Производство водорода — Википедия
Электролизёр — оборудование для производства водорода из водыПромышленное производство водорода — неотъемлемая часть водородной энергетики, первое звено в жизненном цикле употребления водорода. Водород практически не встречается на Земле в чистом виде и должен извлекаться из других соединений с помощью различных химических методов.
Разнообразие способов получения водорода является одним из главных преимуществ водородной энергетики, так как повышает энергетическую безопасность и снижает зависимость от отдельных видов сырья.
К ним относятся:[источник не указан 1664 дня]
В данный момент наиболее доступным и дешёвым процессом является паровая конверсия. Согласно прогнозам, она будет использоваться в начальной стадии перехода к водородной экономике для упрощения преодоления проблемы «курицы и яйца», когда из-за отсутствия инфраструктуры нет спроса на водородные автомобили, а из-за отсутствия водородных автомобилей не строится инфраструктура. В долгосрочной перспективе, однако, необходим переход на возобновляемые источники энергии, так как одной из главных целей внедрения водородной энергетики является снижения выброса парниковых газов. Такими источниками может быть энергия ветра или солнечная энергия, позволяющая проводить электролиз воды.
В 2019 г. в Германии началось строительство крупнейшей в мире установки по производству 1300 тонн водорода ежегодно методом электролиза.[1]
Производство водорода может быть сосредоточено на централизованных крупных предприятиях, что понижает себестоимость производства, но требует дополнительных расходов на доставку водорода к водородным автозаправочным станциям. Другим вариантом является маломасштабное производство непосредственно на специально оборудованных водородных автозаправочных станциях.
Производство водорода из различных источников сырья[править | править код]
На 2019 год в мире потребляется 75 млн тонн водорода, в основном в нефтепереработке и производстве аммиака. Из них более 3/4 производится из природного газа, для чего расходуется более 205 млрд м3 газа.[2] Почти все остальное получают из угля. Около 0,1 % (~100 тыс. тонн) вырабатывается электролизом. При производстве водорода в атмосферу поступает ~830 млн тонн CO2. Себестоимость водорода из природного газа оценивается в 1,5-3 доллара за 1 кг.
Из метана[править | править код]
Паровая конверсия с водяным паром при 1000 °C:
- Ch5+h3O ⇄ CO+3h3{\displaystyle {\mathsf {CH_{4}+H_{2}O\ \rightleftarrows {}\ CO+3H_{2}}}}
Водород можно получать разной чистоты: 95-98 % или особо чистый. В зависимости от дальнейшего использования водород получают под различным давлением: от 1,0 до 4,2 МПа. Сырье (природный газ или легкие нефтяные фракции) подогревается до 350—400° в конвективной печи или теплообменнике и поступает в аппарат десульфирования. Конвертированный газ из печи охлаждается в печи-утилизаторе, где вырабатывается пар требуемых параметров. После ступеней высокотемпературной и низкотемпературной конверсии СО газ поступает на адсорбцию СО2 и затем на метанирование остаточных оксидов. В результате получается водород 95-98,5 % чистоты с содержанием в нем 1-5 % метана и следов СО и СО
В том случае, если требуется получать особо чистый водород, установка дополняется секцией адсорбционного разделения конвертированного газа. В отличие от предыдущей схемы конверсия СО здесь одноступенчатая. Газовая смесь, содержащая H2, CO2, CH4, H2O и небольшое количество СО, охлаждается для удаления воды и направляется в адсорбционные аппараты, заполненные цеолитами. Все примеси адсорбируются в одну ступень при температуре окружающей среды. В результате получают водород со степенью чистоты 99,99 %. Давление получаемого водорода составляет 1,5-2,0 МПа.
Также возможно каталитическое окисление кислородом:
- 2Ch5+O2⇄ 2CO+4h3{\displaystyle {\mathsf {2CH_{4}+O_{2}\rightleftarrows {}\ 2CO+4H_{2}}}}
Из угля[править | править код]
Пропускание паров воды над раскалённым углем при температуре около 1000 °C:
- h3O+C ⇄ CO↑+h3↑{\displaystyle {\mathsf {H_{2}O+C\ \rightleftarrows {}\ CO\uparrow +H_{2}\uparrow }}}
Старейший способ получения водорода. Себестоимость процесса $2-$2,5 за килограмм водорода. В будущем возможно снижение цены до $1,50, включая доставку и хранение.
Электролиз[править | править код]
Электролиз водных растворов солей:
- 2NaCl+2h3O → 2NaOH+Cl2↑+h3↑{\displaystyle {\mathsf {2NaCl+2H_{2}O\ {\xrightarrow {}}\ 2NaOH+Cl_{2}\uparrow +H_{2}\uparrow }}}
Электролиз водных растворов гидроксидов активных металлов (преимущественно, гидроксида калия)[3]
- 2h3O→4e−2h3↑+O2↑{\displaystyle {\ce {2h3O ->[4e^{-}] 2h3 ^ + O2 ^}}}
Кроме того, существует промышленная технология электролиза химически чистой воды, без применения каких-либо добавок. Фактически, устройство представляет собой обратимый топливный элемент с твёрдой полимерной мембраной[3].
Из биомассы[править | править код]
Водород из биомассы получается термохимическим, или биохимическим способом. При термохимическом методе биомассу нагревают без доступа кислорода до температуры 500°-800° (для отходов древесины), что намного ниже температуры процесса газификации угля. В результате процесса выделяется H2, CO и CH4.
Себестоимость процесса $5-$7 за килограмм водорода. В будущем возможно снижение до $1,0-$3,0.
В биохимическом процессе водород вырабатывают различные бактерии, например, Rodobacter speriodes.
Возможно применение различных энзимов для ускорения производства водорода из полисахаридов (крахмал, целлюлоза), содержащихся в биомассе. Процесс проходит при температуре 30° Цельсия при нормальном давлении. Себестоимость процесса около $2 за кг.
Из цепочки сахар-водород-водородный топливный элемент можно получить[4] в три раза больше энергии, чем из цепочки сахар-этанол-двигатель внутреннего сгорания.
Из мусора[править | править код]
Разрабатываются различные новые технологии производства водорода. Например, в октябре 2006 года Лондонское Водородное Партнёрство опубликовало исследование (недоступная ссылка) о возможности производства водорода из муниципального и коммерческого мусора. Согласно исследованию, в Лондоне можно ежедневно производить 141 тонну водорода как пиролизом, так и анаэробным сбраживанием мусора. Из муниципального мусора можно производить 68 тонн водорода.
141 тонны водорода достаточно для работы 13750 автобусов с двигателями внутреннего сгорания, работающими на водороде. В Лондоне в настоящее время эксплуатируется более 8000 автобусов.
Химическая реакция воды с металлами[править | править код]
В 2007 году Университет Purdue (США) разработал метод производства водорода из воды при помощи алюминиевого сплава.
Сплав алюминия с галлием формируется в пеллеты. Пеллеты помещают в бак с водой. В результате химической реакции производится водород. Галлий препятствует образованию оксидной пленки на поверхности алюминия, тормозящую процесс окисления алюминия. В результате реакции создаётся водород и оксид алюминия.
Из одного фунта (≈453 г) алюминия можно получать более 2 кВт·ч энергии от сжигания водорода и более 2 кВт·ч тепловой энергии во время реакции алюминия с водой. В будущем, при использовании электроэнергии атомных реакторов 4-го поколения, себестоимость водорода, получаемого в ходе реакции, станет эквивалента цене бензина $3 за галлон (≈3,8 л).
Автомобиль среднего размера с двигателем внутреннего сгорания с 350 фунтами (158 кг) алюминия на борту может проехать 350 миль (560 км). В будущем стоимость такой поездки составит $63 (0,11 $/км), включая стоимость восстановления оксида алюминия на атомной электростанции 4-го поколения.[5]
С использованием водорослей[править | править код]
Учёные калифорнийского университета в Беркли (UC Berkeley) 1999 году обнаружили[6], что если водорослям не хватает кислорода и серы, то процессы фотосинтеза у них резко ослабевают, и начинается бурная выработка водорода.
Водород может производить группа зелёных водорослей, например, Chlamydomonas reinhardtii. Водоросли могут производить водород из морской воды, или канализационных стоков.
Домашние системы производства водорода[править | править код]
Вместо строительства водородных заправочных станций водород можно производить в бытовых установках из природного газа, или электролизом воды. Honda испытывает свою бытовую установку под названием Домашняя энергетическая станция Honda. Установка в бытовых условиях производит водород из природного газа. Часть водорода используется в топливных элементах для производства тепловой и электрической энергии для дома. Оставшаяся часть водорода используется для заправки автомобиля.
Британская компания ITM Power Plc разработала и испытала в 2007 г. бытовой электролизёр для производства водорода. Водород производится ночью, что позволит сгладить пики потребления электроэнергии. Электролизер мощностью 10 кВт производит из воды водород, и хранит его под давлением 75 бар. Произведённого водорода достаточно для 40 км пробега битопливного (водород/бензин) Ford Focus. Компания планирует начать производство бытовых электролизеров в начале 2008 года. ITM Power уже достигла уровня себестоимости электролизеров $164 за 1кВт.
Найдена новая технология получения водорода из воды
Самая крутая фишка для фантастики и в принципе ожидаемая нами всеми в будущем — это заливаешь в бак автомобиля воду и поехал. Сейчас водород уже достаточно давно рассматривается и кое-где используется в качестве экологически чистого вида топлива. Но более широкому использованию водородного топлива мешает целый ряд неразрешенных на сегодняшний день проблем, главными из которых являются хранение и транспортировка.
И вот тут его непосредственное вырабатывание в автомобиле прямо из воды было бы крутейшим вариантом.
Похоже мы все ближе и ближе к этому …
Группа исследователей из американской Армейской научно-исследовательской лаборатории, проводя эксперименты на Абердинском испытательном полигоне близ Мериленда, сделала случайное открытие. Пролив воду на брусок особого алюминиевого сплава, состав которого держится пока в секрете, исследователи заметили мгновенно начавшийся процесс бурного выделения водорода.
Из школьного курса химии, если кто его еще помнит, водород является побочным продуктом реакции между водой и алюминием. Однако, данная реакция обычно протекает лишь при достаточно высокой температуре или в присутствии специальных катализаторов. Да и тогда она идет достаточно «неторопливо», на заполнение бака водородного автомобиля потребуется около 50 часов, а энергетическая эффективность такого метода получения водорода не превышает 50 процентов.
Все вышесказанное не имеет отношения к реакции, в которой принимает участие новый сплав алюминия. «Эффективность этой реакции вплотную приближается к 100 процентам, а сама реакция «разгоняется» до максимальной производительности менее, чем за три минуты» — рассказывает Скотт Грендаль (Scott Grendahl), руководитель научной группы.
Использование системы, вырабатывающей водород по мере необходимости, решает массу имеющихся проблем. Воду и алюминиевый сплав легко транспортировать из одного места в другое, оба этих вещества сами по себе инертны и стабильны. Во-вторых, для начала реакции не требуется никакого катализатора, ни первоначального толчка, реакция начинает идти сразу же, как вода входит в контакт со сплавом.
Все вышесказанное еще не означает, что исследователи обнаружили панацею в области водородного топлива. В этом деле существует еще целый ряд вопросов, подлежащих выяснению или уточнению. Первым вопросом является то, будет ли работать такая схема получения водорода вне лаборатории, ведь существует множество примеров, когда экспериментальные технологии отлично работают в лабораторных условиях, но терпят полную неудачу при полевых испытаниях. Вторым вопросом является вопрос сложности и стоимости производства алюминиевого сплава, стоимость утилизации продуктов реакции, которые станут факторами, определяющим экономическую целесообразность нового способа получения водорода.
И в заключение следует отметить, что на выяснение упомянутых выше вопросов, скорее всего, уйдет не так уж и много времени. И только после этого можно будет сделать выводы о дальнейшей жизнеспособности нового метода получения водородного топлива.
П.С. Делориан на первой картинке для привлечения внимания 🙂
[источники]источники
https://www.engadget.com/2017/08/04/water-aluminum-create-hydrogen/
Молодой парень придумал, как из воды добыть водород
Парень сделал установку для получения водорода
Роман Урсу. В этом видео хотел показать, как можно из 10 лезвий для бритья сделать небольшой генератор, который будет извлекать из воды водород. Для начала понадобится блок питания от 5 до 12 вольт, силы тока от 0,5 до 2 ампер. Медные провода, стеклянная баночка с герметичной винтовой крышкой. Пластиковая бутылка, кусок пластмассовой линейки. Две капельницы. 10 лезвий. Пищевая соль.
Инструменты: паяльник, клеевый пистолет, канцелярский нож.
Приступим к работе. Залудим края лезвий. Далее всё устанавливаем на линейку. Обратите внимание, расстояние между лезвиями минимально, они не должны соприкасаться. Слишком большое пространство между ними оставлять не надо, иначе потребуется мощный блок питания.
Берем проводки и припаиваем через одно лезвие. Схема подключения идентична с аккумуляторными пластинами.
Действительно ли установка может вырабатывать водород?
Генератор водорода готов. Теперь заправим его и протестируем. В качестве топлива используется соляной раствор. Несколько ложек соли и вода из-под крана. Иногда используют разбавители, растворители, пищевую соду. От раствора зависит от температуры пламени. В пластиковую бутылку наливаем воду без примесей. Обратите внимание, чтобы крышечки и соединения не пропускали газа. Настал ответственный момент. Подключить провода к блоку питания и проверить, как добывается водород.
Металлическую крышку заменил на другую, предыдущая была не герметична. Мастер советует использовать банки с крышками поплотнее. Вместо клеевого пистолета использовать холодную сварку, так как силикон со временем смягчается. В целом всё отлично работает.
Как сделать генератор водорода? Конвертер воды в топливо? С помощью электрического воздействия с использованием простой воды можно получить газ и собирать в специальный контейнер и использовать этот газ (водород) для питания двигателей или других приборов. Мы сделаем генератор водорода! Я предлагаю сделать дома! Наблюдая за видеоуроком нам просто нужно найти способ использовать газ, который мы получили от водорода!
Радж Айер
Год назад
1. Вы генерируете смесь h3 + 02 в соотношении 2: 1. 2. Для чистого газообразного водорода вы должны использовать бутылку с раствором каустической соды, в которую добавляются алюминиевые кусочки. Такая компоновка будет работать, обеспечивая хорошие объемы газа при низком давлении. Однако будьте осторожны, чтобы избежать пламени. Однажды у меня был взрыв, когда я экспериментировал в детстве. Вспышка бутылки и коррозионная щелочь были разбросаны по всему дому. Алюминий превращается в высоковязкую желатиновую соль, называемую натриево-мета-алюминатом. 3. Я хочу, чтобы вы придумали конструкцию, которая разделяет катод и анод, используя некоторую мембрану, которая может выдерживать температуры 100 градусов +, потому что при более высоких токах вода нагревается. 4. Вы не должны наносить много соли в воду. Щепотка соли в 1 литре более чем достаточна для проведения. Если вы используете больше соли, вы фактически генерируете водород вместе с хлором на аноде. Вода будет щелкать, так как ионы натрия будут реагировать с водой с образованием NaOH. Хлор будет генерировать на аноде и разъедать электрод. Поэтому вам нужно использовать углеродные электроды.
Дуайт Уилбанкс
Год назад
Несколько мыслей. Мысль 1, если лезвия были вертикальными, пузыри будут течь на вершину быстрее. Отделившись от ваших тарелок, ваши тарелки снова контактируют с вашим электролитом и могут начать делать следующий пузырь. Вторая мысль касается эффективности напряжения. Идеальное напряжение составляет от 2 до 2,5 вольт, так как вы опускаетесь ниже этого напряжения, производство падает. Когда вы поднимаете выше идеала, вы все равно получаете больше пузырьков, но, кроме того, выделяется больше тепла. Чем дальше от идеала, тем меньше эффективность. Если у вас 5-вольтовый источник, вы должны использовать нейтральную пластинку (много объяснений Google). Итак, пластина 1 положительна, пластина 2 не прикреплена ни к чему, пластина 3 отрицательна, затем повторите. Общая разница в 5 вольт разделяется на два отдельных сегмента в 2,5 вольта. Очевидно, что ваша цель состоит не в том, чтобы сделать самый эффективный инструмент промышленного класса, но с очень небольшими изменениями в вашем дизайне вы можете повысить эффективность. Поскольку соединений меньше, его фактически немного меньше работает как побочный эффект.
piranha031091
2 года назад
Вам НИКОГДА не следует делать это с помощью стеклянного контейнера: в этом контейнере вы получите взрывоопасную смесь водорода и кислорода, поэтому у вас есть очень важная вероятность возникновения обратного огня, который заставит контейнер взорваться. Если он сделан из стекла, взрыв вызовет стеклянную осколку, которая может быть смертельной. (мой коллега несколько месяцев назад взял стеклянную осколку в горло и чуть не умер от того, что в противном случае было очень незначительным взрывом). Пластик для этого гораздо безопаснее.
Shadi2
2 года назад
он добавил соль, поэтому вместо водорода + кислород образует водород + газообразный хлор + гидроксид натрия. Вторая стадия превращает газообразный хлор в соляную кислоту, а гидроксид натрия нагревает воду. Поэтому во введении вода выглядит такой же желтой. За исключением питьевой воды, заливки ее на глаза или выпивки минутного количества хлорного газа, который ускользает, обращение с бритвенными лезвиями является самой опасной частью.
Как превратить воду в водород: простейший опыт
Солнечный генератор водорода / кислорода DIY – простой “электролиз” с использованием солнечного света! (превращает воду в топливо).
Соблюдайте безопасность в опытах с воспламеняющимися веществами!
Я покажу вам, как сделать простое устройство, которое превращает / расщепляет воду на водород и кислород. Это удивительно просто и прекрасно работает. (не забудьте посмотреть видео, так как оно показывает много дополнительных деталей – в том числе пузырьки, просто вылетающие из карандашей). Видео показывает, что генератор водорода питается от солнечной батареи, батареи 9 В и трансформатора переменного / постоянного тока.
Шаг 1: Посмотрите наглядное видео …
Шаг 2: Механизм генератора водорода
Простой эксперимент по «электролизу» показывает, как «расщеплять воду» на кислород / водород с помощью солнечной панели (или батареи) и воды. Графит в карандашах проводит электричество (от солнечной батареи или акб). В результате вода «расщепляется» на кислород / водород (процесс, известный как электролиз). Это видео в основном посвящено использованию солнечной панели, но также показывает батарею на 9 В в качестве источника питания, а также сравнение «нескольких напряжений» (ближе к концу видео) с использованием регулируемого источника питания постоянного тока (установленного через несколько интервалов – 3 В, 4,5 В, 6 В, 7,5 В, 9 В и 12 В).
Посмотрите, как увеличивается объем пузырьков с напряжением. Обратите внимание, что это обычный научный эксперимент в начальной школе, и он абсолютно безопасен. Можно представить, если этот мелкомасштабный эксперимент был «расширен» и усовершенствован, он мог бы стать хорошим способом хранения солнечной / ветровой энергии для последующего использования. очень «зеленая» технология в целом, если источником электричества является солнечный или ветровой (и когда используется водород (в качестве топлива и т. д.), единственным побочным продуктом является вода).
Шаг 3: Необходимые предметы …
1.) 2 карандаша
2.) стакан
3.) маленький кусочек картона
4.) пара проводов (я использовал черные / красные провода с зажимами типа «крокодил»)
5.) маленькая солнечная панель или батарея 9 В или трансформатор переменного / постоянного тока
Шаг 4: Во-первых, точить карандаши …
Заточите карандаши на обоих концах. Затем сделайте 2 маленьких отверстия в куске картона (на расстоянии около 1 дюйма) и протолкните карандаши в отверстия (см. фото выше).
Шаг 5: добавь воды в стакан …
Долейте воды в стакан и поместите деталь (картон и карандаш) поверх стекла.
Шаг 6: Теперь подключите провода …
Теперь просто подключите провода от конца карандашей к источнику питания. Пузыри начнут формироваться немедленно. Одна интересная вещь об этом проекте – многие люди уже будут иметь все необходимое, чтобы сделать это дома. Не нужно ничего покупать (за исключением солнечной панели … но батарея 9v работает хорошо). Сделать водород и кислород дома бесплатно возможно, и все с обычными предметами домашнего обихода.
Получайте удовольствие от создания и использования! Снова посмотрите видео, чтобы увидеть, как пузыри просто стекают с карандашей. Строго соблюдайте технику безопасности!
Источник
методы получения и правила безопасности
Удорожание энергоносителей стимулирует поиск более эффективных и дешевых видов топлива, в том числе на бытовом уровне. Более всего умельцев–энтузиастов привлекает водород, чья теплотворная способность втрое превышает показатели метана (38.8 кВт против 13.8 с 1 кг вещества). Способ добычи в домашних условиях, казалось бы, известен – расщепление воды путем электролиза. В действительности проблема гораздо сложнее. Наша статья преследует 2 цели:
- разобрать вопрос, как сделать водородный генератор с минимальными затратами;
- рассмотреть возможность применения генератора водорода для отопления частного дома, заправки авто и в качестве сварочного аппарата.
Краткая теоретическая часть
Водород, он же hydrogen, – первый элемент таблицы Менделеева – представляет собой легчайшее газообразное вещество, обладающее высокой химической активностью. При окислении (то бишь, горении) выделяет огромное количество теплоты, образуя обычную воду. Охарактеризуем свойства элемента, оформив их в виде тезисов:
- Горение водорода – процесс экологически чистый, никаких вредных веществ не выделяется.
- Благодаря химической активности газ в свободном виде на Земле не встречается. Зато в составе воды его запасы неиссякаемы.
- Элемент добывается в промышленном производстве химическим способом, например, в процессе газификации (пиролиза) каменного угля. Зачастую является побочным продуктом.
- Другой способ получения газообразного водорода – электролиз воды в присутствии катализаторов – платины и прочих дорогих сплавов.
- Простая смесь газов hydrogen + oxygen (кислород) взрывается от малейшей искры, моментально высвобождая большое количество энергии.
Раньше водородом наполняли баллоны дирижаблей, которые нередко взрывалисьДля справки. Ученые, впервые разделившие молекулу воды на hydrogen и oxygen, назвали смесь гремучим газом из-за склонности к взрыву. Впоследствии она получила название газа Брауна (по фамилии изобретателя) и стала обозначаться гипотетической формулой ННО.
Из вышесказанного напрашивается следующий вывод: 2 атома водорода легко соединяются с 1 атомом кислорода, а вот расстаются весьма неохотно. Химическая реакция окисления протекает с прямым выделением тепловой энергии в соответствии с формулой:
2H2 + O2 → 2H2O + Q (энергия)
Здесь кроется важный момент, который пригодится нам в дальнейшем разборе полетов: hydrogen вступает в реакцию самопроизвольно от возгорания, а теплота выделяется напрямую. Чтобы разделить молекулу воды, энергию придется затратить:
2H2O → 2H2 + O2 — Q
Это формула электролитической реакции, характеризующая процесс расщепления воды путем подведения электричества. Как это реализовать на практике и сделать генератор водорода своими руками, рассмотрим далее.
Создание опытного образца
Чтобы вы поняли, с чем имеете дело, для начала предлагаем собрать простейший генератор по производству водорода с минимальными затратами. Конструкция самодельной установки изображена на схеме.
Из чего состоит примитивный электролизер:
- реактор – стеклянная либо пластиковая емкость с толстыми стенками;
- металлические электроды, погружаемые в реактор с водой и подключенные к источнику электропитания;
- второй резервуар играет роль водяного затвора;
- трубки для отвода газа HHO.
Важный момент. Электролитическая водородная установка работает только от постоянного тока. Поэтому в качестве источника питания применяйте сетевой адаптер, автомобильное зарядное устройство или аккумулятор. Электрогенератор переменного тока не подойдет.
Принцип работы электролизера следующий:
- К двум электродам, погруженным в воду, подводится напряжение, желательно от регулируемого источника. Для улучшения реакции в емкость добавляется немного щелочи либо кислоты (в домашних условиях – обычной соли).
- В результате реакции электролиза со стороны катода, подключенного к «минусовой» клемме, станет выделяться водород, а возле анода – кислород.
- Смешиваясь, оба газа по трубке поступают в гидрозатвор, выполняющий 2 функции: отделение водяного пара и недопущение вспышки в реакторе.
- Из второй емкости гремучий газ ННО подается на горелку, где сжигается с образованием воды.
Чтобы своими руками сделать показанную на схеме конструкцию генератора, потребуется 2 стеклянных бутылки с широкими горлышками и крышками, медицинская капельница и 2 десятка саморезов. Полный набор материалов продемонстрирован на фото.
Из специальных инструментов потребуется клеевой пистолет для герметизации пластиковых крышек. Порядок изготовления простой:
- Плоские деревянные палочки скрутите саморезами, располагая их концами в разные стороны. Спаяйте головки шурупов между собой и подсоедините провода – получите будущие электроды.
- Проделайте отверстие в крышке, просуньте туда разрезанный корпус капельницы и провода, затем герметизируйте с 2 сторон клеевым пистолетом.
- Поместите электроды в бутылку и завинтите крышку.
- Во второй крышке просверлите 2 отверстия, вставьте трубки капельниц и накрутите на бутылку, заполненную обычной водой.
Для запуска генератора водорода налейте в реактор подсоленную воду и включите источник питания. Начало реакции ознаменуется появлением пузырьков газа в обеих емкостях. Отрегулируйте напряжение до оптимального значения и подожгите газ Брауна, выходящий из иглы капельницы.
Второй важный момент. Слишком высокое напряжение подавать нельзя — электролит, нагревшийся до 65 °С и более, начнет интенсивно испаряться. Из-за большого количества водяного пара разжечь горелку не удастся. Подробности сборки и запуска импровизированного водородного генератора смотрите на видео:
О водородной ячейке Мейера
Если вы сделали и испытали вышеописанную конструкцию, то по горению пламени на конце иглы наверняка заметили, что производительность установки чрезвычайно низкая. Чтобы получить больше гремучего газа, нужно изготовить более серьезное устройство, называемое ячейкой Стэнли Мейера в честь изобретателя.
Принцип действия ячейки тоже основан на электролизе, только анод и катод выполнены в виде трубок, вставляющихся одна в другую. Напряжение подается от генератора импульсов через две резонансные катушки, что позволяет снизить потребляемый ток и увеличить производительность водородного генератора. Электронная схема устройства представлена на рисунке:
Примечание. Подробно о работе схемы рассказывается на ресурсе http://www.meanders.ru/meiers8.shtml.
Для изготовления ячейки Мейера потребуется:
- цилиндрический корпус из пластмассы или оргстекла, умельцы нередко используют водопроводный фильтр с крышкой и патрубками;
- трубки из нержавеющей стали диаметром 15 и 20 мм длиной 97 мм;
- провода, изоляторы.
Нержавеющие трубки крепятся к основанию из диэлектрика, к ним припаиваются провода, подключаемые к генератору. Ячейка состоит из 9 или 11 трубок, помещенных в пластиковый либо плексигласовый корпус, как показано на фото.
Под ячейку Мейера можно приспособить готовый пластиковый корпус от обычного водопроводного фильтраСоединение элементов производится по всем известной в интернете схеме, куда входит электронный блок, ячейка Мейера и гидрозатвор (техническое название – бабблер). В целях безопасности система снабжена датчиками критического давления и уровня воды. По отзывам домашних умельцев, подобная водородная установка потребляет ток порядка 1 ампера при напряжении 12 В и обладает достаточной производительностью, хотя точные цифры отсутствуют.
Принципиальная схема включения электролизераРеактор из пластин
Высокопроизводительный генератор водорода, способный обеспечить работу газовой горелки, выполняется из нержавеющих пластин размером 15 х 10 см, количество – от 30 до 70 шт. В них просверливаются отверстия под стягивающие шпильки, а в углу выпиливается клемма для присоединения провода.
Кроме листовой нержавейки марки 316 понадобится купить:
- резина толщиной 4 мм, стойкая к воздействию щелочи;
- концевые пластины из оргстекла либо текстолита;
- шпильки стяжные М10—14;
- обратный клапан для газосварочного аппарата;
- фильтр водяной под гидрозатвор;
- трубы соединительные из гофрированной нержавейки;
- гидроокись калия в виде порошка.
Пластины нужно собрать в единый блок, изолировав друг от друга резиновыми прокладками с вырезанной серединой, как показано на чертеже. Получившийся реактор плотно стянуть шпильками и подключить к патрубкам с электролитом. Последний поступает из отдельной емкости, снабженной крышкой и запорной арматурой.
Схема водородной установки мокрого типаПримечание. Мы рассказываем, как сделать электролизер проточного (сухого) типа. Реактор с погружными пластинами изготовить проще – резиновые прокладки ставить не нужно, а собранный блок опускается в герметичную емкость с электролитом.
Последующая сборка генератора, производящего водород, выполняется по той же схеме, но с отличиями:
- На корпусе аппарата крепится резервуар для приготовления электролита. Последний представляет собой 7—15% раствор гидроокиси калия в воде.
- В «бабблер» вместо воды заливается так называемый раскислитель – ацетон либо неорганический растворитель.
- Перед горелкой обязательно ставится обратный клапан, иначе при плавном выключении водородной горелки обратный удар разорвет шланги и «бабблер».
Для питания реактора проще всего задействовать сварочный инвертор, электронные схемы собирать не нужно. Как устроен самодельный генератор газа Брауна, расскажет домашний мастер в своем видео:
Выгодно ли получать водород в домашних условиях
Ответ на данный вопрос зависит от сферы применения кислородно-водородной смеси. Все чертежи и схемы, публикуемые различными интернет-ресурсами, рассчитаны на выделение газа HHO для следующих целей:
- использовать hydrogen в качестве топлива для автомобилей;
- бездымно сжигать водород в отопительных котлах и печах;
- применять для газосварочных работ.
Главная проблема, перечеркивающая все преимущества водородного топлива: затраты электричества на выделение чистого вещества превышают количество энергии, получаемое от его сжигания. Что бы ни утверждали приверженцы утопичных теорий, максимальный КПД электролизера достигает 50%. Это значит, что на 1 кВт полученной теплоты затрачивается 2 кВт электроэнергии. Выгода – нулевая, даже отрицательная.
Вспомним, что мы писали в первом разделе. Hydrogen – весьма активный элемент и реагирует с кислородом самостоятельно, выделяя уйму тепла. Пытаясь разделить устойчивую молекулу воды, мы не можем подвести энергию непосредственно к атомам. Расщепление производится за счет электричества, половина которого рассеивается на подогрев электродов, воды, обмоток трансформаторов и так далее.
Важная справочная информация. Удельная теплота сгорания водорода втрое выше, чем у метана, но – по массе. Если сравнивать их по объему, то при сжигании 1 м³ гидрогена выделится всего 3.6 кВт тепловой энергии против 11 кВт у метана. Ведь водород – легчайший химический элемент.
Теперь рассмотрим гремучий газ, полученный электролизом в самодельном водородном генераторе, как топливо для вышеперечисленных нужд:
- Конечная цена установки, низкая производительность и КПД делает крайне невыгодным сжигание водорода для отопления частного дома. Чем «наматывать» счетчик электролизером, проще поставить любой из электрокотлов – ТЭНовый, индукционный либо электродный.
- Чтобы заменить 1 л бензина для автомобиля, потребуется 4766 литров чистого водорода или 7150 л гремучего газа, треть которого составляет кислород. Самый завравшийся изобретатель в интернете еще не сделал электролизер, способный обеспечить подобную производительность.
- Газосварочный аппарат, сжигающий hydrogen, компактнее и легче баллонов с ацетиленом, пропаном и кислородом. Плюс температура пламени до 3000 °С позволяет работать с любыми металлами, стоимость получения горючего здесь особой роли не играет.
Для справки. Чтобы сжигать гидроген в отопительном котле, придется основательно переработать конструкцию, поскольку водородная горелка способна расплавить любую сталь.
Заключение
Гидроген в составе газа ННО, полученный из самодельного водородного генератора, пригодится для двух целей: экспериментов и газосварки. Даже если отбросить низкий КПД электролизера и затраты на его сборку вместе с потребляемым электричеством, на обогрев здания попросту не хватит производительности. Это касается и бензинового двигателя легковой машины.
В данной статье описаны наиболее популярные способы получения дешевого водорода в домашних условиях.
Способ 1. Водород из алюминия и щелочи.
Используемый раствор щелочи – едкого кали (гидроксид калия), либо едкого натра (гидроксид натрия, продается в магазинах, как средство очистки труб «Крот»). Выделяемый водород более чистый, чем при реакции кислот с активными металлами.
Как образуется водород? Оксидная пленка, которая покрывающая поверхность алюминия, при контакте с щелочью разрушается. Так как алюминий является активным металлом, то он начинает реагировать с водой, растворяясь в ней, при этом выделяется водород.
2Al + 2NaOH + 6h3O → 2Na[Al(OH)4] + 3h3↑
Способ 2. Водород из алюминия, сульфата меди и пищевой соли.
Как происходит выделение водорода? В процессе образуется хлорид меди, смывающий оксидную пленку с метала. Одновременно с восстановлением меди происходит образование газа.
Интересно: Пара слов о пайке
Способ 3. Водород из цинка и соляной кислоты.
Zn + 2HCl → ZnCl2 + h3↑
Способ 4. Производство водорода электролизом.
Пропускаем через раствор воды и проваренной соли электрический ток (12В). При реакции, будет выделятся водород (на аноде) и кислород (на катоде).
При получении водорода и последующих экспериментах, соблюдайте технику безопасности.
Развитие водородной энергетики связано с универсальностью применения этого элемента в качестве энергоносителя, неограниченностью его запасов, экологичностью технологий и увеличением показателей качества работы энергетических систем. Главной задачей сейчас является повышение экономичности добыча водорода: пока оно дороже, чем применение природного газа в энергетике.
Способы получения водорода
Водород – газообразный элемент без цвета и запаха с плотностью 1/14 по отношению к воздуху. В свободном состоянии он встречается редко. Обычно водород соединен с другими химическими элементами: кислородом, углеродом.
Получение водорода для промышленных нужд и энергетики проводится несколькими методами. Самыми популярными считаются:
- электролиз воды;
- метод концентрирования;
- низкотемпературная конденсация;
- адсорбция.
Выделить водород можно не только из газовых или водных соединений. Добыча водорода производится при воздействии на дерево и уголь высокими температурами, а также при переработке биоотходов.
Атомный водород для энергетики получают, используя методику термической диссоциации молекулярного вещества на проволоке из платины, вольфрама либо палладия. Ее нагревают в водородной среде под давлением менее 1,33 Па. А также для получения водорода используются радиоактивные элементы.
Способ адсорбции
Во время адсорбции для выделения водорода используют адсорбенты – твердые вещества, поглощающие необходимые компоненты газовой смеси. В качестве адсорбентов применяют активированный уголь, силикатный гель, цеолиты. Для осуществления этого процесса применяют специальные аппараты – циклические адсорберы или молекулярные сита. При реализации под давлением этот метод позволяет извлекать 85-процентный водород.
Если сравнивать адсорбцию с низкотемпературной конденсацией, можно отметить меньшую материальную и эксплуатационную затратность процесса – в среднем, на 30 процентов. Методом адсорбции производят водород для энергетики и с применением растворителей. Такой способ допускает извлечение 90 процентов h3 из газовой смеси и получение конечного продукта с концентрацией водорода до 99,9%.
Получить водород! До недавнего времени это была моя мечта 🙂 . И я твёрдо решил осуществить ее.
В магазине я приобрёл все необходимые реактивы:
Далее заперся в своей комнате и начал творить! В итоге я в домашних условиях смог повторить все нижеописанные способы получения водорода. И я просто обязан поделиться с вами своими знаниями. Итак, три способа получения водорода.
Способ №1 и все необходимые для него реактивы.
1 Сульфат меди (медный купорос ) его можно купить в любом цветочном магазине ( внимание не путайте с лавками где продоются только цветы нужен магазин с удобрениями ) просто зайдите и скажите что вам нужен медный купорос
2 Обычная пищевая соль
3 фольга (если честно то подойдёт любое алюминиевое изделие будь то ложка или проволока)
Вот собственно и все реактивы. Теперь немного о посуде в которой мы всё это будем делать.
1 Бутылка из толстого стекла ( отлично подойдёт из под вина, пива или шампанского )
2 Кострюля с холодной водой .
Для чего нужно было именно из толстого стекла и с холодной водой? А нужно это поскольку при данной реакции выделяется большоё количество тепла и бутылка может треснуть или вовсе лопнуть.
А теперь начнём!!!! Насыпаем в бутылку примерно четыре ложки сульфата меди и столько же соли ( соли желательно брать немного больше ) добавим воды и всё это тщательно перемешиваем. Если всё сделано правильно то раствор должен стать зелёным, если нет, то добавьте ещё соли. Раствор готов! Начнём кидать туда алюминий ИИИИИИИ УРА-УРА начал выделяться водород, при этом алюминий начнёт ржаветь , а вода начнёт пузыриться.
Но как-же это происходит, как идёт реакция??? Дело в том что образующися хлорид меди смывает защитную пленку с алюминия и на равне с восстановлением меди идет образование водорода.
Способ № 2 и реактивы.
- Гидроксид натрия. Раньше я незнал где его купить, но потом узнал что он продоётся как средство для прочистки труб — крот в любом магазине бытовой химии.
- Алюминий ( ну вы поняли).
Ну бутылка и вода как в способе №1
Нальём крота в бутылку(если у вас сухой и в гранулах, то разбавьте водой ) . Добавим алюминий (его лучше обжечь на костре перед добавлением). Через минуты две начнётся очень бурная реакция с выделением водорода в больших количествах.
Внимание!!!!!!!! Второй способ ООООчень опасный, советую проделывать его в перчатках( Гидроксид натрия сильно разъедает кожу!!!). Перчаток у меня не нашлось и я делал без них. Потом сильно пожалел. К вечеру у меня все руки были КРАСНЫМИ! и безумно болели. Но самая большая опасность в этой реакции это ВОДОРОД!!!!Его выделяется много!!!! И вообще я не советую проводить этот способ в домашних условиях!!!!
Тут всё тоже самое, только едкая щелочь намного быстрее смывает защитную плёнку с алюминия и далее идёт реакция с выделением водорода
Способ №3.
В этом способе не нужно реактивов. Ну кроме поваренной соли. Этот опыт будет проводится с помощью электролиза. Всё что нужно это пропустить через раствор поваренной соли электричество.Ток должен быть постоянным. ( Водород будет выделяться на аноде, а на катоде небольшие количества кислорода
>Купить в подарок или заказать уникальную вещь<
<blink>ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ! </blink>
- Конкурс — Получение водорода тремя способами— 19.04.2011
Реактивная PH жид…Как сделать свечу…Настольная ёлочка…X element + менто…Бензиновая зажига…Как сделать солне…
Чтобы получить водород нам понадобятся:
- Пустой контейнер с крышкой
- Провода
- Карандаш
- Завинчивающиеся клеммы
- Горячий клей
- Блок питания постоянного тока
- Дрель
- Воронка
- Надувной шарик
Шаг 1: Сооружаем анод
Для создания анода нам понадобятся старый карандаш, нож, клеммы, провода и пистолет с горячим клеем.
Возьмите карандаш и счистите дерево, пока не доберётесь до графитового сердечника. Поместите сердечник в клеммы и закрутите его, но не слишком туго, иначе он сломается.
Оголите концы кабеля и закрепите их с другой стороны закручивающихся клемм.
Изолируйте клеммы горячим клеем. Убедитесь, что соединение водонепроницаемо. Единственное, что не нужно закрывать горячим клеем — графитовые стержни.
Как вы видите на фото, я взял два кусочка графита и поместил их в две клеммы. Я соединил обе клеммы с одним кабелем. Это увеличит рабочую поверхность графита и повысит производительность генератора.
Шаг 2: Сооружаем катод
Для сборки катода нам понадобится кабель и стриппер для оголения кабеля (можете оголить кабель подручными средствами).
Оголите 10-20 см кабеля и накрутите его вокруг карандаша. Эта медная спираль — готовый катод.
Чтобы увеличить поверхность катода, вы можете присоединить к нему кусок меди.
Шаг 3: Собираем заглушку контейнера
На этом этапе вам понадобится крышка контейнера, воронка, дрель, анод, катод и пистолет с горячим клеем.
Просверлите отверстие в крышке контейнера, отверстие должно быть достаточно большим, чтобы вмещать кончик воронки. Проденьте кончик воронки в отверстие и закрепите его горячим клеем. (Тут нужно быть внимательным — клей не должен быть настолько горячим, чтобы расплавить пластик крышки и воронки).
После того, как клей остынет, приклейте катод внутри воронки, а анод снаружи.
Просверлите небольшие отверстия в крышке, пропустите через них провода и запаяйте все горячим клеем.
Шаг 4: Дорабатываем источник питания
Перед доработкой блока питания, проверьте, что он никуда не подключен!
Сама доработка очень проста. Вам нужно соединить зелёный кабель с чёрным (земля). Не спаивайте кабели друг с другом, ведь в случае короткого замыкания вам нужно будет их разъединить, а потом, для продолжения работы, соединить снова (хорошей идеей будет соединить кабели при помощи выключателя).
Блок питания начнёт работать, как только вы соедините зеленый и черный кабель. Теперь у нас есть блок питания.
Для использования блока питания, оголите синий кабель (-12V) и желтый кабель (+12V). Закрепите оголенные провода в завинчивающихся клеммах.
Шаг 5: Финальная настройка
Теперь, когда всё соединено, осталось лишь наполнить контейнер водопроводной водой и добавить в неё немного соли, а затем закрыть крышку.
Присоедините провода к блоку питания и подайте электричество (на этом этапе вы должны заметить небольшие пузырьки, поднимающиеся от электродов).
Последним этапом будет добавить воздушный шарик поверх воронки, в него будет захватываться водород.
Шаг 6: Предостережения
НИКОГДА не подключайте генератор водорода к обычной розетке! Используйте ТОЛЬКО токи малого напряжения.
Водород крайне ВОСПЛАМЕНИМ, поэтому во время работы генератора и при хранении водорода предпримите все меры предосторожности.
Шаг 7: Образовательная часть
Если вы не собираетесь сооружать генератор водорода, но вам интересна сама химическая реакция, то прочитайте этот материал.
Электроны находятся в молекулах водорода. Блок питания подталкивает молекулы воды (HHO) к разделению на положительно заряженные ионы водорода (H+) и отрицательно заряженные гидроксид-ионы(OH-).
Из-за электромагнитных сил, положительно заряженные ионы водорода притягиваются к катоду, а гидроксид-ионы притягиваются к аноду.
Катод передаёт ионам водорода электроны, и они становятся газом водорода.
Так как анод притягивает электроны, то он забирает их у гидроксид-ионов и они становятся ионами водорода и газом кислорода (OO). Затем ионы водорода перемещаются к катоду.
Используемые источники:
- https://otivent.com/kak-sdelat-generator-vodoroda-v-domashnix-usloviyax
- https://all-he.ru/publ/svoimi_rukami/khimija/poluchenie_vodoroda_v_domashnikh_uslovijakh/3-1-0-103
- https://promzn.ru/drugoe-proizvodstvo/poluchenie-vodoroda.html
- http://mozgochiny.ru/himiya/poluchenie-vodoroda-tremya-sposobami/
- https://masterclub.online/topic/15171-poluchenie-vodoroda
Найден способ получать водород из воды без затрат электроэнергии
Учёные создали краску, которая выделяет чистый водород из атмосферной влаги. Этот материал может позволить получать водородное топливо везде, где есть солнечный свет и влажный воздух.
Водородное топливо — отличная альтернатива углеводородному: при сжигании чистого водорода образуется только энергия и вода, и никаких вредных продуктов. Но быстро перейти на водородное топливо мешают сложности с его получением. В отличие от углеводородов, щедро разбросанных под землёй по всей планете, водород нельзя извлекать из недр: в чистом виде его нет нигде на планете. Получают его либо из углеводородов, либо из воды.
Получение водорода из углеводородов — это в основном конверсия метана, то есть очищенного природного газа. Получается, что для производства «чистого» топлива нужно запустить не самый экологичный технологический процесс, в качестве побочного продукта дающий крайне вредный угарный газ.
Выделение водорода из воды — более экологичный процесс, но для него нужна электроэнергия, большую часть которой во всём мире по‑прежнему получают, сжигая уголь, нефть и природный газ и выбрасывая в атмосферу множество загрязнителей.
Исследователи из Королевского мельбурнского исследовательского университета (Австралия), Массачусетского технологического института и Кембриджа нашли способ получать водород из воды без затрат электроэнергии. Реакция отщепления водорода от кислорода в молекуле воды запускается под действием солнечного света в присутствии фотокатализатора.
В качестве фотокатализатора учёные использовали сульфид молибдена — аморфную субстанцию с общей формулой MoSx, отлично впитывающую водяной пар из воздуха, а на солнце запускающую процесс разложения воды с образованием свободного водорода. Добавив к сульфиду молибдена порошок наночастиц диоксида титана, учёные получили род чернил, которые легко наносятся на любые поверхности — например, на стекло и пластик, — и образуют прочную плёнку. Покрыв такой плёнкой любую открытую солнечным лучам поверхность, можно получать водород из насыщенного влагой воздуха где угодно, утверждают авторы исследования.
Исследование опубликовано в журнале ACS Nano.
Разработан новый метод извлечения водорода из воды, работающий в 30 раз быстрее традиционного электролиза
Ученые из университета Глазго (University of Glasgow, UoG) разработали новый метод расщепления воды на кислород и водород, который представляет собой топливо для источников экологически чистой энергии, таких, как водородные топливные элементы. Но самое интересное заключается в том, что этот новый процесс не только более безопасен, но и способен обеспечить в 30 раз большую производительность по водороду, нежели другие существующие на сегодняшний день методы. И столь привлекательные показатели нового процесса позволяют рассматривать его в качестве решения вопроса хранения и транспортировки энергии, получаемой из возобновляемых источников, которая может храниться в виде водорода сколь угодно длительное время.
В природе вода расщепляется на составные части под воздействием солнечного света в результате процесса фотосинтеза. Выделяющийся при этом водород, вступая в реакцию с углекислым газом из атмосферы, образует цепочки органических соединений, из которых формируются ткани растущего растения. Получающийся при этом кислород является побочным продуктом и выбрасывается в окружающую среду, что дает возможность дышать всему живому на нашей планете. Процесс электрического расщепления воды, используемый для искусственного получения водорода, более энергоемок и опасен, нежели процесс естественного фотосинтеза. При проведении традиционного процесса электролиза (proton exchange membrane electrolyze, PEME) существует высокая вероятность смешивания водорода и кислорода, образующих взрывоопасный гремучий газ, и при этом требуются существенные дополнительные затраты энергии, идущей на разделение газов и очитку водорода от остаточных следов кислорода.
Процесс, разработанный исследовательской группой профессора Ли Кронина (Lee Cronin), лишен большинства вышеописанных недостатков традиционных процессов электролиза. В этом процессе не используются дорогостоящие катализаторы на базе драгоценных или редкоземельных металлов, эту роль выполняет жидкая «губка», так называемый окислительно-восстановительный посредник (redox mediator). Эта губка полностью поглощает выделяющийся свободный водород и образует полностью безопасное водородосодержащее неорганическое соединение. В ходе этого процесса выделяется лишь чистый свободный кислород, который без проблем сбрасывается в атмосферу.
Раствор окислительно-восстановительный посредника, химический состав которого по понятным причинам держится в тайне, изначально имеет синий цвет. При подаче на электроды устройства-электролизера электрического тока посредник начинает поглощать выделяющийся водород и его цвет, по мере насыщения, начинает сдвигаться к желтому цвету. А при полном насыщении посредника водородом он практически теряет каталитические свойства, что приводит к автоматическому прекращению процесса электролиза. Высвобождается связанный посредником водород достаточно просто, для этого требуется лишь поместить в раствор насыщенного посредника специальный катализатор. При этом скорость выделения чистого водорода в 30 раз превышает скорость выделения водорода в процессе традиционного PEME-электролиза.
Следует отметить, что получаемый в результате описанного выше процесса водород можно хранить и транспортировать в абсолютно безопасном виде, в виде концентрированного раствора насыщенного вещества-посредника. Также достаточно просто выделять связанный посредником водород и точно регулировать его количество, опуская в раствор катализатор, имеющий определенную площадь. К сожалению, некоторые характеристики, такие, как долговечность вещества-посредника, самопроизвольное выделение связанного водорода и т.п., вышеописанных процессов еще не до конца установлены и это требует проведения дополнительных исследований.
Профессор Кронин оценивает, что для доведения разработанных его группой технологий до уровня практического использования может потребоваться еще несколько лет исследований. И сейчас эта группа ищет заинтересованные организации, которые готовы вложить свои средства в эту перспективную разработку.
Получение водорода в домашних условиях
В данной статье описаны наиболее популярные способы получения дешевого водорода в домашних условиях.
Способ 1. Водород из алюминия и щелочи.
Используемый раствор щелочи – едкого кали (гидроксид калия), либо едкого натра (гидроксид натрия, продается в магазинах, как средство очистки труб «Крот»). Выделяемый водород более чистый, чем при реакции кислот с активными металлами.
Насыпаем в колбу небольшое количество едкого кали либо натра и заливаем 50 -100 мл воды, перемешиваем раствор до полного растворения кристаллов. Далее добавляем несколько кусочков алюминия. Сразу же начнется реакция с выделением водорода и тепла, сначала слабая, но постоянно усиливающаяся.
Дождавшись пока реакция будет происходить более активно, аккуратно добавим еще 10г. щелочи и несколько кусочком алюминия. Так мы значительно усилим процесс.
Закупориваем колбу, пробиркой с трубкой ведущей сосуд для сбора газа. Ждем примерно 3 -5 мин., пока водород вытеснит воздух из сосуда.
Как образуется водород? Оксидная пленка, которая покрывающая поверхность алюминия, при контакте с щелочью разрушается. Так как алюминий является активным металлом, то он начинает реагировать с водой, растворяясь в ней, при этом выделяется водород.
2Al + 2NaOH + 6h3O → 2Na[Al(OH)4] + 3h3↑
Способ 2. Водород из алюминия, сульфата меди и пищевой соли.
В колбу насыпаем немного сульфата меди (медный купорос, продается в любом магазине для сада), и соли (соли чуть больше). Добавляем воду и перемешиваем до полного растворения. Раствор должен, окрасится в зеленый цвет, если этого не произошло, добавьте еще небольшое количество соли.
Колбу необходимо поставить в чашку наполненной холодной водой, т.к. при реакции, будет выделятся большое количество тепла.
Добавляем в раствор несколько кусочков алюминия. Начнется реакция.
Как происходит выделение водорода? В процессе образуется хлорид меди, смывающий оксидную пленку с метала. Одновременно с восстановлением меди происходит образование газа.
Способ 3. Водород из цинка и соляной кислоты.
Помещаем в пробирку кусочки цинка и заливаем их соляной кислотой.
Являясь активным металлом цинк, взаимодействуя с кислотой, вытесняет из нее водород.
Zn + 2HCl → ZnCl2 + h3↑
Способ 4. Производство водорода электролизом.
Пропускаем через раствор воды и проваренной соли электрический ток (12В). При реакции, будет выделятся водород (на аноде) и кислород (на катоде).
При получении водорода и последующих экспериментах, соблюдайте технику безопасности.