Site Loader

Создание простой формулы в Excel

Excel

Формулы и функции

Формулы

Формулы

Создание простой формулы в Excel

Excel для Microsoft 365 Excel для Microsoft 365 для Mac Excel 2021 Excel 2021 for Mac Excel 2019 Excel 2019 для Mac Excel 2016 Excel 2016 для Mac Excel 2013 Excel 2010 Excel 2007 Excel для Mac 2011 Еще…Меньше

Вы можете создать простую формулу для с суммы, вычитания, умножения и деления значений на вашем компьютере. Простые формулы всегда начинаются со знака равной(=),за которым следуют константы, которые являются числами и операторами вычислений, такими как «плюс»(+),«минус» (— ),«звездочка»*или «косая черта»(/)в начале.

В качестве примера рассмотрим простую формулу.

  1. org/ListItem»>

    Выделите на листе ячейку, в которую необходимо ввести формулу.

  2. Введите = (знак равенства), а затем константы и операторы (не более 8192 знаков), которые нужно использовать при вычислении.

    В нашем примере введите =1+1.

    Примечания: 

    • Вместо ввода констант в формуле можно выбрать ячейки с нужными значениями и ввести операторы между ними.

    • В соответствии со стандартным порядком математических операций, умножение и деление выполняются до сложения и вычитания.

  3. org/ListItem»>

    Нажмите клавишу ВВОД (Windows) или Return (Mac).

Рассмотрим другой вариант простой формулы. Введите

=5+2*3 в другой ячейке и нажмите клавишу ВВОД или Return. Excel перемножит два последних числа и добавит первое число к результату умножения.

Использование автосуммирования

Для быстрого суммирования чисел в столбце или строке можно использовать кнопку «Автосумма». Выберите ячейку рядом с числами, которые необходимо сложить, нажмите кнопку Автосумма на вкладке Главная, а затем нажмите клавишу ВВОД (Windows) или Return (Mac).

Когда вы нажимаете кнопку Автосумма, Excel автоматически вводит формулу для суммирования чисел (в которой используется функция СУММ).

Примечание: Также в ячейке можно ввести ALT+= (Windows) или ALT++= (Mac), и Excel автоматически вставит функцию СУММ.

Приведем пример. Чтобы сложить числа за январь в бюджете «Развлечения», выберите ячейку B7, которая непосредственно под столбцом чисел. Затем нажмите кнопку «Автоумма». Формула появится в ячейке B7, а Excel выделит ячейки, которые вы суммируете.

Чтобы отобразить результат (95,94) в ячейке В7, нажмите клавишу ВВОД. Формула также отображается в строке формул вверху окна Excel.

Примечания: 

  • Чтобы сложить числа в столбце, выберите ячейку под последним числом в столбце. Чтобы сложить числа в строке, выберите первую ячейку справа.

  • Создав формулу один раз, ее можно копировать в другие ячейки, а не вводить снова и снова. Например, при копировании формулы из ячейки B7 в ячейку C7 формула в ячейке C7 автоматически настроится под новое расположение и подсчитает числа в ячейках C3:C6.

  • Кроме того, вы можете использовать функцию «Автосумма» сразу для нескольких ячеек. Например, можно выделить ячейки B7 и C7, нажать кнопку Автосумма и суммировать два столбца одновременно.

Скопируйте данные из таблицы ниже и вставьте их в ячейку A1 нового листа Excel. При необходимости измените ширину столбцов, чтобы видеть все данные.

Примечание: Чтобы эти формулы выводили результат, выделите их и нажмите клавишу F2, а затем — ВВОД (Windows) или Return (Mac).

Данные

2

5

Формула

Описание

Результат

=A2+A3

Сумма значений в ячейках A1 и A2

=A2+A3

=A2-A3

Разность значений в ячейках A1 и A2

=A2-A3

=A2/A3

Частное от деления значений в ячейках A1 и A2

=A2/A3

=A2*A3

Произведение значений в ячейках A1 и A2

=A2*A3

=A2^A3

Значение в ячейке A1 в степени, указанной в ячейке A2

=A2^A3

Формула

Описание

Результат

=5+2

Сумма чисел 5 и 2

=5+2

=5-2

Разность чисел 5 и 2

=5-2

=5/2

Частное от деления 5 на 2

=5/2

=5*2

Произведение чисел 5 и 2

=5*2

=5^2

Число 5 во второй степени

=5^2

Дополнительные сведения

Вы всегда можете задать вопрос специалисту Excel Tech Community или попросить помощи в сообществе Answers community.

Сложение и вычитание целых чисел

В данном уроке мы изýчим сложение и вычитание целых чисел.

Напомним, что целые числа — это все положительные и отрицательные числа, а также число 0. Например, следующие числа являются целыми:

−3, −2, −1, 0, 1, 2, 3

Положительные числа легко складываются и вычитаются, умножаются и делятся. К сожалению, этого нельзя сказать об отрицательных числах, которые смущают многих новичков своими минусами перед каждой цифрой.

Примеры сложения и вычитания целых чисел

Первое чему следует научиться это складывать и вычитать целые числа с помощью координатной прямой. Совсем необязательно рисовать координатную прямую. Достаточно воображать её в своих мыслях и видеть, где располагаются отрицательные числа и где положительные.

Рассмотрим следующее простейшее выражение

1 + 3

Значение данного выражения равно 4

1 + 3 = 4

Этот пример можно понять с помощью координатной прямой. Для этого из точки, где располагается число 1, нужно сдвинуться вправо на три шага. В результате мы окажемся в точке, где располагается число 4. На рисунке можно увидеть, как это происходит:

Знак плюса в выражении 1 + 3 указывает нам, что нужно двигаться вправо в сторону увеличения чисел.


Пример 2. Найдём значение выражения 1 − 3

Значение данного выражения равно −2

1 − 3 = −2

Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается число 1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число −2. На рисунке можно увидеть, как это происходит:

Знак минуса в выражении 1 − 3 указывает нам, что нужно двигаться влево в сторону уменьшения чисел.

Вообще, если осуществляется сложение, то нужно двигаться вправо в сторону увеличения. Если же осуществляется вычитание, то нужно двигаться влево в сторону уменьшения.


Пример 3. Найти значение выражения −2 + 4

Значение данного выражения равно 2

−2 + 4 = 2

Этот пример опять же можно понять с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −2 нужно сдвинуться вправо на четыре шага. В результате мы окажемся в точке, где располагается положительное число 2

Видно, что мы сдвинулись из точки где располагается отрицательное число −2 в правую сторону на четыре шага, и оказались в точке, где располагается положительное число 2.


Пример 4. Найти значение выражения −1 − 3

Значение данного выражения равно −4

−1 − 3 = −4

Этот пример опять же можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −1 нужно сдвинуться влево на три шага. В результате мы окажемся в точке, где располагается отрицательное число −4

Видно, что мы сдвинулись из точки где располагается отрицательное число −1 в левую сторону на три шага, и оказались в точке, где располагается отрицательное число −4.


Пример 5. Найти значение выражения −2 + 2

Значение данного выражения равно 0

−2 + 2 = 0

Этот пример можно решить с помощью координатной прямой. Для этого из точки, где располагается отрицательное число −2 нужно сдвинуться вправо на два шага. В результате мы окажемся в точке, где располагается число 0

Видно, что мы сдвинулись из точки где располагается отрицательное число −2 в правую сторону на два шага и оказались в точке, где располагается число 0.


Правила сложения и вычитания целых чисел

Чтобы сложить или вычесть целые числа, вовсе необязательно каждый раз воображать координатную прямую, и тем более рисовать её. Можно воспользоваться готовыми правилами.

Применяя правила, нужно обращать внимания на знак операции и знаки чисел, которые нужно сложить или вычесть. От этого будет зависеть какое правило применять.

Пример 1. Найти значение выражения −2 + 5

Здесь к отрицательному числу прибавляется положительное число. Другими словами, осуществляется сложение чисел с разными знаками, потому что −2 это отрицательное число, а 5 — положительное. Для таких случаев применяется следующее правило:

Чтобы сложить числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того числа, модуль которого больше.

Итак, посмотрим какой модуль больше:

Модуль числа 5 больше, чем модуль числа −2. Правило требует из большего модуля вычесть меньший. Поэтому мы должны из 5 вычесть 2, и перед полученным ответом поставить знак того числа, модуль которого больше.

У числа 5 модуль больше, поэтому знак этого числа и будет в ответе. То есть ответ будет положительным:

−2 + 5 = 5 − 2 = 3

Обычно записывают покороче: −2 + 5 = 3


Пример 2. Найти значение выражения 3 + (−2)

Здесь как и в предыдущем примере, осуществляется сложение чисел с разными знаками. 3 это положительное число, а −2 — отрицательное. Обратите внимание, что число −2 заключено в скобки, чтобы сделать выражение понятнее. Это выражение намного проще для восприятия, чем выражение 3 + −2.

Итак, применим правило сложения чисел с разными знаками. Как и в прошлом примере, из большего модуля вычитаем меньший модуль и перед ответом ставим знак того числа, модуль которого больше:

3 + (−2) = |3| − |−2| = 3 − 2 = 1

Модуль числа 3 больше, чем модуль числа −2, поэтому мы из 3 вычли 2, и перед полученным ответом поставили знак того числа, модуль которого больше. У числа 3 модуль больше, поэтому знак этого числа и поставлен в ответе. То есть ответ положительный.

Обычно записывают покороче 3 + (−2) = 1


Пример 3. Найти значение выражения 3 − 7

В этом выражении из меньшего числа вычитается большее. Для такого случая применяется следующее правило:

Чтобы из меньшего числа вычесть большее, нужно из большего числа вычесть меньшее, и перед полученным ответом поставить минус.

3 − 7 = 7 − 3 = −4

В этом выражении есть небольшая загвоздка. Вспомним, что знак равенства (=) ставится между величинами и выражениями тогда, когда они равны между собой.

Значение выражения 3 − 7 как мы узнали равно −4. Это означает, что любые преобразования которые мы будем совершать в данном выражении, должны быть равны −4

Но мы видим, что на втором этапе располагается выражение 7 − 3, которое не равно −4.

Чтобы исправить эту ситуацию, выражение 7 − 3 нужно взять в скобки и перед этой скобкой поставить минус:

3 − 7 = − (7 − 3) = − (4) = −4

В этом случае равенство будет соблюдаться на каждом этапе:

После того, как выражение вычислено, скобки можно убрать, что мы и сделали.

Поэтому, чтобы быть более точным, решение должно выглядеть так:

3 − 7 = − (7 − 3) = − (4) = − 4

Данное правило можно записать с помощью переменных. Выглядеть оно будет следующим образом:

a − b = − (b − a)

Большое количество скобок и знаков операций могут усложнять решение, казалось бы совсем простой задачи, поэтому целесообразнее научиться записывать такие примеры коротко, например 3 − 7 = − 4.

На самом деле сложение и вычитание целых чисел сводится только к сложению. Это означает, что если требуется осуществить вычитание чисел, эту операцию можно заменить сложением.

Итак, знакомимся с новым правилом:

Вычесть одно число из другого означает прибавить к уменьшаемому такое число, которое будет противоположно вычитаемому.

Например, рассмотрим простейшее выражение 5 − 3. На начальных этапах изучения математики мы ставили знак равенства и записывали ответ:

5 − 3 = 2

Но сейчас мы прогрессируем в изучении, поэтому надо приспосабливаться к новым правилам. Новое правило говорит, что вычесть одно число из другого означает прибавить к уменьшаемому такое число, которое будет противоположно вычитаемому.

На примере выражения 5 − 3 попробуем понять это правило. Уменьшаемое в данном выражении это 5, а вычитаемое это 3. Правило говорит, что для того, чтобы из 5 вычесть 3 , нужно к 5 прибавить такое число, которое будет противоположно 3. Противоположное для числа 3 это число −3. Записываем новое выражение:

5 + (−3)

А как находить значения для таких выражений мы уже знаем. Это сложение чисел с разными знаками, которое мы рассмотрели ранее. Чтобы сложить числа с разными знаками, мы из большего модуля вычитаем меньший модуль, и перед полученным ответом поставить знак того числа, модуль которого больше:

5 + (−3) = |5| − |−3| = 5 − 3 = 2

Модуль числа 5 больше, чем модуль числа −3. Поэтому мы из 5 вычли 3 и получили 2. У числа 5 модуль больше, поэтому знак этого числа и поставили в ответе. То есть ответ положителен.

Поначалу быстро заменять вычитание сложением удаётся не всем. Это связано с тем, что положительные числа записываются без знака плюс.

Например, в выражении 3 − 1  знак минуса, указывающий на вычитание, является знаком операции и не относится к единице. Единица в данном случае является положительным числом, и у неё есть свой знак плюса, но мы его не видим, поскольку плюс перед положительными числами не записывают.

А стало быть, для наглядности данное выражение можно записать следующим образом:

(+3) − (+1)

Для удобства числа со своим знаками заключают в скобки. В таком случае заменить вычитание сложением намного проще.

В выражении (+3) − (+1) вычитаемое это число (+1), а противоположное ему число это (−1).

Заменим вычитание сложением и вместо вычитаемого (+1) записываем противоположное ему число (−1)

(+3) − (+1) = (+3) + (−1)

Дальнейшее вычисление не составит особого труда.

(+3) − (+1) = (+3) + (−1) = |3| − |−1| = 3 − 1 = 2

На первый взгляд покажется, какой смысл в этих лишних телодвижениях, если можно старым добрым методом поставить знак равенства и сразу записать ответ 2. На самом деле это правило ещё не раз нас выручит.

Решим предыдущий пример 3 − 7, используя правило вычитания. Сначала приведём выражение к понятному виду, расставив каждому числу свои знаки.

У тройки знак плюса, поскольку она является положительным числом. Минус, указывающий на вычитание не относится к семёрке. У семёрки знак плюса, поскольку она является положительным числом:

(+3) − (+7)

Заменим вычитание сложением:

(+3) − (+7) = (+3) + (−7)

Дальнейшее вычисление не составляет труда:

(+3) − (−7) = (+3) + (-7) = −(|−7| − |+3|) = −(7 − 3) = −(4) = −4


Пример 7. Найти значение выражения −4 − 5

Приведём выражение к понятному виду:

(−4) − (+5)

Перед нами снова операция вычитания. Эту операцию нужно заменить сложением. К уменьшаемому (−4) прибавим число, противоположное вычитаемому (+5). Противоположное число для вычитаемого (+5) это число (−5).

(−4) − (+5) = (−4) + (−5)

Мы пришли к ситуации, где нужно сложить отрицательные числа. Для таких случаев применяется следующее правило:

Чтобы сложить отрицательные числа, нужно сложить их модули, и перед полученным ответом поставить минус.

Итак, сложим модули чисел, как от нас требует правило, и поставим перед полученным ответом минус:

(−4) − (+5) = (−4) + (−5) = |−4| + |−5| = 4 + 5 = −9

Запись с модулями необходимо заключить в скобки и перед этими скобками поставить минус. Так мы обеспечим минус, который должен стоять перед ответом:

(−4) − (+5) = (−4) + (−5) = −(|−4| + |−5|) = −(4 + 5) = −(9) = −9

Решение для данного примера можно записать покороче:

−4 − 5 = −(4 + 5) = −9

или ещё короче:

−4 − 5 = −9


Пример 8. Найти значение выражения −3 − 5 − 7 − 9

Приведём выражение к понятному виду. Здесь все числа, кроме числа −3 являются положительными, поэтому у них будут знаки плюса:

(−3) − (+5) − (+7) − (+9)

Заменим вычитания сложениями. Все минусы, кроме минуса, стоящего перед тройкой, поменяются на плюсы, и все положительные числа поменяются на противоположные:

(−3) − (+5) − (+7) − (+9) = (−3) + (−5) + (−7) + (−9)

Теперь применим правило сложения отрицательных чисел. Чтобы сложить отрицательные числа, нужно сложить их модули и перед полученным ответом поставить минус:

(−3) − (+5) − (+7) − (+9) = (−3) + (−5) + (−7) + (−9) =

= −( |−3| + |−5| + |−7| + |−9| ) = −(3 + 5 + 7 + 9) = −(24) = −24

Решение данного примера можно записать покороче:

−3 − 5 − 7 − 9 = −(3 + 5 + 7 + 9) = −24

или ещё короче:

−3 − 5 − 7 − 9 = −24


Пример 9. Найти значение выражения −10 + 6 − 15 + 11 − 7

Приведём выражение к понятному виду:

(−10) + (+6) − (+15) + (+11) − (+7)

Здесь сразу две операции: сложение и вычитание. Сложение оставляем без изменения, а вычитание заменяем сложением:

(−10) + (+6) − (+15) + (+11) − (+7) = (−10) + (+6) + (−15) + (+11) + (−7)

Соблюдая порядок действий, выполним поочерёдно каждое действие, опираясь на ранее изученные правила. Записи с модулями можно пропустить:

Первое действие:

(−10) + (+6) = − (10 − 6) = − (4) = − 4

Второе действие:

(−4) + (−15) = − (4 + 15) = − (19) = − 19

Третье действие:

(−19) + (+11) = − (19 − 11) = − (8) = −8

Четвёртое действие:

(−8) + (−7) = − (8 + 7) = − (15) = − 15

Таким образом, значение выражения −10 + 6 − 15 + 11 − 7 равно −15

Примечание. Приводить выражение к понятному виду, заключая числа в скобки, вовсе необязательно. Когда происходит привыкание к отрицательным числам, это действие можно пропустить, поскольку оно отнимает время и может запутать.

Итак, для сложения и вычитания целых чисел необходимо запомнить следующие правила:

Чтобы сложить числа с разными знаками, нужно из большего модуля вычесть меньший модуль, и перед полученным ответом поставить знак того числа, модуль которого больше.

Чтобы из меньшего числа вычесть большее, нужно из большего числа вычесть меньшее и перед полученным ответом поставить минус.

Вычесть одно число из другого означает, прибавить к уменьшаемому такое число, которое противоположно вычитаемому.

Чтобы сложить отрицательные числа, нужно сложить их модули, и перед полученным ответом поставить минус.


Задания для самостоятельного решения

Задание 1. Найдите значение выражения:

−50 + 40

Решение

−50 + 40 = −10

Показать решение

Задание 2. Найдите значение выражения:

25 + (−5)

Решение

25 + (−5) = 20

Показать решение

Задание 3. Найдите значение выражения:

−20 + 60

Решение

−20 + 60 = 40

Показать решение

Задание 4. Найдите значение выражения:

20 + (−8)

Решение

20 + (−8) = 12

Показать решение

Задание 5. Найдите значение выражения:

30 + (−50)

Решение

30 + (−50) = −20

Показать решение

Задание 6. Найдите значение выражения:

27 + (−19)

Решение

27 + (−19) = 8

Показать решение

Задание 7. Найдите значение выражения:

−17 + (−12) + (−8)

Решение

Показать решение

Задание 8. Найдите значение выражения:

−6 − 4

Решение

−6 − 4 = −6 + (−4) = −10

Показать решение

Задание 9. Найдите значение выражения:

−6 − (−4)

Решение

−6 − (−4) = −6 + 4 = −2

Показать решение

Задание 10. Найдите значение выражения:

−15 − (−15)

Решение

−15 − (−15) = −15 + 15 = 0

Показать решение

Задание 11. Найдите значение выражения:

−11 − (−14)

Решение

−11 − (−14) = −11 + 14 = 3

Показать решение

Задание 12. Найдите значение выражения:

−3 + 2 − (−1)

Решение

Показать решение

Задание 13. Найдите значение выражения:

−5 − 6 − 3

Решение

Показать решение


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Опубликовано

Решение предложений, включающих «плюс или минус»

Приговор ‘$\,x = \pm 3\,$’ является удобным сокращением для ‘$\,х = 3\,$ или же $\, x = -3\,$’. Подобные фразы важны, когда решение уравнений абсолютного значения.

Приговор ‘$\,x = \pm 3\,$’ читается вслух как ‘$\,x\,$ есть плюс-минус три или же ‘$\,x\,$ равно плюс-минус три’ . Это веб-упражнение дает вам возможность попрактиковаться в работе с предложениями типа «плюс-минус».

При работе с предложениями с плюсом или минусом ($\,\pm\,$), у вас есть два варианта:

  • немедленно разбить предложение на «или»
  • дождаться последнего шага, чтобы перейти к предложению «или»

Приведенные ниже примеры иллюстрируют оба подхода.

Пример: Немедленно разбейте предложение на «или»

Решить: $2x — 1 = \pm 5$

Решение: Не забудьте написать хороший, чистый список эквивалентных предложений.

$2x — 1 = \pm 5$ оригинальное предложение
$2x — 1 = 5\ \text{ или }\ 2x — 1 = -5$ расширить стенографию
$2x = 6\ \text{ или }\ 2x = -4$ добавить $\,1\,$ к обеим частям обоих уравнений
$x = 3\ \text{ или }\ x = -2$ разделить обе части обоих уравнений на $\,2\,$

Пример: Подождите до последнего шага, чтобы перейти к предложению «или»

Решить: $2x — 1 = \pm 5$

Решение:

$2x — 1 = \pm 5$ оригинальное предложение
$2x = \pm 5 + 1$ добавьте $\,1\,$ к обеим сторонам — вы не может ничего упростить справа!
$\displaystyle x = \frac{\pm 5 + 1}{2}$ разделить обе части на $\,2\,$
$\displaystyle x = \frac{5 + 1}{2}\ \text{ или }\ x = \frac{-5 + 1}{2}$ расширить стенографию; вы, вероятно, можете пропустить этот шаг и сразу перейти к следующему
$\displaystyle x = 3\\text{ или }\ x = -2$ упростить

Метод, который вы решите использовать полностью зависит от вас!

Концептуальная практика

Решите данное предложение со значением «плюс-минус». Запишите результат самым обычным способом.

Для более продвинутых учащихся доступен график. Например, предложение $\,2x — 1 = \pm 5\,$ необязательно сопровождается график $\,y = 2x — 1\,$ (левая часть уравнения, пунктирная зеленая) и график $\,y = \pm 5\,$ (правая часть уравнения, сплошной фиолетовый цвет). В этом примере вы находите значения $\,x\,$, где зеленый график пересекает фиолетовый график.

Нажмите кнопку «Показать/скрыть график», чтобы переключить график.

Решить:

Как вставить символы плюс-минус и минус-плюс в Word

Символ плюс-минус ± (также известный как знак плюс или минус ) помещается перед выражением и означает, что следующее значение может быть как положительным, так и отрицательным, большим или меньшим. Этот символ часто обозначает:

  • пределы изменения параметров
  • инструментальная погрешность измерений физической величины
  • ожидаемый разброс статистически оцененных значений параметра
  • интервал результата в приближенных математических расчетах.

Например, фраза «масса нетто 200 ± 5 % г» означает, что масса нетто продукта находится в диапазоне от 190 до 210 г.

Символ минус-плюс (также известный как знак минус-или-плюс ) используется с одним или несколькими знаками плюс-минус и означает, что знак плюс в плюс-минус в одном выражении строго соответствует знак минус в минус плюс и наоборот, например:

9Символ 0104 говорит о том, что черные имеют преимущество.

Существует несколько способов вставки символов плюс-минус или минус-плюс в документ Word:

   I.  Использование уравнения:

   1.    Поместите курсор туда, куда вы хотите вставить символ плюс-минус или символ минус-плюс , затем нажмите Alt+= , чтобы вставить блок уравнения:

   2.   В блоке верховой езды без дополнительных усилий можно ввести некоторые математические символы, набрав \+Имя символа :

,

   II. Использование автозамены для математики:

Когда вы работаете со многими документами и часто нужно вставить один специальный символ, вы можете не захотеть вставлять уравнение каждый раз. Microsoft Word предлагает полезную функцию под названием AutoCorrect . Автозамена 9Варианты 0104 в Microsoft Word предлагают два разных способа быстрого добавления любого специального символа или даже большие куски текста:

  • Использование в Заменить текст при вводе функция Автозамена параметров.
  • Использование параметров Math AutoCorrect :

Используя этот метод, вы можете воспользоваться параметрами Math AutoCorrect без вставки уравнения. Чтобы включить или выключить Автозамену из Math символов, выполните следующие действия:

   1.   На вкладке Файл нажмите Параметры :

   2.   В диалоговом окне Параметры Word на Вкладка Правописание нажмите кнопку Параметры автозамены… :

   3.   В диалоговом окне AutoCorrect на вкладке Math AutoCorrect выберите Использовать правила Math AutoCorrect за пределами математических областей вариант:

После нажатия OK вы можете использовать любое из перечисленных Имен символов , и Microsoft Word заменит их соответствующими символами:

, , , .

Примечание : Если вам не нужна последняя замена, нажмите

Ctrl+Z , чтобы отменить ее.

   III. Использование сочетания клавиш:

Microsoft Word предлагает предопределенное сочетание клавиш для некоторых символов, таких как Plus-Minus Знак и Минус-плюс Знак :

  • Тип 00B1 или 00B1 (не имеет значения, верхний или нижний заряд) и сразу же нажмите ALT+X , чтобы носить .

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *