия вольт-амперная характеристика гальванической ванны может иметь участок с отрицательным сопротивлением, что предъявляет повышенные требования к устойчивости работы выпрямителя.

Тиристорные выпрямители

Рис. 1. Тиристорный выпрямитель, выполненный по прямой схеме

На рисунке 1 показана схема несложного трехфазного тиристорного выпрямителя. Аббревиатура СИФУ на схеме означает «Система импульсно-фазового управления». Эта система осуществляет регулировку и стабилизацию напряжения. Данный выпрямитель построен по так называемой прямой схеме, не предусматривающей преобразования частоты переменного тока. Принцип работы тиристорных выпрямителей, построенных по такой схеме, основан на срезании части синусоиды в промежутках между определенными значениями фазы (углами отсечки). В результате на выход выпрямителя поступает лишь часть электроэнергии.

График выходного напряжения для тиристорного выпрямителя показан на рисунке 2. Проблема тиристорных выпрямителей для гальваники (как, впрочем, и в случае диодных выпрямителей, применявшихся ранее) заключается в том, что на выходе наблюдаются значительные пульсации напряжения, не менее 14%. Сгладить пульсации на выходе с помощью дросселя практически невозможно, поскольку в гальванике используются очень малые напряжения и высокие значения силы тока. При малой частоте пульсаций (300 Гц при питании от трехфазной сети с частотой 50 Гц) потребуется дроссель с большим количеством витков, а значит – и большим сопротивлением по постоянному току, что неприемлемо. На выходе тиристорных выпрямителей ставят только высокочастотные дроссели с небольшим количеством витков, подавляющие помехи, создаваемые другими устройствами.

Рис. 2. Напряжение на выходе выпрямителя (синий цвет) и ток на входе по одной из фаз тиристорного выпрямителя (зеленый цвет) без корректора мощности

Обратите внимание на форму потребляемого тока: она далека от синусоиды. Для получения приемлемого коэффициента мощности в выпрямителях, построенных по прямой схеме, используются громоздкие корректоры.

Недостатком тиристоров является их инерционность. При подаче управляющего импульса проводящая зона сначала образуется вблизи границы управляющего электрода и уже потом распространяется по площади структуры со скоростью 0,03…0,1 мм/с. За время коммутации происходит нагрев тиристора. При нагреве кристалла тиристора свыше 70°C возможно его самопроизвольное срабатывание без управляющего импульса. Поэтому тиристоры требуют эффективного теплоотвода. Из-за сложных охлаждающих систем тиристорные выпрямители для гальваники представляют собой, как правило, громоздкие устройства, выполненные в виде напольных шкафов (рисунок 3).

Рис. 3. Размещение тиристорных выпрямители для гальваники в шкафах

В то же время тиристорные выпрямители для гальваники имеют и некоторые преимущества. Технология давно и хорошо отработана, поэтому сервисное обслуживание таких устройств может осуществляться на месте любым специалистом, умеющим чинить блоки питания для промышленных применений.

Инверторные выпрямители

Обеспечить высокий коэффициент мощности, малый уровень пульсаций на выходе и высокий КПД преобразования можно, построив выпрямитель по инверторной схеме, показанной на рисунке 4. Поступающий на вход первичного выпрямителя электрический ток из сети выпрямляется и сглаживается. От полученного постоянного тока питается инвертор, дающий переменный ток значительно более высокой частоты, чем частота тока в сети. К инвертору подключен компактный высокочастотный трансформатор. Ток со вторичной обмотки трансформатора подается на вторичный выпрямитель, откуда, через сглаживающий дроссель – на выход устройства. Сгладить пульсации до уровня менее 3% на высоких частотах можно с помощью дросселя, имеющего малое количество витков. Управляя параметрами инвертора, можно стабилизировать на заданном уровне напряжение или силу тока на выходе, а также отрабатывать и более сложные программы, например, стабилизировать напряжение, пока сила тока не превысит заданного значения, после чего уменьшать напряжение, чтобы сила тока оставалась на заданном предельном уровне.

Рис. 4. Структурная схема типичного инверторного выпрямителя

До недавнего времени основной элементной базой при построении мощных инверторов были тиристоры. Инверторы на тиристорах могут работать на частотах не более 3 кГц. Повышение частоты, на которой работает тиристор, потребует дополнительного охлаждения по сравнению с частотой 50 Гц. В итоге инверторный выпрямитель получается еще более громоздким по сравнению с выпрямителем, выполненным по прямой схеме.

Особенностью тиристора по сравнению с другими силовыми полупроводниковыми приборами является то, что он включается по импульсу, подаваемому на управляющий электрод, а вот выключение происходит лишь в том случае, когда разница напряжений между анодом и катодом будет меньше определенной величины. В результате инверторы на тиристорах имеют узкий диапазон рабочих нагрузок. Для гальваники это неприемлемо, так как для повышения качества покрытия рекомендуется опускать изделие, на которое наносится покрытие, в гальваническую ванну уже под напряжением, что приводит к изменению нагрузки на выпрямитель в широких пределах.

Перечисленные проблемы привели к тому, что массово производимые модели тиристорных выпрямителей для гальваники строятся только по прямой схеме.

Применение IGBT

Рис. 5. Пример выпрямителя на IGBT, способного давать ток до 1500 А

Более перспективной элементной базой для инверторных выпрямителей являются IGBT. Вот их основные преимущества по сравнению с тиристорами:

  • как минимум на порядок меньшее время перехода из состояния «закрыто» в состояние «открыто» и обратно;
  • возможность создания мощных инверторов с рабочей частотой до 30 кГц;
  • хорошая управляемость. Подача того или иного напряжения на затвор однозначно вызывает открытие или закрытие IGBT.

Быстрое переключение из одного состояния в другое уменьшает нагрев прибора. Высокая рабочая частота инвертора радикально уменьшает размеры трансформатора и дросселей, что позволяет создавать компактные выпрямители (рисунок 5). Наконец, хорошая управляемость позволяет создавать инверторы, устойчиво работающие при изменении нагрузки в широких пределах, что очень важно для гальваники. Малый размер выпрямителя упрощает его защиту от влаги и пыли, что позволяет расположить выпрямитель максимально близко к гальванической ванне. Тем самым более рационально используется площадь производственного цеха и снижаются затраты на шинопроводы.

Сравнение характеристик типичных выпрямителей российского производства на основе тиристоров и IGBT дано в таблице 1.

Таблица 1. Характеристики отечественных выпрямителей для гальваники с питанием от трехфазной сети переменного тока 380 В

НаименованиеHBA ТЕ1-800/24ТIMP Gold UNIV-800A/12VHBA ТВ1-1600/12ТNEON ИПГ-12/1500-380
Элементная базаТиристорыIGBTТиристорыIGBT
Тип охлажденияВодяноеПринудительное воздушноеВодяноеПринудительное воздушное
Выходное напряжение, В2,4…240…120…121…12
Выходной ток, А 80…8000…800160…160015…1500
КПД, не менее, %78877888
Коэффициент мощности, не менее0,85Нет данных0,850,86
Коэффициент пульсаций, %Нет данных2%Нет данных1
Степень защитыНет данныхIP32Нет данныхIP54
Размеры, мм1000x600x1740470х410х4501000x600x1740720х510х670
Масса, кг44041,5470120

Обслуживание выпрямителей на IGBT сложнее, чем тиристорных. Но относительно малая масса выпрямителя позволяет организовать его доставку в сервисный центр.

Выбор IGBT для выпрямителя

Рассмотрим структурную схему инверторного выпрямителя, изображенную на рисунке 4. Первичный выпрямитель выполняется по схеме Ларионова, как по наиболее эффективной. Напряжение постоянного тока на выходе выпрямителя рассчитывается по формуле 1:

$$U_{в}=\sqrt{2}\times U_{лин}=537\hspace{0.25em}В,\qquad{\mathrm{(}}{1}{\mathrm{)}}$$

где 380 В – линейное напряжение питания.

Для построения инверторного преобразователя будем использовать мостовую схему. Для нее нам потребуется 4 IGBT. Величины максимального напряжения, с которым может работать IGBT, образуют ряд фиксированных значений. С учетом всех необходимых запасов по напряжению выберем значение 1200 В.

Следует иметь в виду, что максимальная сила тока на выходе вторичного выпрямителя будет в единицы–десятки раз больше, чем сила тока, протекающего через IGBT, так как после инвертора стоит понижающий трансформатор.

Поскольку гальваника является узкоспециализированной сферой деятельности, производители IGBT не всегда дают конкретные рекомендации, что из их ассортимента может быть использовано для данного применения. Тем не менее, режим работы IGBT в выпрямителе для гальваники примерно такой же, как и в инверторном сварочном аппарате: большая мощность, малое напряжение, большой ток, изменение параметров нагрузки. Из этого следует вывод, что если производитель в своем ассортименте не выделяет отдельно продукцию для гальваники, то выбирать надо наиболее быстродействующие IGBT, предназначенные для сварочных аппаратов.

Рассмотрим IGBT-модули в качестве основы для построения инверторного преобразователя. Потери при переключении IGBT возрастают при росте температуры кристалла. При перегрузке IGBT-модуль нагревается и потери еще более возрастают. Для предотвращения выхода выпрямителя из строя на IGBT-модули устанавливают датчики температуры (во многие модули они уже встроены). При превышении определенного значения температуры выпрямитель выключается до полного охлаждения. Находящаяся же в это время в гальванической ванне деталь, как правило, идет в брак.

С точки зрения надежности оптимальным вариантом для гальваники являются IGBT-модули производства компании Infineon Technologies, основанные на технологии IGBT4. Уникальной особенностью IGBT, используемых в этих модулях, является нормирование потерь переключении при максимально допустимой температуре кристалла 150°C. Это позволяет рассчитать систему охлаждения таким образом, чтобы практически полностью исключить аварийное отключение выпрямителя из-за перегрева элементов инвертора.

Другими преимуществами, специфичными для серии IGBT4, являются высокое быстродействие и малые потери при коммутации. Этого удалось добиться благодаря применению фирменной технологии TrenchStop. У такого транзистора дрейфовая N-зона выполняется в основной пластине, имеющей требуемую толщину и уровень легирования, а тонкие буферный слой N+, нижний эмиттер P+ и верхняя MOSFET-структура реализуются локальным легированием с точно выдержанными оптимальными параметрами. Такая структура стала возможной благодаря новым технологическим решениям, позволившим работать с пластинами кремния толщиной в несколько раз меньше, чем толщина стандартных подложек [3]. К тому же, применение легирования вместо эпитаксиального наращивания снизило технологический разброс, что и позволило нормировать параметры на повышенной температуре.

Рис. 6. Корпус EconoDual 3 обеспечивает повышенную теплопроводность

В рамках серии IGBT4 наибольшее быстродействие имеет модификация E4. Кстати, она рекомендована производителем для сварочных аппаратов, то есть ее можно использовать и в выпрямителях для гальваники. Предпочтительно использование варианта в корпусе EconoDUAL 3 (рисунок 6), так как он имеет улучшенную теплоотдачу и встроенный датчик температуры, что повышает надежность системы. Кроме этого, данный корпус имеет низкую паразитную индуктивность элементов, что важно для мощного инвертора.

Нередко конструкторы выпрямителей для гальваники применяют дискретные IGBT-транзисторы, и тому есть объективные причины: простота трассировки платы, возможность использования старых производственных линий, снижение стоимости ремонта при выходе из строя только одного транзистора. Для таких случаев компания Infineon предлагает серию быстродействующих дискретных IGBT-транзисторов с технологией TrenchStop в широкой номенклатуре корпусов: от стандартных SMD-корпусов DPAK и D2PAK до выводных TO-220 и TO-247 c тремя и четырьмя выводами.

Заключение

Инверторная схема построения выпрямителей для гальваники позволяет повысить стабильность параметров, расширить диапазон регулировки, уменьшить пульсацию, добавить новые функции. Все это позволяет улучшить качество нанесения покрытия, а также создать гибкие производства, которые можно быстро перенастроить под запросы заказчика. Но реализовать преимущества инверторной схемы, не увеличивая, а, наоборот, уменьшая размеры и массу аппаратуры можно только если использовать вместо тиристоров дискретные IGBT или IGBT-модули.

IGBT производства компании Infineon Technologies обладают высоким быстродействием, малым уровнем потерь при переключении, а их параметры нормируются на максимальной температуре 150°C. Применительно к выпрямителям для гальваники данные преимущества позволяют повысить КПД и надежность. В конечном счете это должно повысить рентабельность производств, где такие выпрямители будут использоваться.

Литература

  1. Елинек Т.В. Успехи гальванотехники. Обзор мировой специальной литературы за 2008-2009 годы//Гальванотехника и обработка поверхности. 2010. №4, стр. 13…18;
  2. Бабаскина С.Ю., Корбит А.А., Филимонов В.А., Якубовская С.В. Электролиты никелирования на основе расплава карбамида//Создание новых и совершенствование действующих технологий и оборудования нанесения гальванических и их замещающих покрытий : материалы докладов республиканского научно-технического семинара. Минск, БГТУ, 2011, стр. 31…35;
  3. Попов А., Попов С. Infineon – новый лидер рынка IGBT. Новости электроники №8/2016.

•••

Наши информационные каналы

Выпрямитель на тиристорах схема: тиристорный мост

Тиристор как диод

При разработке регулируемого источника питания без высокочастотного преобразователя разработчик сталкивается с такой проблемой, что при минимальном выходном напряжении и большом токе нагрузки на регулирующем элементе стабилизатор рассеивается большая мощность. До настоящего времени в большинстве случаев эту проблему решали так: делали несколько отводов у вторичной обмотки силового трансформатора и разбивали весь диапазон регулировки выходного напряжения на несколько поддиапазонов. Такой принцип использован во многих серийных источниках питания, например, УИП-2 и более современных. Понятно, что использование источника питания с несколькими поддиапазонами усложняется, усложняется также дистанционное управление таким источником питания, например, от ЭВМ.

Выходом мне показалось использование управляемого выпрямителя на тиристоре т. к. появляется возможность создания источника питания, управляемого одной ручкой установки выходного напряжения или одним управляющим сигналом с диапазоном регулировки выходного напряжения от нуля (или почти от нуля) до максимального значения. Такой источник питания можно будет изготовить из готовых деталей, имеющихся в продаже.

К настоящему моменту управляемые выпрямители с тиристорами описаны и весьма подробно в книгах по источникам питания, но практически в лабораторных источниках питания применяются редко. В любительских конструкциях они также редко встречаются (кроме, конечно, зарядных устройств для автомобильных аккумуляторов). Надеюсь, что настоящая работа поможет изменить это положение дел.

В принципе, описанные здесь схемы могут быть применены для стабилизации входного напряжения высокочастотного преобразователя, например, как это сделано в телевизорах “Электроника Ц432”. Приведенные здесь схемы могут также быть использованы для изготовления лабораторных источников питания или зарядных устройств.

Описание своих работ я привожу не в том порядке как я их проводил, а более или менее упорядочено. Сначала рассмотрим общие вопросы, затем “низковольтные” конструкции типа источников питания для транзисторных схем или зарядки аккумуляторов и затем “высоковольтные” выпрямители для питания схем на электронных лампах.

Работа тиристорного выпрямителя на емкостную нагрузку

В литературе описано большое количество тиристорных регуляторов мощности, работающих на переменном или пульсирующем токе с активной (например, лампы накаливания) или индуктивной (например, электродвигатель) нагрузкой. Нагрузкой же выпрямителя обычно является фильтр в котором для сглаживания пульсаций применяются конденсаторы, поэтому нагрузка выпрямителя может иметь емкостный характер.

Рассмотрим работу выпрямителя с тиристорным регулятором на резистивно-емкостную нагрузку. Схема подобного регулятора приведена на рис. 1.

Рис. 1.

Здесь для примера показан двухполупериодный выпрямитель со средней точкой, однако он может быть выполнен и по другой схеме, например, мостовой. Иногда тиристоры кроме регулирования напряжения на нагрузке Uн выполняют также функцию выпрямительных элементов (вентилей), однако такой режим допускается не для всех тиристоров (тиристоры КУ202 с некоторыми литерами допускают работу в качестве вентилей). Для ясности изложения предположим, что тиристоры используются только для регулирования напряжения на нагрузке Uн, а выпрямление производится другими приборами.

Принцип работы тиристорного регулятора напряжения поясняет рис. 2. На выходе выпрямителя (точка соединения катодов диодов на рис. 1) получаются импульсы напряжения (нижняя полуволна синусоиды “вывернута” вверх), обозначенные Uвыпр. Частота пульсаций fп на выходе двухполупериодного выпрямителя равна удвоенной частоте сети, т. е. 100Hz при питании от сети 50Hz. Схема управления подает на управляющий электрод тиристора импульсы тока (или света если применен оптотиристор) с определенной задержкой tз относительно начала периода пульсаций, т. е. того момента, когда напряжение выпрямителя Uвыпр становится равным нулю.

Рис. 2.

Рисунок 2 выполнен для случая, когда задержка tз превышает половину периода пульсаций. В этом случае схема работает на падающем участке волны синусоиды. Чем больше задержка момента включения тиристора, тем меньше получится выпрямленное напряжение Uн на нагрузке. Пульсации напряжения на нагрузке Uн сглаживаются конденсатором фильтра Cф. Здесь и далее сделаны некоторые упрощения при рассмотрении работы схем: выходное сопротивление силового трансформатора считается равным нулю, падение напряжения на диодах выпрямителя не учитывается, не учитывается время включения тиристора. При этом получается что подзаряд емкости фильтра Cф происходит как бы мгновенно. В реальности после подачи запускающего импульса на управляющий электрод тиристора заряд конденсатора фильтра занимает некоторое время, которое, однако, обычно намного меньше периода пульсаций Тп.

Теперь представим, что задержка момента включения тиристора tз равна половине периода пульсаций (см. рис. 3). Тогда тиристор будет включаться, когда напряжение на выходе выпрямителя проходит через максимум.

Рис. 3.

В этом случае напряжение на нагрузке Uн также будет наибольшим, примерно таким же, как если бы тиристорного регулятора в схеме не было (пренебрегаем падением напряжения на открытом тиристоре).

Здесь мы и сталкиваемся с проблемой. Предположим, что мы хотим регулировать напряжение на нагрузке почти от нуля до наибольшего значения, которое можно получить от имеющегося силового трансформатора. Для этого с учетом сделанных ранее допущения потребуется подавать на тиристор запускающие импульсы ТОЧНО в момент, когда Uвыпр проходит через максимум, т. е. tз=Tп/2. С учетом того, что тиристор открывается не моментально, а подзарядка конденсатора фильтра Cф также требует некоторого времени, запускающий импульс нужно подать несколько РАНЬШЕ половины периода пульсаций, т. е. tз<Tп/2. Проблема в том, что во-первых сложно сказать насколько раньше, т. к. это зависит от таких причин, которые при расчете точно учесть сложно, например, времени включения данного экземпляра тиристора или полного (с учетом индуктивностей) выходного сопротивления силового трансформатора. Во-вторых, даже если произвести расчет и регулировку схемы абсолютно точно, время задержки включения tз, частота сети, а значит, частота и период Tп пульсаций, время включения тиристора и другие параметры со временем могут измениться. Поэтому для того чтобы получить наибольшее напряжение на нагрузке Uн возникает желание включать тиристор намного раньше половины периода пульсаций.

Предположим, что так мы и поступили, т. е. установили время задержки tз намного меньшее Тп/2. Графики, характеризующие работу схемы в этом случае приведены на рис. 4. Заметим, что если тиристор откроется раньше половины полупериода, он будет оставаться в открытом состоянии пока не закончится процесс заряда конденсатора фильтра Cф (см. первый импульс на рис. 4).

Рис. 4.

Оказывается, что при малом времени задержки tз возможно возникновение колебаний выходного напряжения регулятора. Они возникают в том случае, если в момент подачи на тиристор запускающего импульса напряжение на нагрузке Uн оказывается больше напряжения на выходе выпрямителя Uвыпр. В этом случае тиристор оказывается под обратным напряжением и не может открыться под действием запускающего импульса. Один или несколько запускающих импульсов могут быть пропущены (см. второй импульс на рис. 4). Следующее включение тиристора произойдет когда конденсатор фильтра разрядится и в момент подачи управляющего импульса тиристор будет находиться под прямым напряжением.

Вероятно, наиболее опасным является случай, когда оказывается пропущен каждый второй импульс. В этом случае через обмотку силового трансформатора будет проходить постоянный ток, под действием которого трансформатор может выйти из строя.

Для того чтобы избежать появления колебательного процесса в схеме тиристорного регулятора вероятно можно отказаться от импульсного управления тиристором, но в этом случае схема управления усложняется или становится неэкономичной. Поэтому автор разработал схему тиристорного регулятора в которой тиристор нормально запускается управляющими импульсами и колебательного процесса не возникает. Такая схема приведена на рис. 5.

Рис. 5.

Здесь тиристор нагружен на пусковое сопротивление Rп, а конденсатор фильтра Cф и нагрузка Rн подключены через пусковой диод VDп. В такой схеме запуск тиристора происходит независимо от напряжения на конденсаторе фильтра Cф. После подачи запускающего импульса на тиристор его анодный ток сначала начинает проходить через пусковое сопротивление Rп и, затем, когда напряжение на Rп превысит напряжение на нагрузке Uн, открывается пусковой диод VDп и анодный ток тиристора подзаряжает конденсатор фильтра Cф. Сопротивление Rп выбирается такой величины чтобы обеспечить устойчивый запуск тиристора при минимальном времени задержки запускающего импульса tз. Понятно, что на пусковом сопротивлении бесполезно теряется некоторая мощность. Поэтому в приведенной схеме предпочтительно использовать тиристоры с малым током удержания, тогда можно будет применить пусковое сопротивление большой величины и уменьшить потери мощности.

Схема на рис. 5 имеет тот недостаток, что ток нагрузки проходит через дополнительный диод VDп, на котором бесполезно теряется часть выпрямленного напряжения. Этот недостаток можно устранить, если подключить пусковое сопротивление Rп к отдельному выпрямителю. Схема с отдельным выпрямителем управления, от которого питается схема запуска и пусковое сопротивление Rп приведена на рис. 6. В этой схеме диоды выпрямителя управления могут быть маломощными т. к. ток нагрузки протекает только через силовой выпрямитель.

Рис. 6.

Низковольтные источники питания с тиристорным регулятором

Ниже приводится описание нескольких конструкций низковольтных выпрямителей с тиристорным регулятором. При их изготовлении я взял за основу схему тиристорного регулятора, применяемого в устройствах для заряда автомобильных аккумуляторов (см. рис. 7). Эта схема успешно применялась моим покойным товарищем А. Г. Спиридоновым.

Рис. 7.

Элементы, обведенные на схеме (рис. 7), устанавливались на небольшой печатной плате. В литературе описано несколько подобных схем, отличия между ними минимальны, в основном, типами и номиналами деталей. В основном отличия такие:

1. Применяют времязадающие конденсаторы разной емкости, т. е. вместо 0.5mF ставят 1mF, и, соответственно, переменное сопротивление другой величины. Для надежности запуска тиристора в своих схемах я применял конденсатор на 1mF.

2. Параллельно времязадающему конденсатору можно не ставить сопротивление (3kW на рис. 7). Понятно, что при этом может потребоваться переменное сопротивление не на 15kW, а другой величины. Влияние сопротивления, параллельного времязадающему конденсатору на устойчивость работы схемы я пока не выяснил.

3. В большинстве описанных в литературе схем применяются транзисторы типов КТ315 и КТ361. Порою они выходят из строя, поэтому в своих схемах я применял более мощные транзисторы типов КТ816 и КТ817.

4. К точке соединения базы pnp и коллектора npn транзисторов может быть подключен делитель из сопротивлений другой величины (10kW и 12kW на рис. 7).

5. В цепи управляющего электрода тиристора можно установить диод (см. на схемах, приведенных ниже). Этот диод устраняет влияние тиристора на схему управления.

Схема (рис. 7) приведена для примера, несколько подобных схем с описаниями можно найти в книге “Зарядные и пуско-зарядные устройства: Информационный обзор для автолюбителей / Сост. А. Г. Ходасевич, Т. И. Ходасевич -М.:НТ Пресс, 2005”. Книга состоит из трех частей, в ней собраны чуть ли не все зарядные устройства за историю человечества.

Простейшая схема выпрямителя с тиристорным регулятором напряжения приведена на рис. 8.

Рис. 8.

В этой схеме использован двухполупериодный выпрямитель со средней точкой т. к. в ней содержится меньше диодов, поэтому нужно меньше радиаторов и выше КПД. Силовой трансформатор имеет две вторичные обмотки на переменное напряжение 15V. Схема управления тиристором здесь состоит из конденсатора С1, сопротивлений R1-R6, транзисторов VT1 и VT2, диода VD3.

Рассмотрим работу схемы. Конденсатор С1 заряжается через переменное сопротивление R2 и постоянное R1. Когда напряжение на конденсаторе C1 превысит напряжение в точке соединения сопротивлений R4 и R5, открывается транзистор VT1. Коллекторный ток транзистора VT1 открывает VT2. В свою очередь, коллекторный ток VT2 открывает VT1. Таким образом, транзисторы лавинообразно открываются и происходит разряд конденсатора C1 в управляющий электрод тиристора VS1. Так получается запускающий импульс. Изменяя переменным сопротивлением R2 время задержки запускающего импульса, можно регулировать выходное напряжение схемы. Чем больше это сопротивление, тем медленнее происходит заряд конденсатора C1, больше время задержки запускающего импульса и ниже выходное напряжение на нагрузке.

Постоянное сопротивление R1, включенное последовательно с переменным R2 ограничивает минимальное время задержки импульса. Если его сильно уменьшить, то при минимальном положении переменного сопротивления R2 выходное напряжение будет скачком исчезать. Поэтому R1 подобрано таким образом чтобы схема устойчиво работала при R2 в положении минимального сопротивления (соответствует наибольшему выходному напряжению).

В схеме использовано сопротивление R5 мощностью 1W только потому, что оно попалось под руку. Вероятно вполне достаточно будет установить R5 мощностью 0.5W.

Сопротивление R3 установлено для устранения влияния наводок на работу схемы управления. Без него схема работает, но чувствительна, например, к прикосновению к выводам транзисторов.

Диод VD3 устраняет влияние тиристора на схему управления. На опыте я проверил и убедился что с диодом схема работает устойчивее. Короче, не нужно скупиться, проще поставить Д226, коих запасы неисчерпаемы и сделать надежно работающее устройство.

Сопротивление R6 в цепи управляющего электрода тиристора VS1 повышает надежность его работы. Иногда это сопротивление ставят большей величины или не ставят вовсе. Схема без него обычно работает, но тиристор может самопроизвольно открываться под действием помех и утечек в цепи управляющего электрода. Я установил R6 величиной 51W как рекомендовано в справочных данных тиристоров КУ202.

Сопротивление R7 и диод VD4 обеспечивают надежный запуск тиристора при малом времени задержки запускающего импульса (см. рис. 5 и пояснения к нему).

Конденсатор C2 сглаживает пульсации напряжения на выходе схемы.

В качестве нагрузки при опытах регулятором использовалась лампа от автомобильной фары.

Схема с отдельным выпрямителем для питания цепей управления и запуска тиристора приведена на рис. 9.

Рис. 9.

Достоинством данной схемы является меньшее число силовых диодов, требующих установки на радиаторы. Заметим, что диоды Д242 силового выпрямителя соединены катодами и могут быть установлены на общий радиатор. Анод тиристора соединенный с его корпусом подключен к “минусу” нагрузки.

Монтажная схема этого варианта управляемого выпрямителя приведена на рис. 10.

Рис. 10.

Для сглаживания пульсаций выходного напряжения может быть применен LC-фильтр. Схема управляемого выпрямителя с таким фильтром приведена на рис. 11.

Рис. 11.

Я применил именно LC-фильтр по следующим соображениям:

1. Он более устойчив к перегрузкам. Я разрабатывал схему для лабораторного источника питания, поэтому перегрузки его вполне возможны. Замечу, что даже если сделать какую-либо схему защиты, то у нее будет некоторое время срабатывания. За это время источник питания не должен выходить из строя.

2. Если сделать транзисторный фильтр, то на транзисторе обязательно будет падать некоторое напряжение, поэтому КПД будет низкий, а транзистору может потребоваться радиатор.

В фильтре использован серийный дроссель Д255В.

Рассмотрим возможные модификации схемы управления тиристором. Первая из них показана на рис. 12.

Рис. 12.

Обычно времязадающую цепь тиристорного регулятора делают из включенных последовательно времязадающего конденсатора и переменного сопротивления. Иногда удобно построить схему так, чтобы один из выводов переменного сопротивления был подключен к “минусу” выпрямителя. Тогда можно включить переменное сопротивление параллельно конденсатору, как сделано на рисунке 12. Когда движок находится в нижнем по схеме положении, основная часть тока, проходящего через сопротивление 1.1kW поступает во времязадающий конденсатор 1mF и быстро заряжает его. При этом тиристор запускается на “макушках” пульсаций выпрямленного напряжения или немного раньше и выходное напряжение регулятора получается наибольшим. Если движок находится в верхнем по схеме положении, то времязадающий конденсатор закорочен и напряжение на нем никогда не откроет транзисторы. При этом выходное напряжение будет равно нулю. Меняя положение движка переменного сопротивления, можно изменять силу тока, заряжающего времязадающий конденсатор и, таким образом, время задержки запускающих импульсов.

Иногда требуется производить управление тиристорным регулятором не при помощи переменного сопротивления, а от какой-нибудь другой схемы (дистанционное управление, управление от вычислительной машины). Бывает, что детали тиристорного регулятора находятся под большим напряжением и непосредственное присоединение к ним опасно. В этих случаях вместо переменного сопротивления можно использовать оптрон.

Рис. 13.

Пример включения оптрона в схему тиристорного регулятора показан на рис. 13. Здесь используется транзисторный оптрон типа 4N35. База его фототранзистора (вывод 6) соединена через сопротивление с эмиттером (вывод 4). Это сопротивление определяет коэффициент передачи оптрона, его быстродействие и устойчивость к изменениям температуры. Автор испытал регулятор с указанным на схеме сопротивлением 100kW, при этом зависимость выходного напряжения от температуры оказалась ОТРИЦАТЕЛЬНОЙ, т. е. при очень сильном нагреве оптрона (оплавилась полихлорвиниловая изоляция проводов) выходное напряжение уменьшалось. Вероятно, это связано с уменьшением отдачи светодиода при нагреве. Автор благодарит С. Балашова за советы по использованию транзисторных оптронов.

Рис. 14.

При регулировке схемы управления тиристором иногда бывает полезна подстройка порога срабатывания транзисторов. Пример такой подстройки показан на рис. 14.

Рассмотрим также пример схемы с тиристорным регулятором на большее напряжение (см. рис. 15). Схема питается от вторичной обмотки силового трансформатора ТСА-270-1, дающей переменное напряжение 32V. Номиналы деталей, указанные на схеме, подобраны под это напряжение.

Рис. 15.

Схема на рис. 15 позволяет плавно регулировать выходное напряжение от 5V до 40V, что достаточно для большинства устройств на полупроводниковых приборах, таким образом, эту схему можно взять за основу при изготовлении лабораторного источника питания.

Недостатком этой схемы является необходимость рассеивать достаточно большую мощность на пусковом сопротивлении R7. Понятно, что чем меньше ток удержания тиристора, тем больше может быть величина и меньше мощность пускового сопротивления R7. Поэтому здесь предпочтительно использовать тиристоры с малым током удержания.

Заметим также следующее. Часто в схемах тиристорных регуляторов применяют пороговые элементы с неизменным порогом срабатывания. При макетировании схемы автор решил так поступить чтобы обеспечить подачу в управляющий электрод тиристора импульсов постоянной амплитуды. Попытка стабилизировать порог срабатывания транзисторной схемы управления привела к ухудшению стабильности ее работы. Поэтому от стабилизации напряжения на конденсаторе C1, при котором открываются транзисторы было решено отказаться; к точке соединения базы VT1 и коллектора VT2 подключен делитель R4R5, питающийся пульсирующим напряжением с выпрямителя на диодах VD1-VD4. В этом случае схема работает устойчиво и в ней не замечено паразитных колебаний.

Кроме обычных тиристоров в схеме тиристорного регулятора может быть использован оптотиристор. На рис. 16. приведена схема с оптотиристором ТО125-10.

Рис. 16.

Здесь оптотиристор просто включен вместо обычного, но т.к. его фототиристор и светодиод изолированы друг от друга, схемы его применения в тиристорных регуляторах могут быть и другими. Заметим, что благодаря малому току удержания тиристоров ТО125 пусковое сопротивление R7 требуется менее мощное, чем в схеме на рис. 15. Поскольку автор опасался повредить светодиод оптотиристора большими импульсными токами, в схему было включено сопротивление R6. Как оказалось, схема работает и без этого сопротивления, причем без него схема лучше работает при низких напряжениях на выходе.

Высоковольтные источники питания с тиристорным регулятором

При разработке высоковольтных источников питания с тиристорным регулятором за основу была взята схема управления оптотиристором, разработанная В. П. Буренковым (ПРЗ) для сварочных аппаратов. Для этой схемы разработаны и выпускаются печатные платы. Автор выражает благодарность В. П. Буренкову за образец такой платы. Схема одного из макетов регулируемого выпрямителя с использованием платы конструкции Буренкова приведена на рис. 17.

Рис. 17.

Детали, установленные на печатной плате обведены на схеме пунктиром. Как видно из рис. 16, на плате установлены гасящие сопротивления R1 и R2, выпрямительный мост VD1 и стабилитроны VD2 и VD3. Эти детали предназначены для питания от сети 220V. Чтобы испытать схему тиристорного регулятора без переделок в печатной плате, использован силовой трансформатор ТБС3-0,25У3, вторичная обмотка которого подключена таким образом, что с нее снимается переменное напряжение 200V, т. е. близкое к нормальному питающему напряжению платы. Схема управления работает аналогично описанным выше, т. е. конденсатор С1 заряжается через подстроечное сопротивление R5 и переменное сопротивление (установлено вне платы) до того момента, пока напряжение на нем не превысит напряжение на базе транзистора VT2, после чего транзисторы VT1 и VT2 открываются и происходит разряд конденсатора С1 через открывшиеся транзисторы и светодиод оптронного тиристора.

Достоинством данной схемы является возможность подстройки напряжения, при котором открываются транзисторы (при помощи R4), а также минимального сопротивления во времязадающей цепи (при помощи R5). Как показывает практика, иметь возможность такой подстройки весьма полезно, особенно если схема собирается в любительских условиях из случайных деталей. При помощи подстроечных сопротивлений R4 и R5 можно добиться регулировки напряжения в широких пределах и устойчивой работы регулятора.

С этой схемы я начинал свои ОКР по разработке тиристорного регулятора. В ней же и был обнаружен пропуск запускающих импульсов при работе тиристора на емкостную нагрузку (см. рис. 4). Желание повысить стабильность работы регулятора привело к появлению схемы рис. 18. В ней автор опробовал работу тиристора с пусковым сопротивлением (см. рис 5.

Рис. 18.

В схеме рис. 18. использована та же плата, что и в схеме рис. 17, только с нее удален диодный мост, т.к. здесь используется один общий для нагрузки и схемы управления выпрямитель. Заметим, что в схеме на рис. 17 пусковое сопротивление подобрано из нескольких параллельно включенных чтобы определить максимально возможное значение этого сопротивления, при котором схема начинает устойчиво работать. Между катодом оптотиристора и конденсатором фильтра включено проволочное сопротивление 10W. Оно нужно для ограничения бросков тока через опторитистор. Пока это сопротивление не было установлено, после поворота ручки переменного сопротивления оптотиристор пропускал в нагрузку одну или несколько целых полуволн выпрямленного напряжения.

На основании проведенных опытов была разработана схема выпрямителя с тиристорным регулятором, пригодная для практического использования. Она приведена на рис. 19.

Рис. 19.

Данная схема (рис. 19) может быть использована как лабораторный источник питания для конструкций на электронных лампах, для налаживания импульсных источников питания и пр. Рассмотрим особенности схемы. Оптотиристор ТО125 кроме того, что имеет относительно малый ток удержания, позволяет соединить схему управления с общим проводом, что упрощает ее наладку, дистанционное управление. Поскольку схема управления и переменное сопротивление находятся под низкими напряжениями, прикосновение к ним безопасно. Схема управления и нагрузка питаются от одного выпрямителя на диодах VD1-VD4. Питание подается на схему управления через гасящие сопротивления R1A-R1E. При налаживании выяснилось, что схема работает устойчивее, если стабилитроны VD5 и VD6 зашунтировать сопротивлением R9. Без этого сопротивления при малом выходном напряжении (регулятор в положении наибольшего сопротивления) в схеме возникали паразитные колебания. При установленном сопротивлении R9 напряжение на катоде стабилитрона VD5 имеет вид половин синусоиды, верхушки которой могут быть ограничены стабилитронами VD5 и VD6. Также оказалось, что точка соединения базы транзистора VT2 и коллектора VT1 очень чувствительна к действию наводок. Например, работу регулятора нарушало прикосновение к этой точке пальцем. После установки сопротивления R10 чувствительность схемы управления к действию наводок значительно уменьшилась. Использован силовой трансформатор ТСА-270-1 от цветных ламповых телевизоров. Схема рис. 18 была собрана на печатной плате SCR1M0, см. рис. 19.

Рис. 20.

Печатная плата SCR1M0 (рис. 20) разработана для установки на нее современных малогабаритных электролитических конденсаторов и проволочных сопротивлений в керамическом корпусе типа SQP. Автор выражает благодарность Р. Пеплову за помощь с изготовлением и испытанием этой печатной платы.

Поскольку автор разрабатывал выпрямитель с наибольшим выходным напряжением 500V, потребовалось иметь некоторый запас по выходному напряжению на случай снижения напряжения сети. Увеличить выходное напряжение оказалось возможным если пересоединить обмотки силового трансформатора, как показано на рис. 21.

Рис. 21.

Замечу также, что схема рис. 19 и плата рис. 20 разработаны с учетом возможности их дальнейшего развития. Для этого на плате SCR1M0 имеются дополнительные выводы от общего провода GND1 и GND2, от выпрямителя DC1

Разработка и налаживание выпрямителя с тиристорным регулятором SCR1M0 проводились совместно со студентом Р. Пеловым в ПГУ. C его помощью были сделаны фотографии модуля SCR1M0 и осциллограмм.

Рис. 22. Вид модуля SCR1M0 со стороны деталей

Рис. 23. Вид модуля SCR1M0 со стороны пайки

Рис. 24. Вид модуля SCR1M0 сбоку

Таблица 1. Осциллограммы при малом напряжении

№ п/п

Минимальное положение регулятора напряжения

По схеме

Примечания

1

На катоде VD5

5 В/дел

2 мс/дел

2

На конденсаторе C1

2 В/дел

2 мс/дел

3

т.соединения R2 и R3

2 В/дел

2 мс/дел

4

На аноде тиристора

100 В/дел

2 мс/дел

5

На катоде тиристора

50 В/дел

2 мс/де

Таблица 2. Осциллограммы при среднем напряжении

№ п/п

Среднее положение регулятора напряжения

По схеме

Примечания

1

На катоде VD5

5 В/дел

2 мс/дел

2

На конденсаторе C1

2 В/дел

2 мс/дел

3

т.соединения R2 и R3

2 В/дел

2 мс/дел

4

На аноде тиристора

100 В/дел

2 мс/дел

5

На катоде тиристора

100 В/дел

2 мс/дел

Таблица 3. Осциллограммы при максимальном напряжении

№ п/п

Максимальное положение регулятора напряжения

По схеме

Примечания

1

На катоде VD5

5 В/дел

2 мс/дел

2

На конденсаторе C1

1 В/дел

2 мс/дел

3

т.соединения R2 и R3

2 В/дел

2 мс/дел

4

На аноде тиристора

100 В/дел

2 мс/дел

5

На катоде тиристора

100 В/дел

2 мс/дел

По ходу налаживания схемы была выявлена ее склонность к паразитным колебаниям “выбросам” при малом (менее 100V) выходном напряжении. Т. е. в течение некоторого времени регулятор работает нормально и дает, скажем, 30V выходного напряжения, потом дает выброс вольт в 400, потом снова работает нормально, потом снова выброс и т. д. Возникло подозрение, что это явление возникает из-за того, что тиристор не успевает закрыться если он был открыт в самом конце полупериода. Тогда он может оставаться некоторое время открытым и пропустить ВЕСЬ следующий полупериод.

Чтобы избавиться от этого недостатка схема регулятора была изменена. Было установлено два тиристора – каждый на свой полупериод. С этими изменениями схема испытывалась несколько часов и “выбросов” замечено не было.

Источник: http://shemu.ru/266-vypryamiteli-s-tiristornym-regulyatorom-napryazheniya

Мостовая схема параллельного тиристорного инвертора. Принцип работы схемы

В цепях постоянного тока выключение тиристора обеспечивается путём включения параллельно тиристору ранее заряженного конденсатора с напряжением, полярность которого обратна по отношению к тиристору (принудительная коммутация). Рис. 2.

Рис. 2 Мостовая схема параллельного тиристорного инвертора

По способу включения конденсатора С с нагрузкой тиристорные инверторы делят на: параллельные, последовательные и последовательно-параллельные.

Принцип действия мостового инвертора (рис. 2):

Тиристоры открываются попарно (VS1 и VS3, VS2 и VS4) на время равное Т / 2 под воздействием положительных импульсов тока, которые подаются от схемы управления в управляющие электроды тиристоров. Выходной ток инвертора распределяется между нагрузкой и конденсатором, заряжая конденсатор полярностью, указанной на рисунке 2 без скобок. При t = T/2 схема управления посылает импульсы и включает тиристоры VS2 и VS4. Конденсатор оказывается закороченным. Ток заряда конденсатора, протекая навстречу анодному току тиристоров VS1 и VS3, уменьшает его до 0 практически мгновенно из-за малости сопротивления в контуре разряда конденсатора через тиристоры.

После падения анодного тока тиристоров VS1 и VS3 до 0 к ним прикладывается обратное напряжение, равное напряжению на конденсаторе. VS1 и VS3 запираются. Конденсатор перезаряжается через VS2 и VS4, приобретая противоположную. Полярность, необходимую для осуществления коммутации на следующем полупериоде, когда включаются VS1 и VS3. Перезаряд конденсатора должен быть медленным.

Контрольные вопросы:

1. Что такое тиристорный инвертор?

2. Какие элементы в качестве коммутационных использует в тиристорных инверторах?

3. Где применяют тиристорные инверторы?

4. Принцип работы инвертора тока и инвертора напряжения?

5. Какое назначение дросселя на входе схемы инвертора тока?

6. Зачем необходим конденсатор, подключенный параллельно к источнику питания, в схеме инвертора напряжения?

7. В чем заключается главная проблема при проектировании инверторов?

8. Что такое принудительная коммутация, т.е. как осуществляется выключение тиристора в цепях постоянного тока?

ИНВЕРТОРЫ, ВЕДОМЫЕ СЕТЬЮ

Как уже отмечалось, инвертированием называется процесс преобразования энергии постоянного тока в энергию переменного тока. Если при этом приемная часть такого преобразователя (нагрузка) не имеет других источников питания, то инвертор называется автономным. Если же инвертор преобразует энергию постоянного тока и отдает ее в сеть, где есть другие источники, то он называется инвертором, ведомым сетью (ИВС), или просто ведомым.

ИВС выполняют практически по таким же схемам, что и управляемые выпрямители. На рис. 1, а показана простейшая схема однофазного двухполупериодного ИВС. В качестве источника энергии используется обычная машина постоянного тока (МПТ), которая может работать в режиме как двигателя, так и генератора.

Рис. 1. Однофазный ведомый инвертор (а) и диаграммы его работы (б-д)

Выходным звеном инвертора, работающего на сеть переменного тока, является трансформатор, параметры которого (количество обмоток и число витков) определяют значение и число фаз получаемого переменного напряжения.

Для получения такого напряжения необходимо обеспечить периодический переход тока из одной обмотки в другую. Это достигается путем прерывания постоянного тока и распределения его по фазам трансформатора с помощью управляемых вентилей.

Чтобы изменить направление потока энергии, следует изменить знак мощности , развиваемой выпрямителем.

Так как направление тока изменить нельзя вследствие односторонней проводимости тиристоров, то изменить знак Pd можно только изменением знака , что достигается в управляемом выпрямителе увеличением угла управления

При выпрямлении источником энергии является сеть, поэтому при кривая тока , потребляемого от сети, совпадает по фазе с напряжением питания (рис. 1,б). Если , то форма тока близка к прямоугольной, тиристор VD1 работает в первом полупериоде, VD2 — во втором и машина работает в двигательном режиме (рис. 1, в, полярность на клеммах указана на рис. 1, а).

При работе схемы в качестве инвертора источником питания служит машина постоянного тока, причем полярность на ее клеммах — обратная (на рис. 1, а в скобках).

Изменение полярности источника постоянного тока одно из обязательных условий перехода схемы в режим инвертирования. При этом фазовый сдвиг между составит (рис. 1,г), а тиристоры будут работать в обратной последовательности: в первом полупериоде — VD2, во втором — VD1 (рис. 1, д).

Таким образом, тиристоры находятся в открытом состоянии при отрицательной полярности напряжений вторичных обмоток трансформатора, при этом осуществляются поочередное подключение обмоток трансформатора через дроссель к источнику постоянного тока и передача энергии в сеть.

Ранее проводивший тиристор запирается под действием обратного напряжения сети со стороны вторичных обмоток, отсюда и название инвертора — ведомый.

К ранее проводившему тиристору при отпирании очередного прикладывается обратное напряжение, равное сумме напряжений двух вторичных обмоток только в том случае, если очередной тиристор отпирается в момент, когда на подключенной к нему обмотке имеет место напряжение положительной полярности. Т. е. реальное значение угла а должно быть меньше п на некоторый угол , иначе говоря , или

, или (рис. 2).

Рис. 2. Диаграмма работы тиристора в ИВС

Если же очередной тиристор будет отпираться при , то условие запирания ранее проводившего тиристора не будет выполнено, он останется открытым, будет создана цепь короткого замыкания источника постоянного тока через вторичные обмотки трансформатора и ИВС выйдет из строя. Такое явление называется опрокидыванием инвертора.

Таким образом, второе условие перехода схемы в режим инвертирования — протекание тока через тиристоры при отрицательном напряжении на обмотках.

Трехфазные инверторы применяются значительно чаще чем одно­фазные. Схема трехфазного ИВС подобна данной схеме, только вместо нагрузки последовательно с дросселем включается источник постоянного тока, а выходной частью схемы служит первичная обмотка трансформатора, включенная на ведомую сеть. Характеристики и параметры трехфазного ИВС аналогичны однофазному..34эм.03.12.14г.

Лекция № 6

«Силовые схемы полупроводниковых преобразователей»(ПП)

В основе всех силовых ПП лежат трехфазные мостовые или, реже, лу­чевые (нулевые) вентильные группы (рис. 9.7).

Силовая схема трехфазного мостового управляемого выпрямителя и трехфазного ведомого сетью инвертора состоят из одной мостовой вен­тильной группы. При этом силовые схемы выпрямителя и инвертора не отличаются между собой (рис. 9.7, б),

Рис. 9.7. Вентильные группы: а – лучевые; б – мостовые

Преобразователь частоты со звеном постоянного тока состоит из двух мостовых вентильных групп, включенных последовательно, одна из кото­рых работает в режиме выпрямителя, а другая – инвертора.

В качестве вы­прямителя применяют неуправляемый или управляемый выпрямитель, в качестве инвертора – автономный или ведомый инвертор.

Силовая схема двухзвенного преобразователя частоты на базе ведомого инвертора пред­ставлена на рис. 9.8.

Рис. 9.8, ППЧ со звеном постоянного тока на базе ВИ; 1 – управляемый выпрямитель; 2 – ведомый инвертор; 3 – дроссель

Данный преобразователь является обратимым, т.е. может проводить электроэнергию в обоих направлениях.

Двухзвенные преобразователи на базе Автономного Инвертора сложнее и дороже, однако могут работать на сеть с любой нагрузкой и не требуют источника ЭДС в питающей сети.

Принципиальная схема силовой части двухзвенного ПП на базе АИ представлена на рис. 9.9.

Рис. 9.9. ППЧ со звеном постоянного тока на базе АИ: 1 – неуправляемый выпрямитель;2 – автономный инвертор напряжения

Силовая схема автономного инвертора состоит из трех вентильных мостов.

Два диодных моста работают в режиме неуправляемых выпрямите­лей, а мост на транзисторах – в режиме автономного инвертора.

Второй неуправляемый мостовой выпрямитель на диодах, включенный встречно параллельно инвертору, необходим для исключения электрического пробоя транзисторов при их коммутации.

Конденсатор в звене постоянного тока является для преобразователя источником напряжения.

Непосредственные полупроводниковые преобразователи частоты (ППЧ) могут проводить электрическую энергию в обоих направлениях, т.е. являются обратимыми.

КПД у данных преобразователей несколько выше, чем у двухзвенных.

Недостатком является ограничение величины выходной частоты, как правило, на уровне 30 — 40 % от входной.

Кроме того, общее количество вентилей у данных преобразователей выше, что повышает их стоимость, усложняет систему управления, повышает массу и габариты.

По схеме соединения силовой цепи непосредственные ППЧ могут выполняться с нулевыми (лучевыми) или мостовыми вентильными группа­ми.

Принципиальная схема преобразователя с лучевыми вентильными группами приведена на рис. 9.10.

Рис. 9.10. Непосредственный ППЧ с нулевыми вентильными группами

Силовая схема непосредственного ППЧ с нулевыми вентильными группами содержит 18 тиристоров, объединенных в шесть вентильных групп, включенных попарно встречно-параллельно.

Достоинства непо­средственных ППЧ, выполненных по схеме с нулевыми вентильными группами, заключаются в :

-относительно малом числе тиристоров,

-простоте силовой схемы и системы управления,

-возможности включения нагрузки в трехфазную группу без применения многообмоточного трансформатора.

На рис. 9.11 представлена силовая схема непосредственного ППЧ, выполненного на базе шести мостовых вентильных групп.

Рис. 9.11. Непосредственный ППЧ с мостовыми вентильными группами

К достоинствам непосредственных ППЧ, выполненных с использова­нием трехфазных мостовых вентильных групп, следует отнести то, что амплитуда пульсаций в кривой выходного напряжения, по сравнению с трехфазной нулевой схемой, уменьшается примерно в два раза при од­новременном увеличении вдвое частоты пульсаций.

Это существенно по­вышает качество выходного напряжения, позволяя на выходе преобразо­вателя получить более высокое значение частоты.

Однако, из-за образова­ния короткозамкнутых контуров, в преобразователе данного типа недопустима гальваническая связь между цепями нагрузки отдельных фаз. Поэтому в схемах непосредственных ППЧ с мостовыми вентильными группами для исключения контуров короткого замыкания, возникающих при коммутации вентилей, необходимо обеспечивать потенциальное раз­деление фаз за счет применения силовых трансформаторов на входе или выходе преобразователей.31эм.01.12.14г.32.эм.05.12.14г.

Лекция № 7

Управление асинхронными двигателями(АД) с использованием тиристорных преобразователей частоты(ТПЧ)

В электроприводе ТПЧ в основном служат для регулирования частоты тока, поступающего на статор АД.

Изменяющийся по частоте ток приводит к изменению угловой скорости поля статора, в результате пропорционально изменяется угловая скорость ротора. Плавное изменение частоты тока статора и широкий диапазон ее изменения позволяют плавно изменять угло­вую скорость АД в широких пределах.

Источник: https://studopedia.ru/5_105484_mostovaya-shema-parallelnogo-tiristornogo-invertora-printsip-raboti-shemi.html

Способы и схемы управления тиристором или симистором

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) — это полупроводниковый полууправляемый ключ. Полууправляемый — значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор — двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

  • Падение напряжения при максимальном токе анода (VT или Uос).

  • Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

  • Обратное напряжение (VR(PM) или Uобр).

  • Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

  • Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

  • Обратный ток (IR) — ток при определенном обратном напряжении.

  • Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

  • Постоянное отпирающее напряжение управления (VGT или UУ).

  • Ток управления (IGT).

  • Максимальный ток управления электрода IGM.

  • Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания — это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора — он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения — на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление — тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Интересно:

Такие схемы регулировки напряжения называется СИФУ — система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами — схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени — достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках «zero crossing detector circuit» или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…

Алексей Бартош

Источник: http://electrik.info/main/praktika/1490-sposoby-i-shemy-upravleniya-tiristorom-ili-simistorom.html

9zip.ru Радиотехника, электроника и схемы своими руками Тиристорные регулируемые выпрямители
Простейшее мощное зарядное устройство можно собрать с применением силовых тиристоров. В подобных схемах они выполняют функцию выпрямителей, к которым подведено фазовое регулирование.
Как известно, тиристор открывается при протекании тока через управляющий электрод. Величины напряжения и тока можно найти в справочниках и даташитах. Силовым тиристорам для открытия требуется импульс, что делает управление экономичным, но усложняет схему. Закрывается тиристор, как и симистор, сам, на нуле синусоиды.
Так как мы рассматриваем простейшие схемы, то рассмотрим вариант обычного фазового регулирования, который подойдёт для проверки. Первый вариант — с трансформатором, имеющим две вторичных силовых обмотки (или одну со средней точкой). В этом случае требуется всего два выпрямительных элемента, роль которых и выполняют тиристоры. Силовая часть отмечена на схеме красным цветом.

Так как мощные зарядные устройства требуются, как правило, для высоковольтных аккумуляторных батарей, то получать низкое напряжение управления с силовой вторичной обмотки не выгодно по причине рассеивания большой мощности на гасящем резисторе, который также выполняет функции регулировочного. Поэтому для питания цепей управления, помеченных на схеме зелёным цветом, имеется дополнительная обмотка, которую легко можно намотать монтажным проводом на любой части трансформатора. Количество витков следует подобрать таким, чтобы напряжение соответствовало паспортному на конкретный тиристор.
Фазовое регулирование работает очень просто. Через регулировочный резистор R1 заряжаются конденсаторы С1 и C2. Время их заряда зависит от ёмкости и сопротивления резистора. Это время и определяет момент открытия тиристора. Чем меньше сопротивление, тем быстрее зарядится конденсатор и тем раньше на данном полупериоде откроется тиристор, и тем больший ток получит нагрузка. Для тиристоров Т161 понадобились конденсаторы на 100 мкФ и резистор на 33 Ом. Обрати внимание, что ток диодов моста DB1, мощность резистора R1, ток диодов D1 и D2 должны быть соответствующими токам управления тиристоров.
Схема мощного регулируемого зарядного устройства для трансформатора с одной силовой обмоткой будет отличаться лишь тем, что здесь требуется полноценный мост из четырёх выпрямительных элементов. В качестве двух из них используем силовые диоды VD1 и VD2. Управляющая часть схемы остаётся прежней.

В случае же, если напряжение силовой обмотки невысокое, то напряжение для управления тиристорами регулятора можно брать с неё же.
Как уже было сказано, эти схемы годятся лишь для проверки работы тиристорных регуляторов; такое управление допустимо лишь на сравнительно малых токах. Для управления мощными силовыми тиристорами, работающими на больших токах, управление следует делать импульсным. Возможная схема такого управления представлена ниже:

Однопереходный транзистор здесь может быть заменён аналогом из двух биполярных. Он открывается, когда напряжение на конденсаторе C1 достигнет определённого значения, а это время определяется, как и в предыдущей схеме, ёмкостью и сопротивлением. Для того, чтобы импульс управления получился токовым, добавлен транзистор VT2. Трансформатор должен иметь соотношение обмоток 1:1 и быть импульсным, желательно — на пермаллое. Фазировка обмоток — такая, какая была на оригинальной схеме из интернета, и, возможно, здесь есть ошибка. Для управления двумя тиристорами следует добавить на этот трансформатор ещё одну обмотку.

Источник: https://9zip.ru/home/tiristornye_reguliruemye_vypryamiteli.htm

Выпрямитель с кремниевым управлением (SCR) | Тиристоры

Диоды Шокли и выпрямители с кремниевым управлением (SCR)

Диоды Шокли

— любопытные устройства, но их применение весьма ограничено. Однако их полезность можно расширить, оснастив их другим средством фиксации. При этом каждое из них становится настоящим усилительным устройством (хотя бы в режиме включения / выключения), и мы называем их кремниевыми выпрямителями или тиристорами.

Переход от диода Шокли к SCR достигается одним небольшим дополнением, фактически не более чем подключением третьего провода к существующей структуре PNPN: (рисунок ниже)

Кремниевый выпрямитель (SCR)

SCR Проводимость

Если затвор SCR остается плавающим (отключенным), он ведет себя точно так же, как диод Шокли.Он может фиксироваться напряжением размыкания или превышением критической скорости нарастания напряжения между анодом и катодом, как и в случае диода Шокли. Отключение достигается за счет уменьшения тока до тех пор, пока один или оба внутренних транзистора не перейдут в режим отсечки, также как диод Шокли. Однако, поскольку вывод затвора подключается непосредственно к базе нижнего транзистора, его можно использовать в качестве альтернативного средства для фиксации тринистора. При приложении небольшого напряжения между затвором и катодом нижний транзистор будет принудительно включаться результирующим током базы, что приведет к тому, что верхний транзистор будет проводить ток, который затем подает ток на базу нижнего транзистора, так что его больше не нужно активировать. напряжением затвора.Необходимый ток затвора для инициирования фиксации, конечно, будет намного ниже, чем ток через SCR от катода к аноду, поэтому SCR действительно обеспечивает некоторое усиление.

Срабатывание / срабатывание

Этот метод обеспечения проводимости SCR называется запуском или срабатыванием, и это, безусловно, наиболее распространенный способ фиксации SCR на практике. Фактически, тиристоры обычно выбираются так, чтобы их напряжение переключения намного превышало максимальное напряжение, которое ожидается от источника питания, поэтому его можно включить только с помощью преднамеренного импульса напряжения, приложенного к затвору.

Обратное срабатывание

Следует отметить, что тиристоры могут иногда отключаться путем прямого замыкания их выводов затвора и катода вместе или путем «обратного запуска» затвора отрицательным напряжением (относительно катода), так что нижний транзистор принудительно запускается. в отсечку. Я говорю, что это «иногда» возможно, потому что при этом весь ток коллектора верхнего транзистора шунтируется через базу нижнего транзистора. Этот ток может быть значительным, что в лучшем случае затрудняет триггерное отключение SCR.Вариант SCR, называемый тиристором с выключенным затвором, или GTO, упрощает эту задачу. Но даже с GTO ток затвора, необходимый для его выключения, может составлять до 20% от анодного (нагрузки) тока! Схематический символ GTO показан на следующем рисунке: (Рисунок ниже)

Тиристор выключения затвора (ГТО)

SCR против GTO
SCR

и GTO имеют одинаковую эквивалентную схему (два транзистора, подключенных по принципу положительной обратной связи), единственные отличия заключаются в деталях конструкции, предназначенных для предоставления транзистору NPN большего β, чем PNP.Это позволяет меньшему току затвора (прямому или обратному) оказывать большую степень контроля над проводимостью от катода к аноду, при этом фиксированное состояние транзистора PNP в большей степени зависит от NPN, чем наоборот. Тиристор с выключенным затвором также известен под названием Gate-Controlled Switch, или GCS.

Проверка работоспособности тринистора с помощью омметра

Элементарный тест функции SCR или, по крайней мере, идентификация клемм может быть выполнен с помощью омметра. Поскольку внутреннее соединение между затвором и катодом является одним PN-переходом, измеритель должен показывать непрерывность между этими выводами с помощью красного измерительного провода на затворе и черного измерительного провода на катоде следующим образом: (Рисунок ниже)

Элементарные испытания SCR

Все остальные измерения целостности, выполненные на SCR, будут показывать «разомкнут» («OL» на некоторых дисплеях цифровых мультиметров).Следует понимать, что этот тест является очень грубым и не представляет собой исчерпывающую оценку SCR. SCR может давать хорошие показания омметра и при этом оставаться неисправным. В конечном счете, единственный способ проверить SCR — это подвергнуть его току нагрузки.

Если вы используете мультиметр с функцией «проверки диодов», полученное вами показание напряжения перехода затвор-катод может соответствовать или не соответствовать ожидаемому от кремниевого PN перехода (приблизительно 0,7 В).В некоторых случаях вы увидите гораздо более низкое напряжение перехода: всего сотые доли вольта. Это связано с внутренним резистором, подключенным между затвором и катодом, встроенным в некоторые тиристоры. Этот резистор добавлен, чтобы сделать тиристор менее восприимчивым к ложному срабатыванию из-за паразитных скачков напряжения, «шума» цепи или статического электрического разряда. Другими словами, наличие резистора, подключенного через переход затвор-катод, требует подачи сильного пускового сигнала (значительного тока) для фиксации тиристора.Эта функция часто встречается в больших SCR, а не в маленьких SCR. Помните, что SCR с внутренним резистором, подключенным между затвором и катодом, будет указывать на непрерывность в обоих направлениях между этими двумя клеммами: (рисунок ниже)

Более крупные тиристоры имеют резистор между катодом и затвором.

SCR чувствительного затвора

«Нормальные» тиристоры, в которых отсутствует этот внутренний резистор, иногда называют чувствительными тиристорами затвора из-за их способности запускаться при малейшем положительном сигнале затвора.

Испытательная схема для SCR практична как диагностический инструмент для проверки подозреваемых SCR, а также является отличным помощником в понимании основных операций SCR. Источник постоянного напряжения используется для питания схемы, а два кнопочных переключателя используются для фиксации и разблокировки тиристора, соответственно: (рисунок ниже)

Схема тестирования SCR

При нажатии нормально разомкнутого кнопочного переключателя затвор соединяется с анодом, пропуская ток от положительной клеммы батареи, через нагрузочный резистор, через переключатель, через PN переход катод-затвор и обратно к батарее. .Этот ток затвора должен вынудить SCR зафиксироваться, позволяя току проходить напрямую от анода к катоду без дальнейшего запуска через затвор. Когда кнопка «Вкл» отпущена, нагрузка должна оставаться под напряжением.

Нажатие нормально замкнутого кнопочного переключателя «Выкл.» Разрывает цепь, заставляя ток через тиристор останавливаться, тем самым вынуждая его отключиться (выпадение слабого тока).

Ток удержания

Если SCR не фиксируется, проблема может быть в нагрузке, а не в SCR.Определенная минимальная величина тока нагрузки требуется, чтобы удерживать тиристор во включенном состоянии. Этот минимальный уровень тока называется током удержания. Нагрузка со слишком большим значением сопротивления может не потреблять достаточно тока, чтобы удерживать тиристор в защелкивании, когда ток затвора прекращается, что создает ложное впечатление о плохом (нефиксируемом) тиристоре в тестовой цепи. Значения тока удержания для различных тиристоров должны быть доступны у производителей. Типичные значения удерживающего тока находятся в диапазоне от 1 мА до 50 мА или более для более крупных устройств.

Для того, чтобы тест был полностью исчерпывающим, необходимо протестировать не только запускающее действие. Предел прямого напряжения переключения SCR можно проверить, увеличив подачу постоянного напряжения (без нажатия кнопочного переключателя) до тех пор, пока SCR не защелкнется сам по себе. Помните, что испытание на отключение может потребовать очень высокого напряжения: многие силовые тиристоры имеют номинальное напряжение размыкания 600 вольт или более! Кроме того, если доступен генератор импульсного напряжения, критическая скорость нарастания напряжения для SCR может быть проверена таким же образом: подвергнуть его импульсному напряжению питания с разной скоростью вольт / время без срабатывания кнопочных переключателей и посмотреть, когда он защелкнется.

В этой простой форме испытательная схема SCR может быть достаточной в качестве схемы управления пуском / остановом для двигателя постоянного тока, лампы или другой практической нагрузки: (рисунок ниже)

Цепь управления пуском / остановом двигателя постоянного тока

Схема «Лом»

Еще одно практическое применение SCR в цепи постоянного тока — это устройство лома для защиты от перенапряжения. Схема «лом» состоит из тиристора, размещенного параллельно с выходом источника питания постоянного тока, для прямого короткого замыкания на выходе этого источника, чтобы предотвратить попадание чрезмерного напряжения на нагрузку.Повреждение SCR и источника питания предотвращается за счет разумного размещения предохранителя или значительного последовательного сопротивления перед SCR для ограничения тока короткого замыкания: (рисунок ниже)

Цепь лома, используемая в источнике постоянного тока

Некоторые устройства или схемы, измеряющие выходное напряжение, будут подключены к затвору SCR, так что при возникновении состояния перенапряжения напряжение будет приложено между затвором и катодом, запустив SCR и заставив плавкий предохранитель перегореть.Эффект будет примерно таким же, как при падении прочного стального лома прямо на выходные клеммы источника питания, отсюда и название схемы.

Большинство приложений SCR предназначены для управления мощностью переменного тока, несмотря на то, что SCR по своей сути являются устройствами постоянного тока (однонаправленными). Если требуется двунаправленный ток в цепи, можно использовать несколько тиристоров, один или несколько тиристоров обращены в каждом направлении, чтобы обрабатывать ток через оба полупериода волны переменного тока. Основная причина, по которой тиристоры вообще используются для управления мощностью переменного тока, — это уникальная реакция тиристора на переменный ток.Как мы видели, тиратронная лампа (версия SCR с электронной лампой) и DIAC, гистерезисное устройство, срабатывающее во время части полупериода переменного тока, будут фиксироваться и оставаться включенными в течение оставшейся части полупериода до тех пор, пока переменный ток ток уменьшается до нуля, так как он должен начинать следующий полупериод. Непосредственно перед точкой перехода через ноль формы сигнала тока тиристор выключится из-за недостаточного тока (это поведение также известно как естественная коммутация), и его необходимо снова запустить во время следующего цикла.В результате ток в цепи эквивалентен «нарезанной» синусоидальной волне. Для обзора, вот график реакции DIAC на напряжение переменного тока, пик которого превышает напряжение отключения DIAC: (рисунок ниже)

Двунаправленный ответ DIAC

Для DIAC этот предел напряжения отключения был фиксированной величиной. С помощью SCR мы можем точно контролировать момент фиксации устройства, запуская логический элемент в любой момент времени на осциллограмме. Подключив подходящую схему управления к затвору SCR, мы можем «отрезать» синусоидальную волну в любой точке, чтобы обеспечить пропорциональное во времени управление мощностью нагрузки.

В качестве примера возьмем схему на рисунке ниже. Здесь SCR расположен в цепи для управления мощностью нагрузки от источника переменного тока.


SCR управление питанием переменного тока

Будучи однонаправленным (односторонним) устройством, в лучшем случае мы можем подавать на нагрузку только полуволновую мощность в полупериоде переменного тока, когда полярность напряжения питания положительная вверху и отрицательная внизу. Однако для демонстрации базовой концепции пропорционального времени управления эта простая схема лучше, чем одна схема управления двухполупериодной мощностью (для которой потребовалось бы два SCR).

При отсутствии срабатывания затвора и напряжении источника переменного тока значительно ниже номинального напряжения отключения тиристора, тиристор никогда не включится. Подключение затвора SCR к аноду через стандартный выпрямительный диод (для предотвращения обратного тока через затвор в случае, если SCR содержит встроенный резистор затвор-катод), позволит запускать SCR почти сразу в начале каждый положительный полупериод: (рисунок ниже)

Затвор подключен напрямую к аноду через диод; почти полная полуволна тока через нагрузку.

Задержка срабатывания триггера SCR

Мы можем задержать срабатывание тринистора, однако, добавив некоторое сопротивление в схему затвора, увеличив таким образом величину падения напряжения, требуемого до того, как достаточный ток затвора вызовет срабатывание тринистора. Другими словами, если мы усложним прохождение тока через затвор, добавив сопротивление, напряжение переменного тока должно будет достичь более высокой точки в своем цикле, прежде чем ток затвора станет достаточным для включения SCR. Результат показан на рисунке ниже.

В цепь затвора вставлено сопротивление; менее полуволны тока через нагрузку.

Поскольку полусинусоидальная волна в большей степени прерывается задержкой срабатывания тринистора, нагрузка получает меньшую среднюю мощность (мощность подается в течение меньшего времени в течение цикла). Сделав резистор последовательного затвора переменным, мы можем отрегулировать пропорциональную во времени мощность: (рисунок ниже)

Увеличение сопротивления приводит к повышению порогового уровня, в результате чего на нагрузку подается меньшая мощность.Уменьшение сопротивления снижает пороговый уровень, в результате чего на нагрузку поступает больше мощности.

К сожалению, эта схема управления имеет существенное ограничение. При использовании сигнала источника переменного тока для нашего триггерного сигнала SCR мы ограничиваем управление первой половиной полупериода сигнала. Другими словами, мы не можем ждать, пока волна не достигнет пика, чтобы запустить SCR. Это означает, что мы можем уменьшить мощность только до точки, в которой SCR включается на самом пике волны: (Рисунок ниже)

Цепь при минимальной мощности

Дальнейшее повышение порога срабатывания триггера приведет к тому, что схема вообще не сработает, поскольку даже пика напряжения переменного тока не будет достаточно для срабатывания тринистора.В результате на нагрузку не подается питание.

Гениальное решение этой дилеммы управления заключается в добавлении в схему фазосдвигающего конденсатора: (рисунок ниже)

Добавление в схему фазовращающего конденсатора

Меньшая форма волны, показанная на графике, представляет собой напряжение на конденсаторе. Чтобы проиллюстрировать фазовый сдвиг, я предполагаю состояние максимального управляющего сопротивления, при котором тиристор не срабатывает вообще без тока нагрузки, за исключением того небольшого тока, который проходит через управляющий резистор и конденсатор.Это напряжение конденсатора будет сдвинуто по фазе от 0 ° до 90 °, отставая от формы сигнала переменного тока источника питания. Когда это сдвинутое по фазе напряжение достигает достаточно высокого уровня, срабатывает тиристор.

При достаточном напряжении на конденсаторе для периодического срабатывания тринистора, результирующая форма волны тока нагрузки будет выглядеть примерно так, как показано на рисунке ниже).

Сигнал со сдвигом фазы запускает SCR в проводимость.

Поскольку форма волны конденсатора все еще нарастает после того, как форма волны основной мощности переменного тока достигла своего пика, становится возможным запускать SCR на пороговом уровне за пределами этого пика, тем самым прерывая волну тока нагрузки дальше, чем это было возможно с более простой схемой.На самом деле форма волны напряжения конденсатора немного сложнее, чем то, что показано здесь, ее синусоидальная форма искажается каждый раз, когда тиристор срабатывает. Однако то, что я пытаюсь проиллюстрировать здесь, — это задержка срабатывания триггера, полученная с помощью фазосдвигающей RC-цепи; таким образом, упрощенная, неискаженная форма сигнала хорошо служит этой цели.

Запуск SCR сложными схемами

SCR также могут запускаться или «запускаться» более сложными схемами. В то время как ранее показанная схема достаточна для простого применения, такого как управление лампой, для управления крупными промышленными двигателями часто используются более сложные методы запуска.Иногда импульсные трансформаторы используются для соединения цепи запуска с затвором и катодом тринистора, чтобы обеспечить электрическую изоляцию между цепями запуска и питания.

Трансформаторная развязка триггерного сигнала обеспечивает развязку.

Когда для управления мощностью используются несколько тиристоров, их катоды часто не являются электрически общими, что затрудняет подключение одной цепи запуска ко всем тиристорам в равной степени. Примером этого является управляемый мостовой выпрямитель, показанный на рисунке ниже.

Управляемый мостовой выпрямитель

В любой схеме мостового выпрямителя выпрямительные диоды (в данном примере это выпрямительные тиристоры) должны проводить встречные пары. SCR1 и SCR3 должны запускаться одновременно, а SCR2 и SCR4 должны запускаться вместе как пара. Однако, как вы заметите, эти пары тиристоров не используют одни и те же катодные соединения, а это означает, что просто параллельное соединение их соответствующих затворов и подключение одного источника напряжения для запуска обоих не сработает: (рисунок ниже)

Эта стратегия не будет работать для запуска SCR2 и SCR4 как пары.

Хотя показанный источник напряжения запуска будет запускать SCR4, он не будет запускать SCR2 должным образом, потому что два тиристора не имеют общего катодного соединения для опорного напряжения запуска. Однако импульсные трансформаторы, соединяющие два тиристорных затвора с общим источником пускового напряжения, будут работать: (рисунок ниже)

Трансформаторная муфта затворов позволяет срабатывать SCR2 и SCR4.

Имейте в виду, что эта схема показывает соединения затвора только для двух из четырех тиристоров.Импульсные трансформаторы и источники запуска для SCR1 и SCR3, а также детали самих источников импульсов для простоты опущены.

Управляемые мостовые выпрямители не ограничиваются однофазными конструкциями. В большинстве промышленных систем управления питание переменного тока доступно в трехфазной форме для максимальной эффективности, и полупроводниковые схемы управления построены для использования этого преимущества. Схема трехфазного управляемого выпрямителя, построенная на тиристорах, без показанных импульсных трансформаторов или схемы запуска, будет выглядеть, как показано на рисунке ниже.

Трехфазный мост SCR контроль нагрузки

ОБЗОР: Кремниевый выпрямитель, или SCR, по сути, представляет собой диод Шокли с добавленной дополнительной клеммой. Этот дополнительный вывод называется затвором, и он используется для запуска устройства в режим проводимости (защелкивания) путем приложения небольшого напряжения. Чтобы запустить или запустить SCR, необходимо приложить напряжение между затвором и катодом, положительное к затвору и отрицательное к катоду.

При тестировании SCR мгновенного соединения между затвором и анодом достаточно полярности, интенсивности и продолжительности для его запуска.SCR могут срабатывать при преднамеренном срабатывании вывода затвора, чрезмерном напряжении (пробое) между анодом и катодом или чрезмерной скорости нарастания напряжения между анодом и катодом. Тиристоры могут быть отключены анодным током, падающим ниже значения удерживающего тока (слаботочное выпадение) или «обратным зажиганием» затвора (подачей отрицательного напряжения на затвор). Обратное срабатывание только иногда эффективно и всегда связано с большим током затвора.

Вариант SCR, называемый тиристором с выключением затвора (GTO), специально разработан для отключения посредством обратного запуска.Даже в этом случае для обратного запуска требуется довольно большой ток: обычно 20% анодного тока. Клеммы SCR могут быть идентифицированы измерителем непрерывности: единственными двумя клеммами, показывающими какую-либо непрерывность между ними, должны быть затвор и катод. Выводы затвора и катода подключаются к PN-переходу внутри SCR, поэтому измеритель целостности цепи должен иметь диодоподобное показание между этими двумя выводами с красным (+) выводом на затворе и черным (-) выводом на катоде. Однако помните, что некоторые большие тиристоры имеют внутренний резистор, подключенный между затвором и катодом, что повлияет на любые показания непрерывности, снятые измерителем.

SCR

— настоящие выпрямители: они пропускают через себя ток только в одном направлении. Это означает, что их нельзя использовать отдельно для управления двухполупериодным переменным током. Если диоды в цепи выпрямителя заменены на тиристоры, у вас есть задатки схемы управляемого выпрямителя, в соответствии с которой мощность постоянного тока на нагрузку может быть пропорциональной по времени за счет срабатывания тиристоров в разных точках формы волны переменного тока.

СВЯЗАННЫЙ РАБОЧИЙ ЛИСТ:

Выпрямители с тиристорным управлением

Зачем использовать тиристоры в выпрямителях большой мощности?

Электросети поставляют электроэнергию в виде переменного тока (переменного тока), но некоторые ключевые приложения, такие как зарядка аккумуляторных батарей электромобилей и транспортные системы легкорельсового транспорта, требуют постоянного тока (постоянного тока) для экономичной и эффективной работы.Например, стандартные системы напряжения постоянного тока Rail работают по всей Европе, номинально при 600 В, 750 В, 1500 В и 3000 В, но сеть электроснабжения обеспечивает гораздо более высокое напряжение переменного тока. Придорожное оборудование используется для преобразования переменного тока в постоянный ток в электросети с помощью трансформаторов и выпрямителей. В более общем плане, некоторым приложениям нужно будет просто обеспечить постоянный источник постоянного тока, в то время как другим может потребоваться управление, чтобы отрегулировать выходную мощность в соответствии с колебаниями спроса. Эта потребность в управлении является основной причиной использования тиристоров в выпрямительных схемах.

Что такое управляемый выпрямитель?

Переменный ток, как следует из названия, означает, что ток течет в обоих направлениях в течение одного цикла. В своей основной форме схема однофазного выпрямителя состоит из одного, двух или четырех диодов, расположенных таким образом, чтобы ток протекал в одном направлении.

Рис. 1. Одно-, двух- и четырехдиодные выпрямительные схемы — однофазные и соответствующие формы волны.

Тиристор — это полупроводниковый прибор, который может использоваться для включения и выключения тока.При использовании в выпрямительных схемах тиристоры позволяют управлять током более точно, чем диоды, которые могут быть только включены или выключены. Тиристор может быть запущен, чтобы позволить току проходить ступенчатым образом, путем срабатывания (включения тиристора) в точное время, тем самым контролируя угол проводимости. Уровень управления, необходимый для данного приложения, будет определять, как тиристоры используются в схеме. В полууправляемых выпрямителях используются тиристоры вместо диодов на положительной или отрицательной стороне схемы, тогда как полностью управляемый выпрямитель полностью использует тиристоры.

Рис. 2. Цепи положительного полууправления и полностью управляемого выпрямителя — однофазные.

Цепи многофазного выпрямителя

Входы многофазного переменного тока выпрямляются с помощью диодов на каждой фазе. Как и в случае однофазных источников питания, эти выпрямители могут быть неуправляемыми (только диоды), полууправляемыми или полностью управляемыми с помощью тиристоров.

Рис. 3. Полностью управляемая схема выпрямителя — трехфазная и шестифазная.

Выпрямители с тиристорным управлением в системах

Базовые компоненты выпрямителя преобразуют переменный ток в постоянный, но выход должен подаваться в систему с соответствующей защитой.Это включает в себя блокировку любых нежелательных шумов или скачков напряжения, которые могут возникнуть в линии переменного тока или во время выпрямления источника питания. Полупроводники, используемые в этих приложениях, обычно очень прочные, но их можно защитить с помощью быстродействующих предохранителей, специально разработанных для этой цели. В случае неисправности, ведущей к перегреву, в узлы встроены термостатические расцепители, а для уменьшения скачков напряжения через тиристоры подключаются демпфирующие цепи.

Рис. 4. Типовая конфигурация выпрямительного блока с тиристорным управлением.

Собираем все вместе — создаем выпрямитель с тиристорным управлением

Проектирование выпрямителя с правильной конфигурацией, выбор оптимальных полупроводников, предохранителей, расцепителей и устройств защиты от скачков напряжения идет рука об руку с терморегулятором системы в целом . Какие потери тиристоров при рабочей температуре? Сколько тепла будет рассеиваться и какого размера должен быть радиатор? Требуется ли принудительная конвекция воздуха через вентиляторы в сборке? Где находится оборудование? Какие отраслевые стандарты и соответствия необходимо учитывать?

Power Products International обладает более чем 30-летним опытом в разработке и производстве этого типа продукции, поэтому, если у вас есть приложение, требующее надежного и прочного выпрямительного оборудования, свяжитесь с нами, чтобы обсудить, как это сделать.

Тиристорные выпрямители с кремниевым управлением | Закажите промышленный тиристор SCR онлайн в Darrah Electric

Пакеты для прессы

Полупроводниковый корпус, похожий на хоккейную шайбу. Конструкция пресс-пакета механически устанавливается или сжимается между двумя плоскими поверхностями, используемыми для отвода тепла и проведения тока.Сила давления или сжатия указывается производителем.

Тиристоры (тиристоры) / диодные модули

Диодные модули разделяют блоки питания, соединенные параллельно. Darrah предлагает диодные модули от 90 до 700 ампер и от 600 до 1800 вольт.

Шпильки

Полупроводниковый корпус шпильки обычно устанавливается через пластину или шину и фиксируется гайкой. Шпилька может быть анодным или катодным выводом устройства.

Тиристоры Выпрямители с кремниевым управлением — это устройства, которые действуют исключительно как бистабильные переключатели, проводящие, когда затвор получает ток триггера, и продолжают проводить, пока напряжение на устройстве не реверсируется (смещено в прямом направлении).Тиристоры. Выпрямители с кремниевым управлением — это однонаправленные устройства, которые могут нормально срабатывать только токами, идущими в затвор. Darrah предлагает тиристорные выпрямители с кремниевым управлением в диапазоне от 40 до 6100 ампер и от 25 до 8500 вольт. Делайте покупки в наших пресс-пакетах для тиристоров и кремниевых выпрямителей сегодня!

Применяемые фильтры

SCR Выпрямитель с кремниевым управлением »Примечания по электронике

Тиристоры из кремния Управляемые выпрямители, тиристоры представляют собой полупроводниковые устройства, которые могут действовать как электронные переключатели, иногда управляющие цепями с высокими уровнями напряжения и тока.


Triac, Diac, SCR Учебное пособие Включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


Тиристоры или кремниевые выпрямители (SCR), как их иногда называют, могут показаться необычными электронными компонентами во многих отношениях, но они особенно полезны для управления силовыми цепями.

Как таковые, эти электронные компоненты используются во многих приложениях управления мощностью, часто там, где уровни тока и напряжения относительно высоки. Тиристоры также могут использоваться в приложениях с низким энергопотреблением, включая управление освещением, а также для защиты источников питания и многих других приложений. Тиристоры просты в использовании и дешевы, что делает их идеальным вариантом для многих схем.

Идея тиристора не нова. Идея устройства была впервые выдвинута в 1950 году Уильямом Шокли, одним из изобретателей транзистора.Хотя некоторые более поздние исследования устройства были предприняты другими несколькими годами позже, они стали доступны только в начале 1960-х годов. После появления тиристоров они вскоре стали популярными для электронных схем переключения и питания.

Сильноточный тиристор / SCR

Что такое тиристор?

Тиристор можно рассматривать как довольно необычную форму электронного компонента, потому что он состоит из четырех слоев кремния с различным легированием, а не из трех слоев обычных биполярных транзисторов.

В то время как обычные биполярные транзисторы могут иметь структуру pnp или npn с электродами, называемыми коллектор, база и эмиттер, тиристор имеет структуру pnpn с внешними слоями с их электродами, называемыми анодом (n-типа) и катодом (p -тип). Управляющий вывод SCR называется затвором, и он подключен к слою p-типа, который примыкает к катодному слою.

Основная структура тиристора / SCR

Тиристоры обычно изготавливаются из кремния, хотя теоретически могут использоваться и другие типы полупроводников.Первая причина использования кремния для тиисторов заключается в том, что кремний является идеальным выбором из-за его общих свойств. Он способен выдерживать напряжение и токи, необходимые для приложений большой мощности. Кроме того, он обладает хорошими тепловыми свойствами. Вторая важная причина заключается в том, что кремниевая технология хорошо зарекомендовала себя и широко используется для различных полупроводниковых устройств. В результате производители полупроводников могут очень дешево и легко использовать их для своих электронных компонентов.

Применение тиристоров

Тиристоры, или кремниевые выпрямители, тиристоры используются во многих областях электроники, где они находят применение во множестве различных приложений.Некоторые из наиболее распространенных приложений для них описаны ниже:

  • Регулятор мощности переменного тока (включая освещение, двигатели и т. Д.).
  • Электронный переключатель питания переменного тока.
  • Лом для защиты от перенапряжения для источников питания.
  • Элементы управления в контроллерах, срабатывающих по углу фазы.
  • В фотовспышках, где они действуют как электронный выключатель, чтобы разрядить накопленное напряжение через лампу-вспышку, а затем отключить его в нужное время.

Тиристоры способны переключать высокие напряжения и выдерживать обратные напряжения, что делает их идеальными для электронных коммутационных приложений, особенно в сценариях переменного тока.

Открытие тиристора

Идея тиристора была впервые описана Шокли в 1950 году. Он упоминался как биполярный транзистор с p-n крючком-коллектором. Механизм операции был дополнительно проанализирован в 1952 году Эберсом.

Затем в 1956 году Молл исследовал механизм переключения тиристора.Разработка продолжалась, и об устройстве стало больше известно, так что первые выпрямители с кремниевым управлением стали доступны в начале 1960-х годов, когда они начали приобретать значительный уровень популярности для переключения мощности.

Когда GE выпустила свои устройства, они использовали термин кремниевый управляемый выпрямитель или SCR, потому что он работал только в одном направлении и был управляемым. Они использовали название SCR как торговую марку для своей продукции.

Как работает тиристор?

Принцип работы тиристора отличается от работы других устройств.Обычно через устройство не протекает ток. Однако, если к устройству подключен источник питания, и на затвор подается небольшой ток, устройство будет «срабатывать» и проводить. Он будет оставаться в проводящем состоянии до тех пор, пока не будет отключен источник питания.

Чтобы увидеть, как работает тиристор, стоит взглянуть на эквивалентную схему тиристора. Для пояснения схему тиристора можно рассматривать как два встречных транзистора. Первый транзистор с эмиттером, подключенным к катоду тиристора, является транзистором NPN, тогда как второй транзистор с эмиттером, подключенным к аноду тиристора, SCR является транзистором PNP.Затвор подключен к базе транзистора NPN, как показано ниже.

Эквивалентная схема тиристора

Когда на тиристор подается напряжение, ток не течет, потому что ни один из транзисторов не проводит ток. Однако, если на затвор будет подано напряжение, это вызовет протекание тока в базе, и это заставит TR2 включиться. Когда TR2 включен, это опускает базу TR1, вызывая включение этого транзистора, и, в свою очередь, проталкивает ток через базу TR2, что означает, что устройство останется включенным, даже если напряжение затвора будет снято.

Обозначения и основные сведения о тиристорах

Тиристорный или кремниевый управляемый выпрямитель, SCR — это полупроводниковое устройство, которое имеет ряд необычных характеристик. Он имеет три вывода: анод, катод и затвор, отражающий термоэлектронный клапан / вакуумную трубку. Как и следовало ожидать, затвор является управляющим выводом, в то время как основной ток протекает между анодом и катодом.

Как можно понять из обозначения схемы, показанной ниже, это устройство является «односторонним устройством», отсюда и название GE — кремниевый управляемый выпрямитель.Поэтому, когда устройство используется с переменным током, оно будет работать максимум половину цикла.

В работе тиристор или тиристор изначально не работают. Требуется определенный уровень тока, чтобы течь в ворота, чтобы «выстрелить». После срабатывания тиристор будет оставаться в проводящем состоянии до тех пор, пока напряжение на аноде и катоде не будет снято — это, очевидно, происходит в конце полупериода, в течение которого тиристор проводит. Следующий полупериод будет заблокирован в результате действия выпрямителя.Затем потребуется ток в цепи затвора, чтобы снова запустить тиристор. Таким образом, тиристор можно использовать как электронный переключатель.

Кремниевый управляемый выпрямитель, тиристор или символ тиристора, используемый для принципиальных схем или схем, стремится подчеркнуть характеристики выпрямителя, одновременно показывая управляющий вентиль. В результате символ тиристора представляет собой традиционный символ диода с входом управляющего затвора рядом с переходом.

Обозначение тиристора или схемы тиристора
Примечание по схемам и конструкции тиристоров:

Тиристоры или тиристоры имеют характеристику, заключающуюся в том, что, когда затвор получает ток срабатывания, он запускает тиристор, позволяя току течь до тех пор, пока не будет снято напряжение между анодом и катодом.Это позволяет тиристору переключать высокие напряжения и токи, хотя это только половина цикла. Цепи могут приглушать свет, управлять двигателями и вообще переключать высокие напряжения и токи.

Подробнее о Схемы и конструкция тиристоров

Характеристики тиристора

Чтобы выбрать правильное тиристорное устройство для любой схемы, необходимо изучить спецификации и убедиться, что устройство имеет правильные характеристики для предполагаемой схемы или применения.

Тиристоры — довольно уникальные компоненты, и их характеристики и параметры таблицы отличаются от других более широко используемых электронных компонентов, таких как биполярные транзисторы и полевые транзисторы JFET, полевые МОП-транзисторы и т. Д.

Другие типы тиристоров или тиристоров

Существует ряд тиристоров различных типов — это варианты базового компонента, но они предлагают разные возможности, которые могут использоваться в различных случаях и могут быть полезны для определенных схем.

  • Тиристор с обратной проводимостью, RCT: Хотя тиристоры обычно блокируют ток в обратном направлении, существует одна форма, называемая тиристором с обратной проводимостью, который имеет встроенный обратный диод для обеспечения проводимости в обратном направлении, хотя нет контроля в этом направлении.

    Внутри тиристора с обратной проводимостью само устройство и диод не проводят одновременно. Это означает, что они не производят тепло одновременно. В результате они могут быть объединены и охлаждены вместе.

    RCT можно использовать там, где в противном случае потребовался бы диод обратного хода или обгонной муфты. Тиристоры с обратной проводимостью часто используются в преобразователях частоты и инверторах.

  • Тиристор с автоматическим выключением, GATT: GATT используется в случаях, когда необходимо быстрое отключение.Чтобы помочь в этом процессе, иногда может применяться отрицательное напряжение затвора. Помимо снижения анодного катодного напряжения. Это обратное напряжение затвора помогает истощить неосновные носители, хранящиеся в базовой области n-типа, и гарантирует, что переход затвор-катод не будет смещен в прямом направлении.

    Структура GATT аналогична структуре стандартного тиристора, за исключением того, что часто используются узкие катодные полоски, чтобы позволить затвору иметь больший контроль, поскольку он находится ближе к центру катода.

  • Тиристор отключения затвора, GTO: GTO иногда также называют выключателем затвора. Это устройство необычно для семейства тиристоров, потому что его можно выключить, просто приложив отрицательное напряжение к затвору — нет необходимости снимать напряжение с анода и катода. См. Дальнейшую страницу в этой серии с более полным описанием GTO.
  • Асимметричный тиристор: Это устройство используется в цепях, где тиристор не воспринимает обратное напряжение и, следовательно, выпрямитель не требуется.В результате можно сделать второй переход, часто называемый J2 (см. Стр. О структуре устройства), можно сделать намного тоньше. Результирующая n-базовая область обеспечивает уменьшенный V на , а также улучшенное время включения и выключения.

Тиристоры широко используются во многих областях электроники, действуя как электронные переключатели. Тиристорные схемы можно использовать во многих энергетических приложениях, поскольку эти электронные компоненты могут очень легко переключать большие токи.В дополнение к этому они очень дешевы и широко доступны.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы ВЧ разъемы Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

Тиристорный или кремниевый выпрямитель (SCR)

Кремниевый управляемый выпрямитель ( SCR ) — это однонаправленное полупроводниковое устройство, изготовленное из кремния.Это устройство является твердотельным эквивалентом тиратрона и, следовательно, его также называют тиристором или тироидным транзистором . Фактически, SCR (Silicon Controlled Rectifier) ​​- это торговое название, данное тиристору компанией General Electric. По сути, SCR — это трехконтактный четырехслойный полупроводниковый прибор, состоящий из чередующихся слоев материала p-типа и n-типа.

Следовательно, он имеет три pn-перехода J 1 , J 2 и J 3 .На рисунке ниже показана SCR со слоями p-n-p-n. Устройство имеет клеммы анод (A), катод (K) и затвор (G). Вывод затвора (G) прикреплен к p-слою ближе к выводу катода (K).

Символ SCR или тиристора показан на рисунке ниже.

SCR можно рассматривать как два взаимосвязанных транзистора, как показано ниже.

Видно, что один SCR представляет собой комбинацию одного pnp-транзистора (Q 1 ) и одного npn-транзистора (Q 2 ).Здесь эмиттер Q 1 действует как анодный вывод SCR, а эмиттер Q 2 — его катод. Кроме того, база Q 1 соединена с коллектором Q 2 , а коллектор Q 1 соединена с базой Q 2 . Вывод затвора SCR также подключен к базе Q 2 .

Работу SCR можно понять, проанализировав его поведение в следующих режимах:

Режим обратной блокировки SCR

В этом режиме SCR смещается в обратном направлении, подключая его анодный вывод (A) к отрицательному концу и катоду. клемму (K) к положительному полюсу аккумулятора.Это приводит к обратному смещению переходов J 1 и J 3 , что, в свою очередь, запрещает протекание тока через устройство, несмотря на то, что переход J 2 остается в прямом смещенном состоянии. В этом состоянии SCR ведет себя как обычный диод. В этом состоянии обратного смещения через устройство протекает только обратный ток насыщения, как в случае обратного смещения диода, который показан на характеристической кривой синей линией. Устройство также демонстрирует явление обратного пробоя за пределами безопасного обратного предела напряжения, как и диод.

Режим прямой блокировки SCR

Здесь положительное смещение применяется к SCR путем подключения анодной клеммы (A) к положительной, а катодной клеммы (K) к отрицательной клемме батареи, как показано на рисунке ниже. В этом случае переход J 1 и J 3 смещается вперед, а переход J 2 смещается в обратном направлении.

Здесь также ток не может проходить через тиристор, за исключением крошечного тока, протекающего как ток насыщения, как показано синей кривой на характеристической кривой ниже.

Режим прямой проводимости SCR

SCR можно заставить проводить либо
(i), увеличивая положительное напряжение, подаваемое на анодном выводе (A), за пределы максимального напряжения прерывания, V B или
(ii) By приложить положительное напряжение к клемме затвора (G), как показано на рисунке ниже.

В первом случае увеличение приложенного смещения вызывает пробой первоначально смещенного в обратном направлении перехода J 2 в точке, соответствующей прямому перенапряжению прерывания, V B .Это приводит к внезапному увеличению тока, протекающего через SCR, как показано розовой кривой на характеристической кривой, хотя вывод затвора SCR остается несмещенным.

Тем не менее, тиристор также можно включить при гораздо меньшем уровне напряжения, обеспечив небольшое положительное напряжение на выводе затвора. Причину этого можно лучше понять, рассмотрев эквивалентную схему транзистора SCR, показанную на рисунке ниже.

Здесь видно, что при подаче положительного напряжения на вывод затвора транзистор Q 2 включается, и ток его коллектора течет в базу транзистора Q 1 .Это приводит к включению Q 1 , что, в свою очередь, приводит к протеканию тока его коллектора на базу Q 2 .

Это вызывает насыщение любого транзистора с очень высокой скоростью, и действие не может быть остановлено даже путем снятия смещения, приложенного к выводу затвора, при условии, что ток через тиристор больше, чем ток фиксации. Здесь ток фиксации определяется как минимальный ток, необходимый для поддержания SCR в проводящем состоянии даже после того, как импульс затвора удален.

В таком состоянии говорят, что тиристор заблокирован, и не будет никаких средств для ограничения тока через устройство, кроме как путем использования внешнего импеданса в цепи. Это требует использования различных методов, таких как естественная коммутация, принудительная коммутация или отключение обратного смещения и отключение затвора, чтобы выключить проводящий тиристор.

По сути, все эти методы направлены на снижение анодного тока ниже тока удержания. Ток удержания определяется как минимальный ток для поддержания SCR в проводящем режиме.

Подобно методам выключения, существуют также различные методы включения для SCR, такие как запуск сигналом затвора постоянного тока, запуск сигналом затвора переменного тока и запуск импульсным сигналом затвора, запуск по прямому напряжению, запуск затвора, dv / dt Запуск, запуск по температуре и световой запуск.

Существует множество вариантов устройств SCR, а именно: тиристор с обратной проводимостью (RCT), тиристор с выключенным затвором (GTO), тиристор с автоматическим отключением (GATT), асимметричный тиристор, тиристоры со статической индукцией (SITH), MOS Controlled Тиристоры (MCT), светоактивные тиристоры (LASCR) и т. Д.Обычно тиристоры имеют высокую скорость переключения и могут выдерживать большие токи. Это делает тиристор (SCR) идеальным для многих приложений, таких как

  1. Цепи переключения питания (как переменного, так и постоянного тока)
  2. Цепи переключения нулевого напряжения
  3. Цепи защиты от перенапряжения
  4. Управляемые выпрямители
  5. Инверторы
  6. Управление мощностью переменного тока (включая фонари, двигатели и т. д.)
  7. Импульсные цепи
  8. Регулятор заряда аккумулятора
  9. Блокировочные реле
  10. Компьютерные логические схемы
  11. Блоки дистанционного переключения
  12. Контроллеры с запуском по фазе
  13. Цепи синхронизации
  14. Цепи синхронизации
  15. Цепи синхронизации
  16. Машинное управление
  17. Системы контроля температуры

Что такое тиристорный и кремниевый выпрямитель (SCR)?

Конструкция, работа, типы, характеристики и применение тиристора и тиристора (выпрямителя с кремниевым управлением)

Что такое тиристор?

Слово « Тиристор » — это греческое слово , которое означает « Дверь », которое образовано от комбинации двух слов i.е. Thyratron (тиратрон представляет собой газонаполненное ламповое устройство, используемое для управляющего выпрямителя и электрических переключателей высокой мощности) и Транзистор = Тиристор .

Тиристор представляет собой четырехпроводниковый слой или устройство с тремя PN переходами . Он также известен как « SCR » (кремниевый управляющий выпрямитель , ).

Термин «тиристор» образован от слов тиратрон (газожидкостная трубка, которая работает как тиристор) и транзистор .

Тиристоры также известны как PN PN Devices . Эти устройства доступны в различных формах и типах, например, однопереходный транзистор (UJT), кремниевый управляемый выпрямитель ( SCR ), триод для переменного тока (TRIAC), DIAC (диод для переменного тока), кремниевый управляющий переключатель (SCS) и т. Д.

Полезно знать :

Тиристоры и тиристоры также известны как запорные устройства . Защелка — это тип переключателя, когда он один раз закрывается, он остается в закрытом положении, пока кто-нибудь не откроет переключатель.

Другими словами, когда переключатель находится в положении ON, он будет оставаться включенным после удаления управляющего сигнала, называемого защелкой .

Полупроводниковые приборы, имеющие четыре слоя с механизмом управления, называются тиристорами. Термин тиристор в основном применяется к кремниевым выпрямителям (SCR). Термин происходит от тиратрона и транзистора, потому что такое устройство сочетает в себе выпрямление тиратрона и управляющее действие транзисторов.

Тиристоры обладают возможностью управления, быстрым откликом, они очень надежны, поскольку могут выдерживать большие токи и требуют небольшого обслуживания.Стоимость изготовления тиристоров невысока и очень экономична. Тиристоры используются для управления двигателями постоянного и переменного тока. Он также используется для повышения коэффициента мощности и в качестве переключающего устройства, а также в линиях передачи HVDC (High Voltage DC).

Тиристоры снизили стоимость разработки приводных систем, сменив акцент с двигателей постоянного тока на двигатели переменного тока. Он заменил электромагнитные системы управления. Он способен выдерживать мощность до 4 МВт (2500 А при 1600 В).

Конструкция тиристора (SCR)

Очевидно, что SCR представляет собой выпрямитель (PN) и переходной транзистор (N-P-N), соединенные вместе, чтобы сформировать устройство PNPN.Все три вывода взяты из внешнего материала P-типа, известного как анод, второй из внешнего материала n-типа, известного как катод, и третьего из основания, известного как затвор.

Как указывалось ранее, для производства SCR используется кремний из-за его способности выдерживать высокие температуры, высокой теплопроводности и меньшей утечки тока в p-n переходе. Переходы бывают диффузные или легированные. Материалом, используемым для некоторой диффузии p, является алюминий.

Материалом для диффузии n является фосфор. Контакт с анодом осуществляется алюминиевой фольгой через катод, а затвор — металлическим листом. Таблетка PNPN должным образом закреплена вольфрамовой или молибденовой пластиной, чтобы придать ей большую механическую прочность и способность выдерживать большой ток. Одна из пластин очень хорошо припаяна к медной или алюминиевой шпильке с резьбой для крепления к радиатору, что переносит внутренние потери в окружающую среду. Номинальное напряжение может быть увеличено за счет легирования двух внутренних слоев и увеличения их толщины.

Основные операции тиристора (работа тиристора)

Все тиристоры имеют схожий, если не одинаковый принцип работы. Поскольку все типы тиристоров имеют одинаковые режимы работы, мы будем использовать кремниевый управляемый выпрямитель (SCR) в качестве примера.

Как упоминалось ранее, тиристор (SCR) представляет собой четырехслойный полупроводник. Он имеет три соединения и выводы, известные как PNP, а соединения — как J 1 , J 2 и J 3 . Область p — это анод.Область n является катодом, а внутренняя область p называется затвором. Подключение анода к катоду выполнено последовательно с цепью нагрузки.

Устройство остается в состоянии блокировки напряжения до тех пор, пока и на аноде, и на выводах затвора не будет достаточно положительного напряжения, которое может вызвать его включение, иначе оно останется выключенным. Если устройство включено, чтобы вернуть его в состояние блокировки напряжения (выключено), стробирующий сигнал должен быть устранен, а анодный ток уменьшен до нуля, так что ток будет течь только в одном направлении.Каждый слой тиристора состоит из носителей заряда.

Эти носители диффундируют до тех пор, пока не нарастает напряжение, препятствующее дальнейшей диффузии носителей заряда. Некоторые носители обладают достаточной энергией, чтобы пересечь барьер, создаваемый противоположным электрическим полем на каждом стыке.

Типы тиристоров

Тиристоры бывают разных типов. Ниже приведены несколько и наиболее часто встречающиеся устройства, а именно;

  1. Кремниевый управляемый выпрямитель (SCR)
  2. Запорный тиристор (GTO) и Интегрированный затворный коммутируемый тиристор (IGCT)
  3. Mos-управляемый тиристор (MCT)
  4. Статический индукционный тиристор (SITh)
  5. TRIAC: триод для переменный ток — двунаправленное переключающее устройство, которое содержит две тиристорные структуры с общим контактом затвора.
  6. ETO: тиристор выключения эмиттера
  7. DIAC: Двунаправленное триггерное устройство
  8. SIDAC: Двунаправленное переключающее устройство. И т.д.

Характеристики тиристоров

Зная, что тиристоры не имеют движущихся частей, они не издают шумных звуков во время работы. Он имеет высокую скорость переключения (из состояния прямой проводимости обратно в состояние отсутствия проводимости, то есть состояние прямой блокировки). Стоимость обслуживания невысока, размер и вес невелик.Тиристор может работать очень долго без неисправностей, он также способен выдерживать большой ток.

Кремниевый управляемый выпрямитель (SCR)

Как следует из термина, SCR — это управляемый выпрямитель, изготовленный из кремниевого полупроводникового материала, который имеет третий вывод, в основном, для управления напряжением. Кремний был выбран для конструкции SCR из-за его способности выдерживать высокую мощность, а также высокую температуру. Режим работы SCR отличается от режима работы диода из-за наличия третьего вывода, известного как затвор, обозначенного K.

Затвор определяет, когда цепь переключается с разомкнутого на короткое замыкание. Устройство выполнено из кремния, потому что в кремнии утечка тока минимальна по сравнению с германием.

Разница между тиристорами и транзисторами Слои или более слоев 907 , 2 соединительных устройства
S / No Тиристоры Транзисторы
1
2 Очень быстрый отклик Быстрый отклик
3 Очень высокая частота Высокая частота
4 Очень высокая надежность Высокая надежность 5 Очень малое падение напряжения Малое падение напряжения
6 Очень долгий срок службы Длительный срок службы
7 Очень малое, чтобы варьироваться большая номинальная мощность Номинальная мощность от малого до среднего
8 Требуется только небольшой импульс для запуска, а затем ток в проводящем состоянии Требуется постоянный ток, чтобы оставаться в проводящем состоянии
9 Очень низкое энергопотребление Низкое энергопотребление
10 Высокие возможности управления Низкие возможности управления
11 Очень малое время включения и выключения Очень маленькое время включения и выключения

Применение и использование тиристоров и SCR

Ниже приведены применения SCR & тиристоры;

Вы также можете прочитать:

Каким образом кремниевый выпрямитель (тиристорный выпрямитель) обеспечивает выпрямление и регулирование напряжения? — Статьи знаний — Новости

31 мая 2020

Выпрямитель — это устройство, преобразующее переменный ток в постоянный.Основное применение выпрямителя — преобразование мощности переменного тока в мощность постоянного тока. Поскольку для многих электрооборудования необходимо использовать постоянный ток, но электроснабжение энергокомпании — это переменный ток, поэтому, если не используется батарея, в противном случае выпрямители незаменимы внутри источника питания.

Как обычно используемый выпрямитель, выпрямители с кремниевым управлением широко используются в ионообменном мембранном электролизе каустической соды, электролизе цветных металлов, электролизе воды для получения водорода, электролизе редкоземельных элементов, электролизе фтороводорода для получения хлора, электролизе морской воды для производства гипохлорита натрия, электролиз рассола для производства гипохлорита натрия, гальваника, анодирование Электрофорез, электрополировка, зарядка, нагрев в дуговых печах постоянного тока, нагрев кристаллов, ядерно-энергетические эксперименты и другие области широко используются в различных отраслях народного хозяйства.

Так как же кремниевый управляемый выпрямитель обеспечивает преобразование переменного тока в постоянный, то есть выпрямление и регулировку выходного напряжения?

1. Схема диодного выпрямителя

Выпрямление (схема выпрямления) — это процесс, который использует однонаправленную проводимость диода для преобразования переменного тока в пульсирующий постоянный ток. Обычные выпрямительные схемы имеют однополупериодное, двухполупериодное, мостовое выпрямление и удвоитель напряжения.

Давайте сначала воспользуемся диодом в качестве примера, чтобы описать принцип выпрямления:

Мостовой выпрямитель (мостовой выпрямитель): четыре диода соединены в мост, поэтому он называется мостовым выпрямителем.

В положительной половине напряжения на вторичной обмотке трансформатора D1 и D3 включены, D2 и D4 выключены, а направление тока i1 показано красной стрелкой. Во время отрицательного полупериода напряжения направление тока i2 показано синей стрелкой.

За один цикл переменного напряжения u2 диоды D1, D3 и D2, D4 по очереди включаются и выключаются, и на нагрузке RL получается одно направление двухполупериодных пульсаций напряжения и тока, этот процесс реализует переменный ток до DC, то есть исправление.

2. Что такое SCR?

SCR (кремниевый управляющий выпрямитель) также называется тиристорным, представляет собой управляемый однонаправленный проводящий переключатель, может использоваться в качестве мощного полупроводникового устройства, контролируемого сильным электричеством, поскольку он может быть надежным под воздействием слабого токового сигнала, который он контролирует различные схемы сильной электрической системы, поэтому применение технологии полупроводниковой электроники расширяется от слабого электрического поля до сильного электрического поля.Тиристоры могут пропускать большие токи и обладают такими преимуществами, как высокое сопротивление давлению, быстрый отклик, хорошие характеристики управления, небольшой размер, легкий вес, удобство использования и обслуживания и т. Д., Поэтому они широко используются в различных областях научных исследований, таких как энергетика, электроника и управление, и все чаще используются. В системе управления медицинского рентгеновского аппарата. Однако у него также есть недостатки, такие как низкая перегрузочная способность и плохая защита от помех, которые необходимо преодолеть в практических приложениях.

Тиристор добавляет вентиль на основе диода. В схеме выпрямителя сигнал запуска затвора должен быть подан на затвор для управления временем проводимости тиристора для достижения выпрямления и регулировки выхода постоянного тока.

3. Устройство и принцип работы тиристора

(1) Структура тиристора

Тиристор состоит из двух слоев полупроводника P-типа и двух слоев полупроводника N-типа попеременно. Его три электрода: анод A, катод K и управляющий электрод G.В середине этого устройства PNPN сформированы три PN перехода J1, J2, J3, что эквивалентно трем диодам, включенным последовательно в прямой и обратной фазах. Если между анодом A и катодом K приложено только напряжение, независимо от полярности приложенного напряжения, по крайней мере, один из трех диодов находится в обратном смещении, поэтому он не будет включаться, и устройство находится в выключенном состоянии. штат.

(2) Принцип работы тиристора

Чтобы объяснить принцип работы тиристора, мы рассматриваем его как образованный путем соединения двух кристаллических транзисторов типа PNP и NPN, база каждого транзистора соединена с коллектор другого транзистора, как показано на рисунке.Анод A соответствует эмиттеру PNP-транзистора T1, а катод K соответствует эмиттеру NPN-транзистора T2.

После включения падение напряжения очень мало, напряжение источника питания почти полностью добавляется к нагрузке, и ток нагрузки протекает через тиристор. После включения тиристора его состояние проводимости полностью поддерживается. положительный эффект обратной связи самой трубки. Даже если ток управляющего электрода пропадает, тиристор все еще находится в состоянии проводимости.Следовательно, роль полюса управления состоит только в том, чтобы активировать тиристор, а после включения полюс управления теряет управление. Чтобы выключить тиристор, анодный ток должен быть уменьшен так, чтобы он не мог поддерживать процесс положительной обратной связи, или анодное питание может быть отключено, или обратное напряжение добавлено между анодом и катодом тиристора.

Таким образом, тиристор представляет собой управляемый однонаправленный токопроводящий переключатель. По сравнению с диодом разница в том, что прямая проводимость SCR контролируется током управляющего полюса; по сравнению с триодом, отличие состоит в том, что тиристор не усиливает ток управляющего полюса.

4. Тиристорное выпрямление

Процесс применения тиристора для преобразования переменного тока в выходное напряжение постоянного тока с регулируемой величиной называется управляемым выпрямлением. Наиболее часто используемая схема управляемого выпрямителя представляет собой схему полууправляемого мостового выпрямителя, которая похожа на схему однофазного неуправляемого мостового выпрямителя, за исключением того, что диоды в двух плечах заменены тиристорами.

В момент времени t1 включается T1, а в момент T / 2 + t1 включается T2, и форма сигнала схемы такая, как показано на рисунке.Предположим, что

α = 0 , Uo = 0,9U2 , Выходное напряжение является самым высоким, что эквивалентно однофазному мостовому выпрямительному напряжению неуправляемого диода; α = 180 ° , Uo = 0 , Тиристор полностью выключен. Среднее значение выпрямленного тока в сопротивлении нагрузки RL составляет:

Видно, что при фиксированном U2 изменение угла управления α, то есть изменение времени добавления триггерного импульса, может изменить среднее значение. значение выходного напряжения постоянного тока, и цель управляемого выпрямления достигнута.

В практических приложениях форма выпрямления более сложная, с трехфазным мостовым полностью управляемым выпрямлением, двойной антизвездой со сбалансированной схемой выпрямителя реактора, 6-импульсным, 12-импульсным, 24-импульсным и другим многоимпульсным выпрямлением, синфазным.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *