Site Loader

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€

Наш ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ позволяСт Π½Π°ΠΉΡ‚ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² всСго Π·Π° ΠΏΠ°Ρ€Ρƒ ΠΌΠΈΠ½ΡƒΡ‚. Для вычислСния Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ Ρ„ΠΎΡ€ΠΌΡƒ прСдставлСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΈΠ»ΠΈ ΠΏΠΎ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ), Π·Π°ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅ всС элСмСнты ΠΈ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ ΠΊΠ½ΠΎΠΏΠΊΡƒ Β«Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒΒ», ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ выдаст пошаговоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΎΡ‚Π²Π΅Ρ‚! ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ шаг Π±ΡƒΠ΄Π΅Ρ‚ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎ расписан, это ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π²Π°ΠΌ ΠΏΠΎΠ½ΡΡ‚ΡŒ, ΠΊΠ°ΠΊ Π±Ρ‹Π» ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈ, ΠΏΡ€ΠΈ нСобходимости, ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ своС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅.

Π’Π²Π΅Π΄ΠΈΡ‚Π΅ Π΄Π°Π½Π½Ρ‹Π΅, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Β 

Π€ΠΎΡ€ΠΌΠ° прСдставлСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²:

ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ

Π€ΠΎΡ€ΠΌΡƒΠ»Π° :

РСшили сСгодня: Ρ€Π°Π·, всСго Ρ€Π°Π·
ΠŸΠΎΠ½Ρ€Π°Π²ΠΈΠ»ΡΡ сайт? РасскаТи Π΄Ρ€ΡƒΠ·ΡŒΡΠΌ!

Найти смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‚Π°ΠΊΡƒΡŽ Ρ‚Π΅ΠΌΡƒ, Π½ΡƒΠΆΠ½ΠΎ ΠΎΡ…Π²Π°Ρ‚ΠΈΡ‚ΡŒ Π΅Ρ‰Π΅ нСсколько Ρ€Π°Π·Π΄Π΅Π»ΠΎΠ². Π’Π΅ΠΌΠ° Π½Π°ΠΏΡ€ΡΠΌΡƒΡŽ связана с Ρ‚Π°ΠΊΠΈΠΌΠΈ Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π°ΠΌΠΈ, ΠΊΠ°ΠΊ скалярноС ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ ΠΏΠΎΡΡ‚Π°Ρ€Π°Π»ΠΈΡΡŒ Π΄Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‡Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, которая ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Помимо этого, ΡΡ‚Π°Ρ‚ΡŒΡ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя Ρ€Π°Π·Π΄Π΅Π»Ρ‹ с пСрСчислСниСм свойств произвСдСния ΠΈ прСдставлСны ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΉ Ρ€Π°Π·Π±ΠΎΡ€ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Ρ… равСнств ΠΈ Π·Π°Π΄Π°Ρ‡.

Yandex.RTB R-A-339285-1

Π’Π΅Ρ€ΠΌΠΈΠ½

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, Π² Ρ‡Π΅ΠΌ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π΄Π°Π½Π½Ρ‹ΠΉ Ρ‚Π΅Ρ€ΠΌΠΈΠ½, Π½ΡƒΠΆΠ½ΠΎ Π²Π·ΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 1

Π‘ΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ a β†’ , b β†’ ΠΈ d β†’ являСтся Ρ‚Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, которая равняСтся скалярному ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ a β†’ Γ— b β†’ ΠΈ d β†’ , Π³Π΄Π΅ a β†’ Γ— b β†’ — ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ a β†’ ΠΈ b β†’ . ΠžΠΏΠ΅Ρ€Π°Ρ†ΠΈΡŽ умноТСния a β†’ , b β†’ ΠΈ d β†’ Π·Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ a β†’ Β· b β†’ Β· d β†’ . МоТно ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ‚Π°ΠΊ: a β†’ Β· b β†’ Β· d β†’ = (a β†’ Γ— b β†’ , d β†’) .

Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ссли ΠΎΠ½ΠΈ ΡƒΠΊΠ°Π·Π°Π½Ρ‹ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости.

Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ i β†’ , j β†’ , k β†’

ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΌ случаС Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄: a β†’ Γ— b β†’ = (a y Β· b z — a z Β· b y) Β· i β†’ + (a z Β· b x + a x Β· b z) Β· j β†’ + (a x Β· b y + a y Β· b x) Β· k β†’ = a y a z b y b z Β· i β†’ — a x a z b x b z Β· j β†’ + a x a y b x b y Β· k β†’

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 2

Для выполнСния скалярного произвСдСния Π² систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π²ΠΎ врСмя умноТСния ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Из этого слСдуСт:

a β†’ Γ— b β†’ = (a y Β· b z — a z Β· b y) Β· i β†’ + (a z Β· b x + a x Β· b z) Β· j β†’ + (a x Β· b y + a y Β· b x) Β· k β†’ = a y a z b y b z Β· i β†’ — a x a z b x b z Β· j β†’ + a x a y b x b y Β· k β†’

ΠœΡ‹ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ссли Π² Π·Π°Π΄Π°Π½Π½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΡƒΠΊΠ°Π·Π°Π½Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡƒΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ.

a β†’ Γ— b β†’ = (a y a z b y b z Β· i β†’ — a x a z b x b z Β· j β†’ + a x a y b x b y Β· k β†’ , d x Β· i β†’ + d y Β· j β†’ + d z Β· k β†’) = = a y a z b y b z Β· d x — a x a z b x b z Β· d y + a x a y b x b y Β· d z = a x a y a z b x b y b z d x d y d z

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ:

a β†’ Β· b β†’ Β· d = a β†’ Γ— b β†’ , d β†’ = a x a y a z b x b y b z d x d y d z

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 3

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΡ€Π°Π²Π½ΡΡ‚ΡŒ ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹, Π² качСствС строк ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. Наглядно это выглядит Ρ‚Π°ΠΊ: a β†’ Β· b β†’ Β· d = a β†’ Γ— b β†’ , d β†’ = a x a y a z b x b y b z d x d y d z .

Бвойства ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ Π½Π°Π΄ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ Из особСнностСй, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ΡΡ Π² скалярном ΠΈΠ»ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ, ΠΌΠΎΠΆΠ½ΠΎ вывСсти особСнности, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. НиТС ΠΌΡ‹ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ основныС свойства.

  1. (Ξ» Β· a β†’) Β· b β†’ Β· d β†’ = a β†’ Β· (Ξ» Β· b β†’) Β· d β†’ = a β†’ Β· b β†’ Β· (Ξ» Β· d β†’) = Ξ» Β· a β†’ Β· b β†’ Β· d β†’ Ξ» ∈ R ;
  2. a β†’ Β· b β†’ Β· d β†’ = d β†’ Β· a β†’ Β· b β†’ = b β†’ Β· d β†’ Β· a β†’ ; a β†’ Β· d β†’ Β· b β†’ = b β†’ Β· a β†’ Β· d β†’ = d β†’ Β· b β†’ Β· a β†’ ;
  3. (a (1) β†’ + a (2) β†’) Β· b β†’ Β· d β†’ = a (1) β†’ Β· b β†’ Β· d β†’ + a (2) β†’ Β· b β†’ Β· d β†’ a β†’ Β· (b (1) β†’ + b (2) β†’) Β· d β†’ = a β†’ Β· b (1) β†’ Β· d β†’ + a β†’ Β· b (2) β†’ Β· d β†’ a β†’ Β· b β†’ Β· (d (1) β†’ + d (2) β†’) = a β†’ Β· b β†’ Β· d (2) β†’ + a β†’ Β· b β†’ Β· d (2) β†’

Помимо ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… свойств, слСдуСт ΡƒΡ‚ΠΎΡ‡Π½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ссли ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ, Ρ‚ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ умноТСния Ρ‚Π°ΠΊΠΆΠ΅ станСт Π½ΡƒΠ»ΡŒ.

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ умноТСния Ρ‚Π°ΠΊΠΆΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ Π½ΡƒΠ»ΡŒ Π² Ρ‚ΠΎΠΌ случаС, Ссли Π΄Π²Π° ΠΈΠ»ΠΈ большС ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»Π΅ΠΉ Ρ€Π°Π²Π½Ρ‹.

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ссли a β†’ = b β†’ , Ρ‚ΠΎ, слСдуя ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния [ a β†’ Γ— b β†’ ] = a β†’ Β· b β†’ Β· sin 0 = 0 , ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ([ a β†’ Γ— b β†’ ] , d β†’) = (0 β†’ , d β†’) = 0 .

Если ΠΆΠ΅ a β†’ = b β†’ ΠΈΠ»ΠΈ b β†’ = d β†’ , Ρ‚ΠΎ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ [ a β†’ Γ— b β†’ ] ΠΈ d β†’ Ρ€Π°Π²Π΅Π½ Ο€ 2 . По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ скалярного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ([ a β†’ Γ— b β†’ ] , d β†’) = [ a β†’ Γ— b β†’ ] Β· d β†’ Β· cos Ο€ 2 = 0 .

Бвойства ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ умноТСния Ρ‡Π°Ρ‰Π΅ всСго Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ Π²ΠΎ врСмя Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡.
Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒ Π΄Π°Π½Π½ΡƒΡŽ Ρ‚Π΅ΠΌΡƒ, возьмСм нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΈ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ ΠΈΡ… Ρ€Π°ΡΠΏΠΈΡˆΠ΅ΠΌ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ равСнство ([ a β†’ Γ— b β†’ ] , d β†’ + Ξ» Β· a β†’ + b β†’) = ([ a β†’ Γ— b β†’ ] , d β†’) , Π³Π΄Π΅ Ξ» — Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число.

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ этого равСнства, слСдуСт ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π΅Π³ΠΎ Π»Π΅Π²ΡƒΡŽ Ρ‡Π°ΡΡ‚ΡŒ. Для этого Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈΠΌ свойством смСшанного произвСдСния, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ гласит:

([ a β†’ Γ— b β†’ ] , d β†’ + Ξ» Β· a β†’ + b β†’) = ([ a β†’ Γ— b β†’ ] , d β†’) + ([ a β†’ Γ— b β†’ ] , Ξ» Β· a β†’) + ([ a β†’ Γ— b β†’ ] , b β†’)
ΠœΡ‹ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ (([ a β†’ Γ— b β†’ ] , b β†’) = 0 . , d β†’) ≀ ≀ a β†’ Β· b β†’ Β· 1 Β· d β†’ Β· 1 = a β†’ Β· b β†’ Β· d β†’

НСравСнство Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ.

Π Π°Π·Π±ΠΎΡ€ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², слСдуСт Π·Π½Π°Ρ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌΡ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Для ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ a β†’ Β· b β†’ Β· d β†’ = (a β†’ Γ— b β†’ , d β†’) = a x a y a z b x b y b z d x d y d z .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3

Π’ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ прСдставлСны 3 Π²Π΅ΠΊΡ‚ΠΎΡ€Π° с Ρ‚Π°ΠΊΠΈΠΌΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ: a β†’ = (1 , — 2 , 3) , b β†’ (- 2 , 2 , 1) , d β†’ = (3 , — 2 , 5) . НСобходимо ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a β†’ Β· b β†’ Β· d β†’ .

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· Ρ‚Π΅ΠΎΡ€ΠΈΠΈ, прСдставлСнной Π²Ρ‹ΡˆΠ΅, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎΠΌ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ гласит, Ρ‡Ρ‚ΠΎ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ вычислСно Ρ‡Π΅Ρ€Π΅Π· ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹. Π­Ρ‚ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ Ρ‚Π°ΠΊ: a β†’ Β· b β†’ Β· d β†’ = (a β†’ Γ— b β†’ , d β†’) = a x a y a z b x b y b z d x d y d z = 1 — 2 3 — 2 2 1 3 — 2 5 = = 1 Β· 2 Β· 5 + (- 1) Β· 1 Β· 3 + 3 Β· (- 2) Β· (- 2) — 3 Β· 2 Β· 3 — (- 1) Β· (- 2) Β· 5 — 1 Β· 1 Β· (- 2) = — 7

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4

НСобходимо Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² i β†’ + j β†’ , i β†’ + j β†’ — k β†’ , i β†’ + j β†’ + 2 Β· k β†’ , Π³Π΄Π΅ i β†’ , j β†’ , k β†’ — ΠΎΡ€Ρ‚Ρ‹ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· условия, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ гласит, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° располоТСны Π² Π΄Π°Π½Π½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΌΠΎΠΆΠ½ΠΎ вывСсти ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹: i β†’ + j β†’ = (1 , 1 , 0) i β†’ + j β†’ — k β†’ = (1 , 1 , — 1) i β†’ + j β†’ + 2 Β· k β†’ = (1 , 1 , 2)

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, которая использовалась Π²Ρ‹ΡˆΠ΅
i β†’ + j β†’ Γ— (i β†’ + j β†’ — k β†’ , (i β†’ + j β†’ + 2 Β· k β†’) = 1 1 0 1 1 — 1 1 1 2 = 0 i β†’ + j β†’ Γ— (i β†’ + j β†’ — k β†’ , (i β†’ + j β†’ + 2 Β· k β†’) = 0

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, которая ΡƒΠΆΠ΅ извСстна, ΠΈ ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ. Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ этот тСзис Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5

Π’ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ располоТСны Ρ‚Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a β†’ , b β†’ ΠΈ d β†’ , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ пСрпСндикулярны ΠΌΠ΅ΠΆΠ΄Ρƒ собой. Они ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‚Ρ€ΠΎΠΉΠΊΡƒ, ΠΈΡ… Π΄Π»ΠΈΠ½Ρ‹ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ 4 , 2 ΠΈ 3 . НСобходимо ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ c β†’ = a β†’ Γ— b β†’ .

Богласно ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ умноТСния скалярных Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ€Π°Π²Π½ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρƒ умноТСния Π΄Π»ΠΈΠ½ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° косинус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.) = c β†’ Β· n p c β†’ d β†’ , Π³Π΄Π΅ n p c β†’ d β†’ — числовая проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° d β†’ Π½Π° Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° c β†’ = [ a β†’ Γ— b β†’ ] .

ΠΠ±ΡΠΎΠ»ΡŽΡ‚Π½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° n p c β†’ d β†’ равняСтся числу, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ являСтся Ρ€Π°Π²Π½ΠΎ высотС Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a β†’ , b β†’ ΠΈ d β†’ Π² качСствС сторон. Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· этого, слСдуСт ΡƒΡ‚ΠΎΡ‡Π½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ c β†’ = [ a β†’ Γ— b β†’ ] пСрпСндикулярСн a β†’ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ согласно ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ умноТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° c β†’ = a β†’ x b β†’ равняСтся ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… a β†’ ΠΈ b β†’ .

Π”Π΅Π»Π°Π΅ΠΌ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ произвСдСния a β†’ Β· b β†’ Β· d β†’ = c β†’ Β· n p c β†’ d β†’ Ρ€Π°Π²Π΅Π½ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρƒ умноТСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ основания Π½Π° высоту Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, которая построСна Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… a β†’ , b β†’ ΠΈ d β†’ .

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 4

ΠΠ±ΡΠΎΠ»ΡŽΡ‚Π½Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния являСтся объСмом ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° : V ΠΏ Π° Ρ€ Π° Π» Π» Π΅ Π» Π΅ ΠΏ ΠΈ ΠΏ ΠΈ Π΄ Π° = a β†’ Β· b β†’ Β· d β†’ .

Данная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΈ являСтся гСомСтричСским смыслом.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 5

ОбъСм тСтраэдра , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ построСн Π½Π° a β†’ , b β†’ ΠΈ d β†’ , равняСтся 1 / 6 объСма ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ, V Ρ‚ э Ρ‚ Ρ€ Π° э Π΄ Π° = 1 6 Β· V ΠΏ Π° Ρ€ Π° Π» Π» Π΅ Π» Π΅ ΠΏ ΠΈ ΠΏ ΠΈ Π΄ Π° = 1 6 Β· a β†’ Β· b β†’ Β· d β†’ .

Для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π·Π°ΠΊΡ€Π΅ΠΏΠΈΡ‚ΡŒ знания, Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ нСсколько Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ²

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 6

НСобходимо Π½Π°ΠΉΡ‚ΠΈ объСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, Π² качСствС сторон ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ A B β†’ = (3 , 6 , 3) , A C β†’ = (1 , 3 , — 2) , A A 1 β†’ = (2 , 2 , 2) , Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. ОбъСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΎΠ± Π°Π±ΡΠΎΠ»ΡŽΡ‚Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅. Из этого слСдуСт: A B β†’ Β· A C β†’ Β· A A 1 β†’ = 3 6 3 1 3 — 2 2 2 2 = 3 Β· 3 Β· 2 + 6 Β· (- 2) Β· 2 + 3 Β· 1 Β· 2 — 3 Β· 3 Β· 2 — 6 Β· 1 Β· 2 — 3 Β· (- 2) Β· 2 = — 18

Π’ΠΎΠ³Π΄Π°, V ΠΏ Π° Ρ€ Π° Π» Π» Π΅ Π» Π΅ ΠΏ ΠΈ ΠΏ Π΅ Π΄ Π° = — 18 = 18 .

V ΠΏ Π° Ρ€ Π° Π» Π» Π΅ Π» Π΅ ΠΏ ΠΈ ΠΏ ΠΈ Π΄ Π° = 18

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 7

Π’ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π·Π°Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ A (0 , 1 , 0) , B (3 , — 1 , 5) , C (1 , 0 , 3) , D (- 2 , 3 , 1) . Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ объСм тСтраэдра, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ располоТСн Π½Π° этих Ρ‚ΠΎΡ‡ΠΊΠ°Ρ….

Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ V Ρ‚ э Ρ‚ Ρ€ Π° э Π΄ Ρ€ Π° = 1 6 Β· A B β†’ Β· A C β†’ Β· A D β†’ . ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Ρ‚ΠΎΡ‡Π΅ΠΊ: A B β†’ = (3 — 0 , — 1 — 1 , 5 — 0) = (3 , — 2 , 5) A C β†’ = (1 — 0 , 0 — 1 , 3 — 0) = (1 , — 1 , 3) A D β†’ = (- 2 — 0 , 3 — 1 , 1 — 0) = (- 2 , 2 , 1)

Π”Π°Π»ΡŒΡˆΠ΅ опрСдСляСм смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ A B β†’ Β· A C β†’ Β· A D β†’ ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²: A B β†’ Β· A C β†’ Β· A D β†’ = 3 — 2 5 1 — 1 3 — 2 2 1 = 3 Β· (- 1) Β· 1 + (- 2) Β· 3 Β· (- 2) + 5 Β· 1 Β· 2 — 5 Β· (- 1) Β· (- 2) — (- 2) Β· 1 Β· 1 — 3 Β· 3 Β· 2 = — 7 ОбъСм V Ρ‚ э Ρ‚ Ρ€ Π° э Π΄ Ρ€ Π° = 1 6 Β· — 7 = 7 6 .

V Ρ‚ э Ρ‚ Ρ€ Π° э Π΄ Ρ€ Π° = 7 6 .

Если Π²Ρ‹ Π·Π°ΠΌΠ΅Ρ‚ΠΈΠ»ΠΈ ΠΎΡˆΠΈΠ±ΠΊΡƒ Π² тСкстС, поТалуйста, Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚Π΅ Π΅Ρ‘ ΠΈ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ Ctrl+Enter

Π‘ΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ (ΠΈΠ»ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎ-скалярным) ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a, b, c (взятых Π² ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ порядкС) называСтся скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ b x c , Ρ‚. Π΅. число a(b x c), ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎ ΠΆΠ΅, (b x c)a.
ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅: abc .

НазначСниС . Онлайн-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½ для вычислСния смСшанного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ сохраняСтся Π² Ρ„Π°ΠΉΠ»Π΅ Word . Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ создаСтся шаблон Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² Excel .

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ компланарности Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

Π’Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (ΠΈΠ»ΠΈ большСС число) Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹ΠΌΠΈ, Ссли ΠΎΠ½ΠΈ, Π±ΡƒΠ΄ΡƒΡ‡ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π½Π°Ρ‡Π°Π»Ρƒ, Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости.
Если хотя Π±Ρ‹ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² – Π½ΡƒΠ»Π΅Π²ΠΎΠΉ, Ρ‚ΠΎ Ρ‚Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‚ΠΎΠΆΠ΅ ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ΡΡ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹ΠΌΠΈ.

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ компланарности . Если систСма a, b, c – правая, Ρ‚ΠΎ abc>0 ; Ссли лСвая, Ρ‚ΠΎ abcГСомСтричСский смысл смСшанного произвСдСния . БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ abc Ρ‚Ρ€Π΅Ρ… Π½Π΅ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a, b, c Ρ€Π°Π²Π½ΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… a, b, c , взятому со Π·Π½Π°ΠΊΠΎΠΌ плюс, Ссли систСма a, b, c – правая, ΠΈ со Π·Π½Π°ΠΊΠΎΠΌ минус, Ссли эта систСма лСвая.

Бвойства смСшанного произвСдСния

  1. ΠŸΡ€ΠΈ ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠΉ пСрСстановкС сомноТитСлСй смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅ мСняСтся, ΠΏΡ€ΠΈ пСрСстановкС Π΄Π²ΡƒΡ… сомноТитСлСй – мСняСт Π·Π½Π°ΠΊ Π½Π° ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΉ: abc=bca=cab=-(bac)=-(cba)=-(acb)
    Π’Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΠ· гСомСтричСского смысла.
  2. (a+b)cd=acd+bcd (Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ свойство). РаспространяСтся Π½Π° любоС число слагаСмых.
    Π’Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΠ· опрСдСлСния смСшанного произвСдСния.
  3. (ma)bc=m(abc) (ΡΠΎΡ‡Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ свойство ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ скалярного мноТитСля).
    Π’Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΠ· опрСдСлСния смСшанного произвСдСния. Π­Ρ‚ΠΈ свойства ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΊ ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ произвСдСниям прСобразования, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠ΅ΡΡ ΠΎΡ‚ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… алгСбраичСских лишь Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Π½ΡΡ‚ΡŒ порядок сомноТитСлСй ΠΌΠΎΠΆΠ½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π·Π½Π°ΠΊΠ° произвСдСния.
  4. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π΅ хотя Π±Ρ‹ Π΄Π²Π° Ρ€Π°Π²Π½Ρ‹Ρ… сомноТитСля, Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ: aab=0 .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–1 . Найти смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ab(3a+2b-5c)=3aba+2abb-5abc=-5abc .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–2 . (a+b)(b+c)(c+a)= (axb+axc+bxb+bxc)(c+a)= (axb+axc +bxc)(c+a)=abc+acc+aca+aba+bcc+bca . ВсС Ρ‡Π»Π΅Π½Ρ‹, ΠΊΡ€ΠΎΠΌΠ΅ Π΄Π²ΡƒΡ… ΠΊΡ€Π°ΠΉΠ½ΠΈΡ…, Ρ€Π°Π²Π½Ρ‹ Π½ΡƒΠ»ΡŽ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, bca=abc . ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ (a+b)(b+c)(c+a)=2abc .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–3 . Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a=15i+20j+5k, b=2i-4j+14k, c=3i-6j+21k .
РСшСниС . Π§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ систСмы, составлСнной ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ систСму Π² Π²ΠΈΠ΄Π΅.

На Π΄Π°Π½Π½ΠΎΠΌ ΡƒΡ€ΠΎΠΊΠ΅ ΠΌΡ‹ рассмотрим Π΅Ρ‰Ρ‘ Π΄Π²Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ с Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ: Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (сразу ссылка, ΠΊΠΎΠΌΡƒ Π½ΡƒΠΆΠ½ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ΠΎ) . НичСго ΡΡ‚Ρ€Π°ΡˆΠ½ΠΎΠ³ΠΎ, Ρ‚Π°ΠΊ ΠΈΠ½ΠΎΠ³Π΄Π° Π±Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ для ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΡ‡Π°ΡΡ‚ΡŒΡ, ΠΏΠΎΠΌΠΈΠΌΠΎ скалярного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , трСбуСтся Π΅Ρ‰Ρ‘ ΠΈ Π΅Ρ‰Ρ‘. Вакая Π²ΠΎΡ‚ вСкторная наркомания. ΠœΠΎΠΆΠ΅Ρ‚ ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒΡΡ Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»Π΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ Π·Π°Π»Π΅Π·Π°Π΅ΠΌ Π² Π΄Π΅Π±Ρ€ΠΈ аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π­Ρ‚ΠΎ Π½Π΅ Ρ‚Π°ΠΊ. Π’ Π΄Π°Π½Π½ΠΎΠΌ Ρ€Π°Π·Π΄Π΅Π»Π΅ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ ΠΌΠ°Π»ΠΎ Π΄Ρ€ΠΎΠ², Ρ€Π°Π·Π²Π΅ Ρ‡Ρ‚ΠΎ Π½Π° Π‘ΡƒΡ€Π°Ρ‚ΠΈΠ½ΠΎ Ρ…Π²Π°Ρ‚ΠΈΡ‚. На самом Π΄Π΅Π»Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΎΡ‡Π΅Π½ΡŒ распространСнный ΠΈ простой – вряд Π»ΠΈ слоТнСС, Ρ‡Π΅ΠΌ Ρ‚ΠΎ ΠΆΠ΅ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ , Π΄Π°ΠΆΠ΅ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ помСньшС Π±ΡƒΠ΄Π΅Ρ‚. Π“Π»Π°Π²Π½ΠΎΠ΅ Π² аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, ΠΊΠ°ΠΊ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ убСдятся ΠΈΠ»ΠΈ ΡƒΠΆΠ΅ ΡƒΠ±Π΅Π΄ΠΈΠ»ΠΈΡΡŒ, НЕ ΠžΠ¨Π˜Π‘ΠΠ’Π¬Π‘Π― Π’ Π’Π«Π§Π˜Π‘Π›Π•ΠΠ˜Π―Π₯. ΠŸΠΎΠ²Ρ‚ΠΎΡ€ΡΠΉΡ‚Π΅ ΠΊΠ°ΠΊ Π·Π°ΠΊΠ»ΠΈΠ½Π°Π½ΠΈΠ΅, ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Π²Π°ΠΌ ΡΡ‡Π°ΡΡ‚ΡŒΠ΅ =)

Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΡΠ²Π΅Ρ€ΠΊΠ°ΡŽΡ‚ Π³Π΄Π΅-Ρ‚ΠΎ Π΄Π°Π»Π΅ΠΊΠΎ, ΠΊΠ°ΠΊ ΠΌΠΎΠ»Π½ΠΈΠΈ Π½Π° Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π΅, Π½Π΅ Π±Π΅Π΄Π°, Π½Π°Ρ‡Π½ΠΈΡ‚Π΅ с ΡƒΡ€ΠΎΠΊΠ° Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ для Ρ‡Π°ΠΉΠ½ΠΈΠΊΠΎΠ² , Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΈΠ»ΠΈ вновь приобрСсти Π±Π°Π·ΠΎΠ²Ρ‹Π΅ знания ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…. Π‘ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Π΅ Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π·Π½Π°ΠΊΠΎΠΌΠΈΡ‚ΡŒΡΡ с ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎ, я постарался ΡΠΎΠ±Ρ€Π°Ρ‚ΡŒ максимально ΠΏΠΎΠ»Π½ΡƒΡŽ ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΡŽ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π² практичСских Ρ€Π°Π±ΠΎΡ‚Π°Ρ…

Π§Π΅ΠΌ вас сразу ΠΏΠΎΡ€Π°Π΄ΠΎΠ²Π°Ρ‚ΡŒ? Когда я Π±Ρ‹Π» малСньким, Ρ‚ΠΎ ΡƒΠΌΠ΅Π» ΠΆΠΎΠ½Π³Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ двумя ΠΈ Π΄Π°ΠΆΠ΅ трСмя ΡˆΠ°Ρ€ΠΈΠΊΠ°ΠΌΠΈ. Π›ΠΎΠ²ΠΊΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΎΡΡŒ. БСйчас ΠΆΠΎΠ½Π³Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ придётся Π²ΠΎΠΎΠ±Ρ‰Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ пространствСнныС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , Π° плоскиС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ с двумя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ останутся Π·Π° Π±ΠΎΡ€Ρ‚ΠΎΠΌ. ΠŸΠΎΡ‡Π΅ΠΌΡƒ? Π’Π°ΠΊΠΈΠΌΠΈ ΡƒΠΆ Ρ€ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ Π΄Π°Π½Π½Ρ‹Π΅ дСйствия – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΈ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Π² Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС. Π£ΠΆΠ΅ ΠΏΡ€ΠΎΡ‰Π΅!

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² скалярном ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° . ΠŸΡƒΡΡ‚ΡŒ это Π±ΡƒΠ΄ΡƒΡ‚ Π½Π΅Ρ‚Π»Π΅Π½Π½Ρ‹Π΅ Π±ΡƒΠΊΠ²Ρ‹ .

Π‘Π°ΠΌΠΎ дСйствиС обозначаСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: . Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, Π½ΠΎ я ΠΏΡ€ΠΈΠ²Ρ‹ΠΊ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‚Π°ΠΊ, Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… скобках с крСстиком.

И сразу вопрос : Ссли Π² скалярном ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΈ здСсь Ρ‚ΠΎΠΆΠ΅ ΡƒΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ρ‚ΠΎΠ³Π΄Π° Π² Ρ‡Ρ‘ΠΌ Ρ€Π°Π·Π½ΠΈΡ†Π° ? Явная Ρ€Π°Π·Π½ΠΈΡ†Π°, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, Π² РЕЗУЛЬВАВЕ:

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ скалярного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π§Π˜Π‘Π›Πž:

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π’Π•ΠšΠ’ΠžΠ  : , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ снова Π²Π΅ΠΊΡ‚ΠΎΡ€. Π—Π°ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΉ ΠΊΠ»ΡƒΠ±. БобствСнно, ΠΎΡ‚ΡΡŽΠ΄Π° ΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π’ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΡƒΡ‡Π΅Π±Π½ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ обозначСния Ρ‚ΠΎΠΆΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ, я Π±ΡƒΠ΄Ρƒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π±ΡƒΠΊΠ²Ρƒ .

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния

Π‘Π½Π°Ρ‡Π°Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ с ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΎΠΉ, Π·Π°Ρ‚Π΅ΠΌ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΈ.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ : Π’Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , взятых Π² Π΄Π°Π½Π½ΠΎΠΌ порядкС , называСтся Π’Π•ΠšΠ’ΠžΠ  , Π΄Π»ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ числСнно Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° , построСнного Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…; Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ , ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ базис ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€Π°Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ:

Π Π°Π·Π±ΠΈΡ€Π°Π΅ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎ косточкам, Ρ‚ΡƒΡ‚ ΠΌΠ½ΠΎΠ³ΠΎ интСрСсного!

Π˜Ρ‚Π°ΠΊ, ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ сущСствСнныС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹:

1) Π˜ΡΡ…ΠΎΠ΄Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Π΅ красными стрСлками, ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ . Π‘Π»ΡƒΡ‡Π°ΠΉ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π±ΡƒΠ΄Π΅Ρ‚ умСстно Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡ΡƒΡ‚ΡŒ ΠΏΠΎΠ·ΠΆΠ΅.

2) Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ взяты Π² строго ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΌ порядкС : – Β«Π°Β» умноТаСтся Π½Π° «бэ» , Π° Π½Π΅ «бэ» Π½Π° Β«Π°Β». Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ умноТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π’Π•ΠšΠ’ΠžΠ  , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ синим Ρ†Π²Π΅Ρ‚ΠΎΠΌ. Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π² ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ порядкС, Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ€Π°Π²Π½Ρ‹ΠΉ ΠΏΠΎ Π΄Π»ΠΈΠ½Π΅ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€ (ΠΌΠ°Π»ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Ρ†Π²Π΅Ρ‚). Π’ΠΎ Π΅ΡΡ‚ΡŒ, справСдливо равСнство .

3) Π’Π΅ΠΏΠ΅Ρ€ΡŒ познакомимся с гСомСтричСским смыслом Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π­Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Ρ‹ΠΉ ΠΏΡƒΠ½ΠΊΡ‚! Π”Π›Π˜ΠΠ синСго Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Π°, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ ΠΌΠ°Π»ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ) числСнно Ρ€Π°Π²Π½Π° ΠŸΠ›ΠžΠ©ΠΠ”Π˜ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… . На рисункС Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Π½ Ρ‡Ρ‘Ρ€Π½Ρ‹ΠΌ Ρ†Π²Π΅Ρ‚ΠΎΠΌ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ : Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ являСтся схСматичСским, ΠΈ, СстСствСнно, номинальная Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π½Π΅ Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°.

ВспоминаСм ΠΎΠ΄Π½Ρƒ ΠΈΠ· гСомСтричСских Ρ„ΠΎΡ€ΠΌΡƒΠ»: ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ смСТных сторон Π½Π° синус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ . ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ, исходя ΠΈΠ· Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ, справСдлива Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния Π”Π›Π˜ΠΠ« Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠŸΠΎΠ΄Ρ‡Ρ‘Ρ€ΠΊΠΈΠ²Π°ΡŽ, Ρ‡Ρ‚ΠΎ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Ρ‘Ρ‚ ΠΎ Π”Π›Π˜ΠΠ• Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π° Π½Π΅ ΠΎ самом Π²Π΅ΠΊΡ‚ΠΎΡ€Π΅ . Каков практичСский смысл? А смысл Ρ‚Π°ΠΊΠΎΠ², Ρ‡Ρ‚ΠΎ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° часто находят Ρ‡Π΅Ρ€Π΅Π· понятиС Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π²Ρ‚ΠΎΡ€ΡƒΡŽ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ. Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° (красный ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€) Π΄Π΅Π»ΠΈΡ‚ Π΅Π³ΠΎ Π½Π° Π΄Π²Π° Ρ€Π°Π²Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… (красная ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠ°), ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

4) НС ΠΌΠ΅Π½Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ . РазумССтся, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ (малиновая стрСлка) Ρ‚ΠΎΠΆΠ΅ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ исходным Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ .

5) Π’Π΅ΠΊΡ‚ΠΎΡ€ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ базис ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€Π°Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ. На ΡƒΡ€ΠΎΠΊΠ΅ ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΊ Π½ΠΎΠ²ΠΎΠΌΡƒ базису я достаточно ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассказал ΠΎΠ± ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ плоскости , ΠΈ сСйчас ΠΌΡ‹ разбСрёмся, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ориСнтация пространства. ΠžΠ±ΡŠΡΡΠ½ΡΡ‚ΡŒ Π±ΡƒΠ΄Ρƒ Π½Π° ΠΏΠ°Π»ΡŒΡ†Π°Ρ… вашСй ΠΏΡ€Π°Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ . ΠœΡ‹ΡΠ»Π΅Π½Π½ΠΎ совмСститС ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Π»Π΅Ρ† с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΈ срСдний ΠΏΠ°Π»Π΅Ρ† с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ . БСзымянный ΠΏΠ°Π»Π΅Ρ† ΠΈ ΠΌΠΈΠ·ΠΈΠ½Π΅Ρ† ΠΏΡ€ΠΈΠΆΠΌΠΈΡ‚Π΅ ΠΊ Π»Π°Π΄ΠΎΠ½ΠΈ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ большой ΠΏΠ°Π»Π΅Ρ† – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π²Π²Π΅Ρ€Ρ…. Π­Ρ‚ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ базис (Π½Π° рисункС ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½). Π’Π΅ΠΏΠ΅Ρ€ΡŒ помСняйтС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ (ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ срСдний ΠΏΠ°Π»ΡŒΡ†Ρ‹ ) мСстами, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ большой ΠΏΠ°Π»Π΅Ρ† развСрнётся, ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡƒΠΆΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π²Π½ΠΈΠ·. Π­Ρ‚ΠΎ Ρ‚ΠΎΠΆΠ΅ ΠΏΡ€Π°Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ базис. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρƒ вас Π²ΠΎΠ·Π½ΠΈΠΊ вопрос: Π° ΠΊΠ°ΠΊΠΎΠΉ базис ΠΈΠΌΠ΅Π΅Ρ‚ Π»Π΅Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ? Β«ΠŸΡ€ΠΈΡΠ²ΠΎΠΉΡ‚Π΅Β» Ρ‚Π΅ΠΌ ΠΆΠ΅ ΠΏΠ°Π»ΡŒΡ†Π°ΠΌ Π»Π΅Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , ΠΈ ΠΏΠΎΠ»Π£Ρ‡ΠΈΡ‚Π΅ Π»Π΅Π²Ρ‹ΠΉ базис ΠΈ Π»Π΅Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ пространства (Π² этом случаС большой ΠΏΠ°Π»Π΅Ρ† располоТится ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ Π½ΠΈΠΆΠ½Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°) . ΠžΠ±Ρ€Π°Π·Π½ΠΎ говоря, Π΄Π°Π½Π½Ρ‹Π΅ базисы Β«Π·Π°ΠΊΡ€ΡƒΡ‡ΠΈΠ²Π°ΡŽΡ‚Β» ΠΈΠ»ΠΈ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‚ пространство Π² Ρ€Π°Π·Π½Ρ‹Π΅ стороны. И это понятиС Π½Π΅ слСдуСт ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‡Π΅ΠΌ-Ρ‚ΠΎ Π½Π°Π΄ΡƒΠΌΠ°Π½Π½Ρ‹ΠΌ ΠΈΠ»ΠΈ абстрактным – Ρ‚Π°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ пространства мСняСт самоС ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ΅ Π·Π΅Ρ€ΠΊΠ°Π»ΠΎ, ΠΈ Ссли Β«Π²Ρ‹Ρ‚Π°Ρ‰ΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π°ΠΆΡ‘Π½Π½Ρ‹ΠΉ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ ΠΈΠ· Π·Π°Π·Π΅Ρ€ΠΊΠ°Π»ΡŒΡΒ», Ρ‚ΠΎ Π΅Π³ΠΎ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС Π½Π΅ удастся ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΡ‚ΡŒ с Β«ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΠΎΠΌΒ». ΠšΡΡ‚Π°Ρ‚ΠΈ, поднСситС ΠΊ Π·Π΅Ρ€ΠΊΠ°Π»Ρƒ Ρ‚Ρ€ΠΈ ΠΏΠ°Π»ΡŒΡ†Π° ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅;-)

…как всё-Ρ‚Π°ΠΊΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠΎ, Ρ‡Ρ‚ΠΎ Π²Ρ‹ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π·Π½Π°Π΅Ρ‚Π΅ ΠΎ ΠΏΡ€Π°Π²ΠΎ- ΠΈ Π»Π΅Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… базисах, ΠΈΠ±ΠΎ ΡΡ‚Ρ€Π°ΡˆΠ½Π« высказывания Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎ смСнС ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ =)

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½ΠΎ, ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ Π²Ρ‹ΡΡΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ происходит, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹. Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой ΠΈ наш ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Ρ‚ΠΎΠΆΠ΅ «складываСтся» Π² ΠΎΠ΄Π½Ρƒ ΠΏΡ€ΡΠΌΡƒΡŽ. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Π°ΠΊΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ говорят ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Π²Ρ‹Ρ€ΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π­Ρ‚ΠΎ ΠΆΠ΅ слСдуСт ΠΈ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ – синус нуля ΠΈΠ»ΠΈ 180-Ρ‚ΠΈ градусов Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ нулСвая

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ссли , Ρ‚ΠΎ . Π‘Ρ‚Ρ€ΠΎΠ³ΠΎ говоря, само Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ, Π½ΠΎ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ этим часто ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Π³Π°ΡŽΡ‚ ΠΈ ΠΏΠΈΡˆΡƒΡ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΎ просто Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

Частный случай – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° самого сСбя:

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡ‚ΡŒ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΎΡΡ‚ΡŒ Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΈ Π΄Π°Π½Π½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ срСди ΠΏΡ€ΠΎΡ‡ΠΈΡ… ΠΌΡ‹ Ρ‚ΠΎΠΆΠ΅ Ρ€Π°Π·Π±Π΅Ρ€Ρ‘ΠΌ.

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ практичСских ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒΡΡ тригономСтричСская Ρ‚Π°Π±Π»ΠΈΡ†Π° , Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΠΎ Π½Π΅ΠΉ значСния синусов.

Ну Ρ‡Ρ‚ΠΎ ΠΆΠ΅, Ρ€Π°Π·ΠΆΠΈΠ³Π°Π΅ΠΌ огонь:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Π°) Найти Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , Ссли

Π±) Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

РСшСниС : НСт, это Π½Π΅ ΠΎΠΏΠ΅Ρ‡Π°Ρ‚ΠΊΠ°, исходныС Π΄Π°Π½Π½Ρ‹Π΅ Π² ΠΏΡƒΠ½ΠΊΡ‚Π°Ρ… условия я Π½Π°ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎ сдСлал ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ. ΠŸΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½ΠΈΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ!

Π°) По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ трСбуСтся Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния). По ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

ΠžΡ‚Π²Π΅Ρ‚ :

Коль скоро ΡΠΏΡ€Π°ΡˆΠΈΠ²Π°Π»ΠΎΡΡŒ ΠΎ Π΄Π»ΠΈΠ½Π΅, Ρ‚ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚Π΅ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ – Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.

Π±) По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… . ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° числСнно Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠžΡ‚Π²Π΅Ρ‚ :

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚Π΅ ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Ρ€Π΅Ρ‡ΠΈ Π½Π΅ ΠΈΠ΄Ρ‘Ρ‚ Π²ΠΎΠΎΠ±Ρ‰Π΅, нас ΡΠΏΡ€Π°ΡˆΠΈΠ²Π°Π»ΠΈ ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ , соотвСтствСнно, Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ – ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.

ВсСгда смотрим, ЧВО трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ, ΠΈ, исходя ΠΈΠ· этого, Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌ Ρ‡Ρ‘Ρ‚ΠΊΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‚. ΠœΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ буквоСдством, Π½ΠΎ Π±ΡƒΠΊΠ²ΠΎΠ΅Π΄ΠΎΠ² срСди ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ…Π²Π°Ρ‚Π°Π΅Ρ‚, ΠΈ Π·Π°Π΄Π°Π½ΠΈΠ΅ с Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌΠΈ шансами вСрнётся Π½Π° Π΄ΠΎΡ€Π°Π±ΠΎΡ‚ΠΊΡƒ. Π₯отя это Π½Π΅ особо натянутая ΠΏΡ€ΠΈΠ΄ΠΈΡ€ΠΊΠ° – Ссли ΠΎΡ‚Π²Π΅Ρ‚ Π½Π΅ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π΅Π½, Ρ‚ΠΎ складываСтся Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»Π΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ Π½Π΅ разбираСтся Π² простых Π²Π΅Ρ‰Π°Ρ… ΠΈ/ΠΈΠ»ΠΈ Π½Π΅ Π²Π½ΠΈΠΊ Π² ΡΡƒΡ‚ΡŒ задания. Π­Ρ‚ΠΎΡ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚ всСгда Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ Π½Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅, Ρ€Π΅ΡˆΠ°Ρ Π»ΡŽΠ±ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΏΠΎ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Π΄Π° ΠΈ ΠΏΠΎ Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°ΠΌ Ρ‚ΠΎΠΆΠ΅.

ΠšΡƒΠ΄Π° подСвалась большая Π±ΡƒΠΊΠΎΠ²ΠΊΠ° «эн»? Π’ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅, Π΅Ρ‘ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈΠ»Π΅ΠΏΠΈΡ‚ΡŒ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, Π½ΠΎ Π² цСлях ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ запись, я этого Π½Π΅ сдСлал. НадСюсь, всСм понятно, Ρ‡Ρ‚ΠΎ ΠΈ – это ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅.

ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

Π€ΠΎΡ€ΠΌΡƒΠ»Π° нахоТдСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π° Π² коммСнтариях ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ. РСшСниС ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΊΠΎΠ½Ρ†Π΅ ΡƒΡ€ΠΎΠΊΠ°.

На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π·Π°Π΄Π°Ρ‡Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ‡Π΅Π½ΡŒ распространСна, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π·Π°ΠΌΡƒΡ‡ΠΈΡ‚ΡŒ.

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡ Π½Π°ΠΌ понадобятся:

Бвойства Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

НСкоторыС свойства Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния ΠΌΡ‹ ΡƒΠΆΠ΅ рассмотрСли, Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, я ΠΈΡ… Π²ΠΊΠ»ΡŽΡ‡Ρƒ Π² Π΄Π°Π½Π½Ρ‹ΠΉ список.

Для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ числа справСдливы ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ свойства:

1) Π’ Π΄Ρ€ΡƒΠ³ΠΈΡ… источниках ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΡƒΠ½ΠΊΡ‚ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π΅ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Π² свойствах, Π½ΠΎ ΠΎΠ½ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ΅Π½ Π² практичСском ΠΏΠ»Π°Π½Π΅. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡƒΡΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚.

2) – свойство Ρ‚ΠΎΠΆΠ΅ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½ΠΎ Π²Ρ‹ΡˆΠ΅, ΠΈΠ½ΠΎΠ³Π΄Π° Π΅Π³ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π°Π½Ρ‚ΠΈΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ . Π˜Π½Ρ‹ΠΌΠΈ словами, порядок Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

3) – ΡΠΎΡ‡Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ ассоциативныС Π·Π°ΠΊΠΎΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. ΠšΠΎΠ½ΡΡ‚Π°Π½Ρ‚Ρ‹ Π±Π΅Π·ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ½ΠΎ выносятся Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‡Π΅Π³ΠΎ ΠΈΠΌ Ρ‚Π°ΠΌ Π΄Π΅Π»Π°Ρ‚ΡŒ?

4) – Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ дистрибутивныС Π·Π°ΠΊΠΎΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π‘ раскрытиСм скобок Ρ‚ΠΎΠΆΠ΅ Π½Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ.

Π’ качСствС дСмонстрации рассмотрим ΠΊΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒΠΊΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3

Найти , Ссли

РСшСниС: По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ снова трСбуСтся Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. РаспишСм Π½Π°ΡˆΡƒ ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Ρƒ:

(1) Богласно ассоциативным Π·Π°ΠΊΠΎΠ½Π°ΠΌ, выносим константы Π·Π° ΠΏΠ΅Ρ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния.

(2) Выносим константу Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ модуля, ΠΏΡ€ΠΈ этом ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Β«ΡΡŠΠ΅Π΄Π°Π΅Ρ‚Β» Π·Π½Π°ΠΊ «минус». Π”Π»ΠΈΠ½Π° ΠΆΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ.

(3) Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅Π΅ понятно.

ΠžΡ‚Π²Π΅Ρ‚ :

ΠŸΠΎΡ€Π° ΠΏΠΎΠ΄Π±Ρ€ΠΎΡΠΈΡ‚ΡŒ Π΄Ρ€ΠΎΠ² Π² огонь:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

РСшСниС : ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π°ΠΉΠ΄Ρ‘ΠΌ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ . Π—Π°Π³Π²ΠΎΠ·Π΄ΠΊΠ° состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ «цэ» ΠΈ «дэ» сами прСдставлСны Π² Π²ΠΈΠ΄Π΅ сумм Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Алгоритм здСсь стандартСн ΠΈ Ρ‡Π΅ΠΌ-Ρ‚ΠΎ Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ β„– 3 ΠΈ 4 ΡƒΡ€ΠΎΠΊΠ° БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² . РСшСниС для ясности Ρ€Π°Π·ΠΎΠ±ΡŒΡ‘ΠΌ Π½Π° Ρ‚Ρ€ΠΈ этапа:

1) На ΠΏΠ΅Ρ€Π²ΠΎΠΌ шагС Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ , ΠΏΠΎ сути, Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€ . О Π΄Π»ΠΈΠ½Π°Ρ… ΠΏΠΎΠΊΠ° Π½ΠΈ слова!

(1) ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ выраТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² .

(2) Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ дистрибутивныС Π·Π°ΠΊΠΎΠ½Ρ‹, раскрываСм скобки ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ умноТСния ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠ².

(3) Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ассоциативныС Π·Π°ΠΊΠΎΠ½Ρ‹, выносим всС константы Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ. ΠŸΡ€ΠΈ маломальском ΠΎΠΏΡ‹Ρ‚Π΅ дСйствия 2 ΠΈ 3 ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ.

(4) ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΠΈ послСднСС слагаСмоС Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ (Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ) благодаря приятному свойству . Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ слагаСмом ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ свойство антикоммутативности Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

(5) ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ слагаСмыС.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ оказался Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€, Ρ‡Π΅Π³ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ:

2) На Π²Ρ‚ΠΎΡ€ΠΎΠΌ шагС Π½Π°ΠΉΠ΄Π΅ΠΌ Π΄Π»ΠΈΠ½Ρƒ Π½ΡƒΠΆΠ½ΠΎΠ³ΠΎ Π½Π°ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π”Π°Π½Π½ΠΎΠ΅ дСйствиС Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3:

3) Найдём ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ искомого Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°:

Π­Ρ‚Π°ΠΏΡ‹ 2-3 Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ ΠΎΡ„ΠΎΡ€ΠΌΠΈΡ‚ΡŒ ΠΈ ΠΎΠ΄Π½ΠΎΠΉ строкой.

ΠžΡ‚Π²Π΅Ρ‚ :

РассмотрСнная Π·Π°Π΄Π°Ρ‡Π° достаточно распространСна Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚Π°Ρ…, Π²ΠΎΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5

Найти , Ссли

ΠšΡ€Π°Ρ‚ΠΊΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΊΠΎΠ½Ρ†Π΅ ΡƒΡ€ΠΎΠΊΠ°. ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ, насколько Π²Ρ‹ Π±Ρ‹Π»ΠΈ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ²;-)

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… , Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… Π² ΠΎΡ€Ρ‚ΠΎΠ½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ базисС , выраТаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ :

Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΈ ΠΏΡ€Π°Π²Π΄Π° простСцкая: Π² Π²Π΅Ρ€Ρ…Π½ΡŽΡŽ строку опрСдСлитСля записываСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹, Π²ΠΎ Π²Ρ‚ΠΎΡ€ΡƒΡŽ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ строки Β«ΡƒΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌΒ» ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ ΡƒΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌ Π² строгом порядкС – сначала ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° «вэ», Π·Π°Ρ‚Π΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Β«Π΄ΡƒΠ±Π»ΡŒ-вэ». Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½ΡƒΠΆΠ½ΠΎ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π² Π΄Ρ€ΡƒΠ³ΠΎΠΌ порядкС, Ρ‚ΠΎ ΠΈ строки слСдуСт ΠΏΠΎΠΌΠ΅Π½ΡΡ‚ΡŒ мСстами:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 10

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, Π±ΡƒΠ΄ΡƒΡ‚ Π»ΠΈ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ пространства:
Π°)
Π±)

РСшСниС : ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° основана Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠΉ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΡ€ΠΎΠΊΠ°: Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ (Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ): .

Π°) Найдём Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹.

Π±) Найдём Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:

ΠžΡ‚Π²Π΅Ρ‚ : Π°) Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Π±)

Π’ΠΎΡ‚, ΠΏΠΎΠΆΠ°Π»ΡƒΠΉ, ΠΈ всС основныС свСдСния ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

Π”Π°Π½Π½Ρ‹ΠΉ Ρ€Π°Π·Π΄Π΅Π» Π±ΡƒΠ΄Π΅Ρ‚ Π½Π΅ ΠΎΡ‡Π΅Π½ΡŒ большим, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‡, Π³Π΄Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ. ЀактичСски всё Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠΏΠΈΡ€Π°Ρ‚ΡŒΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, гСомСтричСский смысл ΠΈ ΠΏΠ°Ρ€Ρƒ Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ».

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² – это ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Ρ‘Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² :

Π’ΠΎΡ‚ Ρ‚Π°ΠΊ Π²ΠΎΡ‚ ΠΎΠ½ΠΈ Π²Ρ‹ΡΡ‚Ρ€ΠΎΠΈΠ»ΠΈΡΡŒ ΠΏΠ°Ρ€ΠΎΠ²ΠΎΠ·ΠΈΠΊΠΎΠΌ ΠΈ ΠΆΠ΄ΡƒΡ‚, Π½Π΅ доТдутся, ΠΊΠΎΠ³Π΄Π° ΠΈΡ… вычислят.

Π‘Π½Π°Ρ‡Π°Π»Π° ΠΎΠΏΡΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ°:

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ : Π‘ΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , взятых Π² Π΄Π°Π½Π½ΠΎΠΌ порядкС , называСтся ΠΎΠ±ΡŠΡ‘ΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° , построСнного Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…, снабТённый Π·Π½Π°ΠΊΠΎΠΌ Β«+Β», Ссли базис ΠΏΡ€Π°Π²Ρ‹ΠΉ, ΠΈ Π·Π½Π°ΠΊΠΎΠΌ «–», Ссли базис Π»Π΅Π²Ρ‹ΠΉ.

Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌ рисунок. НСвидимыС Π½Π°ΠΌ Π»ΠΈΠ½ΠΈΠΈ ΠΏΡ€ΠΎΡ‡Π΅Ρ€Ρ‡Π΅Π½Ρ‹ ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€ΠΎΠΌ:

ΠŸΠΎΠ³Ρ€ΡƒΠΆΠ°Π΅ΠΌΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅:

2) Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ взяты Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΌ порядкС , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ пСрСстановка Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ , ΠΊΠ°ΠΊ Π²Ρ‹ Π΄ΠΎΠ³Π°Π΄Ρ‹Π²Π°Π΅Ρ‚Π΅ΡΡŒ, Π½Π΅ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Π±Π΅Π· послСдствий.

3) ΠŸΠ΅Ρ€Π΅Π΄ Ρ‚Π΅ΠΌ, ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ гСомСтричСский смысл, ΠΎΡ‚ΠΌΠ΅Ρ‡Ρƒ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚: смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π§Π˜Π‘Π›ΠžΠœ : . Π’ ΡƒΡ‡Π΅Π±Π½ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ нСсколько Π΄Ρ€ΡƒΠ³ΠΈΠΌ, я ΠΏΡ€ΠΈΠ²Ρ‹ΠΊ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· , Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычислСний Π±ΡƒΠΊΠ²ΠΎΠΉ «пэ».

По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ – это объСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° , построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… (Ρ„ΠΈΠ³ΡƒΡ€Π° ΠΏΡ€ΠΎΡ‡Π΅Ρ€Ρ‡Π΅Π½Π° красными Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈ линиями Ρ‡Ρ‘Ρ€Π½ΠΎΠ³ΠΎ Ρ†Π²Π΅Ρ‚Π°). Π’ΠΎ Π΅ΡΡ‚ΡŒ, число Ρ€Π°Π²Π½ΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ : Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ являСтся схСматичСским.

4) НС Π±ΡƒΠ΄Π΅ΠΌ Π·Π°Π½ΠΎΠ²ΠΎ ΠΏΠ°Ρ€ΠΈΡ‚ΡŒΡΡ с понятиСм ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ базиса ΠΈ пространства. Бмысл Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ части состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΊ ΠΎΠ±ΡŠΡ‘ΠΌΡƒ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΠ±Π°Π²Π»ΡΡ‚ΡŒΡΡ Π·Π½Π°ΠΊ минус. ΠŸΡ€ΠΎΡΡ‚Ρ‹ΠΌΠΈ словами, смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ: .

НСпосрСдствСнно ΠΈΠ· опрСдСлСния слСдуСт Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния объСма ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… .

Π”Π°Π½Π½Ρ‹ΠΉ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ вычисляСт смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². ДаСтся ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. Для вычислСния смСшанного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ способ прСдставлСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ ΠΈΠ»ΠΈ ΠΏΠΎ Π΄Π²ΡƒΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ) Π²Π²Π΅Π΄ΠΈΡ‚Π΅ Π΄Π°Π½Π½Ρ‹Π΅ Π² ячСйки ΠΈ Π½Π°ΠΆΠΈΠΌΠ°ΠΉΡ‚Π΅ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡƒ «Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ.»

Γ—

ΠŸΡ€Π΅Π΄ΡƒΠΏΡ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅

ΠžΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ всС ячСйки?

Π—Π°ΠΊΡ€Ρ‹Ρ‚ΡŒ ΠžΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ

Π˜Π½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ Π²Π²ΠΎΠ΄Π° Π΄Π°Π½Π½Ρ‹Ρ…. Числа вводятся Π² Π²ΠΈΠ΄Π΅ Ρ†Π΅Π»Ρ‹Ρ… чисСл (ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹: 487, 5, -7623 ΠΈ Ρ‚.Π΄.), дСсятичных чисСл (Π½Π°ΠΏΡ€. 67., 102.54 ΠΈ Ρ‚.Π΄.) ΠΈΠ»ΠΈ Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π”Ρ€ΠΎΠ±ΡŒ Π½ΡƒΠΆΠ½ΠΎ Π½Π°Π±ΠΈΡ€Π°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ a/b, Π³Π΄Π΅ a ΠΈ b (b>0) Ρ†Π΅Π»Ρ‹Π΅ ΠΈΠ»ΠΈ дСсятичныС числа. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ 45/5, 6.6/76.4, -7/6.7 ΠΈ Ρ‚.Π΄.

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (тСория)

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² это число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ получаСтся ΠΏΡ€ΠΈ скалярном ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, Ссли Π·Π°Π΄Π°Π½Ρ‹ Ρ‚Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a, b ΠΈ c , Ρ‚ΠΎ для получСния смСшанного произвСдСния этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², сначала Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎ ΡƒΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ [ab ] скалярно умноТаСтся Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ c .

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a, b ΠΈ c обозначаСтся Ρ‚Π°ΠΊ: abc ΠΈΠ»ΠΈ Ρ‚Π°ΠΊ (a,b,c ). Π’ΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ:

ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΡΡ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΡƒΡŽ гСомСтричСский смысл смСшанного произвСдСния, ΠΎΠ·Π½Π°ΠΊΠΎΠΌΡŒΡ‚Π΅ΡΡŒ с понятиями правая Ρ‚Ρ€ΠΎΠΉΠΊΠ°, лСвая Ρ‚Ρ€ΠΎΠΉΠΊΠ°, правая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, лСвая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (опрСдСлСния 2, 2″ ΠΈ 3 Π½Π° страницС Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎΠ½Π»Π°ΠΉΠ½).

Для опрСдСлСнности, Π² дальнСйшСм ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€Π°Π²Ρ‹Π΅ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 1. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ([ab ],c ) Ρ€Π°Π²Π½ΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΈΠΏΠ΅Π΄Π°, построСнного Π½Π° ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π½Π°Ρ‡Π°Π»Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… a, b, c , взятому со Π·Π½Π°ΠΊΠΎΠΌ плюс, Ссли Ρ‚Ρ€ΠΎΠΉΠΊΠ° a, b, c правая, ΠΈ со Π·Π½Π°ΠΊΠΎΠΌ минус, Ссли Ρ‚Ρ€ΠΎΠΉΠΊΠ° a, b, c лСвая. Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ a, b, c ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ ([ab ],c ) Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

БлСдствиС 1. Π˜ΠΌΠ΅Π΅Ρ‚ мСсто ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ равСнство:

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°ΠΌ достаточно Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ

([ab ],c )=([bc ],a )(3)

Из выраТСния (3) Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ лСвая ΠΈ правая Ρ‡Π°ΡΡ‚ΡŒ Ρ€Π°Π²Π½Ρ‹ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΈΠΏΠ΅Π΄Π°. Но ΠΈ Π·Π½Π°ΠΊΠΈ ΠΏΡ€Π°Π²ΠΎΠΉ ΠΈ Π»Π΅Π²ΠΎΠΉ частСй ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Ρ€ΠΎΠΉΠΊΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² abc ΠΈ bca ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ.

Π”ΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ равСнство (1) позволяСт Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a, b, c просто Π² Π²ΠΈΠ΄Π΅ abc , Π½Π΅ указывая, ΠΊΠ°ΠΊΠΈΠ΅ ΠΈΠΌΠ΅Π½Π½ΠΎ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π΄Π²Π° ΠΈΠ»ΠΈ послСдниС Π΄Π²Π°.

БлСдствиС 2. НСобходимым ΠΈ достаточным условиСм компланарности Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся равСнство Π½ΡƒΠ»ΡŽ ΠΈΡ… смСшанного произвСдСния.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΠ· Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 1. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ. ΠžΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅, Ссли смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ ΠΈΠ· Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 1 Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½ΠΎΡΡ‚ΡŒ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ объСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΈΠΏΠ΅Π΄Π°, построСнного Π½Π° ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π½Π°Ρ‡Π°Π»Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ).

БлСдствиС 3. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π΄Π²Π° ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ. Если Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ· Ρ‚Ρ€Π΅Ρ… ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ…

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 2. ΠŸΡƒΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a, b ΠΈ c ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ своими Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ΠΌΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ abc Ρ€Π°Π²Π½ΠΎ скалярному ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² [ab ] ΠΈ c . Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² [ab ] Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… вычисляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ ():

ПослСднСС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка:

Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈ достаточно равСнство Π½ΡƒΠ»ΡŽ опрСдСлитСля, строки ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ρ‚.Π΅:

.(7)

Для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° слСдствия достаточно Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (4) ΠΈ слСдствиС 2.

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ…

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Найти смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² abс , Π³Π΄Π΅

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a, b, c Ρ€Π°Π²Π΅Π½ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ L . Вычислим ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ L , Ρ€Π°Π·Π»ΠΎΠΆΠΈΠ² ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ ΠΏΠΎ строкС 1:

ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a .

ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² — прСзСнтация ΠΎΠ½Π»Π°ΠΉΠ½

5.4. Π”Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Π° систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅)
ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΡƒΡŽ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
3a
Найти Π²Π΅ΠΊΡ‚ΠΎΡ€ c = 3a — 2b, Π³Π΄Π΅ a = (2; 3; 1), b = (4; -2; 7)
3a-2b
a
b
2b
c = 3a — 2b = 3*(2; 3; 1) — 2*(4; -2; 7) = (6; 9; 3) + (-8; 4; -14) = (-2; 13; -11)
ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°
z
z
Найти ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° AB, Π³Π΄Π΅ A (2; 1; 0), B (3; 4; -5)
Π’
A
B
AB = (3-2; 4-1; -5-0) = (1; 3; -5)
AB 12 32 ( 5)2 35
А
ΠΈΠ»ΠΈ
AB (3 2) (4 1) ( 5 0) 35
2
2
2
ko
x
x
iО j
y
y
ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ косинусы
ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a Ρ€Π°Π²Π΅Π½ 5. Π‘ осями ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ox, Oy ΠΎΠ½ ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ ΡƒΠ³Π»Ρ‹
60 ΠΈ 90 градусов соотвСтствСнно. Найти Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹.
cos2 cos2 cos2 1
2
1
2 1 2
2
a 5, 60 , 45 ,cos ,cos
,
cos 1
2
2 2 2
1 1 1
1
2
z
cos 1 cos
4 2 4
2
z
2
0
0
1
ax a cos 5 2,5;
2
2
a y a cos 5
2,5 2;
2
1
az a cos 5 2,5
2
М
x
x
О
y
y
ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ²
Найти Π΄Π»ΠΈΠ½Ρƒ ΠΌΠ΅Π΄ΠΈΠ°Π½Ρ‹ CD Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ
A(-1;2;5), B(3;0;1), C(2;3;4).
x A x B 1 3
xD
1
2
2
y yB 2 0
yD A
1
2
2
z A zB 5 1
zD
3
2
2
D(1;1;3)
Π‘
CD (1 2;1 3; 3 4) ( 1; 2; 1)
CD 1 4 1 6
Π’
А
D

4. 6.1. БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

Бкалярным ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² называСтся число, Ρ€Π°Π²Π½ΠΎΠ΅
ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° косинус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.
a b a b cos ab
a
b
БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅
a xa , ya , za ,
b xb , yb , zb
Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ для Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ случая
a b xa xb ya yb za zb
cos cos cos sin sin
cos cos cos cos 90o cos 90o
ya
xa xb ya yb
cos ab cos
a b a b
yb
xa xb ya yb
a b cos ab a b
a b a b
xa
xb
Π’Π°Π±Π»ΠΈΡ†Π° скалярного умноТСния Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ…
.
i
j
k
i
1
0
0
j
0
1
0
k
0
0
1
Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ a ΠΈ b Π² Π²ΠΈΠ΄Π΅ суммы ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚:
a ax i a y j az k ; b bx i by j bz k
Π’ΠΎΠ³Π΄Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойство 3
(Π±ΡƒΠ΄Π΅Ρ‚ дальшС):
ab axbx ii + axby ij + axbz ik +
+ a y bx ji + a y by jj + a ybz jk +
+ az bx ki + az by kj + az bz kk
И, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:
ab axbx + a yby + az bz
Бвойства скалярного произвСдСния.
1. a b b a
2. ( a) b (a b)
a b
5. cos
a b
Из опрСдСлСния скалярного произвСдСния
3. a (b c) a b a c
4. a b a ΠΏΡ€a b b ΠΏΡ€b a
Из свойств скалярной ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ
2
6. a a a a
2
7. a b a b 0
НСкоторыС ΠΈΠ· свойств Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… (пригодится Π² Π·Π°Π΄Π°Ρ‡ΠΊΠ°Ρ…)
УсловиС ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ (ΠΈΠ· свойства 7):
axbx a yby az bz 0
Или, Π² Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠΌ случаС:
axbx a yby 0
ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (ΠΈΠ· свойства 6):
a a ax2 a y2 az2
2
2
a ax2 a y2 az2
Π£Π³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ (ΠΈΠ· свойства 5):
axbx a y by az bz
ab
cos
ab
ax2 a y2 az2 bx2 by2 bz2
ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ (ΠΈΠ· свойства 4):
ab ab axbx a y by az bz
Γ― Γ°ba a cos a
ab
b
bx2 by2 bz2
Π“Π΄Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:
(1) Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ модуля Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ»ΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°;
(2) Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ;
(3) использованиС условия ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²;
(4) Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€;
(5) Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ физичСского содСрТания.
ЀизичСскиС прилоТСния
ВычислСниС Ρ€Π°Π±ΠΎΡ‚Ρ‹:
A F s F s cos
← Π’ Ρ‡Ρ‘ΠΌ ошибка?
ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ:
Γ― Γ°s F Γ° Γ― Γ°s F ΓΉ Γ― Γ°s F Γ« 0
ΠΈΠ»ΠΈ:
F Γ° cos Γ° F ΓΉ cos ΓΉ F Γ« cos Γ« 0
6.2. Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅
упорядочСнная Ρ‚Ρ€ΠΎΠΉΠΊΠ° Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΡƒΠΊΠ°Π·Π°Π½ порядок слСдования
с
с
Π°
b
Π°
правая
Π’Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²
Ρ‚Π°ΠΊΠΎΠΉ, Ρ‡Ρ‚ΠΎ
b
лСвая
a ΠΈ b называСтся Π²Π΅ΠΊΡ‚ΠΎΡ€ a b
a b a b sin
a b a ΠΈ a b b
a, b, a b правая
a b
b
a
a b [ a, b]
Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅
a xa , ya , za ,
i j k
b xb , yb , zb c a b x y z
a
a a
a b a xa xc ya yc za zc 0
xb yb zb
a b b xb xc yb yc zb zc 0
xa yb xb ya
xc
yc
xc z a yb z b y a
xa ya
za
x
y
z
a
a
a
zc
zc
zc
xc
yc
x
y
z
b
b
b
xb yb
zb
yc xa zb xb za
zc
zc
zc
xc za yb zb ya yc xa zb xb za
,
zc
xa yb xb ya zc
xa yb xb ya
xc za yb zb ya ,
yc xa zb xb za
zc xa yb xb ya
ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚ΠΎ ΠΆΠ΅ самоС, ΠΏΠΎΠ»ΡŒΠ·ΡƒΡΡΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ умноТСния:
x
i
j
k
i
0
k
-j
j
-k
0
i
k
j
-i
0
Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ a ΠΈ b Π² Π²ΠΈΠ΄Π΅ суммы ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚:
a ax i a y j az k ; b bx i by j bz k
Π’ΠΎΠ³Π΄Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойство 3
(Π±ΡƒΠ΄Π΅Ρ‚ дальшС):
a b ax i a y j az k bx i by j bz k
ax bx i i + ax by i j + ax bz i k +
+ a y bx j i + a y by j j + a y bz j k +
И, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ,
ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:
+ az bx k i + az by k j + az bz k k
a b a y bz az by i — ax bz az bx j + ax by a y bx k
Π§Ρ‚ΠΎ, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, сворачиваСтся Π² сумму ΠΌΠΈΠ½ΠΎΡ€ΠΎΠ²:
a b
ay
az
by
bz
i-
ax
az
bx
bz
j+
ax
ay
bx
by
k
которая являСтся Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ опрСдСлитСля 3-Π³ΠΎ порядка, Ρ‚.Π΅.
i
j
k
a b ax
ay
az
bx
by
bz
Бвойства Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния.
1. a b b a
2. ( a) b (a b)
3. a (b c) a b a c
b
4.
a b Sab
5. a || b a b 0
6. a a 0
a
НСкоторыС ΠΈΠ· свойств Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… (пригодится Π² Π·Π°Π΄Π°Ρ‡ΠΊΠ°Ρ…)
УсловиС колинСарности Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (ΠΈΠ· свойства 5):
a || b a b 0
Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ всС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ€Π°Π²Π½Ρ‹ Π½ΡƒΠ»ΡŽ:
a y bz az by 0; ax bz az bx 0; ax by a y bx 0
a y bz az by ; ax bz az bx ; ax by a y bx
ay
a
z;
by bz
ax az
;
bx bz
ax a y
bx by
ΠΈΠ»ΠΈ
ax a y az
bx by bz
Ρ‚.Π΅. ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠΎΠ»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹.
ВычислСниС ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° (ΠΈΠ· свойства 4):
SΓ― Γ Γ° a b
b
S Γ²Γ°
a
a b
ay
az
by
bz
i
ax
az
bx
bz
j
1
a b
2
ax
ay
bx
by
k M 11i M 12 j M 13 k
Π’ΠΎΠ³Π΄Π°:
SΓ― Γ Γ° M M M
2
11
2
12
2
13
S Γ²Γ°
1
M 112 M 122 M 132
2
Π“Π΄Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:
(1) вычислСниС ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ Ρ„ΠΈΠ³ΡƒΡ€,
ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π½Π° Π½ΠΈΡ… Ρ€Π°Π·Π±ΠΈΡ‚ΡŒ;
(2) Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ модуля Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ»ΠΈ Π΄Π»ΠΈΠ½Ρ‹ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°;
(3) Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ гСомСтричСскиС Π·Π°Π΄Π°Ρ‡ΠΈ, связанныС с ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ,
Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, вычислСниС высоты ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°;
(4) использованиС условия колинСарности Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²;
(5) Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ физичСского содСрТания, связанныС с ΠΌΠΎΠΌΠ΅Π½Ρ‚ΠΎΠΌ
силы ΠΈ Ρ‚.ΠΏ.
ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°
Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… p ΠΈ q:
p = 2a+b, q = 3a — 2b, |a| = 2, |b| = 3, ΡƒΠ³ΠΎΠ» (a, b) = Ο€/3.
1
p q
2
p q (2a b) (3a 2b) 6a a 4a b 3b a 2b b
S
4a b 3a b 7a b
p q 7 a b 7 a b sin / 3 7 2 3
S
1
p q 10,5 3
2
3
21 3
2
ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ…
Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° с Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…
A(1; 2; 1), B(-3; 2; 5), C(2; 0; 4).
S
1
AB AC
2
AB ( 3 1)i (2 2) j (5 1)k = 4i 4k
AC (2 1)i (0 2) j (4 1)k i 2 j 3k
i
AB AC 4
1
j
k
0
4 4 1
2 3
i
1
j
k
0
1
2 3
0
1
2 3
i
1 1
1
3
4(2i 4 j 2k ) 8(i 2 j k )
AB AC 8 1 4 1 8 6
1
S 8 6 4 6
2
j
1
0
1
2
k
6.3. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² c
Π‘ΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² называСтся
Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½Π½ΠΎΠ΅
скалярно Π½Π° Ρ‚Ρ€Π΅Ρ‚ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€
b
abc (a b) c
БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅:
xa y a z a
i j k
a b c x a y a z a xc y c z c
abc xb yb zb
xb yb zb
xc yc zc
y a z a xa z a x a y a
xc yc zc
a b c
,
,
y
z
x
z
x
y
b b
b
b
b b
xc
ya z a
yb zb
yc
xa za
xb zb
a
zc
xa ya
xb yb
Бвойства смСшанного произвСдСния.
1. abc cab bca bac acb cba
2. abc abc a bc ab c
3.
abc VΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°
abc 0 лСвая Ρ‚Ρ€ΠΎΠΉΠΊΠ°
abc 0 правая Ρ‚Ρ€ΠΎΠΉΠΊΠ°
4. abc 0 a, b, c ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹
ΠŸΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅β€¦
ВычислСниС ΠΎΠ±ΡŠΡ‘ΠΌΠ° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΈ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ (свойство 3):
Π”Π°Π½Ρ‹ Π½Π΅ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ b, c, a.
ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Π½Π° Π½ΠΈΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄:
Из свойств Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:
b c Sbc
Высота ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°:
h a cos
VΓ― Γ Γ° Sbc h b c a cos
b c a bca
Π‘ ΡƒΡ‡Ρ‘Ρ‚ΠΎΠΌ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ ситуации cosΞ±
VΓ― Γ Γ° bca
БоотвСтствСнно, для Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈΠ·ΠΌΡ‹:
V3Γ― Γ°
1
1
VΓ― Γ Γ° bca
2
2
ΠΈ для тСтраэдра:
VΓ² Γ₯Γ² Γ°
1
1
VΓ― Γ Γ° bca
6
6
УсловиС компланарности Ρ‚Ρ€Ρ‘Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (свойство 4):
ΠŸΡƒΡΡ‚ΡŒ Π΄Π°Π½Ρ‹:
a ax , a y , az , b bx , by , bz , c cx , c y , cz
a, b, c ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹, Ссли abc = 0. Π’ самом Π΄Π΅Π»Π΅:
ax
ay
az
abc bx
by
bz
cx
cy
cz
ax
ay
az
bx
by
bz 0
cx
cy
cz
Π‘ Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны,
a, b, c — ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹ c = xa + yb
ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, это ясно ΠΈΠ· свойства 3.
Для ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²:
VΓ― Γ Γ° 0 bca bca
Π“Π΄Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:
(1) вычислСниС ΠΎΠ±ΡŠΡ‘ΠΌΠΎΠ² гСомСтричСских Ρ‚Π΅Π», ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹Ρ… плоскими
гранями;
(2) Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ гСомСтричСских Π·Π°Π΄Π°Ρ‡, связанных с ΠΎΠ±ΡŠΡ‘ΠΌΠΎΠΌ гСомСтричСских
Ρ‚Π΅Π», Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ высоты, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ основания, ΡƒΠ³Π»ΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρƒ
Ρ€Ρ‘Π±Ρ€Π°ΠΌΠΈ;
(3) использованиС условия компланарности, ΠΈΠ»ΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ зависимости,
Ρ‚Ρ€Ρ‘Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²;
(4) Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… физичСских Π·Π°Π΄Π°Ρ‡.
ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° вычислСниС ΠΎΠ±ΡŠΡ‘ΠΌΠ° Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ (смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅)
Π”Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ: A(2; 1; 3), B(1; 1; 4), C(3; 5; 2), D(-1; 0; 3). Найти ΠΎΠ±ΡŠΡ‘ΠΌ тСтраэдра
с Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ Π² этих Ρ‚ΠΎΡ‡ΠΊΠ°Ρ….
V
D
1
AB AC AD
6
AB (1 2;1 1; 4 3) ( 1; 0;1)
C
A
AC (3 2; 5 1; 2 3) (1; 4; 1)
AD ( 1 2; 0 1; 3 3) ( 3; 1; 0)
B
1
AB AC AD 1
0
1
4
1 12
3 1
0
1
V 12 2
6
Π—Π°Π΄Π°Ρ‡Π° Π½Π° Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠΎ базису
Π”Π°Π½Ρ‹ Ρ‚Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a = (2, -1), b = (1, 2), c = (4, 3). Найти Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°
m = a + b + c ΠΏΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ b ΠΈ c.
РСшСниС:
ΠŸΡƒΡΡ‚ΡŒ m = xb + yc.
Π’ΠΎΠ³Π΄Π° m = a + b + c = xb + yc, ΠΈΠ»ΠΈ для ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:
(2+1+4, -1+2+3) = (x*1+y*4, x*2+y*3), ΠΎΡ‚ΠΊΡƒΠ΄Π° послС упрощСния:
(7, 4) = (x+4y, 2x+3y)
ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ систСму ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π½Π° x ΠΈ y:
x 4 y 7
2 x 3 y 4
=> x = -1, y = 2
=> m = -b + 2c
ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° вычислСниС скалярного произвСдСния
Π”Π°Π½ΠΎ: |a| = 3, |b| = 4,
(Π°) a2;
(Π±) (3a — 2b)(a + 2b).
РСшСниС:
(Π°) a2 = |a|2 = 9
(Π±) (3a — 2b)(a + 2b) = 3a2 — 2ba + 6ab — 4b2 = 3a2 + 4ab — 4b2 =
= 3|a|2 + 4|a||b|cos1200 — 4|b|2 = 3*9 + 4*3*4*(-1/2) — 4*16 =
= 27 — 24 — 64 = -61
ΠŸΡ€ΠΈΠΌΠ΅Ρ€ Π½Π° вычислСниС Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния
Π£ΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅: i x (j + k) — j x (i + k) + k x (i + j + k).
РСшСниС:
i x (j + k) — j x (i + k) + k x (i + j + k) =
=ixj+ixk-jxi-jxk+kxi+kxj+kxk=
k
j
i
ixj=k
i x k = -j
j x i = -k
jxk=i
kxi=j
k x j = -i
kxk=0
= k — j + k — i + j — i + 0 = 2k — 2i = 2(k — i)

Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, Ссли Π΅ΡΡ‚ΡŒ ΠΌΠ½ΠΈΠΌΡ‹Π΅ числа, Π² Prolog?



Π― ΠΏΡ‹Ρ‚Π°ΡŽΡΡŒ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π² Prolog, Π½ΠΎ Ссли эти Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ содСрТат ΠΌΠ½ΠΈΠΌΡ‹Π΅ числа, я Π½Π΅ ΠΌΠΎΠ³Ρƒ Π·Π°ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π΅Π³ΠΎ Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ. Мой ΠΊΠΎΠ΄ Π΄ΠΎ сих ΠΏΠΎΡ€:

vector_product([X|Xs],[Y|Ys],OP) :-
    inner(Xs,Ys,OP1),
    OP is X*Y+OP1.
vector_product([],[],0).
vector prolog
ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ Karan Gurnani Β  Β  22 января 2013 Π² 01:41

1 ΠΎΡ‚Π²Π΅Ρ‚


  • Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

    Π― Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ ΠΏΡ€Π΅Π΄ΠΈΠΊΠ°Ρ‚ Π² prolog Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ iprod(List1, List2, Result) ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π» Π΄Π²Π° списка ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹ ΠΈ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ содСрТал Ρ†Π΅Π»Ρ‹Π΅ числа. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ получаСтся Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². НапримСр, List1 = [1,2,3] , List2 = [4,5,6] , Ρ‚ΠΎΠ³Π΄Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ Π±ΡƒΠ΄Π΅Ρ‚ 1*4 + 2*5 + 3*6 ….

  • Π‘ΡƒΠΌΠΌΠ° Ρ‡Π΅Ρ‚Π½Ρ‹Ρ…, ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹Ρ… чисСл Π² Prolog

    Π£ мСня Π΅ΡΡ‚ΡŒ список чисСл, ΠΌΠ½Π΅ Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ сумму Ρ‡Π΅Ρ‚Π½Ρ‹Ρ… чисСл списка ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹Ρ… чисСл Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ списка. Π― Π½ΠΎΠ²ΠΈΡ‡ΠΎΠΊ Π² Prolog Π³ΠΎΠ΄Ρƒ, ΠΈ ΠΌΠΎΠΈ поиски Π΄ΠΎ сих ΠΏΠΎΡ€ Π½Π΅ ΡƒΠ²Π΅Π½Ρ‡Π°Π»ΠΈΡΡŒ успСхом. ΠœΠΎΠΆΠ΅Ρ‚ Π»ΠΈ ΠΊΡ‚ΠΎ-Π½ΠΈΠ±ΡƒΠ΄ΡŒ ΠΏΠΎΠΌΠΎΡ‡ΡŒ ΠΌΠ½Π΅ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ эту ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ ? l_odd_even([]). l_odd_even([H|T], Odd, [H|Etail]) :- H…



3

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ, ΠΌΠΎΠΆΠ΅Ρ‚ Π»ΠΈ это Π²Π°ΠΌ ΠΏΠΎΠΌΠΎΡ‡ΡŒ…

Π€ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈΠ· Π’ΠΈΠΊΠΈΠΏΠ΅Π΄ΠΈΠΈ :

% (a+bi) + (c+di) = (a+c) + (b+d)i
c_sum((A,B), (C,D), (E,F)) :- E is A+C, F is B+D.

% (a+bi) (c+di) = (ac-bd) + (bc+ad)i
c_mul((A,B), (C,D), (E,F)) :- E is A*C - B*D, F is B*C + A*D.

Числа прСдставлСны Π² Π²ΠΈΠ΄Π΅ (Real, Imaginary) .

vector_product([X|Xs], [Y|Ys], OP) :-
    vector_product(Xs, Ys, OP1),
    c_mul(X, Y, M),
    c_sum(M, OP1, OP).
vector_product([], [], (0,0)).

ΠŸΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒΡΡ CapelliC Β  Β  22 января 2013 Π² 08:18


ΠŸΠΎΡ…ΠΎΠΆΠΈΠ΅ вопросы:


НС ΠΌΠΎΠ³Ρƒ ввСсти ΠΌΠ½ΠΈΠΌΡ‹Π΅ числа Π² SageMathCloud

Π― ΠΏΡ‹Ρ‚Π°ΡŽΡΡŒ просто ввСсти символ i Π² SageMathCloud, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΌΠ½ΠΈΠΌΡ‹Π΅ числа, это ΠΌΠΎΠΉ синтаксис: ran40 = matrix(QQ,2,2,[[2*i,-2],[3,4]]) show(ran40) Π― ΡΡ‚Ρ€ΠΎΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒ эшСлона…


Как я ΠΌΠΎΠ³Ρƒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎ?

Π­Ρ‚ΠΎΡ‚ вопрос Π·Π°Π΄Π°Π΅Ρ‚ вопрос ΠΎ Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ числа Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ число Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² извСстно Π·Π°Ρ€Π°Π½Π΅Π΅ ΠΈ довольно ΠΌΠ°Π»ΠΎ, Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π»Π΅Π³ΠΊΠΎ получаСтся с Π²Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΌΠΈ…


ΠšΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Ρ‹Π΅ / ΠΌΠ½ΠΈΠΌΡ‹Π΅ числа Π² elisp?

ΠŸΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ Π»ΠΈ elisp ΠΌΠ½ΠΈΠΌΡ‹Π΅ числа ΠΊΠ°ΠΊΠΈΠΌ-Π»ΠΈΠ±ΠΎ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ? Π― ΠΏΡ‹Ρ‚Π°ΡŽΡΡŒ ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ½Π»Π°ΠΉΠ½-курсу ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ с Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ‹ΠΌ Π±ΡƒΡ„Π΅Ρ€ΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ° взаимодСйствия lisp. Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π»ΠΈ higher math ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΉ/Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊ для…


Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

Π― Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠΎΠ·Π΄Π°Ρ‚ΡŒ ΠΏΡ€Π΅Π΄ΠΈΠΊΠ°Ρ‚ Π² prolog Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ iprod(List1, List2, Result) ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π» Π΄Π²Π° списка ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ Π΄Π»ΠΈΠ½Ρ‹ ΠΈ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ содСрТал Ρ†Π΅Π»Ρ‹Π΅ числа. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ получаСтся Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅…


Π‘ΡƒΠΌΠΌΠ° Ρ‡Π΅Ρ‚Π½Ρ‹Ρ…, ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹Ρ… чисСл Π² Prolog

Π£ мСня Π΅ΡΡ‚ΡŒ список чисСл, ΠΌΠ½Π΅ Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ сумму Ρ‡Π΅Ρ‚Π½Ρ‹Ρ… чисСл списка ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹Ρ… чисСл Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ списка. Π― Π½ΠΎΠ²ΠΈΡ‡ΠΎΠΊ Π² Prolog Π³ΠΎΠ΄Ρƒ, ΠΈ ΠΌΠΎΠΈ поиски Π΄ΠΎ сих ΠΏΠΎΡ€ Π½Π΅ ΡƒΠ²Π΅Π½Ρ‡Π°Π»ΠΈΡΡŒ успСхом. ΠœΠΎΠΆΠ΅Ρ‚ Π»ΠΈ…


Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ с использованиСм map ΠΈ reduce in scala

Π― ΠΏΡ‹Ρ‚Π°ΡŽΡΡŒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ map ΠΈ reduce. Π”Π°Π²Π°ΠΉΡ‚Π΅ посмотрим, Ρ‡Ρ‚ΠΎ происходит Π² REPL ΠΈΠ· Scala: ΠŸΡ€Π΅ΠΆΠ΄Π΅ всСго я ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽ 2 Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ…


Π’Π΅ΠΏΠ»ΠΈΡ†Π΅Π²Π° ΠœΠ°Ρ‚Ρ€ΠΈΡ†Π°-Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² R

Π£ мСня Π΅ΡΡ‚ΡŒ n x n симмСтричной Ρ‚Π΅ΠΏΠ»ΠΈΡ†Π΅Π²ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ T , Π²Π΅ΠΊΡ‚ΠΎΡ€ v Π΄Π»ΠΈΠ½Ρ‹ n, ΠΈ я Ρ…ΠΎΡ‚Π΅Π» Π±Ρ‹ быстро Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½ΠΎ-Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ T%*%v . Π•ΡΡ‚ΡŒ Π»ΠΈ Π² R ΠΏΠ°ΠΊΠ΅Ρ‚, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄…


Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ 3D с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ la4j?

Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ (пСрСкрСстноС) ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ la4j? Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅-это ΠΈ Π±Π΅Ρ€Π΅Ρ‚ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Π²ΠΎΠ·Π²Ρ€Π°Ρ‰Π°Π΅Ρ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€. Но Ρƒ Π½ΠΈΡ… Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ scalar, ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ всСх элСмСнтов , Π΄Π°ΠΆΠ΅…


Как Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Keras?

Π― надСюсь Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Keras. Π’ дСталях я имСю Π² Π²ΠΈΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ Ссли Ρƒ мСня Π΅ΡΡ‚ΡŒ Π΄Π²Π° Ρ‚Π΅Π½Π·ΠΎΡ€Π° A ΠΈ B , ΠΎΠ±Π° с Ρ„ΠΎΡ€ΠΌΠΎΠΉ (None, 30, 100) , я Ρ…ΠΎΡ‡Ρƒ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ C с Ρ„ΠΎΡ€ΠΌΠΎΠΉ…


Как ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ мноТСствСнноС Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²ΠΎ Π²Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΌ спискС?

Π― попытался ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ Ρ‚ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²ΠΎ Π²Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΌ спискС НапримСр : A = np.array([[1,2,1,3],[2,1,2,3],[3,1,2,4]]) И я попытался Π΄ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ Π΄ΠΎ Π½Π΅Π³ΠΎ.: B = [[15], [19, 23]] Π“Π΄Π΅ 15 =…

ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΎΠ½Π»Π°ΠΉΠ½. Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…, равняСтся ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ Π΄Π»ΠΈΠ½ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° ΡƒΠ³ΠΎΠ» ΡƒΠ³Π»Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π»Π΅ΠΆΠΈΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

Π₯ΠΎΡ€ΠΎΡˆΠΎ, ΠΊΠΎΠ³Π΄Π° ΠΏΠΎ условиям Π΄Π°Π½Ρ‹ Π΄Π»ΠΈΠ½Ρ‹ этих самых Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Однако Π±Ρ‹Π²Π°Π΅Ρ‚ ΠΈ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΌΠΎΠΆΠ½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ послС расчСтов ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ.
Если ΠΏΠΎΠ²Π΅Π·Π»ΠΎ, ΠΈ ΠΏΠΎ условиям Π΄Π°Π½Ρ‹ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ρ‚ΠΎ Π½ΡƒΠΆΠ½ΠΎ просто ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ ΡƒΠΆΠ΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·Π±ΠΈΡ€Π°Π»ΠΈ Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ . ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΡΡ‚ΡŒΡΡ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΉ Π½Π° синус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ:

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€ расчСта ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ….

Π—Π°Π΄Π°Ρ‡Π°: ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ построСн Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΈ . НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ, Ссли , Π° ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ 30Β°.
Π’Ρ‹Ρ€Π°Π·ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‡Π΅Ρ€Π΅Π· ΠΈΡ… значСния:

Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρƒ вас Π²ΠΎΠ·Π½ΠΈΠΊ вопрос – ΠΎΡ‚ΠΊΡƒΠ΄Π° взялись Π½ΡƒΠ»ΠΈ? Π‘Ρ‚ΠΎΠΈΡ‚ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ Ρ€Π°Π±ΠΎΡ‚Π°Π΅ΠΌ с Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Π° для Π½ΠΈΡ… . Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Ссли Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ,Ρ‚ΠΎ ΠΎΠ½ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΎ Π². Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΠΈΡ‚ΠΎΠ³ΠΎΠ²Ρ‹Π΅ вычислСния:

ВСрнСмся ΠΊ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅, ΠΊΠΎΠ³Π΄Π° Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π΅ ΡƒΠΊΠ°Π·Π°Π½Ρ‹ Π² условиях. Если ваш ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Π»Π΅ΠΆΠΈΡ‚ Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚ΠΎ потрСбуСтся ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅.

РасчСт Π΄Π»ΠΈΠ½ сторон Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ

Для Π½Π°Ρ‡Π°Π»Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΎΡ‚Π½ΠΈΠΌΠ°Π΅ΠΌ ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΊΠΎΠ½Ρ†Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°Ρ‡Π°Π»Π°. Допустим ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a (x1;y1;z1), Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° b (x3;y3;z3).
Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Π΄Π»ΠΈΠ½Ρƒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Для этого ΠΊΠ°ΠΆΠ΄ΡƒΡŽ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ возвСсти Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, ΠΏΠΎΡ‚ΠΎΠΌ ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΠ· ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ числа ΠΈΠ·Π²Π»Π΅Ρ‡ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ. По нашим Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ Π±ΡƒΠ΄ΡƒΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ расчСты:


Π’Π΅ΠΏΠ΅Ρ€ΡŒ потрСбуСтся Π½Π°ΠΉΡ‚ΠΈ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π°ΡˆΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Для этого ΠΈΡ… ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ мноТатся ΠΈ ΡΠΊΠ»Π°Π΄Ρ‹Π²Π°ΡŽΡ‚ΡΡ.

ИмСя Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΈΡ… скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ косинус ΡƒΠ³Π»Π°, Π»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ .
Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ синус этого ΠΆΠ΅ ΡƒΠ³Π»Π°:
Π’Π΅ΠΏΠ΅Ρ€ΡŒ Ρƒ нас Π΅ΡΡ‚ΡŒ всС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΈ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ запросто Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΏΠΎ ΡƒΠΆΠ΅ извСстной Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅.

На Π΄Π°Π½Π½ΠΎΠΌ ΡƒΡ€ΠΎΠΊΠ΅ ΠΌΡ‹ рассмотрим Π΅Ρ‰Ρ‘ Π΄Π²Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ с Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ: Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (сразу ссылка, ΠΊΠΎΠΌΡƒ Π½ΡƒΠΆΠ½ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ΠΎ) . НичСго ΡΡ‚Ρ€Π°ΡˆΠ½ΠΎΠ³ΠΎ, Ρ‚Π°ΠΊ ΠΈΠ½ΠΎΠ³Π΄Π° Π±Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ для ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΡ‡Π°ΡΡ‚ΡŒΡ, ΠΏΠΎΠΌΠΈΠΌΠΎ скалярного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , трСбуСтся Π΅Ρ‰Ρ‘ ΠΈ Π΅Ρ‰Ρ‘. Вакая Π²ΠΎΡ‚ вСкторная наркомания. ΠœΠΎΠΆΠ΅Ρ‚ ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒΡΡ Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»Π΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ Π·Π°Π»Π΅Π·Π°Π΅ΠΌ Π² Π΄Π΅Π±Ρ€ΠΈ аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π­Ρ‚ΠΎ Π½Π΅ Ρ‚Π°ΠΊ. Π’ Π΄Π°Π½Π½ΠΎΠΌ Ρ€Π°Π·Π΄Π΅Π»Π΅ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ ΠΌΠ°Π»ΠΎ Π΄Ρ€ΠΎΠ², Ρ€Π°Π·Π²Π΅ Ρ‡Ρ‚ΠΎ Π½Π° Π‘ΡƒΡ€Π°Ρ‚ΠΈΠ½ΠΎ Ρ…Π²Π°Ρ‚ΠΈΡ‚. На самом Π΄Π΅Π»Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΎΡ‡Π΅Π½ΡŒ распространСнный ΠΈ простой – вряд Π»ΠΈ слоТнСС, Ρ‡Π΅ΠΌ Ρ‚ΠΎ ΠΆΠ΅ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ , Π΄Π°ΠΆΠ΅ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ помСньшС Π±ΡƒΠ΄Π΅Ρ‚. Π“Π»Π°Π²Π½ΠΎΠ΅ Π² аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, ΠΊΠ°ΠΊ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ убСдятся ΠΈΠ»ΠΈ ΡƒΠΆΠ΅ ΡƒΠ±Π΅Π΄ΠΈΠ»ΠΈΡΡŒ, НЕ ΠžΠ¨Π˜Π‘ΠΠ’Π¬Π‘Π― Π’ Π’Π«Π§Π˜Π‘Π›Π•ΠΠ˜Π―Π₯. ΠŸΠΎΠ²Ρ‚ΠΎΡ€ΡΠΉΡ‚Π΅ ΠΊΠ°ΠΊ Π·Π°ΠΊΠ»ΠΈΠ½Π°Π½ΠΈΠ΅, ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Π²Π°ΠΌ ΡΡ‡Π°ΡΡ‚ΡŒΠ΅ =)

Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΡΠ²Π΅Ρ€ΠΊΠ°ΡŽΡ‚ Π³Π΄Π΅-Ρ‚ΠΎ Π΄Π°Π»Π΅ΠΊΠΎ, ΠΊΠ°ΠΊ ΠΌΠΎΠ»Π½ΠΈΠΈ Π½Π° Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π΅, Π½Π΅ Π±Π΅Π΄Π°, Π½Π°Ρ‡Π½ΠΈΡ‚Π΅ с ΡƒΡ€ΠΎΠΊΠ° Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ для Ρ‡Π°ΠΉΠ½ΠΈΠΊΠΎΠ² , Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΈΠ»ΠΈ вновь приобрСсти Π±Π°Π·ΠΎΠ²Ρ‹Π΅ знания ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…. Π‘ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Π΅ Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π·Π½Π°ΠΊΠΎΠΌΠΈΡ‚ΡŒΡΡ с ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎ, я постарался ΡΠΎΠ±Ρ€Π°Ρ‚ΡŒ максимально ΠΏΠΎΠ»Π½ΡƒΡŽ ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΡŽ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π² практичСских Ρ€Π°Π±ΠΎΡ‚Π°Ρ…

Π§Π΅ΠΌ вас сразу ΠΏΠΎΡ€Π°Π΄ΠΎΠ²Π°Ρ‚ΡŒ? Когда я Π±Ρ‹Π» малСньким, Ρ‚ΠΎ ΡƒΠΌΠ΅Π» ΠΆΠΎΠ½Π³Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ двумя ΠΈ Π΄Π°ΠΆΠ΅ трСмя ΡˆΠ°Ρ€ΠΈΠΊΠ°ΠΌΠΈ. Π›ΠΎΠ²ΠΊΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΎΡΡŒ. БСйчас ΠΆΠΎΠ½Π³Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ придётся Π²ΠΎΠΎΠ±Ρ‰Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ пространствСнныС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , Π° плоскиС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ с двумя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ останутся Π·Π° Π±ΠΎΡ€Ρ‚ΠΎΠΌ. ΠŸΠΎΡ‡Π΅ΠΌΡƒ? Π’Π°ΠΊΠΈΠΌΠΈ ΡƒΠΆ Ρ€ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ Π΄Π°Π½Π½Ρ‹Π΅ дСйствия – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΈ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Π² Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС. Π£ΠΆΠ΅ ΠΏΡ€ΠΎΡ‰Π΅!

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² скалярном ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° . ΠŸΡƒΡΡ‚ΡŒ это Π±ΡƒΠ΄ΡƒΡ‚ Π½Π΅Ρ‚Π»Π΅Π½Π½Ρ‹Π΅ Π±ΡƒΠΊΠ²Ρ‹ .

Π‘Π°ΠΌΠΎ дСйствиС обозначаСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: . Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, Π½ΠΎ я ΠΏΡ€ΠΈΠ²Ρ‹ΠΊ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‚Π°ΠΊ, Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… скобках с крСстиком.

И сразу вопрос : Ссли Π² скалярном ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΈ здСсь Ρ‚ΠΎΠΆΠ΅ ΡƒΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ρ‚ΠΎΠ³Π΄Π° Π² Ρ‡Ρ‘ΠΌ Ρ€Π°Π·Π½ΠΈΡ†Π° ? Явная Ρ€Π°Π·Π½ΠΈΡ†Π°, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, Π² РЕЗУЛЬВАВЕ:

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ скалярного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π§Π˜Π‘Π›Πž:

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π’Π•ΠšΠ’ΠžΠ  : , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ снова Π²Π΅ΠΊΡ‚ΠΎΡ€. Π—Π°ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΉ ΠΊΠ»ΡƒΠ±. БобствСнно, ΠΎΡ‚ΡΡŽΠ΄Π° ΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π’ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΡƒΡ‡Π΅Π±Π½ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ обозначСния Ρ‚ΠΎΠΆΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ, я Π±ΡƒΠ΄Ρƒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π±ΡƒΠΊΠ²Ρƒ .

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния

Π‘Π½Π°Ρ‡Π°Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ с ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΎΠΉ, Π·Π°Ρ‚Π΅ΠΌ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΈ.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ : Π’Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , взятых Π² Π΄Π°Π½Π½ΠΎΠΌ порядкС , называСтся Π’Π•ΠšΠ’ΠžΠ  , Π΄Π»ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ числСнно Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° , построСнного Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…; Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ , ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ базис ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€Π°Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ:

Π Π°Π·Π±ΠΈΡ€Π°Π΅ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎ косточкам, Ρ‚ΡƒΡ‚ ΠΌΠ½ΠΎΠ³ΠΎ интСрСсного!

Π˜Ρ‚Π°ΠΊ, ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ сущСствСнныС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹:

1) Π˜ΡΡ…ΠΎΠ΄Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Π΅ красными стрСлками, ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ . Π‘Π»ΡƒΡ‡Π°ΠΉ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π±ΡƒΠ΄Π΅Ρ‚ умСстно Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡ΡƒΡ‚ΡŒ ΠΏΠΎΠ·ΠΆΠ΅.

2) Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ взяты Π² строго ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΌ порядкС : – Β«Π°Β» умноТаСтся Π½Π° «бэ» , Π° Π½Π΅ «бэ» Π½Π° Β«Π°Β». Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ умноТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π’Π•ΠšΠ’ΠžΠ  , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ синим Ρ†Π²Π΅Ρ‚ΠΎΠΌ. Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π² ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ порядкС, Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ€Π°Π²Π½Ρ‹ΠΉ ΠΏΠΎ Π΄Π»ΠΈΠ½Π΅ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€ (ΠΌΠ°Π»ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Ρ†Π²Π΅Ρ‚). Π’ΠΎ Π΅ΡΡ‚ΡŒ, справСдливо равСнство .

3) Π’Π΅ΠΏΠ΅Ρ€ΡŒ познакомимся с гСомСтричСским смыслом Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π­Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Ρ‹ΠΉ ΠΏΡƒΠ½ΠΊΡ‚! Π”Π›Π˜ΠΠ синСго Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Π°, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ ΠΌΠ°Π»ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ) числСнно Ρ€Π°Π²Π½Π° ΠŸΠ›ΠžΠ©ΠΠ”Π˜ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… . На рисункС Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Π½ Ρ‡Ρ‘Ρ€Π½Ρ‹ΠΌ Ρ†Π²Π΅Ρ‚ΠΎΠΌ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ : Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ являСтся схСматичСским, ΠΈ, СстСствСнно, номинальная Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π½Π΅ Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°.

ВспоминаСм ΠΎΠ΄Π½Ρƒ ΠΈΠ· гСомСтричСских Ρ„ΠΎΡ€ΠΌΡƒΠ»: ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ смСТных сторон Π½Π° синус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ . ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ, исходя ΠΈΠ· Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ, справСдлива Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния Π”Π›Π˜ΠΠ« Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠŸΠΎΠ΄Ρ‡Ρ‘Ρ€ΠΊΠΈΠ²Π°ΡŽ, Ρ‡Ρ‚ΠΎ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Ρ‘Ρ‚ ΠΎ Π”Π›Π˜ΠΠ• Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π° Π½Π΅ ΠΎ самом Π²Π΅ΠΊΡ‚ΠΎΡ€Π΅ . Каков практичСский смысл? А смысл Ρ‚Π°ΠΊΠΎΠ², Ρ‡Ρ‚ΠΎ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° часто находят Ρ‡Π΅Ρ€Π΅Π· понятиС Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π²Ρ‚ΠΎΡ€ΡƒΡŽ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ. Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° (красный ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€) Π΄Π΅Π»ΠΈΡ‚ Π΅Π³ΠΎ Π½Π° Π΄Π²Π° Ρ€Π°Π²Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… (красная ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠ°), ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

4) НС ΠΌΠ΅Π½Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ . РазумССтся, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ (малиновая стрСлка) Ρ‚ΠΎΠΆΠ΅ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ исходным Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ .

5) Π’Π΅ΠΊΡ‚ΠΎΡ€ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ базис ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€Π°Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ. На ΡƒΡ€ΠΎΠΊΠ΅ ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΊ Π½ΠΎΠ²ΠΎΠΌΡƒ базису я достаточно ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассказал ΠΎΠ± ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ плоскости , ΠΈ сСйчас ΠΌΡ‹ разбСрёмся, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ориСнтация пространства. ΠžΠ±ΡŠΡΡΠ½ΡΡ‚ΡŒ Π±ΡƒΠ΄Ρƒ Π½Π° ΠΏΠ°Π»ΡŒΡ†Π°Ρ… вашСй ΠΏΡ€Π°Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ . ΠœΡ‹ΡΠ»Π΅Π½Π½ΠΎ совмСститС ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Π»Π΅Ρ† с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΈ срСдний ΠΏΠ°Π»Π΅Ρ† с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ . БСзымянный ΠΏΠ°Π»Π΅Ρ† ΠΈ ΠΌΠΈΠ·ΠΈΠ½Π΅Ρ† ΠΏΡ€ΠΈΠΆΠΌΠΈΡ‚Π΅ ΠΊ Π»Π°Π΄ΠΎΠ½ΠΈ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ большой ΠΏΠ°Π»Π΅Ρ† – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π²Π²Π΅Ρ€Ρ…. Π­Ρ‚ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ базис (Π½Π° рисункС ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½). Π’Π΅ΠΏΠ΅Ρ€ΡŒ помСняйтС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ (ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ срСдний ΠΏΠ°Π»ΡŒΡ†Ρ‹ ) мСстами, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ большой ΠΏΠ°Π»Π΅Ρ† развСрнётся, ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡƒΠΆΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π²Π½ΠΈΠ·. Π­Ρ‚ΠΎ Ρ‚ΠΎΠΆΠ΅ ΠΏΡ€Π°Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ базис. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρƒ вас Π²ΠΎΠ·Π½ΠΈΠΊ вопрос: Π° ΠΊΠ°ΠΊΠΎΠΉ базис ΠΈΠΌΠ΅Π΅Ρ‚ Π»Π΅Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ? Β«ΠŸΡ€ΠΈΡΠ²ΠΎΠΉΡ‚Π΅Β» Ρ‚Π΅ΠΌ ΠΆΠ΅ ΠΏΠ°Π»ΡŒΡ†Π°ΠΌ Π»Π΅Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , ΠΈ ΠΏΠΎΠ»Π£Ρ‡ΠΈΡ‚Π΅ Π»Π΅Π²Ρ‹ΠΉ базис ΠΈ Π»Π΅Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ пространства (Π² этом случаС большой ΠΏΠ°Π»Π΅Ρ† располоТится ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ Π½ΠΈΠΆΠ½Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°) . ΠžΠ±Ρ€Π°Π·Π½ΠΎ говоря, Π΄Π°Π½Π½Ρ‹Π΅ базисы Β«Π·Π°ΠΊΡ€ΡƒΡ‡ΠΈΠ²Π°ΡŽΡ‚Β» ΠΈΠ»ΠΈ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‚ пространство Π² Ρ€Π°Π·Π½Ρ‹Π΅ стороны. И это понятиС Π½Π΅ слСдуСт ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‡Π΅ΠΌ-Ρ‚ΠΎ Π½Π°Π΄ΡƒΠΌΠ°Π½Π½Ρ‹ΠΌ ΠΈΠ»ΠΈ абстрактным – Ρ‚Π°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ пространства мСняСт самоС ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ΅ Π·Π΅Ρ€ΠΊΠ°Π»ΠΎ, ΠΈ Ссли Β«Π²Ρ‹Ρ‚Π°Ρ‰ΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π°ΠΆΡ‘Π½Π½Ρ‹ΠΉ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ ΠΈΠ· Π·Π°Π·Π΅Ρ€ΠΊΠ°Π»ΡŒΡΒ», Ρ‚ΠΎ Π΅Π³ΠΎ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС Π½Π΅ удастся ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΡ‚ΡŒ с Β«ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΠΎΠΌΒ». ΠšΡΡ‚Π°Ρ‚ΠΈ, поднСситС ΠΊ Π·Π΅Ρ€ΠΊΠ°Π»Ρƒ Ρ‚Ρ€ΠΈ ΠΏΠ°Π»ΡŒΡ†Π° ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅;-)

…как всё-Ρ‚Π°ΠΊΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠΎ, Ρ‡Ρ‚ΠΎ Π²Ρ‹ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π·Π½Π°Π΅Ρ‚Π΅ ΠΎ ΠΏΡ€Π°Π²ΠΎ- ΠΈ Π»Π΅Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… базисах, ΠΈΠ±ΠΎ ΡΡ‚Ρ€Π°ΡˆΠ½Π« высказывания Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎ смСнС ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ =)

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½ΠΎ, ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ Π²Ρ‹ΡΡΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ происходит, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹. Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой ΠΈ наш ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Ρ‚ΠΎΠΆΠ΅ «складываСтся» Π² ΠΎΠ΄Π½Ρƒ ΠΏΡ€ΡΠΌΡƒΡŽ. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Π°ΠΊΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ говорят ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Π²Ρ‹Ρ€ΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π­Ρ‚ΠΎ ΠΆΠ΅ слСдуСт ΠΈ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ – синус нуля ΠΈΠ»ΠΈ 180-Ρ‚ΠΈ градусов Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ нулСвая

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ссли , Ρ‚ΠΎ . Π‘Ρ‚Ρ€ΠΎΠ³ΠΎ говоря, само Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ, Π½ΠΎ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ этим часто ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Π³Π°ΡŽΡ‚ ΠΈ ΠΏΠΈΡˆΡƒΡ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΎ просто Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

Частный случай – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° самого сСбя:

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡ‚ΡŒ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΎΡΡ‚ΡŒ Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΈ Π΄Π°Π½Π½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ срСди ΠΏΡ€ΠΎΡ‡ΠΈΡ… ΠΌΡ‹ Ρ‚ΠΎΠΆΠ΅ Ρ€Π°Π·Π±Π΅Ρ€Ρ‘ΠΌ.

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ практичСских ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒΡΡ тригономСтричСская Ρ‚Π°Π±Π»ΠΈΡ†Π° , Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΠΎ Π½Π΅ΠΉ значСния синусов.

Ну Ρ‡Ρ‚ΠΎ ΠΆΠ΅, Ρ€Π°Π·ΠΆΠΈΠ³Π°Π΅ΠΌ огонь:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Π°) Найти Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , Ссли

Π±) Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

РСшСниС : НСт, это Π½Π΅ ΠΎΠΏΠ΅Ρ‡Π°Ρ‚ΠΊΠ°, исходныС Π΄Π°Π½Π½Ρ‹Π΅ Π² ΠΏΡƒΠ½ΠΊΡ‚Π°Ρ… условия я Π½Π°ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎ сдСлал ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ. ΠŸΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½ΠΈΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ!

Π°) По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ трСбуСтся Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния). По ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

ΠžΡ‚Π²Π΅Ρ‚ :

Коль скоро ΡΠΏΡ€Π°ΡˆΠΈΠ²Π°Π»ΠΎΡΡŒ ΠΎ Π΄Π»ΠΈΠ½Π΅, Ρ‚ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚Π΅ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ – Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.

Π±) По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… . ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° числСнно Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠžΡ‚Π²Π΅Ρ‚ :

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚Π΅ ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Ρ€Π΅Ρ‡ΠΈ Π½Π΅ ΠΈΠ΄Ρ‘Ρ‚ Π²ΠΎΠΎΠ±Ρ‰Π΅, нас ΡΠΏΡ€Π°ΡˆΠΈΠ²Π°Π»ΠΈ ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ , соотвСтствСнно, Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ – ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.

ВсСгда смотрим, ЧВО трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ, ΠΈ, исходя ΠΈΠ· этого, Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌ Ρ‡Ρ‘Ρ‚ΠΊΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‚. ΠœΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ буквоСдством, Π½ΠΎ Π±ΡƒΠΊΠ²ΠΎΠ΅Π΄ΠΎΠ² срСди ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ…Π²Π°Ρ‚Π°Π΅Ρ‚, ΠΈ Π·Π°Π΄Π°Π½ΠΈΠ΅ с Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌΠΈ шансами вСрнётся Π½Π° Π΄ΠΎΡ€Π°Π±ΠΎΡ‚ΠΊΡƒ. Π₯отя это Π½Π΅ особо натянутая ΠΏΡ€ΠΈΠ΄ΠΈΡ€ΠΊΠ° – Ссли ΠΎΡ‚Π²Π΅Ρ‚ Π½Π΅ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π΅Π½, Ρ‚ΠΎ складываСтся Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»Π΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ Π½Π΅ разбираСтся Π² простых Π²Π΅Ρ‰Π°Ρ… ΠΈ/ΠΈΠ»ΠΈ Π½Π΅ Π²Π½ΠΈΠΊ Π² ΡΡƒΡ‚ΡŒ задания. Π­Ρ‚ΠΎΡ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚ всСгда Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ Π½Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅, Ρ€Π΅ΡˆΠ°Ρ Π»ΡŽΠ±ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΏΠΎ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Π΄Π° ΠΈ ΠΏΠΎ Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°ΠΌ Ρ‚ΠΎΠΆΠ΅.

ΠšΡƒΠ΄Π° подСвалась большая Π±ΡƒΠΊΠΎΠ²ΠΊΠ° «эн»? Π’ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅, Π΅Ρ‘ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈΠ»Π΅ΠΏΠΈΡ‚ΡŒ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, Π½ΠΎ Π² цСлях ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ запись, я этого Π½Π΅ сдСлал. НадСюсь, всСм понятно, Ρ‡Ρ‚ΠΎ ΠΈ – это ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅.

ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

Π€ΠΎΡ€ΠΌΡƒΠ»Π° нахоТдСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π° Π² коммСнтариях ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ. РСшСниС ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΊΠΎΠ½Ρ†Π΅ ΡƒΡ€ΠΎΠΊΠ°.

На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π·Π°Π΄Π°Ρ‡Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ‡Π΅Π½ΡŒ распространСна, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π·Π°ΠΌΡƒΡ‡ΠΈΡ‚ΡŒ.

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡ Π½Π°ΠΌ понадобятся:

Бвойства Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

НСкоторыС свойства Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния ΠΌΡ‹ ΡƒΠΆΠ΅ рассмотрСли, Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, я ΠΈΡ… Π²ΠΊΠ»ΡŽΡ‡Ρƒ Π² Π΄Π°Π½Π½Ρ‹ΠΉ список.

Для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ числа справСдливы ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ свойства:

1) Π’ Π΄Ρ€ΡƒΠ³ΠΈΡ… источниках ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΡƒΠ½ΠΊΡ‚ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π΅ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Π² свойствах, Π½ΠΎ ΠΎΠ½ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ΅Π½ Π² практичСском ΠΏΠ»Π°Π½Π΅. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡƒΡΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚.

2) – свойство Ρ‚ΠΎΠΆΠ΅ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½ΠΎ Π²Ρ‹ΡˆΠ΅, ΠΈΠ½ΠΎΠ³Π΄Π° Π΅Π³ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π°Π½Ρ‚ΠΈΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ . Π˜Π½Ρ‹ΠΌΠΈ словами, порядок Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

3) – ΡΠΎΡ‡Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ ассоциативныС Π·Π°ΠΊΠΎΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. ΠšΠΎΠ½ΡΡ‚Π°Π½Ρ‚Ρ‹ Π±Π΅Π·ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ½ΠΎ выносятся Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‡Π΅Π³ΠΎ ΠΈΠΌ Ρ‚Π°ΠΌ Π΄Π΅Π»Π°Ρ‚ΡŒ?

4) – Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ дистрибутивныС Π·Π°ΠΊΠΎΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π‘ раскрытиСм скобок Ρ‚ΠΎΠΆΠ΅ Π½Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ.

Π’ качСствС дСмонстрации рассмотрим ΠΊΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒΠΊΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3

Найти , Ссли

РСшСниС: По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ снова трСбуСтся Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. РаспишСм Π½Π°ΡˆΡƒ ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Ρƒ:

(1) Богласно ассоциативным Π·Π°ΠΊΠΎΠ½Π°ΠΌ, выносим константы Π·Π° ΠΏΠ΅Ρ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния.

(2) Выносим константу Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ модуля, ΠΏΡ€ΠΈ этом ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Β«ΡΡŠΠ΅Π΄Π°Π΅Ρ‚Β» Π·Π½Π°ΠΊ «минус». Π”Π»ΠΈΠ½Π° ΠΆΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ.

(3) Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅Π΅ понятно.

ΠžΡ‚Π²Π΅Ρ‚ :

ΠŸΠΎΡ€Π° ΠΏΠΎΠ΄Π±Ρ€ΠΎΡΠΈΡ‚ΡŒ Π΄Ρ€ΠΎΠ² Π² огонь:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

РСшСниС : ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π°ΠΉΠ΄Ρ‘ΠΌ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ . Π—Π°Π³Π²ΠΎΠ·Π΄ΠΊΠ° состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ «цэ» ΠΈ «дэ» сами прСдставлСны Π² Π²ΠΈΠ΄Π΅ сумм Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Алгоритм здСсь стандартСн ΠΈ Ρ‡Π΅ΠΌ-Ρ‚ΠΎ Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ β„– 3 ΠΈ 4 ΡƒΡ€ΠΎΠΊΠ° БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² . РСшСниС для ясности Ρ€Π°Π·ΠΎΠ±ΡŒΡ‘ΠΌ Π½Π° Ρ‚Ρ€ΠΈ этапа:

1) На ΠΏΠ΅Ρ€Π²ΠΎΠΌ шагС Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ , ΠΏΠΎ сути, Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€ . О Π΄Π»ΠΈΠ½Π°Ρ… ΠΏΠΎΠΊΠ° Π½ΠΈ слова!

(1) ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ выраТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² .

(2) Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ дистрибутивныС Π·Π°ΠΊΠΎΠ½Ρ‹, раскрываСм скобки ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ умноТСния ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠ².

(3) Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ассоциативныС Π·Π°ΠΊΠΎΠ½Ρ‹, выносим всС константы Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ. ΠŸΡ€ΠΈ маломальском ΠΎΠΏΡ‹Ρ‚Π΅ дСйствия 2 ΠΈ 3 ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ.

(4) ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΠΈ послСднСС слагаСмоС Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ (Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ) благодаря приятному свойству . Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ слагаСмом ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ свойство антикоммутативности Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

(5) ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ слагаСмыС.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ оказался Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€, Ρ‡Π΅Π³ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ:

2) На Π²Ρ‚ΠΎΡ€ΠΎΠΌ шагС Π½Π°ΠΉΠ΄Π΅ΠΌ Π΄Π»ΠΈΠ½Ρƒ Π½ΡƒΠΆΠ½ΠΎΠ³ΠΎ Π½Π°ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π”Π°Π½Π½ΠΎΠ΅ дСйствиС Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3:

3) Найдём ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ искомого Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°:

Π­Ρ‚Π°ΠΏΡ‹ 2-3 Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ ΠΎΡ„ΠΎΡ€ΠΌΠΈΡ‚ΡŒ ΠΈ ΠΎΠ΄Π½ΠΎΠΉ строкой.

ΠžΡ‚Π²Π΅Ρ‚ :

РассмотрСнная Π·Π°Π΄Π°Ρ‡Π° достаточно распространСна Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚Π°Ρ…, Π²ΠΎΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5

Найти , Ссли

ΠšΡ€Π°Ρ‚ΠΊΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΊΠΎΠ½Ρ†Π΅ ΡƒΡ€ΠΎΠΊΠ°. ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ, насколько Π²Ρ‹ Π±Ρ‹Π»ΠΈ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ²;-)

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… , Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… Π² ΠΎΡ€Ρ‚ΠΎΠ½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ базисС , выраТаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ :

Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΈ ΠΏΡ€Π°Π²Π΄Π° простСцкая: Π² Π²Π΅Ρ€Ρ…Π½ΡŽΡŽ строку опрСдСлитСля записываСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹, Π²ΠΎ Π²Ρ‚ΠΎΡ€ΡƒΡŽ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ строки Β«ΡƒΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌΒ» ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ ΡƒΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌ Π² строгом порядкС – сначала ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° «вэ», Π·Π°Ρ‚Π΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Β«Π΄ΡƒΠ±Π»ΡŒ-вэ». Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½ΡƒΠΆΠ½ΠΎ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π² Π΄Ρ€ΡƒΠ³ΠΎΠΌ порядкС, Ρ‚ΠΎ ΠΈ строки слСдуСт ΠΏΠΎΠΌΠ΅Π½ΡΡ‚ΡŒ мСстами:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 10

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, Π±ΡƒΠ΄ΡƒΡ‚ Π»ΠΈ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ пространства:
Π°)
Π±)

РСшСниС : ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° основана Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠΉ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΡ€ΠΎΠΊΠ°: Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ (Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ): .

Π°) Найдём Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹.

Π±) Найдём Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:

ΠžΡ‚Π²Π΅Ρ‚ : Π°) Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Π±)

Π’ΠΎΡ‚, ΠΏΠΎΠΆΠ°Π»ΡƒΠΉ, ΠΈ всС основныС свСдСния ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

Π”Π°Π½Π½Ρ‹ΠΉ Ρ€Π°Π·Π΄Π΅Π» Π±ΡƒΠ΄Π΅Ρ‚ Π½Π΅ ΠΎΡ‡Π΅Π½ΡŒ большим, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‡, Π³Π΄Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ. ЀактичСски всё Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠΏΠΈΡ€Π°Ρ‚ΡŒΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, гСомСтричСский смысл ΠΈ ΠΏΠ°Ρ€Ρƒ Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ».

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² – это ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Ρ‘Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² :

Π’ΠΎΡ‚ Ρ‚Π°ΠΊ Π²ΠΎΡ‚ ΠΎΠ½ΠΈ Π²Ρ‹ΡΡ‚Ρ€ΠΎΠΈΠ»ΠΈΡΡŒ ΠΏΠ°Ρ€ΠΎΠ²ΠΎΠ·ΠΈΠΊΠΎΠΌ ΠΈ ΠΆΠ΄ΡƒΡ‚, Π½Π΅ доТдутся, ΠΊΠΎΠ³Π΄Π° ΠΈΡ… вычислят.

Π‘Π½Π°Ρ‡Π°Π»Π° ΠΎΠΏΡΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ°:

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ : Π‘ΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , взятых Π² Π΄Π°Π½Π½ΠΎΠΌ порядкС , называСтся ΠΎΠ±ΡŠΡ‘ΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° , построСнного Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…, снабТённый Π·Π½Π°ΠΊΠΎΠΌ Β«+Β», Ссли базис ΠΏΡ€Π°Π²Ρ‹ΠΉ, ΠΈ Π·Π½Π°ΠΊΠΎΠΌ «–», Ссли базис Π»Π΅Π²Ρ‹ΠΉ.

Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌ рисунок. НСвидимыС Π½Π°ΠΌ Π»ΠΈΠ½ΠΈΠΈ ΠΏΡ€ΠΎΡ‡Π΅Ρ€Ρ‡Π΅Π½Ρ‹ ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€ΠΎΠΌ:

ΠŸΠΎΠ³Ρ€ΡƒΠΆΠ°Π΅ΠΌΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅:

2) Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ взяты Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΌ порядкС , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ пСрСстановка Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ , ΠΊΠ°ΠΊ Π²Ρ‹ Π΄ΠΎΠ³Π°Π΄Ρ‹Π²Π°Π΅Ρ‚Π΅ΡΡŒ, Π½Π΅ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Π±Π΅Π· послСдствий.

3) ΠŸΠ΅Ρ€Π΅Π΄ Ρ‚Π΅ΠΌ, ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ гСомСтричСский смысл, ΠΎΡ‚ΠΌΠ΅Ρ‡Ρƒ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚: смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π§Π˜Π‘Π›ΠžΠœ : . Π’ ΡƒΡ‡Π΅Π±Π½ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ нСсколько Π΄Ρ€ΡƒΠ³ΠΈΠΌ, я ΠΏΡ€ΠΈΠ²Ρ‹ΠΊ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· , Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычислСний Π±ΡƒΠΊΠ²ΠΎΠΉ «пэ».

По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ – это объСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° , построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… (Ρ„ΠΈΠ³ΡƒΡ€Π° ΠΏΡ€ΠΎΡ‡Π΅Ρ€Ρ‡Π΅Π½Π° красными Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈ линиями Ρ‡Ρ‘Ρ€Π½ΠΎΠ³ΠΎ Ρ†Π²Π΅Ρ‚Π°). Π’ΠΎ Π΅ΡΡ‚ΡŒ, число Ρ€Π°Π²Π½ΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ : Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ являСтся схСматичСским.

4) НС Π±ΡƒΠ΄Π΅ΠΌ Π·Π°Π½ΠΎΠ²ΠΎ ΠΏΠ°Ρ€ΠΈΡ‚ΡŒΡΡ с понятиСм ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ базиса ΠΈ пространства. Бмысл Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ части состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΊ ΠΎΠ±ΡŠΡ‘ΠΌΡƒ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΠ±Π°Π²Π»ΡΡ‚ΡŒΡΡ Π·Π½Π°ΠΊ минус. ΠŸΡ€ΠΎΡΡ‚Ρ‹ΠΌΠΈ словами, смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ: .

НСпосрСдствСнно ΠΈΠ· опрСдСлСния слСдуСт Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния объСма ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… .

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° , построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , вычисляСтся ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° синус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ. Если извСстны Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ρ‚ΠΎ для вычислСния Π½ΡƒΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, Π² Ρ‚ΠΎΠΌ числС ΠΈ для опрСдСлСния ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ.

Π’Π°ΠΌ понадобится

  • — понятиС Π²Π΅ΠΊΡ‚ΠΎΡ€Π°;
  • — свойства Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²;
  • — Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹;
  • — тригономСтричСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π˜Π½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ

  • Π’ Ρ‚ΠΎΠΌ случаС, Ссли извСстны Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ, Ρ‚ΠΎ для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° , построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΡ… ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΉ (Π΄Π»ΠΈΠ½ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²), Π½Π° синус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ S=β”‚aβ”‚ β”‚ bβ”‚ sin(Ξ±).
  • Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π·Π°Π΄Π°Π½Ρ‹ Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚ΠΎ для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° , построСнного Π½Π° Π½ΠΈΡ…, ΠΏΡ€ΠΎΠ΄Π΅Π»Π°ΠΉΡ‚Π΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ дСйствия:
  • НайдитС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ссли ΠΎΠ½ΠΈ Π½Π΅ Π΄Π°Π½Ρ‹ сразу, отняв ΠΎΡ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΊΠΎΠ½Ρ†ΠΎΠ² Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΈΠ· Π½Π°Ρ‡Π°Π». НапримСр, Ссли ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (1;-3;2), Π° ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ (2;-4;-5), Ρ‚ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π±ΡƒΠ΄ΡƒΡ‚ (2-1;-4+3;-5-2)=(1;-1;-7). ΠŸΡƒΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π°(x1;y1;z1), Π²Π΅ΠΊΡ‚ΠΎΡ€Π° b(x2;y2;z2).
  • НайдитС Π΄Π»ΠΈΠ½Ρ‹ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π’ΠΎΠ·Π²Π΅Π΄ΠΈΡ‚Π΅ ΠΊΠ°ΠΆΠ΄ΡƒΡŽ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΠΈΡ… сумму x1Β²+y1Β²+z1Β². Из ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° ΠΈΠ·Π²Π»Π΅ΠΊΠΈΡ‚Π΅ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ. Для Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΎΠ΄Π΅Π»Π°ΠΉΡ‚Π΅ Ρ‚Ρƒ ΠΆΠ΅ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρƒ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, получится β”‚aβ”‚ΠΈβ”‚ bβ”‚.
  • НайдитС скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Для этого ΠΏΠ΅Ρ€Π΅ΠΌΠ½ΠΎΠΆΡŒΡ‚Π΅ ΠΈΡ… ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΈ слоТитС произвСдСния β”‚a bβ”‚= x1 x2+ y1 y2+ z1 z2.
  • ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ косинус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ для Ρ‡Π΅Π³ΠΎ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠ΅Π΅ΡΡ Π² ΠΏ.3 ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚Π΅ Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Ρ‹Π»ΠΈ рассчитаны Π² ΠΏ. 2 (Cos(Ξ±)= β”‚a bβ”‚/(β”‚aβ”‚ β”‚ bβ”‚)).
  • Бинус ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ ΠΊΠΎΡ€Π½ΡŽ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠΌΡƒ ΠΈΠ· разности числа 1, ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° косинуса Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ ΡƒΠ³Π»Π°, рассчитанного Π² ΠΏ. 4 (1-CosΒ²(Ξ±)).
  • РассчитайтС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° , построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… найдя ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΡ… Π΄Π»ΠΈΠ½, вычислСнноС Π² ΠΏ. 2, Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΡƒΠΌΠ½ΠΎΠΆΡŒΡ‚Π΅ Π½Π° число, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠ΅Π΅ΡΡ послС расчСтов Π² ΠΏ.5.
  • Π’ Ρ‚ΠΎΠΌ случаС, Ссли ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π·Π°Π΄Π°Π½Π½Ρ‹ Π½Π° плоскости, ΠΏΡ€ΠΈ расчСтах ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° z просто отбрасываСтся. Π”Π°Π½Π½Ρ‹ΠΉ расчСт являСтся числовым Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€. Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². РасчСт Π΄Π»ΠΈΠ½ сторон Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…, равняСтся ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ Π΄Π»ΠΈΠ½ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° ΡƒΠ³ΠΎΠ» ΡƒΠ³Π»Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π»Π΅ΠΆΠΈΡ‚ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ.

Π₯ΠΎΡ€ΠΎΡˆΠΎ, ΠΊΠΎΠ³Π΄Π° ΠΏΠΎ условиям Π΄Π°Π½Ρ‹ Π΄Π»ΠΈΠ½Ρ‹ этих самых Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Однако Π±Ρ‹Π²Π°Π΅Ρ‚ ΠΈ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΌΠΎΠΆΠ½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ послС расчСтов ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ.
Если ΠΏΠΎΠ²Π΅Π·Π»ΠΎ, ΠΈ ΠΏΠΎ условиям Π΄Π°Π½Ρ‹ Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ρ‚ΠΎ Π½ΡƒΠΆΠ½ΠΎ просто ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ ΡƒΠΆΠ΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·Π±ΠΈΡ€Π°Π»ΠΈ Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ . ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΡΡ‚ΡŒΡΡ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΉ Π½Π° синус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ:

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€ расчСта ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ….

Π—Π°Π΄Π°Ρ‡Π°: ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ построСн Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΈ . НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ, Ссли , Π° ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ 30Β°.
Π’Ρ‹Ρ€Π°Π·ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‡Π΅Ρ€Π΅Π· ΠΈΡ… значСния:

Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρƒ вас Π²ΠΎΠ·Π½ΠΈΠΊ вопрос – ΠΎΡ‚ΠΊΡƒΠ΄Π° взялись Π½ΡƒΠ»ΠΈ? Π‘Ρ‚ΠΎΠΈΡ‚ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ Ρ€Π°Π±ΠΎΡ‚Π°Π΅ΠΌ с Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Π° для Π½ΠΈΡ… . Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Ссли Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ,Ρ‚ΠΎ ΠΎΠ½ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΎ Π². Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΠΈΡ‚ΠΎΠ³ΠΎΠ²Ρ‹Π΅ вычислСния:

ВСрнСмся ΠΊ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ΅, ΠΊΠΎΠ³Π΄Π° Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π΅ ΡƒΠΊΠ°Π·Π°Π½Ρ‹ Π² условиях. Если ваш ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Π»Π΅ΠΆΠΈΡ‚ Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚ΠΎ потрСбуСтся ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅.

РасчСт Π΄Π»ΠΈΠ½ сторон Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ

Для Π½Π°Ρ‡Π°Π»Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΎΡ‚Π½ΠΈΠΌΠ°Π΅ΠΌ ΠΎΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΊΠΎΠ½Ρ†Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°Ρ‡Π°Π»Π°. Допустим ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a (x1;y1;z1), Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° b (x3;y3;z3).
Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Π΄Π»ΠΈΠ½Ρƒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Для этого ΠΊΠ°ΠΆΠ΄ΡƒΡŽ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ возвСсти Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, ΠΏΠΎΡ‚ΠΎΠΌ ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΠ· ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠ³ΠΎ числа ΠΈΠ·Π²Π»Π΅Ρ‡ΡŒ ΠΊΠΎΡ€Π΅Π½ΡŒ. По нашим Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ Π±ΡƒΠ΄ΡƒΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ расчСты:


Π’Π΅ΠΏΠ΅Ρ€ΡŒ потрСбуСтся Π½Π°ΠΉΡ‚ΠΈ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π°ΡˆΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Для этого ΠΈΡ… ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ мноТатся ΠΈ ΡΠΊΠ»Π°Π΄Ρ‹Π²Π°ΡŽΡ‚ΡΡ.

ИмСя Π΄Π»ΠΈΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΈΡ… скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ косинус ΡƒΠ³Π»Π°, Π»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ .
Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ синус этого ΠΆΠ΅ ΡƒΠ³Π»Π°:
Π’Π΅ΠΏΠ΅Ρ€ΡŒ Ρƒ нас Π΅ΡΡ‚ΡŒ всС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΈ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ запросто Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… ΠΏΠΎ ΡƒΠΆΠ΅ извСстной Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅.

Вспомним Π² Π½Π°Ρ‡Π°Π»Π΅, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅.

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ 1

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ для $\vec{a}$ ΠΈ $\vec{b}$ являСтся $\vec{c}$, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ собой Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ‚Ρ€Π΅Ρ‚ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ $\vec{c}= ||$, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ этот Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ особСнными свойствами:

  • Cкаляр ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° — ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ $|\vec{a}|$ ΠΈ $|\vec{b}|$ Π½Π° синус ΡƒΠ³Π»Π° $\vec{c}= ||= |\vec{a}| \cdot |\vec{b}|\cdot \sin Ξ± \left(1\right)$;
  • ВсС $\vec{a}, \vec{b}$ ΠΈ $\vec{c}$ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ ΠΏΡ€Π°Π²ΡƒΡŽ Ρ‚Ρ€ΠΎΠΉΠΊΡƒ;
  • ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ ΠΊ $\vec{a}$ ΠΈ $\vec{b}$.

Если для Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ($\vec{a}=\{x_1; y_1; z_1\}$ ΠΈ $\vec{b}= \{x_2; y_2; z_2\}$), Ρ‚ΠΎ ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

$ = \{y_1 \cdot z_2 – y_2 \cdot z_1; z_1 \cdot x_2 – z_2 \cdot x_1; x_2 \cdot y_2 – x_2 \cdot y_1\}$

Π›Π΅Π³Ρ‡Π΅ всСго Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ эту Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ записав Π² Ρ„ΠΎΡ€ΠΌΠ΅ опрСдСлитСля:

$ = \begin{array} {|ccc|} i & j & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ \end{array}$.

Π­Ρ‚Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вСсьма ΡƒΠ΄ΠΎΠ±Π½Π° для использования, Π½ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ, ΠΊΠ°ΠΊ Π΅Ρ‘ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ, для Π½Π°Ρ‡Π°Π»Π° слСдуСт ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡ‚ΡŒΡΡ с Ρ‚Π΅ΠΌΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ† ΠΈ ΠΈΡ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»Π΅ΠΉ.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° , стороны ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ $\vec{a}$ ΠΈ $vec{b}$ Ρ€Π°Π²Π½Π° скаляру Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π΄Π°Π½Π½Ρ‹Ρ… Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

Π­Ρ‚ΠΎ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ совсСм нСслоТно вывСсти.

Вспомним Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для нахоТдСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π΅Π³ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌΠΈ $a$ ΠΈ $b$:

$S = a \cdot b \cdot \sin Ξ±$

ΠŸΡ€ΠΈ этом Π΄Π»ΠΈΠ½Ρ‹ сторон Ρ€Π°Π²Π½Ρ‹ скалярным значСниям Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² $\vec{a}$ ΠΈ $\vec{b}$, Ρ‡Ρ‚ΠΎ Π²ΠΏΠΎΠ»Π½Π΅ сСбС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ Π½Π°ΠΌ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, скаляр Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ рассматриваСмой Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Π”Π°Π½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ $\vec{c}$ c ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ $\{5;3; 7\}$ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ $\vec{g}$ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ $\{3; 7;10 \}$ Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Найти, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ $\vec{c}$ ΠΈ $\vec{g}$.2} = \sqrt{1878} β‰ˆ 43, 34$.

Π”Π°Π½Π½Ρ‹ΠΉ Ρ…ΠΎΠ΄ рассуТдСний справСдлив Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для нахоТдСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Π² 3-Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС, Π½ΠΎ ΠΈ для Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ. ΠŸΠΎΠ·Π½Π°ΠΊΠΎΠΌΡŒΡ‚Π΅ΡΡŒ со ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Π·Π°Π΄Π°Ρ‡ΠΊΠΎΠΉ Π½Π° эту Ρ‚Π΅ΠΌΡƒ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, Ссли Π΅Π³ΠΎ ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ Π·Π°Π΄Π°ΡŽΡ‚ΡΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ $\vec{m}$ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ $\{2; 3\}$ ΠΈ $\vec{d}$ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ $\{-5; 6\}$.

РСшСниС:

Π­Ρ‚Π° Π·Π°Π΄Π°Ρ‡Π° прСдставляСт собой частный ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π·Π°Π΄Π°Ρ‡ΠΊΠΈ 1, Ρ€Π΅ΡˆΡ‘Π½Π½ΠΎΠΉ Π²Ρ‹ΡˆΠ΅, Π½ΠΎ ΠΏΡ€ΠΈ этом ΠΎΠ±Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости, Π° это Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ, $z$, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠ½ΡΡ‚ΡŒ Π·Π° Π½ΡƒΠ»ΡŒ.

ΠŸΠΎΠ΄Π²Π΅Π΄Ρ‘ΠΌ ΠΈΡ‚ΠΎΠ³ΠΈ ΠΏΠΎ всСму Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌΡƒ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° составит:

$S = \begin{array} {||cc||} 2 & 3\\ -5 & 6 \\ \end{array} = \sqrt{12 + 15} =3 \sqrt3$.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3

Π”Π°Π½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ $\vec{a} = 3i – j + k; \vec{b}= 5i$. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°.

$[ \vec{a} \times \vec{b}] = (3i – j + k) \times 5i = 15 – 5 + $

Упростим согласно ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠΉ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ для Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²:

Рисунок 1.2} = 5\sqrt{2}$.

ΠŸΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ Π±Ρ‹Π»ΠΈ ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π·Π°Π΄Π°Π½Ρ‹ Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π½ΠΎ рассмотрим Ρ‚Π°ΠΊΠΆΠ΅ случай, Ссли ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ базисными Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ отличаСтся ΠΎΡ‚ $90Β°$:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4

Π’Π΅ΠΊΡ‚ΠΎΡ€ $\vec{d} = 2a + 3b$, $\vec{f}= a – 4b$, Π΄Π»ΠΈΠ½Ρ‹ $\vec{a}$ ΠΈ $\vec{b}$ Ρ€Π°Π²Π½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΈ Ρ€Π°Π²Π½Ρ‹ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Π° ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ $\vec{a}$ ΠΈ $\vec{b}$ Ρ€Π°Π²Π΅Π½ 45Β°.

РСшСниС:

Вычислим Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ $\vec{d} \times \vec{f}$:

$[\vec{d} \times \vec{f} ]= (2a + 3b) \times (a – 4b) = 2 – 8 + 3 – 12 $.

Для Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ согласно ΠΈΡ… свойствам справСдливо ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅: $$ ΠΈ $$ Ρ€Π°Π²Π½Ρ‹ Π½ΡƒΠ»ΡŽ, $ = — $.

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ это для упрощСния:

$[\vec{d} \times \vec{f} ]= -8 + 3 = -8 — 3 =-11$.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ $(1)$ :

$[\vec{d} \times \vec{f} ] = |-11 | = 11 \cdot |a| \cdot |b| \cdot \sin Ξ± = 11 \cdot 1 \cdot 1 \cdot \frac12=5,5$.

На Π΄Π°Π½Π½ΠΎΠΌ ΡƒΡ€ΠΎΠΊΠ΅ ΠΌΡ‹ рассмотрим Π΅Ρ‰Ρ‘ Π΄Π²Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ с Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ: Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (сразу ссылка, ΠΊΠΎΠΌΡƒ Π½ΡƒΠΆΠ½ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ΠΎ) . НичСго ΡΡ‚Ρ€Π°ΡˆΠ½ΠΎΠ³ΠΎ, Ρ‚Π°ΠΊ ΠΈΠ½ΠΎΠ³Π΄Π° Π±Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ для ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΡ‡Π°ΡΡ‚ΡŒΡ, ΠΏΠΎΠΌΠΈΠΌΠΎ скалярного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , трСбуСтся Π΅Ρ‰Ρ‘ ΠΈ Π΅Ρ‰Ρ‘. Вакая Π²ΠΎΡ‚ вСкторная наркомания. ΠœΠΎΠΆΠ΅Ρ‚ ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒΡΡ Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»Π΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ Π·Π°Π»Π΅Π·Π°Π΅ΠΌ Π² Π΄Π΅Π±Ρ€ΠΈ аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π­Ρ‚ΠΎ Π½Π΅ Ρ‚Π°ΠΊ. Π’ Π΄Π°Π½Π½ΠΎΠΌ Ρ€Π°Π·Π΄Π΅Π»Π΅ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ ΠΌΠ°Π»ΠΎ Π΄Ρ€ΠΎΠ², Ρ€Π°Π·Π²Π΅ Ρ‡Ρ‚ΠΎ Π½Π° Π‘ΡƒΡ€Π°Ρ‚ΠΈΠ½ΠΎ Ρ…Π²Π°Ρ‚ΠΈΡ‚. На самом Π΄Π΅Π»Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΎΡ‡Π΅Π½ΡŒ распространСнный ΠΈ простой – вряд Π»ΠΈ слоТнСС, Ρ‡Π΅ΠΌ Ρ‚ΠΎ ΠΆΠ΅ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ , Π΄Π°ΠΆΠ΅ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ помСньшС Π±ΡƒΠ΄Π΅Ρ‚. Π“Π»Π°Π²Π½ΠΎΠ΅ Π² аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, ΠΊΠ°ΠΊ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ убСдятся ΠΈΠ»ΠΈ ΡƒΠΆΠ΅ ΡƒΠ±Π΅Π΄ΠΈΠ»ΠΈΡΡŒ, НЕ ΠžΠ¨Π˜Π‘ΠΠ’Π¬Π‘Π― Π’ Π’Π«Π§Π˜Π‘Π›Π•ΠΠ˜Π―Π₯. ΠŸΠΎΠ²Ρ‚ΠΎΡ€ΡΠΉΡ‚Π΅ ΠΊΠ°ΠΊ Π·Π°ΠΊΠ»ΠΈΠ½Π°Π½ΠΈΠ΅, ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Π²Π°ΠΌ ΡΡ‡Π°ΡΡ‚ΡŒΠ΅ =)

Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΡΠ²Π΅Ρ€ΠΊΠ°ΡŽΡ‚ Π³Π΄Π΅-Ρ‚ΠΎ Π΄Π°Π»Π΅ΠΊΠΎ, ΠΊΠ°ΠΊ ΠΌΠΎΠ»Π½ΠΈΠΈ Π½Π° Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π΅, Π½Π΅ Π±Π΅Π΄Π°, Π½Π°Ρ‡Π½ΠΈΡ‚Π΅ с ΡƒΡ€ΠΎΠΊΠ° Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ для Ρ‡Π°ΠΉΠ½ΠΈΠΊΠΎΠ² , Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΈΠ»ΠΈ вновь приобрСсти Π±Π°Π·ΠΎΠ²Ρ‹Π΅ знания ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…. Π‘ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Π΅ Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π·Π½Π°ΠΊΠΎΠΌΠΈΡ‚ΡŒΡΡ с ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎ, я постарался ΡΠΎΠ±Ρ€Π°Ρ‚ΡŒ максимально ΠΏΠΎΠ»Π½ΡƒΡŽ ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΡŽ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π² практичСских Ρ€Π°Π±ΠΎΡ‚Π°Ρ…

Π§Π΅ΠΌ вас сразу ΠΏΠΎΡ€Π°Π΄ΠΎΠ²Π°Ρ‚ΡŒ? Когда я Π±Ρ‹Π» малСньким, Ρ‚ΠΎ ΡƒΠΌΠ΅Π» ΠΆΠΎΠ½Π³Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ двумя ΠΈ Π΄Π°ΠΆΠ΅ трСмя ΡˆΠ°Ρ€ΠΈΠΊΠ°ΠΌΠΈ. Π›ΠΎΠ²ΠΊΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΎΡΡŒ. БСйчас ΠΆΠΎΠ½Π³Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ придётся Π²ΠΎΠΎΠ±Ρ‰Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ пространствСнныС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , Π° плоскиС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ с двумя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ останутся Π·Π° Π±ΠΎΡ€Ρ‚ΠΎΠΌ. ΠŸΠΎΡ‡Π΅ΠΌΡƒ? Π’Π°ΠΊΠΈΠΌΠΈ ΡƒΠΆ Ρ€ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ Π΄Π°Π½Π½Ρ‹Π΅ дСйствия – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΈ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Π² Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС. Π£ΠΆΠ΅ ΠΏΡ€ΠΎΡ‰Π΅!

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² скалярном ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° . ΠŸΡƒΡΡ‚ΡŒ это Π±ΡƒΠ΄ΡƒΡ‚ Π½Π΅Ρ‚Π»Π΅Π½Π½Ρ‹Π΅ Π±ΡƒΠΊΠ²Ρ‹ .

Π‘Π°ΠΌΠΎ дСйствиС обозначаСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: . Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, Π½ΠΎ я ΠΏΡ€ΠΈΠ²Ρ‹ΠΊ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‚Π°ΠΊ, Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… скобках с крСстиком.

И сразу вопрос : Ссли Π² скалярном ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΈ здСсь Ρ‚ΠΎΠΆΠ΅ ΡƒΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ρ‚ΠΎΠ³Π΄Π° Π² Ρ‡Ρ‘ΠΌ Ρ€Π°Π·Π½ΠΈΡ†Π° ? Явная Ρ€Π°Π·Π½ΠΈΡ†Π°, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, Π² РЕЗУЛЬВАВЕ:

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ скалярного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π§Π˜Π‘Π›Πž:

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π’Π•ΠšΠ’ΠžΠ  : , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ снова Π²Π΅ΠΊΡ‚ΠΎΡ€. Π—Π°ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΉ ΠΊΠ»ΡƒΠ±. БобствСнно, ΠΎΡ‚ΡΡŽΠ΄Π° ΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π’ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΡƒΡ‡Π΅Π±Π½ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ обозначСния Ρ‚ΠΎΠΆΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ, я Π±ΡƒΠ΄Ρƒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π±ΡƒΠΊΠ²Ρƒ .

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния

Π‘Π½Π°Ρ‡Π°Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ с ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΎΠΉ, Π·Π°Ρ‚Π΅ΠΌ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΈ.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ : Π’Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , взятых Π² Π΄Π°Π½Π½ΠΎΠΌ порядкС , называСтся Π’Π•ΠšΠ’ΠžΠ  , Π΄Π»ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ числСнно Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° , построСнного Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…; Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ , ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ базис ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€Π°Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ:

Π Π°Π·Π±ΠΈΡ€Π°Π΅ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎ косточкам, Ρ‚ΡƒΡ‚ ΠΌΠ½ΠΎΠ³ΠΎ интСрСсного!

Π˜Ρ‚Π°ΠΊ, ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ сущСствСнныС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹:

1) Π˜ΡΡ…ΠΎΠ΄Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Π΅ красными стрСлками, ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ . Π‘Π»ΡƒΡ‡Π°ΠΉ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π±ΡƒΠ΄Π΅Ρ‚ умСстно Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡ΡƒΡ‚ΡŒ ΠΏΠΎΠ·ΠΆΠ΅.

2) Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ взяты Π² строго ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΌ порядкС : – Β«Π°Β» умноТаСтся Π½Π° «бэ» , Π° Π½Π΅ «бэ» Π½Π° Β«Π°Β». Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ умноТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π’Π•ΠšΠ’ΠžΠ  , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ синим Ρ†Π²Π΅Ρ‚ΠΎΠΌ. Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π² ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ порядкС, Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ€Π°Π²Π½Ρ‹ΠΉ ΠΏΠΎ Π΄Π»ΠΈΠ½Π΅ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€ (ΠΌΠ°Π»ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Ρ†Π²Π΅Ρ‚). Π’ΠΎ Π΅ΡΡ‚ΡŒ, справСдливо равСнство .

3) Π’Π΅ΠΏΠ΅Ρ€ΡŒ познакомимся с гСомСтричСским смыслом Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π­Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Ρ‹ΠΉ ΠΏΡƒΠ½ΠΊΡ‚! Π”Π›Π˜ΠΠ синСго Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Π°, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ ΠΌΠ°Π»ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ) числСнно Ρ€Π°Π²Π½Π° ΠŸΠ›ΠžΠ©ΠΠ”Π˜ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… . На рисункС Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Π½ Ρ‡Ρ‘Ρ€Π½Ρ‹ΠΌ Ρ†Π²Π΅Ρ‚ΠΎΠΌ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ : Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ являСтся схСматичСским, ΠΈ, СстСствСнно, номинальная Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π½Π΅ Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°.

ВспоминаСм ΠΎΠ΄Π½Ρƒ ΠΈΠ· гСомСтричСских Ρ„ΠΎΡ€ΠΌΡƒΠ»: ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ смСТных сторон Π½Π° синус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ . ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ, исходя ΠΈΠ· Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ, справСдлива Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния Π”Π›Π˜ΠΠ« Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠŸΠΎΠ΄Ρ‡Ρ‘Ρ€ΠΊΠΈΠ²Π°ΡŽ, Ρ‡Ρ‚ΠΎ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Ρ‘Ρ‚ ΠΎ Π”Π›Π˜ΠΠ• Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π° Π½Π΅ ΠΎ самом Π²Π΅ΠΊΡ‚ΠΎΡ€Π΅ . Каков практичСский смысл? А смысл Ρ‚Π°ΠΊΠΎΠ², Ρ‡Ρ‚ΠΎ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° часто находят Ρ‡Π΅Ρ€Π΅Π· понятиС Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π²Ρ‚ΠΎΡ€ΡƒΡŽ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ. Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° (красный ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€) Π΄Π΅Π»ΠΈΡ‚ Π΅Π³ΠΎ Π½Π° Π΄Π²Π° Ρ€Π°Π²Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… (красная ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠ°), ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

4) НС ΠΌΠ΅Π½Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ . РазумССтся, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ (малиновая стрСлка) Ρ‚ΠΎΠΆΠ΅ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ исходным Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ .

5) Π’Π΅ΠΊΡ‚ΠΎΡ€ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ базис ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€Π°Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ. На ΡƒΡ€ΠΎΠΊΠ΅ ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΊ Π½ΠΎΠ²ΠΎΠΌΡƒ базису я достаточно ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассказал ΠΎΠ± ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ плоскости , ΠΈ сСйчас ΠΌΡ‹ разбСрёмся, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ориСнтация пространства. ΠžΠ±ΡŠΡΡΠ½ΡΡ‚ΡŒ Π±ΡƒΠ΄Ρƒ Π½Π° ΠΏΠ°Π»ΡŒΡ†Π°Ρ… вашСй ΠΏΡ€Π°Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ . ΠœΡ‹ΡΠ»Π΅Π½Π½ΠΎ совмСститС ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Π»Π΅Ρ† с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΈ срСдний ΠΏΠ°Π»Π΅Ρ† с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ . БСзымянный ΠΏΠ°Π»Π΅Ρ† ΠΈ ΠΌΠΈΠ·ΠΈΠ½Π΅Ρ† ΠΏΡ€ΠΈΠΆΠΌΠΈΡ‚Π΅ ΠΊ Π»Π°Π΄ΠΎΠ½ΠΈ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ большой ΠΏΠ°Π»Π΅Ρ† – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π²Π²Π΅Ρ€Ρ…. Π­Ρ‚ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ базис (Π½Π° рисункС ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½). Π’Π΅ΠΏΠ΅Ρ€ΡŒ помСняйтС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ (ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ срСдний ΠΏΠ°Π»ΡŒΡ†Ρ‹ ) мСстами, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ большой ΠΏΠ°Π»Π΅Ρ† развСрнётся, ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡƒΠΆΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π²Π½ΠΈΠ·. Π­Ρ‚ΠΎ Ρ‚ΠΎΠΆΠ΅ ΠΏΡ€Π°Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ базис. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρƒ вас Π²ΠΎΠ·Π½ΠΈΠΊ вопрос: Π° ΠΊΠ°ΠΊΠΎΠΉ базис ΠΈΠΌΠ΅Π΅Ρ‚ Π»Π΅Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ? Β«ΠŸΡ€ΠΈΡΠ²ΠΎΠΉΡ‚Π΅Β» Ρ‚Π΅ΠΌ ΠΆΠ΅ ΠΏΠ°Π»ΡŒΡ†Π°ΠΌ Π»Π΅Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , ΠΈ ΠΏΠΎΠ»Π£Ρ‡ΠΈΡ‚Π΅ Π»Π΅Π²Ρ‹ΠΉ базис ΠΈ Π»Π΅Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ пространства (Π² этом случаС большой ΠΏΠ°Π»Π΅Ρ† располоТится ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ Π½ΠΈΠΆΠ½Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°) . ΠžΠ±Ρ€Π°Π·Π½ΠΎ говоря, Π΄Π°Π½Π½Ρ‹Π΅ базисы Β«Π·Π°ΠΊΡ€ΡƒΡ‡ΠΈΠ²Π°ΡŽΡ‚Β» ΠΈΠ»ΠΈ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‚ пространство Π² Ρ€Π°Π·Π½Ρ‹Π΅ стороны. И это понятиС Π½Π΅ слСдуСт ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‡Π΅ΠΌ-Ρ‚ΠΎ Π½Π°Π΄ΡƒΠΌΠ°Π½Π½Ρ‹ΠΌ ΠΈΠ»ΠΈ абстрактным – Ρ‚Π°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ пространства мСняСт самоС ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ΅ Π·Π΅Ρ€ΠΊΠ°Π»ΠΎ, ΠΈ Ссли Β«Π²Ρ‹Ρ‚Π°Ρ‰ΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π°ΠΆΡ‘Π½Π½Ρ‹ΠΉ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ ΠΈΠ· Π·Π°Π·Π΅Ρ€ΠΊΠ°Π»ΡŒΡΒ», Ρ‚ΠΎ Π΅Π³ΠΎ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС Π½Π΅ удастся ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΡ‚ΡŒ с Β«ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΠΎΠΌΒ». ΠšΡΡ‚Π°Ρ‚ΠΈ, поднСситС ΠΊ Π·Π΅Ρ€ΠΊΠ°Π»Ρƒ Ρ‚Ρ€ΠΈ ΠΏΠ°Π»ΡŒΡ†Π° ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅;-)

…как всё-Ρ‚Π°ΠΊΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠΎ, Ρ‡Ρ‚ΠΎ Π²Ρ‹ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π·Π½Π°Π΅Ρ‚Π΅ ΠΎ ΠΏΡ€Π°Π²ΠΎ- ΠΈ Π»Π΅Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… базисах, ΠΈΠ±ΠΎ ΡΡ‚Ρ€Π°ΡˆΠ½Π« высказывания Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎ смСнС ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ =)

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½ΠΎ, ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ Π²Ρ‹ΡΡΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ происходит, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹. Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой ΠΈ наш ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Ρ‚ΠΎΠΆΠ΅ «складываСтся» Π² ΠΎΠ΄Π½Ρƒ ΠΏΡ€ΡΠΌΡƒΡŽ. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Π°ΠΊΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ говорят ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Π²Ρ‹Ρ€ΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π­Ρ‚ΠΎ ΠΆΠ΅ слСдуСт ΠΈ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ – синус нуля ΠΈΠ»ΠΈ 180-Ρ‚ΠΈ градусов Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ нулСвая

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ссли , Ρ‚ΠΎ ΠΈ . ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ само Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ, Π½ΠΎ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ этим часто ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Π³Π°ΡŽΡ‚ ΠΈ ΠΏΠΈΡˆΡƒΡ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΎ Ρ‚ΠΎΠΆΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

Частный случай – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° самого сСбя:

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡ‚ΡŒ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΎΡΡ‚ΡŒ Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΈ Π΄Π°Π½Π½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ срСди ΠΏΡ€ΠΎΡ‡ΠΈΡ… ΠΌΡ‹ Ρ‚ΠΎΠΆΠ΅ Ρ€Π°Π·Π±Π΅Ρ€Ρ‘ΠΌ.

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ практичСских ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒΡΡ тригономСтричСская Ρ‚Π°Π±Π»ΠΈΡ†Π° , Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΠΎ Π½Π΅ΠΉ значСния синусов.

Ну Ρ‡Ρ‚ΠΎ ΠΆΠ΅, Ρ€Π°Π·ΠΆΠΈΠ³Π°Π΅ΠΌ огонь:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Π°) Найти Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , Ссли

Π±) Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

РСшСниС : НСт, это Π½Π΅ ΠΎΠΏΠ΅Ρ‡Π°Ρ‚ΠΊΠ°, исходныС Π΄Π°Π½Π½Ρ‹Π΅ Π² ΠΏΡƒΠ½ΠΊΡ‚Π°Ρ… условия я Π½Π°ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎ сдСлал ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ. ΠŸΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½ΠΈΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ!

Π°) По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ трСбуСтся Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния). По ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

ΠžΡ‚Π²Π΅Ρ‚ :

Коль скоро ΡΠΏΡ€Π°ΡˆΠΈΠ²Π°Π»ΠΎΡΡŒ ΠΎ Π΄Π»ΠΈΠ½Π΅, Ρ‚ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚Π΅ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ – Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.

Π±) По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… . ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° числСнно Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠžΡ‚Π²Π΅Ρ‚ :

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚Π΅ ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Ρ€Π΅Ρ‡ΠΈ Π½Π΅ ΠΈΠ΄Ρ‘Ρ‚ Π²ΠΎΠΎΠ±Ρ‰Π΅, нас ΡΠΏΡ€Π°ΡˆΠΈΠ²Π°Π»ΠΈ ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ , соотвСтствСнно, Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ – ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.

ВсСгда смотрим, ЧВО трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ, ΠΈ, исходя ΠΈΠ· этого, Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌ Ρ‡Ρ‘Ρ‚ΠΊΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‚. ΠœΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ буквоСдством, Π½ΠΎ Π±ΡƒΠΊΠ²ΠΎΠ΅Π΄ΠΎΠ² срСди ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ…Π²Π°Ρ‚Π°Π΅Ρ‚, ΠΈ Π·Π°Π΄Π°Π½ΠΈΠ΅ с Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌΠΈ шансами вСрнётся Π½Π° Π΄ΠΎΡ€Π°Π±ΠΎΡ‚ΠΊΡƒ. Π₯отя это Π½Π΅ особо натянутая ΠΏΡ€ΠΈΠ΄ΠΈΡ€ΠΊΠ° – Ссли ΠΎΡ‚Π²Π΅Ρ‚ Π½Π΅ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π΅Π½, Ρ‚ΠΎ складываСтся Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»Π΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ Π½Π΅ разбираСтся Π² простых Π²Π΅Ρ‰Π°Ρ… ΠΈ/ΠΈΠ»ΠΈ Π½Π΅ Π²Π½ΠΈΠΊ Π² ΡΡƒΡ‚ΡŒ задания. Π­Ρ‚ΠΎΡ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚ всСгда Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ Π½Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅, Ρ€Π΅ΡˆΠ°Ρ Π»ΡŽΠ±ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΏΠΎ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Π΄Π° ΠΈ ΠΏΠΎ Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°ΠΌ Ρ‚ΠΎΠΆΠ΅.

ΠšΡƒΠ΄Π° подСвалась большая Π±ΡƒΠΊΠΎΠ²ΠΊΠ° «эн»? Π’ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅, Π΅Ρ‘ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈΠ»Π΅ΠΏΠΈΡ‚ΡŒ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, Π½ΠΎ Π² цСлях ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ запись, я этого Π½Π΅ сдСлал. НадСюсь, всСм понятно, Ρ‡Ρ‚ΠΎ ΠΈ – это ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅.

ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

Π€ΠΎΡ€ΠΌΡƒΠ»Π° нахоТдСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π° Π² коммСнтариях ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ. РСшСниС ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΊΠΎΠ½Ρ†Π΅ ΡƒΡ€ΠΎΠΊΠ°.

На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π·Π°Π΄Π°Ρ‡Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ‡Π΅Π½ΡŒ распространСна, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π·Π°ΠΌΡƒΡ‡ΠΈΡ‚ΡŒ.

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡ Π½Π°ΠΌ понадобятся:

Бвойства Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

НСкоторыС свойства Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния ΠΌΡ‹ ΡƒΠΆΠ΅ рассмотрСли, Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, я ΠΈΡ… Π²ΠΊΠ»ΡŽΡ‡Ρƒ Π² Π΄Π°Π½Π½Ρ‹ΠΉ список.

Для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ числа справСдливы ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ свойства:

1) Π’ Π΄Ρ€ΡƒΠ³ΠΈΡ… источниках ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΡƒΠ½ΠΊΡ‚ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π΅ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Π² свойствах, Π½ΠΎ ΠΎΠ½ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ΅Π½ Π² практичСском ΠΏΠ»Π°Π½Π΅. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡƒΡΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚.

2) – свойство Ρ‚ΠΎΠΆΠ΅ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½ΠΎ Π²Ρ‹ΡˆΠ΅, ΠΈΠ½ΠΎΠ³Π΄Π° Π΅Π³ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π°Π½Ρ‚ΠΈΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ . Π˜Π½Ρ‹ΠΌΠΈ словами, порядок Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

3) – ΡΠΎΡ‡Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ ассоциативныС Π·Π°ΠΊΠΎΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. ΠšΠΎΠ½ΡΡ‚Π°Π½Ρ‚Ρ‹ Π±Π΅Π·ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ½ΠΎ выносятся Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‡Π΅Π³ΠΎ ΠΈΠΌ Ρ‚Π°ΠΌ Π΄Π΅Π»Π°Ρ‚ΡŒ?

4) – Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ дистрибутивныС Π·Π°ΠΊΠΎΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π‘ раскрытиСм скобок Ρ‚ΠΎΠΆΠ΅ Π½Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ.

Π’ качСствС дСмонстрации рассмотрим ΠΊΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒΠΊΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3

Найти , Ссли

РСшСниС: По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ снова трСбуСтся Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. РаспишСм Π½Π°ΡˆΡƒ ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Ρƒ:

(1) Богласно ассоциативным Π·Π°ΠΊΠΎΠ½Π°ΠΌ, выносим константы Π·Π° ΠΏΠ΅Ρ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния.

(2) Выносим константу Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ модуля, ΠΏΡ€ΠΈ этом ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Β«ΡΡŠΠ΅Π΄Π°Π΅Ρ‚Β» Π·Π½Π°ΠΊ «минус». Π”Π»ΠΈΠ½Π° ΠΆΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ.

(3) Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅Π΅ понятно.

ΠžΡ‚Π²Π΅Ρ‚ :

ΠŸΠΎΡ€Π° ΠΏΠΎΠ΄Π±Ρ€ΠΎΡΠΈΡ‚ΡŒ Π΄Ρ€ΠΎΠ² Π² огонь:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

РСшСниС : ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π°ΠΉΠ΄Ρ‘ΠΌ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ . Π—Π°Π³Π²ΠΎΠ·Π΄ΠΊΠ° состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ «цэ» ΠΈ «дэ» сами прСдставлСны Π² Π²ΠΈΠ΄Π΅ сумм Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Алгоритм здСсь стандартСн ΠΈ Ρ‡Π΅ΠΌ-Ρ‚ΠΎ Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ β„– 3 ΠΈ 4 ΡƒΡ€ΠΎΠΊΠ° БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² . РСшСниС для ясности Ρ€Π°Π·ΠΎΠ±ΡŒΡ‘ΠΌ Π½Π° Ρ‚Ρ€ΠΈ этапа:

1) На ΠΏΠ΅Ρ€Π²ΠΎΠΌ шагС Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ , ΠΏΠΎ сути, Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€ . О Π΄Π»ΠΈΠ½Π°Ρ… ΠΏΠΎΠΊΠ° Π½ΠΈ слова!

(1) ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ выраТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² .

(2) Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ дистрибутивныС Π·Π°ΠΊΠΎΠ½Ρ‹, раскрываСм скобки ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ умноТСния ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠ².

(3) Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ассоциативныС Π·Π°ΠΊΠΎΠ½Ρ‹, выносим всС константы Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ. ΠŸΡ€ΠΈ маломальском ΠΎΠΏΡ‹Ρ‚Π΅ дСйствия 2 ΠΈ 3 ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ.

(4) ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΠΈ послСднСС слагаСмоС Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ (Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ) благодаря приятному свойству . Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ слагаСмом ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ свойство антикоммутативности Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

(5) ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ слагаСмыС.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ оказался Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€, Ρ‡Π΅Π³ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ:

2) На Π²Ρ‚ΠΎΡ€ΠΎΠΌ шагС Π½Π°ΠΉΠ΄Π΅ΠΌ Π΄Π»ΠΈΠ½Ρƒ Π½ΡƒΠΆΠ½ΠΎΠ³ΠΎ Π½Π°ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π”Π°Π½Π½ΠΎΠ΅ дСйствиС Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3:

3) Найдём ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ искомого Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°:

Π­Ρ‚Π°ΠΏΡ‹ 2-3 Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ ΠΎΡ„ΠΎΡ€ΠΌΠΈΡ‚ΡŒ ΠΈ ΠΎΠ΄Π½ΠΎΠΉ строкой.

ΠžΡ‚Π²Π΅Ρ‚ :

РассмотрСнная Π·Π°Π΄Π°Ρ‡Π° достаточно распространСна Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚Π°Ρ…, Π²ΠΎΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5

Найти , Ссли

ΠšΡ€Π°Ρ‚ΠΊΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΊΠΎΠ½Ρ†Π΅ ΡƒΡ€ΠΎΠΊΠ°. ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ, насколько Π²Ρ‹ Π±Ρ‹Π»ΠΈ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ²;-)

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… , Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… Π² ΠΎΡ€Ρ‚ΠΎΠ½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ базисС , выраТаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ :

Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΈ ΠΏΡ€Π°Π²Π΄Π° простСцкая: Π² Π²Π΅Ρ€Ρ…Π½ΡŽΡŽ строку опрСдСлитСля записываСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹, Π²ΠΎ Π²Ρ‚ΠΎΡ€ΡƒΡŽ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ строки Β«ΡƒΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌΒ» ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ ΡƒΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌ Π² строгом порядкС – сначала ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° «вэ», Π·Π°Ρ‚Π΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Β«Π΄ΡƒΠ±Π»ΡŒ-вэ». Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½ΡƒΠΆΠ½ΠΎ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π² Π΄Ρ€ΡƒΠ³ΠΎΠΌ порядкС, Ρ‚ΠΎ ΠΈ строки слСдуСт ΠΏΠΎΠΌΠ΅Π½ΡΡ‚ΡŒ мСстами:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 10

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, Π±ΡƒΠ΄ΡƒΡ‚ Π»ΠΈ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ пространства:
Π°)
Π±)

РСшСниС : ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° основана Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠΉ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΡ€ΠΎΠΊΠ°: Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ (Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ): .

Π°) Найдём Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹.

Π±) Найдём Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:

ΠžΡ‚Π²Π΅Ρ‚ : Π°) Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Π±)

Π’ΠΎΡ‚, ΠΏΠΎΠΆΠ°Π»ΡƒΠΉ, ΠΈ всС основныС свСдСния ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

Π”Π°Π½Π½Ρ‹ΠΉ Ρ€Π°Π·Π΄Π΅Π» Π±ΡƒΠ΄Π΅Ρ‚ Π½Π΅ ΠΎΡ‡Π΅Π½ΡŒ большим, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‡, Π³Π΄Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ. ЀактичСски всё Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠΏΠΈΡ€Π°Ρ‚ΡŒΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, гСомСтричСский смысл ΠΈ ΠΏΠ°Ρ€Ρƒ Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ».

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² – это ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Ρ‘Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² :

Π’ΠΎΡ‚ Ρ‚Π°ΠΊ Π²ΠΎΡ‚ ΠΎΠ½ΠΈ Π²Ρ‹ΡΡ‚Ρ€ΠΎΠΈΠ»ΠΈΡΡŒ ΠΏΠ°Ρ€ΠΎΠ²ΠΎΠ·ΠΈΠΊΠΎΠΌ ΠΈ ΠΆΠ΄ΡƒΡ‚, Π½Π΅ доТдутся, ΠΊΠΎΠ³Π΄Π° ΠΈΡ… вычислят.

Π‘Π½Π°Ρ‡Π°Π»Π° ΠΎΠΏΡΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ°:

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ : Π‘ΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , взятых Π² Π΄Π°Π½Π½ΠΎΠΌ порядкС , называСтся ΠΎΠ±ΡŠΡ‘ΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° , построСнного Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…, снабТённый Π·Π½Π°ΠΊΠΎΠΌ Β«+Β», Ссли базис ΠΏΡ€Π°Π²Ρ‹ΠΉ, ΠΈ Π·Π½Π°ΠΊΠΎΠΌ «–», Ссли базис Π»Π΅Π²Ρ‹ΠΉ.

Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌ рисунок. НСвидимыС Π½Π°ΠΌ Π»ΠΈΠ½ΠΈΠΈ ΠΏΡ€ΠΎΡ‡Π΅Ρ€Ρ‡Π΅Π½Ρ‹ ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€ΠΎΠΌ:

ΠŸΠΎΠ³Ρ€ΡƒΠΆΠ°Π΅ΠΌΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅:

2) Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ взяты Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΌ порядкС , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ пСрСстановка Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ , ΠΊΠ°ΠΊ Π²Ρ‹ Π΄ΠΎΠ³Π°Π΄Ρ‹Π²Π°Π΅Ρ‚Π΅ΡΡŒ, Π½Π΅ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Π±Π΅Π· послСдствий.

3) ΠŸΠ΅Ρ€Π΅Π΄ Ρ‚Π΅ΠΌ, ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ гСомСтричСский смысл, ΠΎΡ‚ΠΌΠ΅Ρ‡Ρƒ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚: смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π§Π˜Π‘Π›ΠžΠœ : . Π’ ΡƒΡ‡Π΅Π±Π½ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ нСсколько Π΄Ρ€ΡƒΠ³ΠΈΠΌ, я ΠΏΡ€ΠΈΠ²Ρ‹ΠΊ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· , Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычислСний Π±ΡƒΠΊΠ²ΠΎΠΉ «пэ».

По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ – это объСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° , построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… (Ρ„ΠΈΠ³ΡƒΡ€Π° ΠΏΡ€ΠΎΡ‡Π΅Ρ€Ρ‡Π΅Π½Π° красными Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈ линиями Ρ‡Ρ‘Ρ€Π½ΠΎΠ³ΠΎ Ρ†Π²Π΅Ρ‚Π°). Π’ΠΎ Π΅ΡΡ‚ΡŒ, число Ρ€Π°Π²Π½ΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ : Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ являСтся схСматичСским.

4) НС Π±ΡƒΠ΄Π΅ΠΌ Π·Π°Π½ΠΎΠ²ΠΎ ΠΏΠ°Ρ€ΠΈΡ‚ΡŒΡΡ с понятиСм ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ базиса ΠΈ пространства. Бмысл Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ части состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΊ ΠΎΠ±ΡŠΡ‘ΠΌΡƒ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΠ±Π°Π²Π»ΡΡ‚ΡŒΡΡ Π·Π½Π°ΠΊ минус. ΠŸΡ€ΠΎΡΡ‚Ρ‹ΠΌΠΈ словами, смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ: .

НСпосрСдствСнно ΠΈΠ· опрСдСлСния слСдуСт Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния объСма ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… .

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a b c. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Онлайн ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€

Π”Π°Π½Π½Ρ‹ΠΉ ΠΎΠ½Π»Π°ΠΉΠ½ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ вычисляСт смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². ДаСтся ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. Для вычислСния смСшанного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ способ прСдставлСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ ΠΈΠ»ΠΈ ΠΏΠΎ Π΄Π²ΡƒΠΌ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ) Π²Π²Π΅Π΄ΠΈΡ‚Π΅ Π΄Π°Π½Π½Ρ‹Π΅ Π² ячСйки ΠΈ Π½Π°ΠΆΠΈΠΌΠ°ΠΉΡ‚Π΅ Π½Π° ΠΊΠ½ΠΎΠΏΠΊΡƒ «Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ.»

Γ—

ΠŸΡ€Π΅Π΄ΡƒΠΏΡ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅

ΠžΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ всС ячСйки?

Π—Π°ΠΊΡ€Ρ‹Ρ‚ΡŒ ΠžΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ

Π˜Π½ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡ Π²Π²ΠΎΠ΄Π° Π΄Π°Π½Π½Ρ‹Ρ…. Числа вводятся Π² Π²ΠΈΠ΄Π΅ Ρ†Π΅Π»Ρ‹Ρ… чисСл (ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹: 487, 5, -7623 ΠΈ Ρ‚.Π΄.), дСсятичных чисСл (Π½Π°ΠΏΡ€. 67., 102.54 ΠΈ Ρ‚.Π΄.) ΠΈΠ»ΠΈ Π΄Ρ€ΠΎΠ±Π΅ΠΉ. Π”Ρ€ΠΎΠ±ΡŒ Π½ΡƒΠΆΠ½ΠΎ Π½Π°Π±ΠΈΡ€Π°Ρ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ a/b, Π³Π΄Π΅ a ΠΈ b (b>0) Ρ†Π΅Π»Ρ‹Π΅ ΠΈΠ»ΠΈ дСсятичныС числа. ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ 45/5, 6.6/76.4, -7/6.7 ΠΈ Ρ‚.Π΄.

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (тСория)

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² это число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ получаСтся ΠΏΡ€ΠΈ скалярном ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния ΠΏΠ΅Ρ€Π²Ρ‹Ρ… Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, Ссли Π·Π°Π΄Π°Π½Ρ‹ Ρ‚Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a, b ΠΈ c , Ρ‚ΠΎ для получСния смСшанного произвСдСния этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², сначала Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎ ΡƒΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ [ab ] скалярно умноТаСтся Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ c .

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a, b ΠΈ c обозначаСтся Ρ‚Π°ΠΊ: abc ΠΈΠ»ΠΈ Ρ‚Π°ΠΊ (a,b,c ). Π’ΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ:

ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΡΡ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΡƒΡŽ гСомСтричСский смысл смСшанного произвСдСния, ΠΎΠ·Π½Π°ΠΊΠΎΠΌΡŒΡ‚Π΅ΡΡŒ с понятиями правая Ρ‚Ρ€ΠΎΠΉΠΊΠ°, лСвая Ρ‚Ρ€ΠΎΠΉΠΊΠ°, правая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, лСвая систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ (опрСдСлСния 2, 2″ ΠΈ 3 Π½Π° страницС Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎΠ½Π»Π°ΠΉΠ½).

Для опрСдСлСнности, Π² дальнСйшСм ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€Π°Π²Ρ‹Π΅ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 1. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ([ab ],c ) Ρ€Π°Π²Π½ΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΈΠΏΠ΅Π΄Π°, построСнного Π½Π° ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π½Π°Ρ‡Π°Π»Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… a, b, c , взятому со Π·Π½Π°ΠΊΠΎΠΌ плюс, Ссли Ρ‚Ρ€ΠΎΠΉΠΊΠ° a, b, c правая, ΠΈ со Π·Π½Π°ΠΊΠΎΠΌ минус, Ссли Ρ‚Ρ€ΠΎΠΉΠΊΠ° a, b, c лСвая. Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ a, b, c ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ ([ab ],c ) Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

БлСдствиС 1. Π˜ΠΌΠ΅Π΅Ρ‚ мСсто ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ равСнство:

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°ΠΌ достаточно Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ

([ab ],c )=([bc ],a )(3)

Из выраТСния (3) Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ лСвая ΠΈ правая Ρ‡Π°ΡΡ‚ΡŒ Ρ€Π°Π²Π½Ρ‹ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΈΠΏΠ΅Π΄Π°. Но ΠΈ Π·Π½Π°ΠΊΠΈ ΠΏΡ€Π°Π²ΠΎΠΉ ΠΈ Π»Π΅Π²ΠΎΠΉ частСй ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚Ρ€ΠΎΠΉΠΊΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² abc ΠΈ bca ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ.

Π”ΠΎΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ равСнство (1) позволяСт Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a, b, c просто Π² Π²ΠΈΠ΄Π΅ abc , Π½Π΅ указывая, ΠΊΠ°ΠΊΠΈΠ΅ ΠΈΠΌΠ΅Π½Π½ΠΎ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π΄Π²Π° ΠΈΠ»ΠΈ послСдниС Π΄Π²Π°.

БлСдствиС 2. НСобходимым ΠΈ достаточным условиСм компланарности Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся равСнство Π½ΡƒΠ»ΡŽ ΠΈΡ… смСшанного произвСдСния.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΠ· Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 1. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ. ΠžΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅, Ссли смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ ΠΈΠ· Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ 1 Π²Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½ΠΎΡΡ‚ΡŒ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ объСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΈΠΏΠ΅Π΄Π°, построСнного Π½Π° ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π½Π°Ρ‡Π°Π»Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ).

БлСдствиС 3. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π΄Π²Π° ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ. Если Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈΠ· Ρ‚Ρ€Π΅Ρ… ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ…

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 2. ΠŸΡƒΡΡ‚ΡŒ Ρ‚Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a, b ΠΈ c ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ своими Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹ΠΌΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ abc Ρ€Π°Π²Π½ΠΎ скалярному ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² [ab ] ΠΈ c . Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² [ab ] Π² Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… вычисляСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ ():

ПослСднСС Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ порядка:

Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈ достаточно равСнство Π½ΡƒΠ»ΡŽ опрСдСлитСля, строки ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π·Π°ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Ρ‚.Π΅:

.(7)

Для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° слСдствия достаточно Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ (4) ΠΈ слСдствиС 2.

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ…

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Найти смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² abс , Π³Π΄Π΅

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a, b, c Ρ€Π°Π²Π΅Π½ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŽ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ L . Вычислим ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ L , Ρ€Π°Π·Π»ΠΎΠΆΠΈΠ² ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ ΠΏΠΎ строкС 1:

ΠšΠΎΠ½Π΅Ρ‡Π½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a .

Π‘ΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ (ΠΈΠ»ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎ-скалярным) ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a, b, c (взятых Π² ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ порядкС) называСтся скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ b x c , Ρ‚. Π΅. число a(b x c), ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎ ΠΆΠ΅, (b x c)a.
ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅: abc .

НазначСниС . Онлайн-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½ для вычислСния смСшанного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ сохраняСтся Π² Ρ„Π°ΠΉΠ»Π΅ Word . Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ создаСтся шаблон Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π² Excel .

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ компланарности Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

Π’Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (ΠΈΠ»ΠΈ большСС число) Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹ΠΌΠΈ, Ссли ΠΎΠ½ΠΈ, Π±ΡƒΠ΄ΡƒΡ‡ΠΈ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΊ ΠΎΠ±Ρ‰Π΅ΠΌΡƒ Π½Π°Ρ‡Π°Π»Ρƒ, Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости.
Если хотя Π±Ρ‹ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² – Π½ΡƒΠ»Π΅Π²ΠΎΠΉ, Ρ‚ΠΎ Ρ‚Ρ€ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ‚ΠΎΠΆΠ΅ ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ΡΡ ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹ΠΌΠΈ.

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ компланарности . Если систСма a, b, c – правая, Ρ‚ΠΎ abc>0 ; Ссли лСвая, Ρ‚ΠΎ abcГСомСтричСский смысл смСшанного произвСдСния . БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ abc Ρ‚Ρ€Π΅Ρ… Π½Π΅ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a, b, c Ρ€Π°Π²Π½ΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… a, b, c , взятому со Π·Π½Π°ΠΊΠΎΠΌ плюс, Ссли систСма a, b, c – правая, ΠΈ со Π·Π½Π°ΠΊΠΎΠΌ минус, Ссли эта систСма лСвая.

Бвойства смСшанного произвСдСния

  1. ΠŸΡ€ΠΈ ΠΊΡ€ΡƒΠ³ΠΎΠ²ΠΎΠΉ пСрСстановкС сомноТитСлСй смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅ мСняСтся, ΠΏΡ€ΠΈ пСрСстановкС Π΄Π²ΡƒΡ… сомноТитСлСй – мСняСт Π·Π½Π°ΠΊ Π½Π° ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹ΠΉ: abc=bca=cab=-(bac)=-(cba)=-(acb)
    Π’Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΠ· гСомСтричСского смысла.
  2. (a+b)cd=acd+bcd (Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ свойство). РаспространяСтся Π½Π° любоС число слагаСмых.
    Π’Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΠ· опрСдСлСния смСшанного произвСдСния.
  3. (ma)bc=m(abc) (ΡΠΎΡ‡Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ свойство ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ скалярного мноТитСля).
    Π’Ρ‹Ρ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΠ· опрСдСлСния смСшанного произвСдСния. Π­Ρ‚ΠΈ свойства ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒ ΠΊ ΡΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ произвСдСниям прСобразования, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΠ΅ΡΡ ΠΎΡ‚ ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Ρ… алгСбраичСских лишь Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Π½ΡΡ‚ΡŒ порядок сомноТитСлСй ΠΌΠΎΠΆΠ½ΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ Π·Π½Π°ΠΊΠ° произвСдСния.
  4. БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π΅ хотя Π±Ρ‹ Π΄Π²Π° Ρ€Π°Π²Π½Ρ‹Ρ… сомноТитСля, Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ: aab=0 .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–1 . Найти смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅. ab(3a+2b-5c)=3aba+2abb-5abc=-5abc .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–2 . (a+b)(b+c)(c+a)= (axb+axc+bxb+bxc)(c+a)= (axb+axc +bxc)(c+a)=abc+acc+aca+aba+bcc+bca . ВсС Ρ‡Π»Π΅Π½Ρ‹, ΠΊΡ€ΠΎΠΌΠ΅ Π΄Π²ΡƒΡ… ΠΊΡ€Π°ΠΉΠ½ΠΈΡ…, Ρ€Π°Π²Π½Ρ‹ Π½ΡƒΠ»ΡŽ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, bca=abc . ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ (a+b)(b+c)(c+a)=2abc .

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ β„–3 . Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Π΅Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² a=15i+20j+5k, b=2i-4j+14k, c=3i-6j+21k .
РСшСниС . Π§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ систСмы, составлСнной ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ систСму Π² Π²ΠΈΠ΄Π΅.

На Π΄Π°Π½Π½ΠΎΠΌ ΡƒΡ€ΠΎΠΊΠ΅ ΠΌΡ‹ рассмотрим Π΅Ρ‰Ρ‘ Π΄Π²Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ с Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ: Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (сразу ссылка, ΠΊΠΎΠΌΡƒ Π½ΡƒΠΆΠ½ΠΎ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ΠΎ) . НичСго ΡΡ‚Ρ€Π°ΡˆΠ½ΠΎΠ³ΠΎ, Ρ‚Π°ΠΊ ΠΈΠ½ΠΎΠ³Π΄Π° Π±Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ для ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΡΡ‡Π°ΡΡ‚ΡŒΡ, ΠΏΠΎΠΌΠΈΠΌΠΎ скалярного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , трСбуСтся Π΅Ρ‰Ρ‘ ΠΈ Π΅Ρ‰Ρ‘. Вакая Π²ΠΎΡ‚ вСкторная наркомания. ΠœΠΎΠΆΠ΅Ρ‚ ΡΠ»ΠΎΠΆΠΈΡ‚ΡŒΡΡ Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»Π΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ Π·Π°Π»Π΅Π·Π°Π΅ΠΌ Π² Π΄Π΅Π±Ρ€ΠΈ аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π­Ρ‚ΠΎ Π½Π΅ Ρ‚Π°ΠΊ. Π’ Π΄Π°Π½Π½ΠΎΠΌ Ρ€Π°Π·Π΄Π΅Π»Π΅ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ ΠΌΠ°Π»ΠΎ Π΄Ρ€ΠΎΠ², Ρ€Π°Π·Π²Π΅ Ρ‡Ρ‚ΠΎ Π½Π° Π‘ΡƒΡ€Π°Ρ‚ΠΈΠ½ΠΎ Ρ…Π²Π°Ρ‚ΠΈΡ‚. На самом Π΄Π΅Π»Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΎΡ‡Π΅Π½ΡŒ распространСнный ΠΈ простой – вряд Π»ΠΈ слоТнСС, Ρ‡Π΅ΠΌ Ρ‚ΠΎ ΠΆΠ΅ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ , Π΄Π°ΠΆΠ΅ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ помСньшС Π±ΡƒΠ΄Π΅Ρ‚. Π“Π»Π°Π²Π½ΠΎΠ΅ Π² аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, ΠΊΠ°ΠΊ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ убСдятся ΠΈΠ»ΠΈ ΡƒΠΆΠ΅ ΡƒΠ±Π΅Π΄ΠΈΠ»ΠΈΡΡŒ, НЕ ΠžΠ¨Π˜Π‘ΠΠ’Π¬Π‘Π― Π’ Π’Π«Π§Π˜Π‘Π›Π•ΠΠ˜Π―Π₯. ΠŸΠΎΠ²Ρ‚ΠΎΡ€ΡΠΉΡ‚Π΅ ΠΊΠ°ΠΊ Π·Π°ΠΊΠ»ΠΈΠ½Π°Π½ΠΈΠ΅, ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Π²Π°ΠΌ ΡΡ‡Π°ΡΡ‚ΡŒΠ΅ =)

Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΡΠ²Π΅Ρ€ΠΊΠ°ΡŽΡ‚ Π³Π΄Π΅-Ρ‚ΠΎ Π΄Π°Π»Π΅ΠΊΠΎ, ΠΊΠ°ΠΊ ΠΌΠΎΠ»Π½ΠΈΠΈ Π½Π° Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π΅, Π½Π΅ Π±Π΅Π΄Π°, Π½Π°Ρ‡Π½ΠΈΡ‚Π΅ с ΡƒΡ€ΠΎΠΊΠ° Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ для Ρ‡Π°ΠΉΠ½ΠΈΠΊΠΎΠ² , Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΈΠ»ΠΈ вновь приобрСсти Π±Π°Π·ΠΎΠ²Ρ‹Π΅ знания ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…. Π‘ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Π΅ Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π·Π½Π°ΠΊΠΎΠΌΠΈΡ‚ΡŒΡΡ с ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠ΅ΠΉ Π²Ρ‹Π±ΠΎΡ€ΠΎΡ‡Π½ΠΎ, я постарался ΡΠΎΠ±Ρ€Π°Ρ‚ΡŒ максимально ΠΏΠΎΠ»Π½ΡƒΡŽ ΠΊΠΎΠ»Π»Π΅ΠΊΡ†ΠΈΡŽ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π² практичСских Ρ€Π°Π±ΠΎΡ‚Π°Ρ…

Π§Π΅ΠΌ вас сразу ΠΏΠΎΡ€Π°Π΄ΠΎΠ²Π°Ρ‚ΡŒ? Когда я Π±Ρ‹Π» малСньким, Ρ‚ΠΎ ΡƒΠΌΠ΅Π» ΠΆΠΎΠ½Π³Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ двумя ΠΈ Π΄Π°ΠΆΠ΅ трСмя ΡˆΠ°Ρ€ΠΈΠΊΠ°ΠΌΠΈ. Π›ΠΎΠ²ΠΊΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΎΡΡŒ. БСйчас ΠΆΠΎΠ½Π³Π»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ придётся Π²ΠΎΠΎΠ±Ρ‰Π΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΌΡ‹ Π±ΡƒΠ΄Π΅ΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ пространствСнныС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , Π° плоскиС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ с двумя ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ останутся Π·Π° Π±ΠΎΡ€Ρ‚ΠΎΠΌ. ΠŸΠΎΡ‡Π΅ΠΌΡƒ? Π’Π°ΠΊΠΈΠΌΠΈ ΡƒΠΆ Ρ€ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ Π΄Π°Π½Π½Ρ‹Π΅ дСйствия – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΈ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ ΠΈ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Π² Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС. Π£ΠΆΠ΅ ΠΏΡ€ΠΎΡ‰Π΅!

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ Π² скалярном ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ, ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° . ΠŸΡƒΡΡ‚ΡŒ это Π±ΡƒΠ΄ΡƒΡ‚ Π½Π΅Ρ‚Π»Π΅Π½Π½Ρ‹Π΅ Π±ΡƒΠΊΠ²Ρ‹ .

Π‘Π°ΠΌΠΎ дСйствиС обозначаСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: . Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, Π½ΠΎ я ΠΏΡ€ΠΈΠ²Ρ‹ΠΊ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‚Π°ΠΊ, Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Ρ… скобках с крСстиком.

И сразу вопрос : Ссли Π² скалярном ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΡƒΡ‡Π°ΡΡ‚Π²ΡƒΡŽΡ‚ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΈ здСсь Ρ‚ΠΎΠΆΠ΅ ΡƒΠΌΠ½ΠΎΠΆΠ°ΡŽΡ‚ΡΡ Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ρ‚ΠΎΠ³Π΄Π° Π² Ρ‡Ρ‘ΠΌ Ρ€Π°Π·Π½ΠΈΡ†Π° ? Явная Ρ€Π°Π·Π½ΠΈΡ†Π°, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, Π² РЕЗУЛЬВАВЕ:

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ скалярного произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π§Π˜Π‘Π›Πž:

Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π’Π•ΠšΠ’ΠžΠ  : , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ снова Π²Π΅ΠΊΡ‚ΠΎΡ€. Π—Π°ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΉ ΠΊΠ»ΡƒΠ±. БобствСнно, ΠΎΡ‚ΡΡŽΠ΄Π° ΠΈ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π’ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ ΡƒΡ‡Π΅Π±Π½ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ обозначСния Ρ‚ΠΎΠΆΠ΅ ΠΌΠΎΠ³ΡƒΡ‚ Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒΡΡ, я Π±ΡƒΠ΄Ρƒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π±ΡƒΠΊΠ²Ρƒ .

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния

Π‘Π½Π°Ρ‡Π°Π»Π° Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ с ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΎΠΉ, Π·Π°Ρ‚Π΅ΠΌ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΈ.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ : Π’Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , взятых Π² Π΄Π°Π½Π½ΠΎΠΌ порядкС , называСтся Π’Π•ΠšΠ’ΠžΠ  , Π΄Π»ΠΈΠ½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ числСнно Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° , построСнного Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…; Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ , ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ базис ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€Π°Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ:

Π Π°Π·Π±ΠΈΡ€Π°Π΅ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎ косточкам, Ρ‚ΡƒΡ‚ ΠΌΠ½ΠΎΠ³ΠΎ интСрСсного!

Π˜Ρ‚Π°ΠΊ, ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ сущСствСнныС ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹:

1) Π˜ΡΡ…ΠΎΠ΄Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Π΅ красными стрСлками, ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ . Π‘Π»ΡƒΡ‡Π°ΠΉ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π±ΡƒΠ΄Π΅Ρ‚ умСстно Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ‡ΡƒΡ‚ΡŒ ΠΏΠΎΠ·ΠΆΠ΅.

2) Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ взяты Π² строго ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΌ порядкС : – Β«Π°Β» умноТаСтся Π½Π° «бэ» , Π° Π½Π΅ «бэ» Π½Π° Β«Π°Β». Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ умноТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π’Π•ΠšΠ’ΠžΠ  , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ синим Ρ†Π²Π΅Ρ‚ΠΎΠΌ. Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π² ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ порядкС, Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ€Π°Π²Π½Ρ‹ΠΉ ΠΏΠΎ Π΄Π»ΠΈΠ½Π΅ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€ (ΠΌΠ°Π»ΠΈΠ½ΠΎΠ²Ρ‹ΠΉ Ρ†Π²Π΅Ρ‚). Π’ΠΎ Π΅ΡΡ‚ΡŒ, справСдливо равСнство .

3) Π’Π΅ΠΏΠ΅Ρ€ΡŒ познакомимся с гСомСтричСским смыслом Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π­Ρ‚ΠΎ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Ρ‹ΠΉ ΠΏΡƒΠ½ΠΊΡ‚! Π”Π›Π˜ΠΠ синСго Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Π°, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ ΠΌΠ°Π»ΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ) числСнно Ρ€Π°Π²Π½Π° ΠŸΠ›ΠžΠ©ΠΠ”Π˜ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… . На рисункС Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Π·Π°ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²Π°Π½ Ρ‡Ρ‘Ρ€Π½Ρ‹ΠΌ Ρ†Π²Π΅Ρ‚ΠΎΠΌ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ : Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ являСтся схСматичСским, ΠΈ, СстСствСнно, номинальная Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π½Π΅ Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°.

ВспоминаСм ΠΎΠ΄Π½Ρƒ ΠΈΠ· гСомСтричСских Ρ„ΠΎΡ€ΠΌΡƒΠ»: ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ смСТных сторон Π½Π° синус ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ . ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ, исходя ΠΈΠ· Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ, справСдлива Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния Π”Π›Π˜ΠΠ« Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠŸΠΎΠ΄Ρ‡Ρ‘Ρ€ΠΊΠΈΠ²Π°ΡŽ, Ρ‡Ρ‚ΠΎ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Ρ‘Ρ‚ ΠΎ Π”Π›Π˜ΠΠ• Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π° Π½Π΅ ΠΎ самом Π²Π΅ΠΊΡ‚ΠΎΡ€Π΅ . Каков практичСский смысл? А смысл Ρ‚Π°ΠΊΠΎΠ², Ρ‡Ρ‚ΠΎ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° часто находят Ρ‡Π΅Ρ€Π΅Π· понятиС Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Π²Ρ‚ΠΎΡ€ΡƒΡŽ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ. Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° (красный ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€) Π΄Π΅Π»ΠΈΡ‚ Π΅Π³ΠΎ Π½Π° Π΄Π²Π° Ρ€Π°Π²Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… (красная ΡˆΡ‚Ρ€ΠΈΡ…ΠΎΠ²ΠΊΠ°), ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

4) НС ΠΌΠ΅Π½Π΅Π΅ Π²Π°ΠΆΠ½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ . РазумССтся, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ (малиновая стрСлка) Ρ‚ΠΎΠΆΠ΅ ΠΎΡ€Ρ‚ΠΎΠ³ΠΎΠ½Π°Π»Π΅Π½ исходным Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ .

5) Π’Π΅ΠΊΡ‚ΠΎΡ€ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ базис ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΡ€Π°Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ. На ΡƒΡ€ΠΎΠΊΠ΅ ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ ΠΊ Π½ΠΎΠ²ΠΎΠΌΡƒ базису я достаточно ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассказал ΠΎΠ± ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ плоскости , ΠΈ сСйчас ΠΌΡ‹ разбСрёмся, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ориСнтация пространства. ΠžΠ±ΡŠΡΡΠ½ΡΡ‚ΡŒ Π±ΡƒΠ΄Ρƒ Π½Π° ΠΏΠ°Π»ΡŒΡ†Π°Ρ… вашСй ΠΏΡ€Π°Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ . ΠœΡ‹ΡΠ»Π΅Π½Π½ΠΎ совмСститС ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Π»Π΅Ρ† с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ ΠΈ срСдний ΠΏΠ°Π»Π΅Ρ† с Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ . БСзымянный ΠΏΠ°Π»Π΅Ρ† ΠΈ ΠΌΠΈΠ·ΠΈΠ½Π΅Ρ† ΠΏΡ€ΠΈΠΆΠΌΠΈΡ‚Π΅ ΠΊ Π»Π°Π΄ΠΎΠ½ΠΈ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ большой ΠΏΠ°Π»Π΅Ρ† – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π²Π²Π΅Ρ€Ρ…. Π­Ρ‚ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ базис (Π½Π° рисункС ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½). Π’Π΅ΠΏΠ΅Ρ€ΡŒ помСняйтС Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ (ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ срСдний ΠΏΠ°Π»ΡŒΡ†Ρ‹ ) мСстами, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ большой ΠΏΠ°Π»Π΅Ρ† развСрнётся, ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡƒΠΆΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π²Π½ΠΈΠ·. Π­Ρ‚ΠΎ Ρ‚ΠΎΠΆΠ΅ ΠΏΡ€Π°Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ базис. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Ρƒ вас Π²ΠΎΠ·Π½ΠΈΠΊ вопрос: Π° ΠΊΠ°ΠΊΠΎΠΉ базис ΠΈΠΌΠ΅Π΅Ρ‚ Π»Π΅Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ? Β«ΠŸΡ€ΠΈΡΠ²ΠΎΠΉΡ‚Π΅Β» Ρ‚Π΅ΠΌ ΠΆΠ΅ ΠΏΠ°Π»ΡŒΡ†Π°ΠΌ Π»Π΅Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ , ΠΈ ΠΏΠΎΠ»Π£Ρ‡ΠΈΡ‚Π΅ Π»Π΅Π²Ρ‹ΠΉ базис ΠΈ Π»Π΅Π²ΡƒΡŽ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ пространства (Π² этом случаС большой ΠΏΠ°Π»Π΅Ρ† располоТится ΠΏΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ Π½ΠΈΠΆΠ½Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°) . ΠžΠ±Ρ€Π°Π·Π½ΠΎ говоря, Π΄Π°Π½Π½Ρ‹Π΅ базисы Β«Π·Π°ΠΊΡ€ΡƒΡ‡ΠΈΠ²Π°ΡŽΡ‚Β» ΠΈΠ»ΠΈ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΡƒΡŽΡ‚ пространство Π² Ρ€Π°Π·Π½Ρ‹Π΅ стороны. И это понятиС Π½Π΅ слСдуСт ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‡Π΅ΠΌ-Ρ‚ΠΎ Π½Π°Π΄ΡƒΠΌΠ°Π½Π½Ρ‹ΠΌ ΠΈΠ»ΠΈ абстрактным – Ρ‚Π°ΠΊ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΡŽ пространства мСняСт самоС ΠΎΠ±Ρ‹Ρ‡Π½ΠΎΠ΅ Π·Π΅Ρ€ΠΊΠ°Π»ΠΎ, ΠΈ Ссли Β«Π²Ρ‹Ρ‚Π°Ρ‰ΠΈΡ‚ΡŒ ΠΎΡ‚Ρ€Π°ΠΆΡ‘Π½Π½Ρ‹ΠΉ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ ΠΈΠ· Π·Π°Π·Π΅Ρ€ΠΊΠ°Π»ΡŒΡΒ», Ρ‚ΠΎ Π΅Π³ΠΎ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС Π½Π΅ удастся ΡΠΎΠ²ΠΌΠ΅ΡΡ‚ΠΈΡ‚ΡŒ с Β«ΠΎΡ€ΠΈΠ³ΠΈΠ½Π°Π»ΠΎΠΌΒ». ΠšΡΡ‚Π°Ρ‚ΠΈ, поднСситС ΠΊ Π·Π΅Ρ€ΠΊΠ°Π»Ρƒ Ρ‚Ρ€ΠΈ ΠΏΠ°Π»ΡŒΡ†Π° ΠΈ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅;-)

…как всё-Ρ‚Π°ΠΊΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠΎ, Ρ‡Ρ‚ΠΎ Π²Ρ‹ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π·Π½Π°Π΅Ρ‚Π΅ ΠΎ ΠΏΡ€Π°Π²ΠΎ- ΠΈ Π»Π΅Π²ΠΎΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… базисах, ΠΈΠ±ΠΎ ΡΡ‚Ρ€Π°ΡˆΠ½Π« высказывания Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π»Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΎ смСнС ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ =)

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½ΠΎ, ΠΎΡΡ‚Π°Π»ΠΎΡΡŒ Π²Ρ‹ΡΡΠ½ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ происходит, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹. Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ ΠΈΡ… ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚ΡŒ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой ΠΈ наш ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Ρ‚ΠΎΠΆΠ΅ «складываСтся» Π² ΠΎΠ΄Π½Ρƒ ΠΏΡ€ΡΠΌΡƒΡŽ. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Π°ΠΊΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ говорят ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ, Π²Ρ‹Ρ€ΠΎΠΆΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π­Ρ‚ΠΎ ΠΆΠ΅ слСдуСт ΠΈ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ – синус нуля ΠΈΠ»ΠΈ 180-Ρ‚ΠΈ градусов Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ нулСвая

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ссли , Ρ‚ΠΎ . Π‘Ρ‚Ρ€ΠΎΠ³ΠΎ говоря, само Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ, Π½ΠΎ Π½Π° ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ этим часто ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Π³Π°ΡŽΡ‚ ΠΈ ΠΏΠΈΡˆΡƒΡ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΎ просто Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

Частный случай – Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° самого сСбя:

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡ‚ΡŒ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½ΠΎΡΡ‚ΡŒ Ρ‚Ρ€Ρ‘Ρ…ΠΌΠ΅Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΈ Π΄Π°Π½Π½ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ срСди ΠΏΡ€ΠΎΡ‡ΠΈΡ… ΠΌΡ‹ Ρ‚ΠΎΠΆΠ΅ Ρ€Π°Π·Π±Π΅Ρ€Ρ‘ΠΌ.

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ практичСских ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΡ‚Ρ€Π΅Π±ΠΎΠ²Π°Ρ‚ΡŒΡΡ тригономСтричСская Ρ‚Π°Π±Π»ΠΈΡ†Π° , Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΠΎ Π½Π΅ΠΉ значСния синусов.

Ну Ρ‡Ρ‚ΠΎ ΠΆΠ΅, Ρ€Π°Π·ΠΆΠΈΠ³Π°Π΅ΠΌ огонь:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Π°) Найти Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , Ссли

Π±) Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

РСшСниС : НСт, это Π½Π΅ ΠΎΠΏΠ΅Ρ‡Π°Ρ‚ΠΊΠ°, исходныС Π΄Π°Π½Π½Ρ‹Π΅ Π² ΠΏΡƒΠ½ΠΊΡ‚Π°Ρ… условия я Π½Π°ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎ сдСлал ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ. ΠŸΠΎΡ‚ΠΎΠΌΡƒ Ρ‡Ρ‚ΠΎ ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½ΠΈΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‚Π»ΠΈΡ‡Π°Ρ‚ΡŒΡΡ!

Π°) По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ трСбуСтся Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° (Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния). По ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

ΠžΡ‚Π²Π΅Ρ‚ :

Коль скоро ΡΠΏΡ€Π°ΡˆΠΈΠ²Π°Π»ΠΎΡΡŒ ΠΎ Π΄Π»ΠΈΠ½Π΅, Ρ‚ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚Π΅ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅ΠΌ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ – Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.

Π±) По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… . ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° числСнно Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

ΠžΡ‚Π²Π΅Ρ‚ :

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Π² ΠΎΡ‚Π²Π΅Ρ‚Π΅ ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Ρ€Π΅Ρ‡ΠΈ Π½Π΅ ΠΈΠ΄Ρ‘Ρ‚ Π²ΠΎΠΎΠ±Ρ‰Π΅, нас ΡΠΏΡ€Π°ΡˆΠΈΠ²Π°Π»ΠΈ ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ , соотвСтствСнно, Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ – ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.

ВсСгда смотрим, ЧВО трСбуСтся Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ, ΠΈ, исходя ΠΈΠ· этого, Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌ Ρ‡Ρ‘Ρ‚ΠΊΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‚. ΠœΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ буквоСдством, Π½ΠΎ Π±ΡƒΠΊΠ²ΠΎΠ΅Π΄ΠΎΠ² срСди ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ…Π²Π°Ρ‚Π°Π΅Ρ‚, ΠΈ Π·Π°Π΄Π°Π½ΠΈΠ΅ с Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌΠΈ шансами вСрнётся Π½Π° Π΄ΠΎΡ€Π°Π±ΠΎΡ‚ΠΊΡƒ. Π₯отя это Π½Π΅ особо натянутая ΠΏΡ€ΠΈΠ΄ΠΈΡ€ΠΊΠ° – Ссли ΠΎΡ‚Π²Π΅Ρ‚ Π½Π΅ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π΅Π½, Ρ‚ΠΎ складываСтся Π²ΠΏΠ΅Ρ‡Π°Ρ‚Π»Π΅Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ Π½Π΅ разбираСтся Π² простых Π²Π΅Ρ‰Π°Ρ… ΠΈ/ΠΈΠ»ΠΈ Π½Π΅ Π²Π½ΠΈΠΊ Π² ΡΡƒΡ‚ΡŒ задания. Π­Ρ‚ΠΎΡ‚ ΠΌΠΎΠΌΠ΅Π½Ρ‚ всСгда Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ Π½Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅, Ρ€Π΅ΡˆΠ°Ρ Π»ΡŽΠ±ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΏΠΎ Π²Ρ‹ΡΡˆΠ΅ΠΉ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Π΄Π° ΠΈ ΠΏΠΎ Π΄Ρ€ΡƒΠ³ΠΈΠΌ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π°ΠΌ Ρ‚ΠΎΠΆΠ΅.

ΠšΡƒΠ΄Π° подСвалась большая Π±ΡƒΠΊΠΎΠ²ΠΊΠ° «эн»? Π’ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅, Π΅Ρ‘ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈΠ»Π΅ΠΏΠΈΡ‚ΡŒ Π² Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, Π½ΠΎ Π² цСлях ΡΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‚ΡŒ запись, я этого Π½Π΅ сдСлал. НадСюсь, всСм понятно, Ρ‡Ρ‚ΠΎ ΠΈ – это ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅.

ΠŸΠΎΠΏΡƒΠ»ΡΡ€Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

Π€ΠΎΡ€ΠΌΡƒΠ»Π° нахоТдСния ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π°Π½Π° Π² коммСнтариях ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ. РСшСниС ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΊΠΎΠ½Ρ†Π΅ ΡƒΡ€ΠΎΠΊΠ°.

На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π·Π°Π΄Π°Ρ‡Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ‡Π΅Π½ΡŒ распространСна, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π·Π°ΠΌΡƒΡ‡ΠΈΡ‚ΡŒ.

Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡ Π½Π°ΠΌ понадобятся:

Бвойства Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

НСкоторыС свойства Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния ΠΌΡ‹ ΡƒΠΆΠ΅ рассмотрСли, Ρ‚Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, я ΠΈΡ… Π²ΠΊΠ»ΡŽΡ‡Ρƒ Π² Π΄Π°Π½Π½Ρ‹ΠΉ список.

Для ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ числа справСдливы ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ свойства:

1) Π’ Π΄Ρ€ΡƒΠ³ΠΈΡ… источниках ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΡƒΠ½ΠΊΡ‚ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π½Π΅ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Π² свойствах, Π½ΠΎ ΠΎΠ½ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ΅Π½ Π² практичСском ΠΏΠ»Π°Π½Π΅. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΏΡƒΡΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚.

2) – свойство Ρ‚ΠΎΠΆΠ΅ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π½ΠΎ Π²Ρ‹ΡˆΠ΅, ΠΈΠ½ΠΎΠ³Π΄Π° Π΅Π³ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π°Π½Ρ‚ΠΈΠΊΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ . Π˜Π½Ρ‹ΠΌΠΈ словами, порядок Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ‚ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

3) – ΡΠΎΡ‡Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ ассоциативныС Π·Π°ΠΊΠΎΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. ΠšΠΎΠ½ΡΡ‚Π°Π½Ρ‚Ρ‹ Π±Π΅Π·ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ½ΠΎ выносятся Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‡Π΅Π³ΠΎ ΠΈΠΌ Ρ‚Π°ΠΌ Π΄Π΅Π»Π°Ρ‚ΡŒ?

4) – Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΈΠ»ΠΈ дистрибутивныС Π·Π°ΠΊΠΎΠ½Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π‘ раскрытиСм скобок Ρ‚ΠΎΠΆΠ΅ Π½Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ.

Π’ качСствС дСмонстрации рассмотрим ΠΊΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒΠΊΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3

Найти , Ссли

РСшСниС: По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ снова трСбуСтся Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΠ½Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. РаспишСм Π½Π°ΡˆΡƒ ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Ρƒ:

(1) Богласно ассоциативным Π·Π°ΠΊΠΎΠ½Π°ΠΌ, выносим константы Π·Π° ΠΏΠ΅Ρ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния.

(2) Выносим константу Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ модуля, ΠΏΡ€ΠΈ этом ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Β«ΡΡŠΠ΅Π΄Π°Π΅Ρ‚Β» Π·Π½Π°ΠΊ «минус». Π”Π»ΠΈΠ½Π° ΠΆΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ.

(3) Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ΅Π΅ понятно.

ΠžΡ‚Π²Π΅Ρ‚ :

ΠŸΠΎΡ€Π° ΠΏΠΎΠ΄Π±Ρ€ΠΎΡΠΈΡ‚ΡŒ Π΄Ρ€ΠΎΠ² Π² огонь:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… , Ссли

РСшСниС : ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π½Π°ΠΉΠ΄Ρ‘ΠΌ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ . Π—Π°Π³Π²ΠΎΠ·Π΄ΠΊΠ° состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ «цэ» ΠΈ «дэ» сами прСдставлСны Π² Π²ΠΈΠ΄Π΅ сумм Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ². Алгоритм здСсь стандартСн ΠΈ Ρ‡Π΅ΠΌ-Ρ‚ΠΎ Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ β„– 3 ΠΈ 4 ΡƒΡ€ΠΎΠΊΠ° БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² . РСшСниС для ясности Ρ€Π°Π·ΠΎΠ±ΡŒΡ‘ΠΌ Π½Π° Ρ‚Ρ€ΠΈ этапа:

1) На ΠΏΠ΅Ρ€Π²ΠΎΠΌ шагС Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ , ΠΏΠΎ сути, Π²Ρ‹Ρ€Π°Π·ΠΈΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€ . О Π΄Π»ΠΈΠ½Π°Ρ… ΠΏΠΎΠΊΠ° Π½ΠΈ слова!

(1) ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΠ΅ΠΌ выраТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² .

(2) Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ дистрибутивныС Π·Π°ΠΊΠΎΠ½Ρ‹, раскрываСм скобки ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ умноТСния ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½ΠΎΠ².

(3) Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ассоциативныС Π·Π°ΠΊΠΎΠ½Ρ‹, выносим всС константы Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ. ΠŸΡ€ΠΈ маломальском ΠΎΠΏΡ‹Ρ‚Π΅ дСйствия 2 ΠΈ 3 ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ.

(4) ΠŸΠ΅Ρ€Π²ΠΎΠ΅ ΠΈ послСднСС слагаСмоС Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ (Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ) благодаря приятному свойству . Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ слагаСмом ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ свойство антикоммутативности Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния:

(5) ΠŸΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ слагаСмыС.

Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ оказался Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅ΠΊΡ‚ΠΎΡ€, Ρ‡Π΅Π³ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ:

2) На Π²Ρ‚ΠΎΡ€ΠΎΠΌ шагС Π½Π°ΠΉΠ΄Π΅ΠΌ Π΄Π»ΠΈΠ½Ρƒ Π½ΡƒΠΆΠ½ΠΎΠ³ΠΎ Π½Π°ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния. Π”Π°Π½Π½ΠΎΠ΅ дСйствиС Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ‚ ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3:

3) Найдём ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ искомого Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°:

Π­Ρ‚Π°ΠΏΡ‹ 2-3 Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ ΠΎΡ„ΠΎΡ€ΠΌΠΈΡ‚ΡŒ ΠΈ ΠΎΠ΄Π½ΠΎΠΉ строкой.

ΠžΡ‚Π²Π΅Ρ‚ :

РассмотрСнная Π·Π°Π΄Π°Ρ‡Π° достаточно распространСна Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚Π°Ρ…, Π²ΠΎΡ‚ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5

Найти , Ссли

ΠšΡ€Π°Ρ‚ΠΊΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΊΠΎΠ½Ρ†Π΅ ΡƒΡ€ΠΎΠΊΠ°. ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ, насколько Π²Ρ‹ Π±Ρ‹Π»ΠΈ Π²Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ²;-)

Π’Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ… , Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… Π² ΠΎΡ€Ρ‚ΠΎΠ½ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΌ базисС , выраТаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ :

Π€ΠΎΡ€ΠΌΡƒΠ»Π° ΠΈ ΠΏΡ€Π°Π²Π΄Π° простСцкая: Π² Π²Π΅Ρ€Ρ…Π½ΡŽΡŽ строку опрСдСлитСля записываСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹, Π²ΠΎ Π²Ρ‚ΠΎΡ€ΡƒΡŽ ΠΈ Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ строки Β«ΡƒΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌΒ» ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ ΡƒΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌ Π² строгом порядкС – сначала ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° «вэ», Π·Π°Ρ‚Π΅ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Β«Π΄ΡƒΠ±Π»ΡŒ-вэ». Если Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½ΡƒΠΆΠ½ΠΎ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ Π² Π΄Ρ€ΡƒΠ³ΠΎΠΌ порядкС, Ρ‚ΠΎ ΠΈ строки слСдуСт ΠΏΠΎΠΌΠ΅Π½ΡΡ‚ΡŒ мСстами:

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 10

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, Π±ΡƒΠ΄ΡƒΡ‚ Π»ΠΈ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ пространства:
Π°)
Π±)

РСшСниС : ΠŸΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° основана Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠΉ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΡƒΡ€ΠΎΠΊΠ°: Ссли Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Ρ‚ΠΎ ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ (Π½ΡƒΠ»Π΅Π²ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ): .

Π°) Найдём Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹.

Π±) Найдём Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅:

ΠžΡ‚Π²Π΅Ρ‚ : Π°) Π½Π΅ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹, Π±)

Π’ΠΎΡ‚, ΠΏΠΎΠΆΠ°Π»ΡƒΠΉ, ΠΈ всС основныС свСдСния ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

Π”Π°Π½Π½Ρ‹ΠΉ Ρ€Π°Π·Π΄Π΅Π» Π±ΡƒΠ΄Π΅Ρ‚ Π½Π΅ ΠΎΡ‡Π΅Π½ΡŒ большим, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π·Π°Π΄Π°Ρ‡, Π³Π΄Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ. ЀактичСски всё Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠΏΠΈΡ€Π°Ρ‚ΡŒΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, гСомСтричСский смысл ΠΈ ΠΏΠ°Ρ€Ρƒ Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… Ρ„ΠΎΡ€ΠΌΡƒΠ».

БмСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² – это ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‚Ρ€Ρ‘Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² :

Π’ΠΎΡ‚ Ρ‚Π°ΠΊ Π²ΠΎΡ‚ ΠΎΠ½ΠΈ Π²Ρ‹ΡΡ‚Ρ€ΠΎΠΈΠ»ΠΈΡΡŒ ΠΏΠ°Ρ€ΠΎΠ²ΠΎΠ·ΠΈΠΊΠΎΠΌ ΠΈ ΠΆΠ΄ΡƒΡ‚, Π½Π΅ доТдутся, ΠΊΠΎΠ³Π΄Π° ΠΈΡ… вычислят.

Π‘Π½Π°Ρ‡Π°Π»Π° ΠΎΠΏΡΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ°:

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ : Π‘ΠΌΠ΅ΡˆΠ°Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ Π½Π΅ΠΊΠΎΠΌΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² , взятых Π² Π΄Π°Π½Π½ΠΎΠΌ порядкС , называСтся ΠΎΠ±ΡŠΡ‘ΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° , построСнного Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…, снабТённый Π·Π½Π°ΠΊΠΎΠΌ Β«+Β», Ссли базис ΠΏΡ€Π°Π²Ρ‹ΠΉ, ΠΈ Π·Π½Π°ΠΊΠΎΠΌ «–», Ссли базис Π»Π΅Π²Ρ‹ΠΉ.

Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌ рисунок. НСвидимыС Π½Π°ΠΌ Π»ΠΈΠ½ΠΈΠΈ ΠΏΡ€ΠΎΡ‡Π΅Ρ€Ρ‡Π΅Π½Ρ‹ ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€ΠΎΠΌ:

ΠŸΠΎΠ³Ρ€ΡƒΠΆΠ°Π΅ΠΌΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅:

2) Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ взяты Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½ΠΎΠΌ порядкС , Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ пСрСстановка Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ , ΠΊΠ°ΠΊ Π²Ρ‹ Π΄ΠΎΠ³Π°Π΄Ρ‹Π²Π°Π΅Ρ‚Π΅ΡΡŒ, Π½Π΅ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Π±Π΅Π· послСдствий.

3) ΠŸΠ΅Ρ€Π΅Π΄ Ρ‚Π΅ΠΌ, ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ гСомСтричСский смысл, ΠΎΡ‚ΠΌΠ΅Ρ‡Ρƒ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚: смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² являСтся Π§Π˜Π‘Π›ΠžΠœ : . Π’ ΡƒΡ‡Π΅Π±Π½ΠΎΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΎΡ„ΠΎΡ€ΠΌΠ»Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ нСсколько Π΄Ρ€ΡƒΠ³ΠΈΠΌ, я ΠΏΡ€ΠΈΠ²Ρ‹ΠΊ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· , Π° Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ вычислСний Π±ΡƒΠΊΠ²ΠΎΠΉ «пэ».

По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ – это объСм ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° , построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… (Ρ„ΠΈΠ³ΡƒΡ€Π° ΠΏΡ€ΠΎΡ‡Π΅Ρ€Ρ‡Π΅Π½Π° красными Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ ΠΈ линиями Ρ‡Ρ‘Ρ€Π½ΠΎΠ³ΠΎ Ρ†Π²Π΅Ρ‚Π°). Π’ΠΎ Π΅ΡΡ‚ΡŒ, число Ρ€Π°Π²Π½ΠΎ ΠΎΠ±ΡŠΠ΅ΠΌΡƒ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ : Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ являСтся схСматичСским.

4) НС Π±ΡƒΠ΄Π΅ΠΌ Π·Π°Π½ΠΎΠ²ΠΎ ΠΏΠ°Ρ€ΠΈΡ‚ΡŒΡΡ с понятиСм ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ базиса ΠΈ пространства. Бмысл Π·Π°ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ части состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΊ ΠΎΠ±ΡŠΡ‘ΠΌΡƒ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΠ±Π°Π²Π»ΡΡ‚ΡŒΡΡ Π·Π½Π°ΠΊ минус. ΠŸΡ€ΠΎΡΡ‚Ρ‹ΠΌΠΈ словами, смСшанноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ: .

НСпосрСдствСнно ΠΈΠ· опрСдСлСния слСдуСт Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° вычислСния объСма ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°, построСнного Π½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ… .

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΆΡƒΡ€Π½Π°Π»ΠΎΠ²

— ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹, ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΆΡƒΡ€Π½Π°Π»ΠΎΠ²

Log Calculator — это ΠΎΠ½Π»Π°ΠΉΠ½-инструмСнт, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΆΡƒΡ€Π½Π°Π»Π° для Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ основания ΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ, ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ возвСдСнию Π² ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ. ЛогарифмичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠΌΠΎΠ³Π°ΡŽΡ‚ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ вычислСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΆΡƒΡ€Π½Π°Π»Π°?

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΆΡƒΡ€Π½Π°Π»Π°

ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π²Π°ΠΌ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΆΡƒΡ€Π½Π°Π»Π° Π΄Π°Π½Π½ΠΎΠ³ΠΎ выраТСния. Π–ΡƒΡ€Π½Π°Π»Ρ‹ — это Π΅Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ способ прСдставлСния ΠΈΠ»ΠΈ записи ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ. Π–ΡƒΡ€Π½Π°Π»Ρ‹ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ для измСрСния силы зСмлСтрясСний, яркости Π·Π²Π΅Π·Π΄ ΠΈ Ρ‚. Π”.Π§Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΆΡƒΡ€Π½Π°Π»Π° , Π²Π²Π΅Π΄ΠΈΡ‚Π΅ значСния Π² ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ поля Π²Π²ΠΎΠ΄Π°.

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΆΡƒΡ€Π½Π°Π»Π°

ΠŸΠ Π˜ΠœΠ•Π§ΠΠΠ˜Π•: Π²Π²ΠΎΠ΄ΠΈΡ‚Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ значСния Π΄ΠΎ Ρ‚Ρ€Π΅Ρ… Ρ†ΠΈΡ„Ρ€

Как ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠΌ ΠΆΡƒΡ€Π½Π°Π»Π°?

Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ шаги, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΆΡƒΡ€Π½Π°Π»Π° с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΆΡƒΡ€Π½Π°Π»Π°:

  • Π¨Π°Π³ 1: ΠžΡ‚ΠΊΡ€ΠΎΠΉΡ‚Π΅ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΆΡƒΡ€Π½Π°Π»Π° Cuemath.
  • Π¨Π°Π³ 2: Π’Π²Π΅Π΄ΠΈΡ‚Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа Π² Π΄Π°Π½Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ Π²Π²ΠΎΠ΄Π°.
  • Π¨Π°Π³ 3: НаТмитС ΠΊΠ½ΠΎΠΏΠΊΡƒ Β«Π Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΒ» , Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΆΡƒΡ€Π½Π°Π»Π°.
  • Π¨Π°Π³ 4: НаТмитС ΠΊΠ½ΠΎΠΏΠΊΡƒ «Бброс» , Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ поля ΠΈ ввСсти Π½ΠΎΠ²Ρ‹Π΅ значСния.

Как Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΆΡƒΡ€Π½Π°Π»Π°?

ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ числа (скаТСм, a) — это ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒ стСпСни ΠΈΠ»ΠΈ стСпСни, Π΄ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ возвСсти основаниС (скаТСм, b), Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ само число.

Π’ ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅ это ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ

Π± Ρ… = Π°

Π—Π΄Π΅ΡΡŒ b — Π±Π°Π·Π°.Он Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ Π² ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ x. Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ этого выраТСния даСтся a. Π’Π΅ΠΏΠ΅Ρ€ΡŒ, Ссли ΠΌΡ‹ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΈΡ‡Π΅ΡΠΊΡƒΡŽ запись, ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ

\ (log_ {b} a = x \)

a, b ΠΈ x — ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа. a извСстСн ΠΊΠ°ΠΊ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚, Π° b — основаниС.

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ логарифмичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π² зависимости ΠΎΡ‚ значСния основания. Π˜Ρ…:

ΠžΠ±Ρ‰ΠΈΠ΅ логарифмичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: Если логарифмичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ основаниС, Ρ€Π°Π²Π½ΠΎΠ΅ 10, ΠΎΠ½ΠΈ извСстны ΠΊΠ°ΠΊ ΠΎΠ±Ρ‰ΠΈΠ΅ логарифмичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.ΠžΠ±Ρ‹Ρ‡Π½ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ ΠΆΡƒΡ€Π½Π°Π»Ρ‹ Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ 10 записанных Π² качСствС основы.

10 2 = 100 \ ({\ Rightarrow} \) ΠΆΡƒΡ€Π½Π°Π» 100 = 2

Если Ρƒ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° Π½Π΅Ρ‚ основания, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡ€ΠΈΠ½ΡΡ‚ΡŒ Π΅Π³ΠΎ Ρ€Π°Π²Π½Ρ‹ΠΌ 10.

ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Π΅ логарифмичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ : Π’Π°ΠΊΠΈΠ΅ Ρ‚ΠΈΠΏΡ‹ ΠΆΡƒΡ€Π½Π°Π»ΠΎΠ² ΠΈΠΌΠ΅ΡŽΡ‚ основаниС e. e — матСматичСская константа, ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ равная 2,718. ΠΠ°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΆΡƒΡ€Π½Π°Π»Ρ‹ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ прСдставлСны ln.

e x = m \ ({\ Rightarrow} \) ln m = x

Π₯ΠΎΡ‚ΠΈΡ‚Π΅ Π½Π°ΠΉΡ‚ΠΈ слоТныС матСматичСскиС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π° сСкунды?

Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ нашим бСсплатным ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠΌ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ слоТных вопросов.Π‘ Cuemath Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ простым ΠΈ Π»Π΅Π³ΠΊΠΈΠΌ способом.

Π—Π°Π±Ρ€ΠΎΠ½ΠΈΡ€ΡƒΠΉΡ‚Π΅ Π±Π΅ΡΠΏΠ»Π°Ρ‚Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ±Π½ΡƒΡŽ Π²Π΅Ρ€ΡΠΈΡŽ Класс

Π Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π² ΠΆΡƒΡ€Π½Π°Π»Π°Ρ…

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1: НайдитС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° \ (log_ {2} 4 \) ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅ Π΅Π³ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΆΡƒΡ€Π½Π°Π»Π°.

РСшСниС:

\ (log_ {b} a \) = x ⇔ b x = a

\ (log_ {2} 4 \) = x

2 x = 4

Ρ… = 2

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° \ (log_ {2} 4 \) Ρ€Π°Π²Π½ΠΎ 2

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2: НайдитС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° \ (log_ {3.2} 1 \) ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅ это с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΠΆΡƒΡ€Π½Π°Π»Π°.

РСшСниС:

\ (log_ {b} a \) = x ⇔ b x = a

\ (log_ {3.2} 1 \) = x

3,2 x = 1

Ρ… = 0

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° \ (log_ {3.2} 1 \) Ρ€Π°Π²Π½ΠΎ 0

Π’ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΠΏΡ€ΠΎΠ±ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΠΆΡƒΡ€Π½Π°Π»Π°, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°

.
  • \ (log_ {5.1} 25 \)
  • \ (Π»ΠΎΠ³_ {15} 45 \)

β˜› ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹:

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ дСлСния

— Онлайн-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ дСлСния

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€

Long Division Calculator — это бСсплатный ΠΎΠ½Π»Π°ΠΉΠ½-инструмСнт, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π΄Π΅Π»ΠΈΡ‚ ΠΎΠ΄Π½ΠΎ число Π½Π° Π΄Ρ€ΡƒΠ³ΠΎΠ΅ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ дСлСния.Когда ΠΌΡ‹ Π΄Π΅Π»ΠΈΠΌ большоС число, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ процСсс, ΠΌΡ‹ Ρ€Π°Π·Π±ΠΈΠ²Π°Π΅ΠΌ Π΅Π³ΠΎ Π½Π° нСсколько этапов. Π­Ρ‚ΠΎ называСтся Π΄Π»ΠΈΠ½Π½Ρ‹ΠΌ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ дСлСния?

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ дСлСния Π² столбик ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ частноС ΠΈ остаток, ΠΊΠΎΠ³Π΄Π° Π½Π°ΠΌ Π΄Π°Π½Ρ‹ Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ ΠΈ Π΄Π΅Π»ΠΈΠΌΠΎΠ΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ дСлСния Π² столбик. Π”Π΅Π»Π΅Π½ΠΈΠ΅ Π² Π΄Π»ΠΈΠ½Ρƒ Π²Ρ‹Π³ΠΎΠ΄Π½ΠΎ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ дСлСния с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ряда Π±ΠΎΠ»Π΅Π΅ простых шагов. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ дСлСния l ong , Π²Π²Π΅Π΄ΠΈΡ‚Π΅ значСния Π² поля Π²Π²ΠΎΠ΄Π°.

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ дСлСния

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅. Π’Π²Π΅Π΄ΠΈΡ‚Π΅ число Π΄ΠΎ 6 Ρ†ΠΈΡ„Ρ€ для Π΄Π΅Π»ΠΈΠΌΠΎΠ³ΠΎ ΠΈ Π΄ΠΎ 2 Ρ†ΠΈΡ„Ρ€ для дСлитСля.

Как ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠΌ Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ дСлСния?

Π‘Π»Π΅Π΄ΡƒΠΉΡ‚Π΅ инструкциям Π½ΠΈΠΆΠ΅, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π² столбик с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° дСлСния Π² столбик:

  • Π¨Π°Π³ 1: Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠΌ Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… Π΄Π΅Π»Π΅Π½ΠΈΠΉ Cuemath.
  • Π¨Π°Π³ 2: Π’Π²Π΅Π΄ΠΈΡ‚Π΅ Π΄Π΅Π»ΠΈΠΌΠΎΠ΅ ΠΈ Π΄Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ Π² ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ поля Π²Π²ΠΎΠ΄Π°.
  • Π¨Π°Π³ 3: Π©Π΅Π»ΠΊΠ½ΠΈΡ‚Π΅ Β«Π Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒΒ» , Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ пошаговоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ для дСлСния Π² столбик.
  • Π¨Π°Π³ 4: Π©Π΅Π»ΠΊΠ½ΠΈΡ‚Π΅ «Бброс» , Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ поля ΠΈ ввСсти Π½ΠΎΠ²Ρ‹Π΅ значСния.

Как Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ дСлСния Π² столбик?

Π”Π΅Π»Π΅Π½ΠΈΠ΅ — это ΠΎΠ΄Π½Π° ΠΈΠ· основных арифмСтичСских ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΉ, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ слоТСниС, Π²Ρ‹Ρ‡ΠΈΡ‚Π°Π½ΠΈΠ΅ ΠΈ ΡƒΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅. Π’ΠΎΡ‚ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠ², связанных с Π΄Π»ΠΈΠ½Π½Ρ‹ΠΌ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ:

  • Π”ΠΈΠ²ΠΈΠ΄Π΅Π½Π΄Ρ‹ — Число, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ дСлится.
  • Π”Π΅Π»ΠΈΡ‚Π΅Π»ΡŒ — Число, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ дСлится Π΄ΠΈΠ²ΠΈΠ΄Π΅Π½Π΄.
  • ЧастноС — Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ послС дСлСния.
  • ΠžΡΡ‚Π°Ρ‚ΠΎΠΊ — Если дальнСйшСС Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ, ΠΎΡΡ‚Π°Π²ΡˆΠ°ΡΡΡ Ρ‡Π°ΡΡ‚ΡŒ числа называСтся остатком.

Π¨Π°Π³ΠΈ для выполнСния Π΄Π»ΠΈΠ½Π½ΠΎΠ³ΠΎ дСлСния ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅:

  1. Π‘Π΅Ρ€Π΅ΠΌ ΠΏΠ΅Ρ€Π²ΡƒΡŽ Ρ†ΠΈΡ„Ρ€Ρƒ Π΄Π΅Π»ΠΈΠΌΠΎΠ³ΠΎ. Π‘Ρ€Π°Π²Π½ΠΈΠΌ это с Π΄Π΅Π»ΠΈΡ‚Π΅Π»Π΅ΠΌ.
  2. Если число большС дСлитСля, Ρ‚ΠΎ Π΄Π΅Π»ΠΈΠΌ Π΅Π³ΠΎ ΠΈ пишСм свСрху ΠΎΡ‚Π²Π΅Ρ‚.Π­Ρ‚ΠΎ становится частным. Π—Π°Ρ‚Π΅ΠΌ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊ ΡˆΠ°Π³Ρƒ 4.
  3. Если число мСньшС дСлитСля, ΠΌΡ‹ пишСм ноль вмСсто частного. Π—Π°Ρ‚Π΅ΠΌ ΠΌΡ‹ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Ρ†ΠΈΡ„Ρ€Ρƒ Π΄Π΅Π»ΠΈΠΌΠΎΠ³ΠΎ ΠΈ повторяСм шаги 1, 2 ΠΈ 3.
  4. Π—Π°Ρ‚Π΅ΠΌ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π½Π° шагС 2, вычитаСтся ΠΈΠ· Ρ†ΠΈΡ„Ρ€ Π΄Π΅Π»ΠΈΠΌΠΎΠ³ΠΎ (ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°Ρ…ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ Π½Π° рассмотрСнии).
  5. Если Π΅ΡΡ‚ΡŒ Π΄Ρ€ΡƒΠ³ΠΎΠΉ Π½ΠΎΠΌΠ΅Ρ€, ΠΎΠ½ сбиваСтся.
  6. Π—Π°Ρ‚Π΅ΠΌ ΠΌΡ‹ повторяСм шаги с 1 ΠΏΠΎ 5 Π΄ΠΎ Ρ‚Π΅Ρ… ΠΏΠΎΡ€, ΠΏΠΎΠΊΠ° дальнСйшСС Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π΅ станСт Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ.

ΠžΡ‚Π»ΠΈΡ‡Π½ΠΎΠ΅ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π² ΡΡ‚Π°Ρ€ΡˆΠ΅ΠΉ школС ΠΏΠΎ простым подсказкам

Π—Π°Π½ΠΈΠΌΠ°ΡΡΡŒ Π·Π°ΡƒΡ‡ΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ Π½Π°ΠΈΠ·ΡƒΡΡ‚ΡŒ, Π²Ρ‹, вСроятно, Π·Π°Π±ΡƒΠ΄Π΅Ρ‚Π΅ ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΠΈ. Π‘ Cuemath Π²Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚Π΅ ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ наглядно ΠΈ Π±ΡƒΠ΄Π΅Ρ‚Π΅ ΡƒΠ΄ΠΈΠ²Π»Π΅Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ.

Π—Π°Π±Ρ€ΠΎΠ½ΠΈΡ€ΡƒΠΉΡ‚Π΅ Π±Π΅ΡΠΏΠ»Π°Ρ‚Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ±Π½ΡƒΡŽ Π²Π΅Ρ€ΡΠΈΡŽ Класс

Π Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π½Π° Π΄Π»ΠΈΠ½Π½ΠΎΠ΅ Π΄Π΅Π»Π΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1: Π Π°Π·Π΄Π΅Π»ΠΈΡ‚Π΅: 75 Γ· 4 ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅ Π΅Π³ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… Π΄Π΅Π»Π΅Π½ΠΈΠΉ.

РСшСниС:

Π”Π΅Π»Π΅Π½ΠΈΠ΅ 75 Γ· 4 Π² столбик ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ 75 Π½Π° 4 ЧастноС = 18, остаток = 3

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2: Π Π°Π·Π΄Π΅Π»ΠΈΡ‚Π΅: 735 Γ· 9 ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅ Π΅Π³ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° Π΄Π»ΠΈΠ½Π½Ρ‹Ρ… Π΄Π΅Π»Π΅Π½ΠΈΠΉ.

РСшСниС:

Π”Π΅Π»Π΅Π½ΠΈΠ΅ 735 Γ· 9 Π² столбик ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ 735 Π½Π° 9 ЧастноС = 81, ΠžΡΡ‚Π°Ρ‚ΠΎΠΊ = 6

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΏΠΎΠΏΡ€ΠΎΠ±ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ дСлСния Π² столбик ΠΈ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ:

  • 304 Γ· 2
  • 112 Γ· 8
  • 657 Γ· 12

β˜› ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹:

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ

— ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹, ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ

ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для вычислСния ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ.Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ — это матСматичСская концСпция, которая ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для сравнСния Π΄Π²ΡƒΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, ΠΎΠ½ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, сколько Ρ€Π°Π· ΠΎΠ΄Π½ΠΎ количСство содСрТится Π² Π΄Ρ€ΡƒΠ³ΠΎΠΌ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ коэффициСнтов?

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ коэффициСнтов

— это ΠΎΠ½Π»Π°ΠΉΠ½-инструмСнт, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹ΠΉ для расчСта коэффициСнтов Π² Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅. Π’ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π½Π΅Ρ‚ нСобходимости, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π΄Π²Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π±Ρ‹Π»ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ Ρ‚ΠΎΠ³ΠΎ ΠΆΠ΅ Π²ΠΈΠ΄Π°. НапримСр, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ 10 Π»ΠΈΠΌΠΎΠ½ΠΎΠ² ΠΊ 5 апСльсинам. Π­Ρ‚ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ 10: 5 ΠΈΠ»ΠΈ 2: 1. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ , Π²Π²Π΅Π΄ΠΈΡ‚Π΅ значСния Π² ΠΏΠΎΠ»Π΅ Π²Π²ΠΎΠ΄Π°.

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ

* Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 3 Ρ†ΠΈΡ„Ρ€Ρ‹.

Как ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠΌ коэффициСнтов?

Π’Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚Π΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ простыС шаги ΠΈ ΡƒΠ·Π½Π°ΠΉΡ‚Π΅, ΠΊΠ°ΠΊ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ для расчСта количСства ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ²:

  • Π¨Π°Π³ 1: ΠžΡ‚ΠΊΡ€ΠΎΠΉΡ‚Π΅ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ Cuemath.
  • Π¨Π°Π³ 2: Π’Π²Π΅Π΄ΠΈΡ‚Π΅ числа Π² ΠΏΠΎΠ»Π΅ Π²Π²ΠΎΠ΄Π° ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° коэффициСнта.
  • Π¨Π°Π³ 3: НаТмитС ΠΊΠ½ΠΎΠΏΠΊΡƒ Β«Π Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒΒ» , Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ².
  • Π¨Π°Π³ 4: НаТмитС ΠΊΠ½ΠΎΠΏΠΊΡƒ «Бброс» , Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‡ΠΈΡΡ‚ΠΈΡ‚ΡŒ поля ΠΈ ввСсти Π½ΠΎΠ²Ρ‹Π΅ значСния.

Как Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ коэффициСнтов?

Когда Π΄Π²Π΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΡΡ€Π°Π²Π½ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΠΏΠΎ ΠΈΡ… ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ, ΠΌΡ‹, ΠΏΠΎ сути, пытаСмся ΡΡƒΠ΄ΠΈΡ‚ΡŒ, насколько ΠΎΠ΄Π½Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π²Π΅Π»ΠΈΠΊΠ° ΠΈΠ»ΠΈ ΠΌΠ°Π»Π° ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π΄Ρ€ΡƒΠ³ΠΎΠΉ. Π”Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для сравнСния Π΄Π²ΡƒΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, числа Π² ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ Π΄Ρ€ΠΎΠ±ΡŒΡŽ. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρƒ двумя числами, скаТСм, a ΠΈ b (здСсь a называСтся Π°Π½Ρ‚Π΅Ρ†Π΅Π΄Π΅Π½Ρ‚ΠΎΠΌ, Π° b называСтся консСквСнтом).ΠœΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ это, Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠ² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ шаги:

  1. Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ a ΠΈ b выраТаСтся ΠΊΠ°ΠΊ a: b.
  2. ΠœΡ‹ прСдставим a: b Π² Π΄Ρ€ΠΎΠ±Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅. ДаСтся a / b .
  3. ΠœΡ‹ Π½Π°ΠΉΠ΄Π΅ΠΌ GCF (наибольший ΠΎΠ±Ρ‰ΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ) a ΠΈ b.
  4. Π—Π°Ρ‚Π΅ΠΌ ΠΌΡ‹ Π΄Π΅Π»ΠΈΠΌ a (Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ) ΠΈ b (Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ) Π½Π° GCF. Π­Ρ‚ΠΎ даст Π½Π°ΠΌ Π΄Ρ€ΠΎΠ±ΡŒ Π² самом ΡƒΠΏΡ€ΠΎΡ‰Π΅Π½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅.
  5. НаконСц, ΠΌΡ‹ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ прСдставлСниС ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ Π΄Ρ€ΠΎΠ±ΠΈ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Π½Π° шагС 4, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ наш Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚.

Когда ΠΌΡ‹ слоТим числа a ΠΈ b, ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΎΠ±Ρ‰Π΅Π΅ количСство ΠΎΠ±ΠΎΠΈΡ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ².

Π₯ΠΎΡ‚ΠΈΡ‚Π΅ Π½Π°ΠΉΡ‚ΠΈ слоТныС матСматичСскиС Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π° сСкунды?

Π’ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ нашим бСсплатным ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠΌ для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ слоТных вопросов. Π‘ Cuemath Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚Π΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ простым ΠΈ Π»Π΅Π³ΠΊΠΈΠΌ способом.

Π—Π°Π±Ρ€ΠΎΠ½ΠΈΡ€ΡƒΠΉΡ‚Π΅ Π±Π΅ΡΠΏΠ»Π°Ρ‚Π½ΡƒΡŽ ΠΏΡ€ΠΎΠ±Π½ΡƒΡŽ Π²Π΅Ρ€ΡΠΈΡŽ Класс

Π Π΅ΡˆΠ΅Π½Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² для ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1: НайдитС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΠΊΠ° ΠΈ Π²ΠΎΠ΄Ρ‹, Ссли Π² Ρ€Π΅Ρ†Π΅ΠΏΡ‚ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½Ρ‹ 24 стакана ΠΌΠΎΠ»ΠΎΠΊΠ° ΠΈ 18 стаканов Π²ΠΎΠ΄Ρ‹, ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅ Π΅Π³ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ.

РСшСниС:

ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ ΠΌΠΎΠ»ΠΎΠΊΠ° = 24 стакана

ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ Π²ΠΎΠ΄Ρ‹ = 18 Ρ‡Π°ΡˆΠ΅ΠΊ

Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΠΊΠ° ΠΈ Π²ΠΎΠ΄Ρ‹ 24:18.

ВыраТая это Π² Π΄Ρ€ΠΎΠ±Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ 24/18

GCF (24, 18) = 6

24/6 = 4 ΠΈ 18/6 = 3

Π­Ρ‚ΠΎ даст 4/3.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠ»ΠΎΠΊΠ° ΠΊ Π²ΠΎΠ΄Π΅ Π² Ρ€Π΅Ρ†Π΅ΠΏΡ‚Π΅ 4: 3

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2: НайдитС ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΡƒΠΊΠΈ ΠΈ сахара, Ссли Π½Π°ΠΌ трСбуСтся 20 столовых Π»ΠΎΠΆΠ΅ΠΊ ΠΌΡƒΠΊΠΈ ΠΈ 4 столовыС Π»ΠΎΠΆΠΊΠΈ сахара, ΠΈ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡŒΡ‚Π΅ Π΅Π³ΠΎ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ.

РСшСниС:

ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ ΠΌΡƒΠΊΠΈ = 20 стаканов

ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ сахара = 4 стакана

Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΡƒΠΊΠΈ ΠΈ сахара составляСт 20: 4.

ВыраТая это Π² Π΄Ρ€ΠΎΠ±Π½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΠ΅, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ 20/4

GCF (20, 4) = 4

20/4 = 5 ΠΈ 4/4 = 1

Π­Ρ‚ΠΎ даст 5/1

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΌΡƒΠΊΠΈ ΠΊ сахару составляСт 5: 1.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ΡΡŒ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π²Π΅Π»ΠΈΡ‡ΠΈΠ½:

  • ΠŸΠ΅Ρ€Π²ΠΎΠ΅ количСство = 34 ΠΈ Π’Ρ‚ΠΎΡ€ΠΎΠ΅ количСство = 89
  • ΠŸΠ΅Ρ€Π²ΠΎΠ΅ количСство = 4 ΠΈ Π’Ρ‚ΠΎΡ€ΠΎΠ΅ количСство = 57

β˜› ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρ‹:

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

— [100% бСсплатно]

Π’ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ вычислСния, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ пСрСкрСстноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ Π²Π°ΠΌ Π·Π°Π΄Π°Ρ‡Ρƒ, этот ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ кросс-ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ расчСты Π·Π° вас. ВмСсто Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹ΠΏΠΎΠ»Π½ΡΡ‚ΡŒ вычислСния ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‡Π΅Π½ΡŒ ΡƒΡ‚ΠΎΠΌΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ процСссом, этому ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Ρƒ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ значСния для получСния ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². Π§ΠΈΡ‚Π°ΠΉΡ‚Π΅ дальшС, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ·Π½Π°Ρ‚ΡŒ большС ΠΎΠ± этом ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Ρ… кросс-ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΎΠ±Ρ‰ΠΈΡ… вопросах ΠΏΠΎ Ρ‚ΠΎΠΉ ΠΆΠ΅ Ρ‚Π΅ΠΌΠ΅.

Как ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ кросс-ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°?

Как ΠΈ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ ΠΎΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ΠΎΠ², этот простой ΠΈ Π»Π΅Π³ΠΊΠΈΠΉ Π² использовании.ВмСсто Ρ€ΡƒΡ‡Π½Ρ‹Ρ… вычислСний этот ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ умноТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² прСдоставит Π²Π°ΠΌ пСрСкрСстныС произвСдСния Π·Π° считанныС сСкунды. Π’ΠΎΡ‚ шаги для Π΅Π³ΠΎ использования:

  • Π‘Π½Π°Ρ‡Π°Π»Π° Π²Π²Π΅Π΄ΠΈΡ‚Π΅ 3 значСния для Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a (x, y, z).
  • Π—Π°Ρ‚Π΅ΠΌ Π²Π²Π΅Π΄ΠΈΡ‚Π΅ 3 значСния для Π²Π΅ΠΊΡ‚ΠΎΡ€Π° b (x, y, z).
  • ПослС Π²Π²ΠΎΠ΄Π° всСх Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π²Ρ‹ автоматичСски ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ пСрСкрСстныС произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€Π° c (x, y, z)

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ пСрСкрСстного произвСдСния?


Как Ρ€ΡƒΡ‡Π½ΠΎΠ΅ вычислСниС, Ρ‚Π°ΠΊ ΠΈ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ пСрСкрСстного произвСдСния ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ процСсс, ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹ΠΉ ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° пСрСкрСстного произвСдСния.Π­Ρ‚ΠΎΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅Ρ‚ сравнСниС Π΄Π²ΡƒΡ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ. Π’ этом ΠΌΠ΅Ρ‚ΠΎΠ΄Π΅ Π²Ρ‹ ΡƒΠΌΠ½ΠΎΠΆΠ°Π΅Ρ‚Π΅ Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒ ΠΏΠ΅Ρ€Π²ΠΎΠΉ Π΄Ρ€ΠΎΠ±ΠΈ Π½Π° Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΈ Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚. Π—Π°Ρ‚Π΅ΠΌ Π²Ρ‹ сравниваСтС свои ΠΎΡ‚Π²Π΅Ρ‚Ρ‹, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ, Ρ€Π°Π²Π½Ρ‹ Π»ΠΈ Π΄Ρ€ΠΎΠ±ΠΈ ΠΈΠ»ΠΈ Π½Π΅Ρ‚.

ΠœΠ΅Ρ‚ΠΎΠ΄ пСрСкрСстного произвСдСния — это Π²ΠΈΠ΄ быстрого доступа, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт Π²Π°ΠΌ Π½Π°ΠΉΡ‚ΠΈ ΠΎΠ±Ρ‰ΠΈΠΉ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ, Π½Π΅ мСняя значСния Π΄Ρ€ΠΎΠ±Π΅ΠΉ. ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎ, использованиС этого ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΡΡ€Π°Π²Π½ΠΈΠ²Π°Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π²Π΅ Π΄Ρ€ΠΎΠ±ΠΈ Π·Π° Ρ€Π°Π·. Если Π²Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ большС ΡΡ€Π°Π²Π½ΠΈΠ²Π°Ρ‚ΡŒ, Π²Π°ΠΌ придСтся ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΡ‚ΡŒ этот процСсс.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²?

ΠŸΠ΅Ρ€Π΅ΠΊΡ€Π΅ΡΡ‚Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ΠΌΠΈ ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ, Π²Π΅ΠΊΡ‚ΠΎΡ€ a ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ b — это Π²Π΅ΠΊΡ‚ΠΎΡ€ c, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΈΠΌΠ΅Π΅Ρ‚ пСрпСндикулярныС ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ с ΠΎΠ±ΠΎΠΈΠΌΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Ссли Ρƒ вас Π΅ΡΡ‚ΡŒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΠΏΠΈΡ€Π°ΡŽΡ‚ΡΡ Π²Π΅ΠΊΡ‚ΠΎΡ€ a ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ b, Π²Π΅ΠΊΡ‚ΠΎΡ€ c Π±ΡƒΠ΄Π΅Ρ‚ пСрпСндикулярно ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ плоскости.

НаправлСниС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° c ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ€ΡƒΠΊΠΎΠΉ ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎΠΌ ΠΏΡ€Π°Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ. Если срСдний ΠΈ ΡƒΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Π»ΡŒΡ†Ρ‹ вашСй ΠΏΡ€Π°Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° a ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° b, ваш большой ΠΏΠ°Π»Π΅Ρ† ΠΏΠΎΠΊΠ°ΠΆΠ΅Ρ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° c.Помимо использования этого Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€Π° пСрСкрСстного произвСдСния, Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π²Ρ€ΡƒΡ‡Π½ΡƒΡŽ ΠΏΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

c = a Γ— b = | a | * | b | * sinΞΈ * n,

Π³Π΄Π΅:

a ΠΈ b относятся ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌ

| a | ΠΈ | b | ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

c ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния

ΞΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ

n ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€, пСрпСндикулярный плоскости ΠΈ опрСдСляСмый ΠΏΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ a ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ b

ΠŸΡ€ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ вычислСний Π²Ρ€ΡƒΡ‡Π½ΡƒΡŽ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ эту Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

a Γ— b = (aβ‚‚b₃ — a₃bβ‚‚) * i + (a₃b₁ — a₁b₃) * j + (a₁bβ‚‚ — aβ‚‚b₁) * k

Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ пСрСкрСстного произвСдСния?

Π’ΠΎΡ‡Π΅Ρ‡Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° с ΠΎΠ΄Π½ΠΈΠΌ числом.РассчитайтС скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ = (a x , a y , a z ) * (b x , b y , b z ) = a x b x + a y b y + a z b z = || vec {a} || || vec {b} || cos (Ο΄)

Π§Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚Π° Π½Π° пСрСкрСстноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠΉΡ‚Π΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

ΠΊΠ°Π½Π΄ΠΈΠ΄Π°Ρ‚ Π½Π° пСрСкрСстноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ = сумма Ρ€Π°Π·Π½ΠΈΡ†Ρ‹ = || vec {a} || || vec {b} || sin (Ο΄)

Но, глядя Π½Π° эти Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, Π²Ρ‹ ΠΏΠΎΠΉΠΌΠ΅Ρ‚Π΅, Ρ‡Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅Π΄ΠΎΡΡ‚Π°ΡŽΡ‰ΠΈΠ΅ Π΄Π΅Ρ‚Π°Π»ΠΈ.Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π²Π°ΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²Ρ‹Ρ€Π°Π·ΠΈΡ‚ΡŒ эти различия Π² Π²ΠΈΠ΄Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, помня ΠΎΠ± этих ΠΌΠΎΠΌΠ΅Π½Ρ‚Π°Ρ…:

  • Π Π°Π·ΠΌΠ΅Ρ€ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния относится ΠΊ числовому Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ «количСства Ρ€Π°Π·Π½ΠΈΡ†Ρ‹Β», Π° sin (ΞΈ) — это ΠΏΡ€ΠΎΡ†Π΅Π½Ρ‚.
  • Π’ основС направлСния кросс-ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π° Π»Π΅ΠΆΠ°Ρ‚ ΠΎΠ±Π° исходных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°, Ρ‡Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΎΠ½ Π½Π΅ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ Π½ΠΈ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π½ΠΈΡ….
  • Π Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ прСдставляСт x * y ΠΈ x * z, хотя ΠΎΠ±Π° ΠΎΠ½ΠΈ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΎΡ‚ x.
  • Π’Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ 2 Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ Π² Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, ΠΎΡ‚Π»ΠΈΡ‡Π½ΠΎΠΌ ΠΎΡ‚ этих Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

Π’Π΅ΠΏΠ΅Ρ€ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΠΏΡ€Π°Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ. Для этого вытянитС большой ΠΈ Π΄Π²Π° ΠΏΠ΅Ρ€Π²Ρ‹Ρ… ΠΏΠ°Π»ΡŒΡ†Π° Π½Π°Ρ€ΡƒΠΆΡƒ. Π’Π°ΡˆΠΈ Π΄Π²Π° ΠΏΠ°Π»ΡŒΡ†Π° ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², Π° большой ΠΏΠ°Π»Π΅Ρ† ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ кросс-ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅?

ΠŸΡ€Π΅ΠΆΠ΄Π΅ Ρ‡Π΅ΠΌ ΠΌΡ‹ обсудим, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ кросс-ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Π΄Π°Π²Π°ΠΉΡ‚Π΅ ΠΊΡ€Π°Ρ‚ΠΊΠΎ ΠΈΠ·Π»ΠΎΠΆΠΈΠΌ всС, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ обсуТдали Π΄ΠΎ сих ΠΏΠΎΡ€. ΠŸΠ΅Ρ€Π΅ΠΊΡ€Π΅ΡΡ‚Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅, Ρ‚Π°ΠΊΠΆΠ΅ извСстноС Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ ΠΊΠ°ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€ a ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° be, ΠΌΠΎΠΆΠ½ΠΎ символичСски Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ:

π‘Ž Γ— 𝑏 ΠΈΠ»ΠΈ π‘Ž ∧ 𝑏.

По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ, Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ — это Π²Π΅ΠΊΡ‚ΠΎΡ€ с Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ:

| π‘Ž Γ— 𝑏 | = | π‘Ž | | 𝑏 | sinπœƒ

Π³Π΄Π΅:

πœƒ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ π‘Ž ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠΌ 𝑏

НаправлСниС π‘Ž Γ— 𝑏 — это Π²Π΅ΠΊΡ‚ΠΎΡ€, пСрпСндикулярный ΠΊΠ°ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ a, Ρ‚Π°ΠΊ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ b. Π›ΡƒΡ‡ΡˆΠΈΠΉ способ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ это Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ — ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΠΏΡ€Π°Π²ΠΎΠΉ Ρ€ΡƒΠΊΠΈ. Π’Ρ‹ Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ эту ΠΊΠΎΠ½Ρ†Π΅ΠΏΡ†ΠΈΡŽ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π² Ρ‚ΠΎΠΌ, ΠΊΠ°ΠΊ вращаСтся Π²ΠΈΠ½Ρ‚.Если Π²Ρ‹ΠΊΡ€ΡƒΡ‚ΠΈΡ‚ΡŒ Π²ΠΈΠ½Ρ‚ ΠΈΠ·, Ρ‚ΠΎ ΠΎΠ½ Π½Π°Ρ‡Π½Π΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ Π²ΠΏΠ΅Ρ€Π΅Π΄.

Π’ качСствС Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Ρ‹, Ссли Π²Ρ‹ протянСтС большой ΠΏΠ°Π»Π΅Ρ† ΠΈ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π΄Π²Π° ΠΏΠ°Π»ΡŒΡ†Π° ΠΈ располоТитС ΠΈΡ… ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ Π΄Ρ€ΡƒΠ³ ΠΊ Π΄Ρ€ΡƒΠ³Ρƒ, Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° измСнится. На этот Ρ€Π°Π· ваш большой ΠΈ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΏΠ°Π»ΡŒΡ†Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ Π² ΠΎΠ΄Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ, Π° Π²Ρ‚ΠΎΡ€ΠΎΠΉ — Π² Π΄Ρ€ΡƒΠ³ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΈΠ»ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ π‘Ž Γ— 𝑏. ΠŸΠ΅Ρ€Π΅ΠΊΡ€Π΅ΡΡ‚Π½Ρ‹Π΅ произвСдСния ΠΈΠ»ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹Π΅ произвСдСния часто Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅.

Π’Ρ‹ Π΄Π°ΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΠΈΠ·ΠΈΠΊΡƒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠΌΠΎΡ‡ΡŒ Π²Π°ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ пСрСкрСстного произвСдСния, ΠΊΠ°ΠΊ ΠΌΡ‹ ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π² Π½Π°ΡˆΠΈΡ… Π΄Π²ΡƒΡ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ…:

  • Если Π²Ρ‹ Π·Π°ΠΊΡ€ΡƒΡ‚ΠΈΡ‚Π΅ Π²ΠΈΠ½Ρ‚ ΠΎΡ‚ π‘Ž Π΄ΠΎ, ΠΎΠ½ сдвинСтся Π²Π²Π΅Ρ€Ρ…
  • Если Π²Ρ‹ размСститС ΠŸΠ΅Ρ€Π²Ρ‹Π΅ Ρ‚Ρ€ΠΈ ΠΏΠ°Π»ΡŒΡ†Π° вашСй Ρ€ΡƒΠΊΠΈ ΠΏΠΎΠ΄ прямым ΡƒΠ³Π»ΠΎΠΌ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΡ‚ π‘Ž Π΄ΠΎ 𝑏 Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ вашСго Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠ°Π»ΡŒΡ†Π°

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ пСрСкрСстного произвСдСния

Π­Ρ‚ΠΎΡ‚ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ умноТСния, Ρ‚Π°ΠΊΠΆΠ΅ извСстный ΠΊΠ°ΠΊ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ пСрСкрСстного умноТСния, ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π΄Π²ΡƒΡ… Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².Π’Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π½Π°ΠΆΠ°Ρ‚ΡŒ Π½Π° ΠΎΠΏΡ†ΠΈΡŽ Β«ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ большС», Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ пошаговоС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅.

Π­Ρ‚ΠΎΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΉ ΠΊΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ позволяСт Π²Π²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡŽ Π² Π²ΠΈΠ΄Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚ΠΎΡ‡Π΅ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ пСрСкрСстноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²?

Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€. Π•ΡΡ‚ΡŒ Π΄Π²Π° способа ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ ΠΏΠ°Ρ€Ρƒ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

  • БкалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ скалярноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ (Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° являСтся скалярной).
  • Π’Π΅ΠΊΡ‚ΠΎΡ€ ΠΈΠ»ΠΈ кросс-ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ (Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π°Ρ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° — Π²Π΅ΠΊΡ‚ΠΎΡ€).

ΠŸΠ΅Ρ€Π΅ΠΊΡ€Π΅ΡΡ‚Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ опрСдСляСтся ΠΊΠ°ΠΊ:

Β«ΠŸΠ΅Ρ€Π΅ΠΊΡ€Π΅ΡΡ‚Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² 3D. Он измСряСт, насколько Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π² Ρ€Π°Π·Π½Ρ‹Ρ… направлСниях Β».

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ΡΡ Π±ΡƒΠΊΠ²Π°ΠΌΠΈ A x B (читаСтся ΠΊΠ°ΠΊ A крСст B).

Π“Π΄Π΅,

A x B = A * B sin

Π€ΠΎΡ€ΠΌΡƒΠ»Π° пСрСкрСстного произвСдСния

Π€ΠΎΡ€ΠΌΡƒΠ»Π°, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΠ°Ρ для Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния пСрСкрСстного произвСдСния, Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ слоТна. Π’ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ Π² Π²ΠΈΠ΄Π΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹. ΠŸΠ΅Ρ€Π²Π°Ρ строка ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ‹ состоит ΠΈΠ· Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

i j k

a x a y a z

b x b y b z

ПослС этого шага эта ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π° Ρ€Π°ΡΡˆΠΈΡ€ΡΠ΅Ρ‚ΡΡ.

Бвойства пСрСкрСстного произвСдСния

Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ свойства пСрСкрСстного произвСдСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ Π΅Π³ΠΎ ΠΎΡ‚ скалярного произвСдСния.

  • ΠšΠΎΠΌΠΌΡƒΡ‚Π°Ρ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π½Π΅ выполняСтся (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ A x B β‰  B x A).
  • Максимально, ΠΊΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ пСрпСндикулярны (ΡƒΠ³ΠΎΠ» 90).
  • Π‘Π°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ пСрСкрСстноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π°Π΅Ρ‚ Π½ΡƒΠ»Π΅Π²ΠΎΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ (Ρ‚. Π•. A x A = 0).
  • ΠŸΠ΅Ρ€Π΅ΠΊΡ€Π΅ΡΡ‚Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π΄Π°Π΅Ρ‚ Ρ‚Ρ€Π΅Ρ‚ΠΈΠΉ Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€. (I x j = k, j x k = i, k x i = j)

Как произвСсти пСрСкрСстноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅?

ΠŸΡ€ΠΎΡ†Π΅ΡΡ умноТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π»Π΅Π³Ρ‡Π΅ ΠΏΠΎΠ½ΡΡ‚ΡŒ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€:

НайдитС Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ².

A = 3 i + 2 j + 1 k

B = 1 i + 2 j + 3 k

Π¨Π°Π³ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

:

Π—Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π² Π²ΠΈΠ΄Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

A = (3,2,1)

B = (1,2,3)

Π¨Π°Π³ 2: Π‘Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠΉΡ‚Π΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ.

i j k

3 2 1

1 2 3

Π¨Π°Π³ 3: Π Π°Π·Π²Π΅Ρ€Π½ΠΈΡ‚Π΅ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρƒ.

= i [(2). (3) — (1). (2)] — j [(3). (3) — (1). (1)] + k [(3). ( 2) — (2). (1)]

= i [(6) — (2)] — j [(9) — (1)] + k [(6) — (2)]

= 4i — 8j + 4k

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ пСрСкрСстных ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ | Найти пСрСсСчСниС Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

1. Π§Ρ‚ΠΎ Π²Ρ‹ ΠΏΠΎΠ΄Ρ€Π°Π·ΡƒΠΌΠ΅Π²Π°Π΅Ρ‚Π΅ ΠΏΠΎΠ΄ пСрСкрСстным ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ?

ΠŸΠ΅Ρ€Π΅ΠΊΡ€Π΅ΡΡ‚Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ — это двоичная опСрация Π΄Π²ΡƒΡ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС.Π•Π³ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ. Π€ΠΎΡ€ΠΌΡƒΠ»Π° для нахоТдСния Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ произвСдСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²: a x b = β”‚aβ”‚β”‚bβ”‚ sin (ΞΈ) n

Π“Π΄Π΅ a, b — Π΄Π²Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°

ΞΈ — ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ

β”‚β”‚ — это Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°

.

n — Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹ΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€.


2. Π§Ρ‚ΠΎ ΠΏΡ€ΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ‚, Ссли ΡΠΊΡ€Π΅ΡΡ‚ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²?

Когда Π²Ρ‹ вычисляСтС пСрСкрСстноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ², получаСтся Π²Ρ‹Ρ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ Π±Π΅Π· ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ.ΠŸΠ΅Ρ€Π΅ΠΊΡ€Π΅ΡΡ‚Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ станСт Π½ΡƒΠ»Π΅Π²Ρ‹ΠΌ.


3. ВычислитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ a = (3, βˆ’3,1) ΠΈ c = (- 12,12, βˆ’4).

Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹

a = (3, βˆ’3,1) ΠΈ c = (- 12,12, βˆ’4)

β”‚a x cβ”‚ = i j k

& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 3 — 3 1

& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp -12 12-4

= i (-3x-4 -12×1) + j (-12×1 — 3x-4) + k (3×12 — (-3) x (-12)

= я (12-12) + j (-12 + 12) + k (36-36)

= (0,0,0)

Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π½ΡƒΠ»Π΅Π²ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, поэтому ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.


4. Для Ρ‡Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ пСрСкрСстноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅?

ΠŸΠ΅Ρ€Π΅ΠΊΡ€Π΅ΡΡ‚Π½ΠΎΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для нахоТдСния Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, пСрпСндикулярного плоскости, натянутой Π½Π° Π΄Π²Π° Ρ€Π°Π·Π½Ρ‹Ρ… Π²Π΅ΠΊΡ‚ΠΎΡ€Π°. Он ΠΈΠΌΠ΅Π΅Ρ‚ мноТСство ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ ΠΏΡ€ΠΈ Ρ€Π°Π±ΠΎΡ‚Π΅ с Π²Ρ€Π°Ρ‰Π°ΡŽΡ‰ΠΈΠΌΠΈΡΡ Ρ‚Π΅Π»Π°ΠΌΠΈ.


5. НайдитС ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ a ΠΈ b, Π³Π΄Π΅ a = (- 4, 3, 0) ΠΈ b = (2, 0, 0)?

Π€ΠΎΡ€ΠΌΡƒΠ»Π° для получСния ΡƒΠ³Π»Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ:

sin (ΞΈ) = a x b / β”‚aβ”‚β”‚bβ”‚

ΞΈ = sin -1 (a x b / β”‚aβ”‚β”‚bβ”‚)

Π‘Π½Π°Ρ‡Π°Π»Π° вычислитС a x b

Π° Ρ… Π¬ = я (0) -j (0) + ΠΊ (-6)

= -6 тыс.

β”‚aβ”‚ = √-4 2 +3 2 +0 2

= √16 + 9 = √25 = 5

β”‚bβ”‚ = √2 2 +0 2 +0 2

= 2

ΠœΡ‹ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΞΈ = sin -1 (a x b / β”‚aβ”‚β”‚bβ”‚)

ΞΈ = Π³Ρ€Π΅Ρ… -1 (-6 / 5×2)

= Π³Ρ€Π΅Ρ… -1 (3/5) = 36.87 Β°

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡƒΠ³ΠΎΠ» Ρ€Π°Π²Π΅Π½ 36,87 Β°.


ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ пСрСкрСстного произвСдСния

РазмСститС ваши ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΈ?

ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ пСрСкрСстных ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ (Π²Π΅ΠΊΡ‚ΠΎΡ€) Stepbystep Solution

5 часов Π½Π°Π·Π°Π΄ ΠšΠ°Π»ΡŒΠΊΡƒΠ»ΡΡ‚ΠΎΡ€ пСрСкрСстных ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² довольно прост Π² использовании. Π‘Π»Π΅Π΄ΡƒΠΉΡ‚Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΌ Π½ΠΈΠΆΠ΅ инструкциям, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ пСрСкрСстноС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ . : Π¨Π°Π³ 1: Π’Π²Π΅Π΄ΠΈΡ‚Π΅ Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ коэффициСнты Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² X ΠΈ Y; Π² полях Π²Π²ΠΎΠ΄Π°. Π¨Π°Π³ 2: НаТмитС ΠΊΠ½ΠΎΠΏΠΊΡƒ Β«ΠŸΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ расчСт», Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ пСрСкрСстного произвСдСния .Π¨Π°Π³ 3: НаконСц, Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ пСрСкрСстного произвСдСния ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Π²Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ вмСстС с ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΌ ΠΏΠΎΡˆΠ°Π³ΠΎΠ²Ρ‹ΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ.

Π’Π΅Π±-сайт: Crossproductcalculator.org