Глава 20. Конденсаторы
Для накопления разноименных электрических зарядов служит устройство, которое называется конденсатором. Конденсатор — система двух изолированных друг от друга проводников (которые часто называют обкладками конденсатора), один из которых заряжен положительным, второй — таким же по величине, но отрицательным зарядом. Если эти проводники представляют собой плоские параллельные пластинки, расположенные на небольшом рас-стоянии друг от друга, то конденсатор называется плоским.
Для характеристики способности конденсатора накапливать заряд вводится понятие электроемкости (часто говорят просто емкости). Емкостью конденсатора называется отношение заряда конденсатора к той разности потенциалов , которая возникает между обкладками при их заряжении зарядами и (эту разность потенциалов проводников часто называют электрическим напряжением между обкладками и обозначают буквой ):
(20.1) |
Поскольку величины и (или ) в формуле (20.1) зависимы, то емкость (20.1) не зависит от и , а является характеристикой геометрии системы проводников. Действительно, при сообщении проводникам зарядов и проводники приобретут потенциалы, разность которых будет пропорциональна заряду . Поэтому в отношении (20.1) заряд сокращается.
Выведем формулу для емкости плоского конденсатора (эта формула входит в программу школьного курса физики). При заряжении параллельных пластин, расположенных на небольшом расстоянии друг от друга, зарядами и , в пространстве между ними возникает однородное электрическое поле с напряженностью (см. гл. 18):
Разность потенциалов между пластинами равна
(20.3) |
где — площадь пластин, — расстояние между ними. Отсюда, вычисляя отношение заряда к разности потенциалов (20.3), находим емкость плоского конденсатора
(20.4) |
Если все пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью , то поле (20.2) и разность потенциалов (20.3) убывает в раз, а емкость конденсатора в раз взрастает
(20.5) |
Для конденсаторов, соединенных в батареи, вводится понятие эквивалентной емкости, как емкости одного конденсатора, который при заряжении его тем же зарядом, что и батарея дает ту же разность потенциалов, что и батарея конденсаторов. Приведем формулы для эквивалентной емкости, а также для заряда и электрического напряжения на каждом конденсаторе при последовательном и параллельном их соединении.
Последовательное соединение (см. рисунок). При сообщении левой пластине левого конденсатора заряда , а правой пластине правого заряда , на внутренних пластинах благодаря поляризации будут индуцироваться заряды (см. рисунок; значения индуцированных зарядов приведены под пластинами). Можно доказать, что в результате поляризации каждый конденсатор будет заряжен такими же зарядами и , как и заряды крайних пластин, напряжение на всей батарее конденсаторов равно сумме напряжений на каждом, а обратная эквивалентная емкость батареи — сумме обратных емкостей всех конденсаторов
(20.6) |
Параллельное соединение (см. рисунок). В этом случае если сообщить левому проводнику заряд , правому сообщить заряд , заряд распределится между конденсаторами, вообще говоря, не одинаково, но по закону сохранения заряда .
Поскольку правые пластины всех конденсаторов соединены между собой, левые — тоже, то они представляют собой единые проводники, и, следовательно, разность потенциалов между пластинами каждого конденсатора будет одинакова: . Можно доказать, что при таком соединении конденсаторов эквивалентная емкость батареи равна сумме емкостей отдельных конденсаторов
(20.7) |
Заряженный конденсатор обладает определенной энергией. Если конденсатор емкости заряжен зарядом , то энергия этого конденсатора (можно говорить энергия электрического поля конденсатора) равна
(20.8) |
С помощью определения электрической емкости (20.1) можно переписать формулу (20.8) еще в двух формах:
(20.9) |
Рассмотрим в рамках этого минимума сведений о конденсаторах типичные задачи ЕГЭ по физике, которые были предложены в первой части книги.
Электроемкость конденсатора — его геометрическая характеристика, которая при неизменной геометрии не зависит от заряда конденсатора (задача 20.1.1 — ответ 3). Аналогично не меняется емкость конденсатора при увеличении напряжения на конденсаторе (задача 20.1.2
Связь между единицами измерений (задача 20.1.3) следует из определения емкости (20.1). Единица электрической емкости в международной системе единиц измерений СИ называется Фарада. 1 Фарада — это емкость такого конденсатора, между пластинами которого возникает напряжение 1 В при зарядах пластин 1 Кл и -1 Кл (ответ 4).
Поскольку электрическое поле в плоском конденсаторе однородно, то напряженность поля в конденсаторе и напряжение между пластинами связаны соотношением (см. формулу (18.9)) , где — расстояние между пластинами. Отсюда находим напряженность поля между обкладками плоского конденсатора в задаче 20.1.4
Согласно определению электрической емкости имеем в задаче 20.1.5
(ответ 2).
Из формулы (20.4) для емкости плоского конденсатора заключаем, что при увеличении площади его пластин в 3 раза (задача 20.1.6) его емкость увеличивается в 3 раза (ответ 1).
При уменьшении в раз расстояния между пластинами емкость плоского конденсатора возрастет в раз. Поэтому новое напряжение на конденсаторе (задача 20.1.7) можно найти из следующей цепочки формул
где и — новый заряд конденсатора (ответ 3).
В задаче 20.1.9 конденсатор отключен от источника в процессе сближения пластин. Поэтому не меняется их заряд. А поскольку напряженность электрического поля между пластинами определяется соотношением (20.2)
произведение от расстояния между пластинами не зависит (см. формулу (20.4)).
Из формул (20.8), (20.9) видим, что только одно из приведенных в качестве ответов к задаче 20.1.10 соотношений (а именно — 2) определяет энергию конденсатора.
При последовательном соединении конденсаторов (задача 20.2.1) одинаковыми будут их заряды независимо от значений их электрических емкостей (ответ 2). При параллельном соединении конденсаторов (задача 20.2.2) одинаковыми будут напряжения на каждом из них (ответ
Поскольку конденсатор в задаче 20.2.3 отключен от источ-ника напряжения, его заряд не меняется в процессе раздвигания пластин. Поэтому для исследования изменения энергии конденсатора удобно воспользоваться формулой (20.8)
(1) |
Так как при увеличении расстояния между пластинами в раз электрическая емкость конденсатора уменьшается в раз, то согласно формуле (1) энергия конденсатора увеличится в раз (ответ 1).
В задаче 20.2.4 не изменяется напряжение на конденсаторе. Поэтому воспользуемся первой из формул (20.9)
Из этой формулы заключаем, что при увеличении в раз расстояния между пластинами энергия конденсатора уменьшится в раз — ответ 2. (Разница с предыдущей задачей связана с тем, что здесь кроме внешних сил, совершающих работу при раздвигании пластин, совершает работу источник напряжения.)
В задаче 20.2.5 изменяют расстояние между пластинами (и, следовательно, емкость) и заряд конденсатора. Поэтому удобно воспользоваться формулой (20.8)
Из этой формулы заключаем, что при увеличении расстояния между пластинами в 2 раза и увеличении заряда конденсатора в 2 раза его энергия возрастет в 8 раз (ответ
Поскольку в задаче 20.2.6 конденсаторы соединены последовательно, емкость батареи конденсаторов можно найти по формуле (20.6), откуда находим емкость батареи конденсаторов (ответ 2).
В задаче 20.2.7 конденсаторы соединены параллельно, поэтому емкость батареи конденсаторов можно найти по формуле (20.7): (ответ 2).
Основной вопрос, на который нужно ответить в задаче 20.2.8, это как соединены конденсаторы? Последовательно, параллельно, по-другому? Попробуем по-другому расположить в пространстве и изменить длину соединительных проводов, чтобы схема стала более понятной. Очевидно, что можно соединить вершину 1 и вершину 3 («уменьшив» длину провода 1-3), а также вершины 2 и 4. При этом средний конденсатор разворачивается в пространстве, и схема приобретает вид, показанный на рисунке, откуда видно, что конденсаторы соединены параллельно. Поэтому (ответ 1).
Когда в заряженный плоский конденсатор вставляют металлическую пластинку (задача 20.2.9), параллельную обкладкам конденсатора, напряженность электрического поля внутри пластинки становится равным нулю, вне пластинки между обкладками конденсатора остается таким же, каким оно было в отсутствие пластинки , где — заряд конденсатора, — площадь его пластин. Поэтому напряжение между обкладками конденсатора определяется соотношением:
где — расстояние между обкладками конденсатора, — толщина пластинки. Отсюда находим емкость рассматриваемого конденсатора
(ответ 4).
Чтобы найти емкость сферического конденсатора (задача 20.2.10) сообщим его обкладкам заряды и , найдем напряжение между обкладками, вычислим отношение заряда к напряжению. Разность потенциалов двух концентрических сфер, заряженных зарядами и (напряжение между обкладками сферического конденсатора), определена в задаче 19.2.5., откуда находим электрическую емкость сферического конденсатора (ответ 3):
Виды конденсаторов. Устройство и особенности. Параметры и работа
Все виды конденсаторов имеют одинаковое основное устройство, оно состоит из двух токопроводящих пластин (обкладок), на которых концентрируются электрические заряды противоположных полюсов, и слоя изоляционного материала между ними.
Применяемые материалы и величина обкладок с разными параметрами слоя диэлектрика влияют на свойства конденсатора.
Виды конденсаторов
Конденсаторы делятся на виды по следующим факторам.
Назначению:
- Общего назначения. Это популярный вид конденсаторов, которые используют в электронике. К ним не предъявляются особые требования.
- Специальные. Такие конденсаторы обладают повышенной надежностью при заданном напряжении и других параметров при запуске электродвигателей и специального оборудования.
Изменению емкости:
- Постоянной емкости. Не имеют возможности изменения емкости.
- Переменной емкости. Они могут изменять значение емкости при воздействии на них температуры, напряжения, регулировки положения обкладок. К конденсаторам переменной емкости относятся:
— Подстроечные конденсаторы не предназначены для постоянной работы, связанной с быстрой настройкой емкости. Они служат только для одноразовой наладки оборудования и периодической подстройки емкости.
— Нелинейные конденсаторы изменяют свою емкость от воздействия температуры и напряжения по нелинейному графику. Конденсаторы, емкость которых зависит от напряжения, называются варикондами, от температуры – термоконденсаторами.
Способу защиты:
- Незащищенные работают в обычных условиях, не имеют никакой защиты.
- Защищенные конденсаторы выполнены в защищенном корпусе, поэтому могут работать при высокой влажности.
- Неизолированные имеют открытый корпус и не имеют изоляции от возможного соприкосновения с различными элементами схемы.
- Изолированные конденсаторы выполнены в закрытом корпусе.
- Уплотненные имеют корпус, заполненный специальными материалами.
- Герметизированные имеют герметичный корпус, полностью изолированы от внешней среды.
Виду монтажа:
- Навесные делятся на несколько видов с;
— ленточными выводами;
— опорным винтом;
— круглыми электродами;
— радиальными или аксиальными выводами. - Конденсаторы с винтовыми выводами оснащены резьбой для соединения со схемой, применяются в силовых цепях. Подобные выводы проще фиксировать на охлаждающих радиаторах для снижения тепловых нагрузок.
- Конденсаторы с защелкивающимися выводами являются новой разработкой, при монтаже на плату они защелкиваются. Это очень удобно, так как нет необходимости использовать пайку.
- Конденсаторы, предназначенные для поверхностной установки, имеют особенность конструкции: части корпуса являются выводами.
- Емкости для печатной установки изготавливают с круглыми выводами для расположения на плате.
По материалу диэлектрика:
Сопротивление изоляции между пластинами зависит от параметров изоляционного материала. Также от этого зависят допустимые потери и другие параметры.
- Конденсаторы с неорганическим изолятором из стеклокерамики, стеклоэмали, слюды. На диэлектрический материал нанесено металлическое напыление или фольга.
- Низкочастотные конденсаторы включают в себя изоляционный материал в виде слабополярных органических пленок, у которых диэлектрические потери зависят от частоты тока.
- Высокочастотные содержат пленки из фторопласта и полистирола.
- Импульсные высокого напряжения имеют изолятор из комбинированных материалов.
- В конденсаторах постоянного напряжения в качестве диэлектрика используется политетрафторэлитен, бумага, либо комбинированный материал.
- Низковольтные работают при напряжении до 1,6 кВ.
- Высоковольтные функционируют при напряжении свыше 1,6 кВ.
- Дозиметрические конденсаторы служат для работы с малым током, имеют незначительный саморазряд и большое сопротивление изоляции.
- Помехоподавляющие емкости уменьшают помехи, возникающие от электромагнитного поля, имеют низкую индуктивность.
- Емкости с органическим изолятором выполнены с применением конденсаторной бумаги и различных пленок.
- Вакуумные, воздушные, газонаполненные конденсаторы обладают малыми диэлектрическими потерями, поэтому их применяют в аппаратуре с высокой частотой тока и напряжения.
Форме пластин:
- Сферические.
- Плоские.
- Цилиндрические.
Полярности:
- Электролитические конденсаторы называют оксидными. При их подключении обязательным является соблюдение полярности выводов. Электролитические конденсаторы содержат диэлектрик, состоящий из оксидного слоя, образованный электрохимическим способом на аноде из тантала или алюминия. Катодом является электролит в жидком или гелеобразном виде.
- Неполярные конденсаторы могут включаться в схему без соблюдения полярности.
В качестве диэлектрика используется воздух. Такие виды конденсаторов хорошо зарекомендовали себя при работе на высокой частоте, в качестве настроечных конденсаторов с изменяемой емкостью. Подвижная пластина конденсатора является ротором, а неподвижную называют статором. При смещении пластин друг относительно друга, изменяется общая площадь пересечения этих пластин и емкость конденсатора. Раньше такие конденсаторы были очень популярны в радиоприемниках для настраивания радиостанций.
КерамическиеТакие конденсаторы изготавливают в виде одной или нескольких пластин, выполненных из специальной керамики. Металлические обкладки изготавливают путем напыления слоя металла на керамическую пластину, затем соединяют с выводами. Материал керамики может применяться с различными свойствами.
Их разнообразие обуславливается широким интервалом диэлектрической проницаемости. Она может достигать нескольких десятков тысяч фарад на метр, и имеется только у такого вида емкостей. Такая особенность керамических емкостей позволяет создавать большие значения емкостей, которые сопоставимы с электролитическими конденсаторами, но для них не важна полярность подключения.
Керамика имеет нелинейную сложную зависимость свойств от напряжения, частоты и температуры. Из-за небольшого размера корпуса эти виды конденсаторов применяются в компактных устройствах.
ПленочныеВ таких конденсаторах в качестве диэлектрика выступает пластиковая пленка: поликарбонат, полипропилен или полиэстер.
Обкладки конденсатора напыляют или выполняют в виде фольги. Новым материалом служит полифениленсульфид.
Параметры пленочных конденсаторов:
- Применяются для резонансных цепей.
- Наименьший ток утечки.
- Малая емкость.
- Высокая прочность.
- Выдерживают большой ток.
- Устойчивы к электрическому пробою (выдерживают большое напряжение).
- Наибольшая эксплуатационная температура до 125 градусов.
Имеют отличие от электролитических емкостей наличием полимерного материала, вместо оксидной пленки между обкладками. Они не подвергаются утечке заряда и раздуванию.
Параметры полимера обеспечивают значительный импульсный ток, постоянный температурный коэффициент, малое сопротивление. Полимерные модели способны заменить электролитические модели в фильтрах импульсных источников и других устройствах.
ЭлектролитическиеОт бумажных электролитические конденсаторы отличаются материалом диэлектрика, которым является оксид металла, созданный электрохимическим методом на плюсовой обкладке.
Вторая пластина выполнена из сухого или жидкого электролита. Электроды обычно выполнены из тантала или алюминия. Все электролитические емкости считаются поляризованными, и способны нормально работать только на постоянном напряжении при определенной полярности.
Если не соблюдать полярность, то может произойти необратимый химический процесс внутри емкости, которая приведет к выходу его из строя, или даже взрыву, так как будет выделяться газ.
К электролитическим можно отнести суперконденсаторы, которые называют ионисторами. Они обладают очень большой емкостью, достигающей тысячи Фарад.
Танталовые электролитическиеУстройство танталовых электролитов имеет особенность в электроде из тантала. Диэлектрик состоит из пентаоксида тантала.
Параметры:
- Незначительный ток утечки, в отличие от алюминиевых видов.
- Малые размеры.
- Невосприимчивость к внешним воздействиям.
- Малое активное сопротивление.
- Высокая чувствительность при ошибочном подключении полюсов.
Положительным выводом является электрод из алюминия. В качестве диэлектрика использован триоксид алюминия. Они применяются в импульсных блоках и являются выходным фильтром.
Параметры:
- Большая емкость.
- Корректная работа только на низких частотах.
- Повышенное соотношение емкости и размера: конденсаторы других видов при одной емкости имели бы большие размеры.
- Большая утечка тока.
- Низкая индуктивность.
Диэлектриком между фольгированными пластинами служит особая конденсаторная бумага. В электронных устройствах бумажные виды конденсаторов обычно работают в цепях высокой и низкой частоты.
Металлобумажные конденсаторы обладают герметичностью, высокой удельной емкостью, качественной электрической изоляцией. В их конструкции применяется вакуумное металлическое напыление на бумажный диэлектрик, вместо фольги.
Бумажные конденсаторы не обладают высокой механической прочностью. В связи с этим его внутренности располагают в металлическом корпусе, который защищает его устройство.
Похожие темы:
Разновидности конденсаторов по типу диэлектрика
Электролитические конденсаторы
В радиоэлектронике используются огромное количество всевозможных конденсаторов. Все они различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск.
Но это лишь основные параметры. Ещё одним немаловажным параметрам может служить то, из какого диэлектрика состоит конденсатор. Рассмотрим более подробно, какие бывают конденсаторы по типу диэлектрика.
В радиоэлектронике применяются полярные и неполярные конденсаторы. Отличие полярных конденсаторов от неполярных заключается в том, что полярные включаются в электронную схему в строгом соответствии с указанной полярностью. К полярным конденсаторам относятся так называемые электролитические конденсаторы. Наиболее распространены радиальные алюминиевые электролитические конденсаторы. В отечественной маркировке они имеют обозначение К50-35.
Радиальный электролитический конденсатор
У аксиальных конденсаторов проволочные выводы размещены по бокам цилиндрического корпуса, в отличие от радиальных конденсаторов, выводы которых размещаются с одной стороны цилиндрического корпуса. Аксиальными электролитами являются конденсаторы с маркировкой К50-29 К50-12, К50-15 и К50-24.
Аксиальные электролитические конденсаторы серии К50-29 и импортный фирмы PHILIPS
В обиходе радиолюбители называют электролитические конденсаторы “электролитами”.
Обнаружить их можно в блоках питания радиоэлектронной аппаратуры. В основном они служат для фильтрации и сглаживания выпрямленного напряжения. Также электролитические конденсаторы активно применяются в усилителях звуковой частоты (усилках) для разделения постоянной и переменной составляющей тока.
Электролитические конденсаторы обладают довольно значительной ёмкостью. В основном, значения номинальной ёмкости простираются от 0,1 микрофарады (0,1 мкФ) до 100.000 микрофарад (100000 мкФ).
Номинальное рабочее напряжение электролитических конденсаторов может быть в диапазоне от 10 вольт до нескольких сотен вольт (100 – 500 вольт). Конечно, не исключено, что есть и другие образцы, с другой ёмкостью и рабочим напряжением, но на практике встречаются они довольно редко.
Стоит отметить, что номинальная ёмкость электролитических конденсаторов уменьшается по мере роста срока их эксплуатации.
Поэтому, для сборки самодельных электронных устройств, стоит применять либо новые купленные, либо те конденсаторы, которые эксплуатировались в электроаппаратуре небольшой срок. В противном случае, можно столкнуться с ситуацией неработоспособности самодельного устройства по причине неисправности электролитического конденсатора. Наиболее распространённый дефект “старых” электролитов – потеря ёмкости и повышенная утечка.
Перед повторным применением стоит тщательно проверить конденсатор, ранее бывший в употреблении.
Опытные радиомеханики могут многое рассказать про качество электролитических конденсаторов. В пору широкого распространения советских цветных телевизоров в ходу была очень распространённая неисправность телевизоров по причине некачественных электролитов. Порой доходило до того, что телемастер заменял практически все электролитические конденсаторы в схеме телевизора, после чего аппарат исправно работал долгие годы.
В последнее время всё большее распространение получают компактные электролитические конденсаторы для поверхностного монтажа. Их габариты значительно меньше, чем классических выводных.
Конденсаторы электролитические алюминиевые для SMD монтажа на плате CD — привода
Также существуют миниатюрные танталовые конденсаторы. Они имеют довольно малые размеры и предназначены для SMD монтажа. Обнаружить их легко на печатных платах миниатюрных МР3 плееров, мобильных телефонов, материнских платах ноутбуков и компьютеров.
Танталовые электролитические конденсаторы на печатной плате MP-3 плеера
Несмотря на свои маленькие размеры, танталовые конденсаторы имеют значительную ёмкость. Они аналогичны алюминиевым электролитическим конденсаторам для поверхностного монтажа, но имеют значительно меньшие размеры.
Танталовый SMD конденсатор ёмкостью 47 мкФ и рабочее напряжение 6 вольт.
Печатная плата компьютерного CD-привода
В основном в компактной аппаратуре встречаются танталовые конденсаторы на 6,3 мкФ, 10 мкФ, 22 мкФ, 47 мкФ, 100 мкФ, 470 мкФ и на рабочее напряжение 10 -16 вольт. Столь небольшое рабочее напряжение связано с тем, что напряжение источника питания в малогабаритной электронике редко превышает порог в 5 – 10 вольт. Конечно, есть и более высоковольтные экземпляры.
Кроме танталовых конденсаторов в миниатюрной электронике используются и полимерные для поверхностного монтажа. Такие конденсаторы изготавливаются с применением твёрдого полимера. Он выполняет роль отрицательной обкладки – катода. Плюсовым выводом – анодом — в полимерном конденсаторе служит алюминиевая фольга. Такие конденсаторы хорошо подавляют электрические шумы и пульсации, обладают высокой температурной стабильностью.
На танталовых конденсаторах указывается полярность, которую необходимо учитывать при их использовании в самодельных конструкциях.
Кроме танталовых конденсаторов в SMD корпусах есть и выводные с танталовым диэлектриком. Их форма напоминает каплю. Отрицательный вывод маркируется полосой на корпусе.
Такие конденсаторы также обладают всеми преимуществами, что и танталовые для поверхностного монтажа, а именно низким током утечки, высокой температурной и частотной стабильностью, более высоким сроком эксплуатации по сравнению с обычными конденсаторами. Активно применяются в телекоммуникационном оборудовании и компьютерной технике.
Выводной танталовый конденсатор ёмкостью 10 микрофарад и рабочее напряжение 16 вольт
Среди электролитических конденсаторов есть и неполярные. Выглядят они, так же как и обычные электролитические конденсаторы, но для них не важна полярность приложенного напряжения. Они применяются в схемах с переменным или пульсирующим током, где использование полярных конденсаторов невозможно. К неполярным относятся конденсаторы с маркировкой К50-6. Отличить полярный конденсатор от неполярного можно, например, по отсутствию маркировки полярности на его корпусе.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Конденсаторы для «чайников» / Хабр
Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.
Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.
Начнём с простого
Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.
Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.
Паразитные индуктивность и сопротивление реального конденсатора
С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.
Алюминиевые электролитические
Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.
На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.
У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.
Танталовые электролитические
Танталовый конденсатор поверхностного размещения
Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.
Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.
В случае танталовых конденсаторов необходимо особенно следить за тем, чтобы они не вышли из строя — бывает, что в таком случае они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.
Полимерные плёнки
Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.
Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.
Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.
Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.
Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.
В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.
Керамика
История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.
Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.
C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.
X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.
Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.
Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.
Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.
Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.
Основные типы конденсаторов | Электрик
Электрический конденсатор — один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.
Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.
В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.
Конденсаторы алюминиевые электролитические
Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.
В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!
Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.
Керамические однослойные конденсаторы
Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 — 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.
Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее «ходовых» ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.
Керамические многослойные конденсаторы
Например К10-17А или К10-17Б.В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.
Керамические высоковольтные конденсаторы
Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 — 100 нФ.
Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.
Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.
Танталовые конденсаторы
Например К52-1 или smd А. Основным веществом служит — пентоксид тантала, а в качестве электролита — диоксид марганца. Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.
Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.
Полиэстеровые конденсаторы
Например K73-17 или CL21, на основе металлизированной пленки…
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.
Ёмкость таких конденсаторов идет порядка 1 нф — 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.
Полипропиленовые конденсаторы
Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф — 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт! Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.
Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.
Максимальное напряжение у них сравнительно не большое, до 300 — 600 вольт что вполне достаточно для пуска и работы электродвигателей.
Выводы конденсатора могут быть как в виде проводов, так и под клеммы или под болт.
Цифровая маркировка конденсаторов
Цифро-буквенная маркировка конденсаторов
что это такое, виды и способы применения
На вопрос, что такое конденсатор, вкратце можно ответить следующим образом – это элемент, который накапливает заряд электрического тока, а в определенный момент передает его последующим компонентам цепи. Конденсатор – радиодеталь, без которой не обойтись ни в одной электронной схеме. Опытные мастера и специалисты в области электроники и радиолюбители ласково называет его “кондер” (кондюк).
Самый примитивный конденсатор состоит из электродов, имеющие пластинчатый вид. Эти электроды разделены друг от друга специальным диэлектриком. Он изготавливается из самых различных материалов, не пропускающих ток. На них и происходит непосредственно накопление заряда. Так как имеется два электрода, соответственно заряд имеет разные полярности. Одна пластина имеет положительный, другая отрицательный.
Величина электрического заряда в конденсаторе измеряется в фарадах. Есть производный от этой единицы измерения – микрофарада, нанофарада. Эти единицы измерения являются основными, так как одна фарада – огромная емкость, которая не используется на практике совсем.
В данной статье подробно описано что такое конденсатор. Читатель узнает, для чего нужна эта радиодеталь, посмотрит видеоролик, где вкратце расскажут о ее назначении. Те, кто дочитает до конца, в качестве бонуса могут скачать интересную статью по теме.
Конденсаторы.
Принцип работы и назначениеВ электрических схемах данные устройства могут использоваться с различными целями, но их основной функцией является сохранение электрического заряда, то есть, конденсатор получает электрический ток, сохраняет его и впоследствии передает в цепь. При подключении конденсатора к электрической сети на электродах конденсатора начинает накапливаться электрический заряд. В начале зарядки конденсатор потребляет наибольшую величину электрического тока, по мере зарядки конденсатора электроток уменьшается и когда емкость конденсатора будет наполнена ток пропадет совсем.
При отключении электрической цепи от источника питания и подключении нагрузки, конденсатор перестает получать заряд и отдает накопленный ток другим элементам, сам, как бы становится источником питания.
Основная техническая характеристика конденсатора, это емкость. Емкостью называется способность конденсатора накапливать электрический заряд. Чем больше емкость конденсатора, тем большее количество заряда он может накопить и соответственно отдать обратно в электрическую цепь. Емкость конденсатора измеряется в Фарадах. Конденсаторы различаются по конструкции, материалов из которых они изготовлены и области применения. Самый распространенный конденсатор это – конденсатор постоянной емкости.
Конденсаторы постоянной емкости изготавливаются из самых различных материалов и могут быть – металлобумажными, слюдяными, керамическими. Такие конденсаторы как электрокомпонент используются во всех электронных устройствах.
Для увеличения площади обкладок пластины некоторых конденсаторов изготавливают из полосок фольги, разделенных полоской диэлектрика и скрученных в рулон. Увеличить емкость также можно уменьшением толщины диэлектрика между обкладками и применением материалов с большей диэлектрической проницаемостью. Между обкладками конденсаторов располагают твердые, жидкие вещества и газы, в том числе и воздух.
Из формулы очевиден и такой факт: даже при небольших площадях обкладок и на любых расстояниях между обкладками емкость не равна нулю. Два проложенных рядом проводника тоже обладают емкостью. В связи с этим высоковольтная кабельная линия способна накапливать заряд, а на высоких частотах проводники вносят в устройства связи «паразитные» емкости, с которыми приходится бороться.
Конденсаторы небольшой емкости получают на печатных платах, располагая две дорожки напротив друг друга. Каким бы качественным не был диэлектрик в конденсаторе, он все равно имеет сопротивление. Его величина велика, но в заряженном состоянии конденсатора ток между обкладками все равно есть. Это приводит к явлению «саморазряда»: заряженный конденсатор со временем теряет свой заряд. В таблице ниже подробно рассмотрена маркировка и расшифровка конденсаторов по их основным свойствам.
Таблица типовых обозначений и маркировки конденсаторов.
Емкость конденсатора измеряется в Фарадах, 1 фарад – это огромная величина. Такую ёмкость будет иметь металлический шар размеры которого будут превышать размеры нашего солнца в 13 раз. Шар размером в планету Земля будет иметь иметь емкость всего 710 микрофарад. Обычно, емкость конденсаторов которые мы применяем в электротехнических устройствах обзначается в микрофарадах (mF), пикофарадах (nF), нанофарадах ( nF).
Следует знать что, 1 микрофарад равен 1000 нанофарад. Соответственно, 0.1 uF равен 100 nF. Кроме главного параметра, на корпусе элементов отмечается допустимое отклонение реальной ёмкости от указанной и напряжение, на которое рассчитано устройство. При его превышении прибор может выйти из строя. Этих знаний тебе будет вполне достаточно для начала и для того чтобы самостоятельно продолжить изучение конденсаторов и их физических свойств в специальной технической литературе.
Как проверить деталь
Для проверки конденсаторов необходим прибор, тестер или иначе мультиметр. Существуют специальные приборы измеряющие емкость (С), но эти приборы стоят денег, и зачастую нет смысла их приобретать для домашней мастерской, тем более на рынке есть недорогие китайские мультиметры с функцией измерения емкости. Если на твоем тестере нет такой функции, ты можешь воспользоваться обычной функцией прозвонки – как прозванивать мультиметром, как и при проверке резисторов – что такое резистор.
Конденсатор можно проверить на “пробой” в этом случае сопротивление конденсатора очень большое, почти бесконечное (зависит от материала из которого изготовлен кондер). Необходимо включить тестер в режим прозвонки, подключить щупы прибора к электродам (ножкам) конденсатора и следить за показанием на индикаторе мультиметра, показание мультиметра будет изменяться в меньшую сторону, пока не остановится совсем.
После чего нужно щупы поменять местами, показания начнут уменьшаться почти до нуля. Если все произошло так как я описал, “кондер” исправен. Если нет изменений в показаниях или показания сразу становятся большими или прибор вовсе показывает ноль, конденсатор неисправен. Лично я предпочитаю проверять “кондюки” стрелочным прибором плавность движения стрелки легче отслеживать, чем мелькание цифр в окошке индикатора.
Интересно почитать: все об электролитических конденсаторах.
Область применения
Наряду с резисторами конденсаторы являются самыми распространенными компонентами. Ни одно электронное изделие не может без него обойтись. Вот краткий перечень направлений использования конденсаторов.
- Блоки питания: в качестве сглаживающих фильтров при преобразовании пульсирующего тока в постоянный.
- Звуковоспроизводящая техника: создание при помощи RC-цепочек элементов схем, пропускающих звуковые сигналы одних частот и задерживая остальные. За счет этого удается регулировать тембр и формировать амплитудно-частотные характеристики устройств.
- Радио- и телевизионная техника: совместно с катушками индуктивности конденсаторы используются в составе устройств настройки на передающую станцию, выделения полезного сигнала, фильтрации помех.
- Электротехника. Для создания фазовых сдвигов в обмотках однофазных электродвигателей или в схемах подключения трехфазных двигателей в однофазную сеть. Используются в установках, компенсирующих реактивную мощность.
При помощи конденсаторов можно накопить заряд, превышающий по мощности источник питания. Это используется для работы фотовспышек, а также в установках для отыскания повреждений в кабельных линиях, выдающих мощный высоковольтный импульс в место повреждения.
Применение конденсаторов.
Виды устройства
Керамические конденсаторы применяются в разделительных цепях, электролитические конденсаторы используются также в разделительных цепях и сглаживающих фильтрах, а конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания. Слюдяные конденсаторы используются в звуковоспроизводящих устройствах, фильтрах и осцилляторах. Конденсаторы на основе полиэстера – это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.
Конденсаторы на основе поликарбоната используются в фильтрах, осцилляторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются также во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения. Всегда нужно помнить, что рабочие напряжения конденсаторов следует уменьшать при возрастании температуры окружающей среды, а для обеспечения высокой надежности необходимо создавать большой запас по напряжению.
Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому конденсаторы всегда работают с определенным запасом надежности. Тем не менее нужно обеспечивать их реальное рабочее напряжение на уровне 0,5—0,6 разрешенного значения. Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике.
Конденсаторы большой емкости с малыми токами утечки способны довольно долго сохранять накопленный заряд после выключения аппаратуры. Для обеспечения большей безопасности следует в цепь разряда подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт). В высоковольтных цепях часто используется последовательное включение конденсаторов. Для выравнивания напряжений на них нужно параллельно каждому конденсатору подключить резистор сопротивлением от 220 К0м до 1 МОм. Их устанавливают непосредственно на корпусе прибора или на металлическом экране.
Неполярные электролитические конденсаторы имеют емкость от 1 до 100 мкФ и рассчитаны на действующее значение напряжения 50 В. Кроме того, они дороже обычных (полярных) электролитических конденсаторов. При выборе конденсатора фильтра источника электропитания следует обращать внимание на амплитуду импульса зарядного тока, который может значительно превосходить допустимое значение. Например, для конденсатора емкостью 10 000 мкФ эта амплитуда не превышает 5 А.
При использовании электролитического конденсатора в качестве разделительного необходимо правильно определить полярность его включения. Ток утечки этого конденсатора может влиять на режим усилительного каскада. В большинстве случаев применения электролитические конденсаторы взаимозаменяемы. Следует лишь обращать внимание на значение их рабочего напряжения. Вывод от внешнего слоя фольги полистиреновых конденсаторов часто помечается цветным штрихом.
Алюминиевые электролитические конденсаторы
В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al2O3). Свойства:
- работают корректно только на малых частотах;
- имеют большую емкость.
Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру. Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.
Танталовые электролитические конденсаторы
Это вид электролитического конденсатора, в которых металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5).
Свойства:
- высокая устойчивость к внешнему воздействию;
- компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
- меньший ток утечки по сравнению с алюминиевыми конденсаторами.
Полимерные конденсаторы
В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда. Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.
Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.
Пленочные конденсаторы
В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC). Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).
Общие свойства пленочных конденсаторов (для всех видов диэлектриков):
- работают исправно при большом токе;
- имеют высокую прочность на растяжение;
- имеют относительно небольшую емкость;
- минимальный ток утечки;
- используется в резонансных цепях и в RC-снабберах.
Отдельные виды пленки отличаются:
- температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
- максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
- устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.
Материал в тему: все о переменном конденсаторе.
Конденсаторы керамические
Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материала. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства. Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч) и такая величина имеется только у керамических материалов.
Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками. Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид конденсаторов имеет особую маркировку.
Конденсаторы керамические.
Цветовая маркировка конденсаторов
На корпусе большинства конденсаторов написаны их номинальная емкость и рабочее напряжение. Однако встречается и цветовая маркировка. Некоторые конденсаторы маркируют надписью в две строки. На первой строке указаны их емкость (пФ или мкФ) и точность (К = 10%, М – 20%). На второй строке приведены допустимое постоянное напряжение и код материала диэлектрика.
Материал по теме: Как проверить варистор мультиметром.
Монолитные керамические конденсаторы маркируются кодом, состоящим из трех цифр. Третья цифра показывает, сколько нулей нужно подписать к первым двум, чтобы получить емкость в пикофарадах. Что означает код 103 на конденсаторе? Код 103 означает, что нужно приписать три нуля к числу 10, тогда получится емкость конденсатора – 10 000 пФ. Конденсатор маркирован 0,22/20 250. Это означает, что конденсатор имеет емкость 0,22 мкФ ± 20% и рассчитан на постоянное напряжение 250 В.
Более подробно о работе термисторов можно узнать, прочитав статью что такое конденсатор. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.
Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vк.coм/еlеctroinfonеt. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
www.slojno.net
www.electric-tolk.ru
www.joyta.ru
www.electricalschool.info
www.jelektro.ru
ПредыдущаяКонденсаторыНесколько фактов об электролитических конденсаторах
СледующаяКонденсаторыЧем отличаются параллельное и последовательное соединение конденсаторов
Чему не учат о конденсаторах
Davide Bortolami|  Создано: 8 Февраля, 2021  |  Обновлено: 16 Июня, 2021
В инженерной деятельности мы часто применяем сотни эмпирических правил для упрощения тех аспектов, над которыми работаем.
Если бы мы запускали квантово-физическое моделирование всякий раз, когда необходимо поморгать светодиодом, мы бы никогда ничего не добились. Тем не менее, многие из этих правил были сформулированы в прошлом, когда индустрия электроники радикально отличалась от нынешней.
Сегодня мы собираемся забыть, чему нас учили о том, что такое конденсатор. Кроме того, мы рассмотрим, как использовать конденсаторы с учетом современной электроники.
Чем конденсатор больше не является
Одно из общераспространенных мнений состоит в том, что основная роль конденсатора заключается в хранении заряда, подобно тому, как ведро с водой наполняется одной чашкой и в то же время опустошается другой.
Если вы когда-либо вступали в дискуссию “протекает ли ток через конденсатор” и уходили больше в политику, чем в физику, вы знаете, что типовые аналогии не имеют особого смысла, когда речь идет о переменном токе. Конденсатор – это просто два проводника, разделенных диэлектриком, и нигде в основных физических объяснениях его свойств вы не найдете объяснения того, что с этим делать.
Хранение энергии – это лишь одно из множества применений конденсатора, таких как фильтрация, формирование и инвертирование электрических сигналов и импедансов. Мы привыкли думать, что это основное применение конденсатора, поскольку это было его первым применением на заре электричества постоянного тока и электроскопа Уильяма Гилберта, изобретенного в XV веке.
Назначение конденсатора
Такие термины, как развязывающий и байпасный (шунтирующий) конденсатор, часто используются как синонимы – я сам совершал эту ошибку бесчисленное количество раз.
Это приводит к большой путанице, поскольку для разных целей часто требуются конденсаторы с разными электрическими и физическими параметрами, такими как форм-фактор, номинальное напряжение, ESR (эквивалентное последовательное сопротивление), ESL (эквивалентная последовательная индуктивность) и профиль собственного резонанса.
Конденсаторы называют по-разному не только исходя из технологии, по которой они созданы (керамический, электролитический), но и их назначения.
В следующих разделах рассмотрено несколько из наиболее распространенных назначений конденсаторов.
Рис. 1. Конденсаторы на современной плате. Если присмотреться, вы заметите различные типы конденсаторов, используемые в цепях разного назначения. Изображение от Michael DziedzicБайпасный конденсатор
Назначением байпасного конденсатора является передача радиочастотной энергии (переменного тока достаточно высокой частоты) от одной части платы к другой. Соответственно, о хранении заряда речи не идет вообще. Байпасный конденсатор предназначен для проведения, а не для хранения.
Для этого необходим тщательный подбор конденсатора с минимально возможным импедансом на нужных частотах. Этого можно достичь максимально близким соответствием собственной резонансной частоты конденсатора и частоты сигнала.
Собственная резонансная частота – это частота, на которой резонирует емкость и паразитная индуктивность и на которой конденсатор имеет наименьшее возможное сопротивление. Математически емкость и индуктивность как будто пропадают и остается только эквивалентное последовательное сопротивление.
Для частот выше собственной резонансной частоты конденсатор начинает всё меньше работать как конденсатор и всё больше – как индуктивность.
Рис. 2. Зависимость импеданса от частоты для различных конденсаторов. Изображение от Elcap, Jens BothНа что следует обращать внимание
Одна из наиболее распространенных ошибок, которые допускаются при использовании байпасных конденсаторов для контроля электромагнитного излучения (особенно при шунтировании экранов земли), заключается в том, что их размещение ограничивается только источником шума, который нужно устранить.
Для постоянного тока это имело бы смысл – закоротить сигнал максимально близко к источнику, чтобы получить как можно более низкие его значения, минимизировать сопротивление (импеданс) между коротким замыканием (конденсатором) и источником.
Для переменного тока и особенно для радиочастотного диапазона, из-за волновой природы электрических сигналов быстрое увеличение импеданса между областью рядом с источником шума и остальной частью заземляющего слоя может быть источником отражений, т.е. энергии, отраженной из-за несоответствия импедансов. Опять же, это противоречит традиционному описанию “энергии, отраженной из-за рассогласования линий”, которое верно лишь отчасти.
При использовании байпасных конденсаторов нужно попытаться снизить импеданс экранов питания и земли, распределив конденсаторы по плате. В зависимости от используемой частоты, структуры слоев и диэлектрического материала платы, могут понадобиться конденсаторы в диапазоне от пикофарад до нанофарад
Развязывающий конденсатор
У линейных регуляторов, таких как широко используемый 7805, есть внутренний контур обратной связи, который сравнивает выходное и опорное напряжение и соответствующим образом регулирует ток для поддержания стабильного выходного сигнала.
Теоретически линейные регуляторы можно использовать без внешнего конденсатора – по крайней мере, если мы игнорируем любые проблемы, связанные с автоколебаниями. Чтобы получить стабильный выходной сигнал, требуемый ток должен изменяться с достаточно медленной скоростью нарастания, чтобы линейный регулятор мог успевать за ним. Учитывая, что большинство из них построено на технологии BJT начала 80-х годов, эти скорости нарастания совсем не высокие.
Рис. 3. Пример внутренней схемы типового линейного регулятора, подобного 7805Аналогичным образом, импульсные преобразователи DC-DC имеют основную частоту переключения и не могут регулировать выходной сигнал быстрее этой частоты.
Многие современные цифровые устройства генерируют переходные процессы тока с частотными составляющими в сотни мегагерц, что намного больше, чем может обеспечить любой регулятор (если мы не говорим об экзотических драйверах лазерных диодов).
Развязывающие конденсаторы работают на границе между стабильным напряжением, регулируемым схемой источника питания постоянного тока, и потреблением прерывистого тока современными цифровыми устройствами.
Даже небольшой импеданс между источником питания и устройством быстро приведет к выходу напряжения питания за пределы допустимого диапазона при возникновении пика тока.
Развязывающие конденсаторы действуют как временные локализованные накопители энергии, что уменьшает импеданс источника для значений в диапазоне между нескольких мегагерц и нескольких сотен мегагерц.
Для частот выше сотен мегагерц большинство SMD-конденсаторов имеют высокий импеданс и являются неэффективными. Вместо этого необходимо использовать такие методы, как скрытая емкость (buried capacitance) в стеке слоев.
На что следует обращать внимание
Развязывающие конденсаторы полезны только в относительно узком частотном диапазоне, в основном из-за ограничений, связанных с их паразитными свойствами.
Главный параметр, на который следует обратить внимание – это, опять же, собственная резонансная частота. Разделительные конденсаторы эффективны только на частотах ниже их собственной резонансной частоты.
При выборе конденсатора часто бывает полезно придерживаться следующих эмпирических правил:
- От постоянного тока до килогерц – конденсатор не требуется, источник питания может работать сам по себе.
- От килогерц до мегагерц – электролитические конденсаторы высоких номиналов полезны для более низкого диапазона частот, но их высокое последовательное сопротивление ограничивает их работу из-за низкой резонансной частоты. В диапазоне МГц многие электролитические конденсаторы уже являются сильно индуктивными.
- От мегагерц до 200 МГц – керамические конденсаторы, в зависимости от диэлектрика, размера корпуса и технологии изготовления, обычно подходят для этого диапазона.
- Свыше 200 Мгц – керамические конденсаторы становятся неэффективными. В этих случаях, будет лучше использовать вместо них скрытую емкость.
Сглаживающий конденсатор
Сглаживающие конденсаторы используются для поддержания стабильного напряжения во время недостающих циклов линии питания и поддержки пикового тока. Для этого нужны конденсаторы высокой емкости, и поэтому они обычно являются электролитическими.
Их можно считать маленькими источниками бесперебойного питания.
Чему не учат о керамических конденсаторах
Керамические конденсаторы, несомненно, являются фундаментальными пассивными компонентами в современной электронной промышленности, и их удельная емкость увеличивается со скоростью, сравнимой с плотностью транзисторов в кремнии, что делает доступными многие современные конструкции с высокой плотностью.
Они действительно являются чудом техники, но у них также есть несколько особенностей, о которых нужно знать.
Чем меньше, тем лучше
Керамика – замечательный, но хрупкий материал. Керамические конденсаторы могут треснуть из-за изгиба печатной платы, например, при сборке больших плат (или панелей), неправильном разделении плат скрайбированием или неправильном обращении во время транспортировки.
Растрескивание при изгибе – опасное явление, поскольку если конденсатор используется в силовых устройствах с высокими токами, он зачастую может выйти из строя и вызвать возгорание.
Вопреки распространенному мнению, конденсатор меньшего размера имеет превосходные электрические и механические характеристики. Они с меньшей вероятностью треснут, и они имеют более высокую собственную резонансную частоту.
Если вашему продукту требуется высокая надежность при механических нагрузках, есть несколько методов, которые вы можете использовать для уменьшения соответствующих отказов:
- Не размещайте конденсаторы длинной стороной в том же направлении, в котором изгибается плата.
- Используйте конденсаторы минимально возможного размера, например 0402.
- Используйте конденсаторы типа “soft-terminated”, которые не замыкаются под нагрузкой, и/или керамические конденсаторы X2/Y2.
- Размещайте трассировку вокруг конденсаторов для снятия механического напряжения.
- Если вы выбрали конденсаторы, которые размыкаются, всегда используйте параллельно как минимум два из них, чтобы ваша схема могла иметь достаточную емкость для нормальной работы при выходе из строя одного из них.
Типы диэлектриков
C0G, X7R… У диэлектриков странные названия и набор самых разных свойств. Далее представлены их характеристики и случаи, когда их использовать лучше всего:
- C0G/NP0 – самые модные керамические конденсаторы на рынке. Обычно они доступны в диапазоне от 1 пФ до 100 нФ и имеют допуск 5%. NP0 означает “положительный-отрицательный-ноль”, для формы графика ТКЕ конденсатора, которая выглядит плоской во всем диапазоне температур. Именно их следует использовать, когда требуются точные значения и стабильность.
- X7R – современная рабочая лошадка. Они имеют отличные коэффициенты напряжения и температуры и популярны в диапазоне от 100 пФ до 22 мкФ. Они наиболее широко используются для развязки и имеют широкий диапазон температур от -55°C до 125°C.
- X5R – аналогичен X7R, но рассчитан на 85°C вместо 125°C.
- Y5V – может достигать чрезвычайно высокого значения емкости, но при низких отклонениях от номинального напряжения и температуры (допускается потеря до 82% емкости).
- Z5U – аналогично Y5V, конденсаторы Z5U имеют плохие характеристики по напряжению и температуре и стоят очень дешево. Допускается использование только до -10°C и применяются только для развязки в недорогом бытовом оборудовании.
На что следует обращать внимание
Использование конденсаторов с разными диэлектриками может привести к неожиданным результатам.
Например, конденсаторы Z5U очень дешевы и используют диэлектрик из титаната бария. Этот материал имеет высокую диэлектрическую постоянную, что обеспечивает отличное отношение емкости к объему, а также собственную резонансную частоту, обычно от 1 до 20 МГц.
Конденсаторы NP0 лучше работает на частотах выше 10 МГц, так почему бы не использовать их вместе для работы в более широком диапазоне частот?
К сожалению, когда конденсаторы Z5U и NP0 соединены параллельно, материал с более высокой диэлектрической проницаемостью снижает резонансную частоту NP0, и это сочетание приводит к худшим общим характеристикам, чем просто качественный Z5U.
Однако вопрос «почему» определенно выходит за рамки моей компетенции. Если вы понимаете это явление, пожалуйста, напишите мне.
Диэлектрические потери
Если вы закоротите выход заряженного конденсатора, то обнаружите, что полностью разряженный конденсатор сидит на скамейке и смотрит на вас печальными глазами. Однако это не всегда так. Почти все конденсаторы, за единственным заметным исключением вакуумных конденсаторов, сохраняют часть своего заряда после разрядки.
Это происходит потому, что случайно ориентированные молекулярные диполи со временем выравниваются электрическим полем, и их новая ориентация сохраняется даже в отсутствии этого поля.
Керамические конденсаторы могут удерживать до 0,6% заряженного напряжения для NP0 и до 2,5% для X7R.
Емкость, зависящая от напряжения
Конденсаторы Y5V могут терять до 82% своей емкости при номинальном напряжении, в то время как конденсаторы NP0 имеют практически горизонтальную характеристику.
Если у вас есть устройства, в которых нужно изменять выходное напряжение, например, с помощью настраиваемого источника напряжения, требуемого стандартом USB-PD, который Марк Харрис обсуждал в своей недавней статье, вы можете столкнуться с непредсказуемой работой схемы.
Инструменты проектирования в Altium Designer® включают в себя всё необходимое, чтобы идти в ногу с новыми технологиями. Поговорите с нами сегодня и узнайте, как мы можем улучшить ваш процесс проектирования.
Керамический конденсатор| Типы | Направляющая конденсатора
Что такое керамические конденсаторы?
В керамическом конденсаторе в качестве диэлектрика используется керамический материал. Керамика была одним из первых материалов, который использовался при производстве конденсаторов, поскольку это был известный изолятор. В керамических конденсаторах использовались многие геометрические формы, некоторые из которых, например, керамические трубчатые конденсаторы и конденсаторы с барьерным слоем, сегодня устарели из-за своего размера, паразитных эффектов или электрических характеристик.Типы керамических конденсаторов, наиболее часто используемые в современной электронике, — это многослойный керамический конденсатор, иначе называемый керамическим многослойным чип-конденсатором (MLCC), и керамический дисковый конденсатор. MLCC являются наиболее производимыми конденсаторами, количество которых составляет около 1000 миллиардов устройств в год. Они изготавливаются по технологии SMD (поверхностного монтажа) и широко используются благодаря небольшим размерам. Керамические конденсаторы обычно изготавливаются с очень маленькими значениями емкости, обычно от 1 нФ до 1 мкФ, хотя возможны значения до 100 мкФ.Керамические конденсаторы также очень малы по размеру и имеют низкое максимальное номинальное напряжение. Они не поляризованы, что означает, что их можно безопасно подключать к источнику переменного тока. Керамические конденсаторы имеют отличную частотную характеристику из-за низких паразитных эффектов, таких как сопротивление или индуктивность.
Определение керамического конденсатора
Керамический конденсатор — это конденсатор, в котором в качестве диэлектрика используется керамический материал. Двумя наиболее распространенными типами являются многослойные керамические конденсаторы и керамические дисковые конденсаторы.
Характеристики
Точность и допуски
Сегодня доступны два класса керамических конденсаторов: класс 1 и класс 2. Керамические конденсаторы класса 1 используются там, где требуются высокая стабильность и низкие потери. Они очень точны, а значение емкости стабильно в зависимости от приложенного напряжения, температуры и частоты. Конденсаторы серии NP0 обладают емкостной термической стабильностью ± 0,54% в общем диапазоне температур от -55 до +125 ° C. Допуски номинального значения емкости могут составлять всего 1%.
Конденсаторыкласса 2 имеют высокую емкость на единицу объема и используются для менее чувствительных приложений. Их термическая стабильность обычно составляет ± 15% в диапазоне рабочих температур, а допустимые отклонения от номинальных значений составляют около 20%.
Преимущества размера
Когда требуется высокая плотность упаковки компонентов, как в случае с большинством современных печатных плат (ПП), устройства MLCC предлагают большое преимущество по сравнению с другими конденсаторами. Чтобы проиллюстрировать этот момент, корпус многослойного керамического конденсатора «0402» измеряет всего 0.4 мм x 0,2 мм. В такой упаковке 500 и более слоев керамики и металла. Минимальная толщина керамики по состоянию на 2010 год составляет порядка 0,5 мкм.
Высокое напряжение и большая мощность
Керамические конденсаторы большего размера могут быть изготовлены так, чтобы выдерживать гораздо более высокие напряжения, и они называются силовыми керамическими конденсаторами. Они физически намного больше, чем те, что используются на печатных платах, и имеют специальные клеммы для безопасного подключения к источнику высокого напряжения. Силовые керамические конденсаторы могут быть изготовлены так, чтобы выдерживать напряжения в диапазоне от 2 кВ до 100 кВ, с указанной мощностью намного выше 200 вольт-ампер.
MLCC меньшего размера, используемые в печатных платах, рассчитаны на напряжение от нескольких вольт до нескольких сотен вольт, в зависимости от области применения.
Конструкция и свойства керамических конденсаторов
Конденсаторы керамические дисковые
Керамические дисковые конденсаторы производятся путем покрытия керамического диска серебряными контактами с обеих сторон. Для достижения большей емкости эти устройства могут быть сделаны из нескольких слоев. Керамические дисковые конденсаторы обычно представляют собой компоненты со сквозными отверстиями и выходят из употребления из-за своего размера.Вместо них используются MLCC, если позволяют значения емкости. Керамические дисковые конденсаторы имеют значение емкости от 10 пФ до 100 мкФ с широким диапазоном номинальных напряжений от 16 вольт до 15 кВ и более.
Многослойный керамический конденсатор (MLCC)
MLCC производятся путем точного смешивания мелко измельченных гранул параэлектрических и сегнетоэлектрических материалов и альтернативного наслаивания смеси металлическими контактами. После завершения наслоения устройство нагревают до высокой температуры и смесь спекают, в результате чего получается керамический материал с желаемыми свойствами.Полученный конденсатор в основном состоит из множества конденсаторов меньшего размера, соединенных параллельно, что увеличивает емкость. MLCC состоят из 500 и более слоев с минимальной толщиной слоя примерно 0,5 мкм. По мере развития технологии толщина слоя уменьшается, и достигаются более высокие емкости для того же объема.
Применения керамических конденсаторов
Принимая во внимание, что MLCC являются наиболее широко производимыми конденсаторами в электронной промышленности, само собой разумеется, что у этих конденсаторов есть бесчисленное множество применений.Интересным высокоточным и мощным приложением является резонансный контур в передающих станциях. Конденсаторы большой мощности класса 2 используются в источниках питания высоковольтных лазеров, силовых выключателях, индукционных печах и т. Д. Конденсаторы SMD малой формы (поверхностный монтаж) часто используются в печатных платах, а в приложениях с высокой плотностью используются конденсаторы, сопоставимые с конденсаторами. размером с песчинку. Они также используются в преобразователях постоянного тока в постоянный, которые создают большую нагрузку на компоненты в виде высоких частот и высоких уровней электрических шумов.Керамические конденсаторы также могут использоваться в качестве конденсаторов общего назначения, поскольку они не поляризованы и доступны с большим разнообразием емкости, номинального напряжения и размеров. Многие любители, особенно в области робототехники, знакомы с керамическими дисковыми конденсаторами, используемыми в щеточных двигателях постоянного тока, чтобы минимизировать радиочастотный шум.
Электрическое поле | Основы | Направляющая конденсатора
Что такое электрическое поле?
Электрическое поле — это особое состояние, которое существует в пространстве, окружающем электрически заряженную частицу.Это особое состояние влияет на все заряженные частицы, находящиеся в электрическом поле. Истинная природа электрических полей, а также истинная природа электрического заряда до сих пор неизвестны ученым, но эффекты электрического поля можно измерить и предсказать, используя известные уравнения.
Так же, как магнит создает вокруг себя невидимое магнитное поле, которое можно обнаружить, поместив второй магнит в его поле и измерив силу притяжения или отталкивания, действующую на магниты, электрические заряды создают электрическое поле, которое можно обнаружить с помощью тестовый заряд.Когда пробный заряд помещается в электрическое поле, на него действует сила притяжения или отталкивания. Эта сила называется кулоновской силой. На самом деле магнитное и электрическое поля — не совсем отдельные явления. Магнитное поле, которое изменяется со временем, создает — или «индуцирует электрическое поле, в то время как движущееся электрическое поле индуцирует магнитное поле как прямое следствие движения. Поскольку эти два поля так тесно связаны, магнитное и электрическое поля объединяются в одно единое электромагнитное поле.
Определение электрического поля
Электрическое поле можно определить как векторное поле, которое описывает взаимосвязь между зарядом пробной частицы, введенной в поле, и силой, действующей на эту заряженную пробную частицу.
Где E — электрическое поле, F — сила, действующая на пробную частицу, введенную в поле, а q — заряд пробной частицы. Единица измерения электрического поля — вольт на метр [В · м -1 ] или ньютон на кулон [N · C -1 ].
Приложение электрического поля в конденсаторах
Электромагнетизм — это наука, изучающая статические и динамические заряды, электрические и магнитные поля и их различные эффекты. Конденсаторы — это устройства, которые накапливают электрическую потенциальную энергию с помощью электрического поля. Таким образом, конденсаторы регулируются правилами электромагнетизма. В этой статье будут определены и изложены некоторые термины, необходимые для понимания работы конденсаторов. В этой статье будет считаться, что электрическое поле однородно во всех точках пространства.
Электрическая потенциальная энергия
Электрическая потенциальная энергия — это потенциальная энергия заряженной частицы в электрическом поле, которое возникает в результате действия кулоновской силы на частицу. Он определяется как отрицательное значение количества работы, необходимой для переноса частицы из опорной точки (часто бесконечно удаленной) в точку в пространстве, где измеряется электрическая потенциальная энергия. Единицей измерения электрической потенциальной энергии является джоуль [Дж], та же единица, что и объем работы в физике.
Электрический потенциал
Электрический потенциал, также называемый потенциалом электрического поля, — это количество электрической потенциальной энергии, которую заряженная частица будет иметь в определенной точке пространства. Напряжение, также называемое разностью потенциалов между двумя точками в пространстве, представляет собой разность электрических потенциалов этих двух точек. Единица измерения электрического потенциала — вольт [В], названная в честь итальянского физика Алессандро Вольта. Такая же единица измерения используется для напряжения. Электрический потенциал между двумя точками в однородном поле является отрицательным значением разности напряженности поля между этими двумя точками.
Напряженность электрического поля
В простом конденсаторе с параллельными пластинами напряжение, приложенное между двумя проводящими пластинами, создает однородное электрическое поле между этими пластинами. Напряженность электрического поля в конденсаторе прямо пропорциональна приложенному напряжению и обратно пропорциональна расстоянию между пластинами. Этот коэффициент ограничивает максимальное номинальное напряжение конденсатора, поскольку напряженность электрического поля не должна превышать напряженность поля пробоя диэлектрика, используемого в конденсаторе.Если напряжение пробоя превышено, между пластинами возникает электрическая дуга. Эта электрическая дуга может мгновенно разрушить некоторые типы конденсаторов. Стандартная единица измерения напряженности электрического поля — вольт на метр [В · м -1 ].
Емкость
Емкость представляет собой способность тела накапливать электрический заряд. Эта способность используется в конденсаторах для хранения электрической энергии, поддерживая электрическое поле. Когда на конденсатор подается напряжение, определенное количество положительного электрического заряда (+ q) накапливается на одной пластине конденсатора, в то время как такое же количество отрицательного электрического заряда (-q) накапливается на другой пластине конденсатора.Это определяется как:
где C — емкость, q — количество заряда, накопленного на пластинах, а V — напряжение на двух пластинах конденсатора.
Емкость зависит от геометрии конденсатора. Такие факторы, как площадь пластин, расстояние между пластинами и диэлектрическая проницаемость диэлектрика, используемого в конструкции конденсатора, влияют на результирующую емкость. В простой параллельной пластине электрическая емкость прямо пропорциональна площади пластин и диэлектрической проницаемости, в то время как она обратно пропорциональна расстоянию между пластинами.Единица измерения емкости — Фарад [F], названная в честь Майкла Фарадея, который был пионером исследований в области электричества и магнетизма.
Энергия, накопленная в конденсаторе
Конденсаторы — это устройства, которые используются для хранения электрической энергии в цепи. Энергия, подводимая к конденсатору, сохраняется в виде электрического поля, которое создается между пластинами конденсатора. Когда на конденсатор подается напряжение, на пластинах накапливается определенное количество заряда.Энергия, запасенная на конденсаторе:
где W — запасенная энергия, C — емкость, а V — напряжение, приложенное к конденсатору.
Q-фактор | Основы | Направляющая конденсатора
Определение Q-фактора
Коэффициент добротности конденсатора, также известный как коэффициент качества, или просто Q, представляет эффективность данного конденсатора с точки зрения потерь энергии. Это определяется как:
где QC — добротность, XC — реактивное сопротивление конденсатора, C — емкость конденсатора, RC — эквивалентное последовательное сопротивление (ESR) конденсатора, а ω0 — частота в радианах, на которой проводится измерение.
В системе переменного тока коэффициент добротности представляет собой отношение энергии, запасенной в конденсаторе, к энергии, рассеиваемой в виде тепловых потерь в эквивалентном последовательном сопротивлении. Например, конденсатор, который способен хранить 2000 джоулей энергии, при этом расходуя только 1 джоуль, имеет добротность 2000. Поскольку Q является мерой эффективности, идеальный конденсатор будет иметь бесконечное значение Q, что означает, что энергия не теряется. вообще в процессе накопления энергии. Это происходит из того факта, что ESR идеального конденсатора равно нулю.
Коэффициент Q не является постоянным значением. Он значительно меняется с частотой по двум причинам. Первая причина — очевидный член ω0 в приведенном выше уравнении. Вторая причина заключается в том, что ESR не является постоянной величиной относительно частоты. ESR изменяется с частотой из-за скин-эффекта, а также других эффектов, связанных с диэлектрическими характеристиками.
Связанный с этим термин, называемый коэффициентом рассеяния (DF), иногда определяется в технических описаниях конденсаторов вместо Q-фактора.В цепях переменного тока DF — это просто величина, обратная Q.
Почему важен фактор Q?
В большинстве приложений не требуется серьезного учета добротности, и в этих приложениях могут использоваться стандартные конденсаторы. Однако добротность является одной из наиболее важных характеристик конденсатора при проектировании ВЧ-цепей. На радиочастотах СОЭ увеличивается с увеличением частоты из-за скин-эффекта. Наряду с увеличением ESR увеличиваются и диссипативные потери.Вот почему в ВЧ-цепях обычно используются конденсаторы с высокой добротностью для уменьшения высокочастотных потерь.
Типичными приложениями, в которых требуются конденсаторы с высокой добротностью, являются приложения согласования радиочастот, катушки формирования изображений МРТ, используемые в сканерах МРТ, и другие приложения, которые должны быть точно настроены на более высокие частоты. В некоторых приложениях потери на самом конденсаторе могут быть достаточно высокими, чтобы на самом деле повысить температуру настолько, чтобы отпаять от платы, поэтому в таких приложениях необходимо использовать конденсаторы с высокой добротностью.Даже если повышение температуры не такое резкое, оно все равно может повлиять на срок службы других соседних компонентов на плате. Другой причиной использования конденсаторов с высокой добротностью является снижение теплового шума. Все настоящие конденсаторы имеют эквивалентное последовательное сопротивление, и это сопротивление создает дополнительный тепловой шум. В таких приложениях, как спутниковые приемники, уровни шума являются критическими, и используются конденсаторы с высокой добротностью, чтобы поддерживать желаемое отношение сигнал / шум.
Типовые значения
В таблицах данныхобычно указывается коэффициент добротности на одной или нескольких частотах.Стандартная частота, используемая при измерениях Q-фактора, составляет 1 МГц. Однако, поскольку коэффициент добротности сильно зависит от частоты, коэффициент добротности, указанный на частоте 1 МГц, не является хорошим приближением коэффициента добротности, например, на частоте 2 ГГц.
В некоторых таблицах данных указаны значения добротности на более высоких частотах, если конденсатор предназначен для использования на высоких частотах. В некоторых таблицах данных даже приводится график зависимости добротности от частоты, который можно использовать для определения добротности на любой заданной частоте.
Хорошие конденсаторы с высокой добротностью могут иметь значение Q-фактора более 10 000 при 1 МГц и более 1000 при 100 МГц, в то время как стандартные конденсаторы могут иметь добротность всего 50 при 1 кГц.Разница между конденсатором с высокой добротностью и стандартным конденсатором заключается в фактической конструкции конденсатора, а также в используемых материалах. Все соединения и штыри должны быть как можно короче, чтобы снизить сопротивление, и сделаны из материалов с низким сопротивлением, таких как медь. Большинство производителей конденсаторов с высокой добротностью предлагают многослойные керамические конденсаторы для микросхем, которые являются небольшими и прочными, имеют длительный срок службы, жесткие допуски и большую стабильность во времени, обеспечивая высокие значения добротности, но часто ограничиваются несколькими десятыми пикофарад.Такие конденсаторы можно использовать на частотах до 20 ГГц, что достаточно для большинства ВЧ-приложений.
На более низких частотах, например, в аудиоприложениях, танталовые конденсаторы могут использоваться в качестве конденсаторов с высокой добротностью. Они предлагают низкое ESR на достаточно высоких частотах и иногда могут быть жизнеспособной альтернативой, если конструкция схемы требует более высоких емкостей (примерно до 1 мФ).
воздушный конденсатор | Типы | Направляющая конденсатора
Что такое воздушные конденсаторы?
Воздушные конденсаторы — это конденсаторы, в которых в качестве диэлектрика используется воздух.Простейшие воздушные конденсаторы состоят из двух токопроводящих пластин, разделенных воздушным зазором. Воздушные конденсаторы могут быть выполнены с переменной или постоянной емкостью. Воздушные конденсаторы постоянной емкости используются редко, поскольку существует множество других типов с превосходными характеристиками. Переменные воздушные конденсаторы используются чаще из-за их простой конструкции. Обычно они состоят из двух комплектов полукруглых металлических пластин, разделенных воздушными зазорами. Один набор фиксирован, а другой прикреплен к валу, который позволяет пользователю вращать узел, тем самым изменяя емкость по мере необходимости.Чем больше перекрытие между двумя наборами пластин, тем выше емкость. Состояние максимальной емкости достигается при наибольшем перекрытии между двумя наборами пластин, а состояние наименьшей емкости достигается при отсутствии перекрытия.
Переменные воздушные конденсаторы используются в случаях, когда необходимо изменять емкость. Иногда они используются в резонансных цепях, таких как радиотюнеры, смесители частот или приложения для согласования импеданса антенн.Еще одно применение переменных конденсаторов — создание прототипа электронной схемы. Иногда проще найти подходящее значение конденсатора методом проб и ошибок, чем рассчитывать его точно.
Определение воздушного конденсатора
Воздушные конденсаторы — это конденсаторы, в которых в качестве диэлектрической среды используется воздух, расположенный между проводящими пластинами.
Характеристики
Значение диэлектрической постоянной материала является мерой количества электрической энергии, запасенной в материале при заданном напряжении.Поскольку конденсаторы представляют собой устройства, используемые для хранения электроэнергии, более высокие диэлектрические постоянные являются предпочтительными. Однако диэлектрическая проницаемость воздуха приблизительно равна диэлектрической проницаемости вакуума, которая является самой низкой диэлектрической постоянной, возможной для материала, и составляет o = 8,854 * 10 -12 Ф / м. Это означает, что для достижения больших значений емкости необходим конденсатор большой емкости. Еще один важный фактор — электрическая прочность. Диэлектрическая прочность ограничивает максимальное напряжение, которое может быть приложено к материалу, прежде чем он потеряет свои изолирующие и диэлектрические свойства и начнет действовать как проводник.Электрическая прочность воздуха ниже, чем у многих других материалов, что делает воздушные конденсаторы непригодными для высоких напряжений.
Воздушные конденсаторы имеют небольшую емкость, которая обычно составляет от 100 пФ до 1 нФ. Максимальное рабочее напряжение зависит от физических размеров конденсатора. Высокое рабочее напряжение требует, чтобы расстояние между пластинами было достаточным, чтобы избежать электрического пробоя воздуха. Если произойдет пробой, это вызовет искру между пластинами, конденсатор не будет работать должным образом и даже может быть поврежден электрической дугой.Следовательно, конденсаторы, работающие при более высоких напряжениях, обычно физически больше, чтобы между пластинами оставалось достаточно места. Типичное рабочее напряжение составляет от нескольких десятков до нескольких тысяч вольт. Для более высоких рабочих напряжений иногда используется конденсатор аналогичной конструкции, однако воздух откачивается из устройства, а в качестве диэлектрика используется вакуум. Диэлектрическая проницаемость вакуума почти такая же, как у воздуха, но напряжение пробоя выше и не зависит от влажности воздуха и загрязнения твердыми частицами.
Воздушные конденсаторы неполярные. Это означает, что воздушные конденсаторы можно безопасно использовать независимо от полярности постоянного тока, что полезно в некоторых приложениях. Они безопасны для использования в приложениях переменного тока, если не превышается максимальное номинальное напряжение.
Конструкция и свойства воздушных конденсаторов
Конденсаторы с переменным воздушным зазором обычно изготавливаются из двух групп полукруглых металлических пластин. Одна группа закреплена, а другая может вращаться с помощью соединенного с ней вала.Две группы зажаты с воздушным зазором между каждыми двумя пластинами. Пользователь изменяет емкость, вращая вал и увеличивая или уменьшая степень перекрытия между двумя группами пластин. Механизмы понижающего редуктора могут использоваться для повышения точности и обеспечения более точной настройки и лучшего управления емкостью. Тщательно спроектировав форму пластин, можно получить, например, линейную или логарифмическую функцию угла поворота от емкости. Чтобы улучшить характеристики воздушных конденсаторов, иногда воздух откачивают из герметичной камеры, и это создает вакуумный конденсатор.Другие материалы, такие как пластиковая фольга, также могут использоваться в качестве диэлектрического материала.
Несмотря на относительно низкое напряжение пробоя и низкую диэлектрическую проницаемость воздуха и вакуума, они все же имеют некоторые преимущества перед другими материалами. Наиболее важным преимуществом является низкий ток утечки, а это означает, что рабочие потери внутри воздушного конденсатора минимальны, особенно при низкой влажности.
Конденсатор переменной емкости многосекционный
В зависимости от конструкции существует несколько специальных типов переменных конденсаторов.Один тип — это многосекционный переменный конденсатор, который имеет два или более конденсатора одинаковой или разной емкости, подключенных к одному валу. Вращение вала управления повлияет на емкости всех конденсаторов на нем, и благодаря тщательному проектированию можно использовать один переменный конденсатор для одновременной настройки нескольких цепей, таких как преселектор, входной фильтр и генератор в приемном блоке. .
Конденсатор переменной емкости типа бабочка
Конденсаторы переменной емкости типа «бабочка»имеют два статора и ротор, расположенные таким образом, что вращение ротора будет одинаково изменять емкость между ротором и любым статором.
Дифференциальный переменный конденсатор
Дифференциальные переменные конденсаторы также используют два статора, однако вращение управляющего вала увеличивает емкость одного статора и снижает емкость другого. Таким образом, емкость между двумя статорами остается постоянной.
Применения для конденсаторов переменной емкости
Применения конденсаторов переменной емкости в основном ограничиваются цепями переменного тока. Для большинства приложений требуются высокая частота, высокая мощность и низкие потери.Они используются в приложениях для настройки радио, настройки антенн и т. Д. Воздушные конденсаторы интересны для военных приложений из-за присущей им устойчивости к электромагнитным импульсам, которые могут быть созданы намеренно для разрушения электронного оборудования, но также являются побочным продуктом ядерного взрыва. Современные приложения включают в себя согласующие сети RF для контроля плазмы при осаждении проводящего материала на кремниевые пластины, а также медицинские сканеры МРТ, для которых требуются немагнитные переменные конденсаторы.Поскольку воздушные конденсаторы изготовлены из немагнитного алюминия, они отлично работают в сильных магнитных полях.
Конденсаторы(Часть 1) — Катушки индуктивности, конденсаторы, трансформаторы Видеолекция
Хорошо, мы находимся в Разделе 7.3 и рассматриваем тему конденсаторов. Конденсаторы — еще один фундаментальный строительный блок в электронных схемах. Некоторые характеристики конденсатора аналогичны резисторам и катушкам индуктивности. В остальном они уникальны. Они используются почти во всех электронных системах.Их можно определить как способность накапливать электрическую энергию в электростатическом поле. Это устройства, рассчитанные на определенную емкость.
Базовая конструкция
Их основная конструкция. Конденсатор состоит из двух проводников, называемых «пластинами», разделенных изолятором, называемым «диэлектриком». Если мы посмотрим на эту иллюстрацию, мы увидим, что вот одна из пластин прямо здесь, а вот другая пластина. Эти две пластины разделены куском материала, называемого диэлектриком, который технически является изолятором.Используются различные материалы. Используемые материалы значительно повлияют на емкость. Обратите внимание, что у нас здесь два вывода. Здесь он будет подключен к цепи, а внизу у нас есть схематический символ конденсатора.
Заряды и электрические поля
Напряжение, приложенное к пластинам конденсатора, заряжает пластину конденсатора в соответствии с полярностью приложенного напряжения. Если я смогу нарисовать здесь небольшую схему, я нарисую батарею и обозначу ее как положительную клемму, а это как отрицательную, и давайте посмотрим … сделайте это еще немного, вот и мы, а затем мы подойдем сюда и нарисуйте конденсатор.Как будто. Заряд на конденсаторе будет такой же, как и на питании. Если бы у вас был положительный полюс, и он был бы подключен к верхней пластине конденсатора, эта сторона была бы положительной. Отрицательная сторона будет подключена к нижней пластине, а эта сторона будет отрицательной.
Конденсатор заряжается в соответствии с полярностью приложенного напряжения. По мере накопления зарядов на пластине ток через цепь зарядки уменьшается. На следующих двух слайдах мы рассмотрим процесс зарядки конденсатора.Теперь, если вы посмотрите на это первое изображение прямо здесь, мы заметим, что есть приложенное напряжение, есть резистор. Эти две линии здесь представляют пластины конденсатора. Вот у нас вольтметр. Вы заметите, что вольтметр показывает ноль вольт, а цепь разомкнута.
Когда переключатель замкнут, ток течет от отрицательной пластины источника питания к нижней пластине конденсатора. Электроны скапливаются на нижней пластине. Электроны на верхней пластине притягиваются к положительной стороне источника питания, оставляя недостаток электронов i.е. здесь положительный заряд. Это накопление зарядов называется зарядкой конденсатора. Эти электроны здесь накапливаются. Какие электроны здесь движутся к положительной пластине. Мы создаем электростатическое поле между пластинами этого конденсатора.
Вы заметите, что когда переключатель замкнут, это начинает развиваться. Вы замечаете, что счетчик накапливает заряд. Это не происходит мгновенно. В зависимости от размера конденсатора и тока, протекающего в цепи, это может занять разное время.Но у нас есть процесс начала заряда. Имейте в виду, что ток течет отсюда сюда. Есть движение тока отсюда сюда. Через конденсатор не проходит ток.
При полной зарядке ток перестает течь и колпачок заряжается. Заряженный колпачок теперь противостоит источнику питания. Здесь у нас есть питание 10В. Мы заряжаем конденсатор, и теперь полярность на конденсаторе здесь такая же сильная. Измерителем мы бы измерили 10 вольт. Обратите внимание, что у нас есть сильное электростатическое поле, которое содержится в этом диэлектрическом материале, о котором мы упоминали ранее.
Хорошо. Переключатель разомкнут и нет пути для разряда. На этом экране конденсатор был заряжен. Переключатель разомкнут, и у нас есть этот заряд, и он хранится в этом электростатическом поле. Нет движения тока и нет пути для разряда этого конденсатора. Заряд будет оставаться неопределенным, так как у него нет пути разряда. В конечном итоге заряды утекают из-за дефектов диэлектрика. Время зарядки конденсатора зависит от размера крышки.Итак, после того, как заряд произошел, здесь мы видим вольтметр, у нас есть метр на крышке. Мы видим заряд 10 вольт, но в этом случае нет пути для тока или разряда порта.
Разряд конденсатора
На следующем слайде мы рассмотрим разрядку конденсатора, и мы рассмотрим этот и следующий слайды. Вы заметите, что на этом конденсаторе большой заряд. Возникло электростатическое поле, но вы заметите, что цепь разомкнута.Нет… заряд остается. Не разряжается. Вы заметите, что напряжение на резисторе равно нулю вольт, потому что цепь разомкнута.
Хорошо. На этом слайде мы собираемся сделать… переключатель замкнут, обеспечивая путь для прохождения тока. Обратите внимание, что здесь переключатель замкнут. Напряжение измеряется на ВОМ. Движение электронов достигает максимума после замыкания переключателя и постепенно разряжается. В тот момент, когда он закрыт, у нас есть большой скачок тока, мы сначала измерим 10 В, но затем, когда крышка разрядится, вы заметите, что измеритель движется и конденсатор разряжается.Конденсатор полностью разряжен, и электростатическое поле не осталось. Здесь колпачок со временем полностью разрядился. Теперь счетчик показывает ноль, и нет электростатического поля.
Единицы измерения
Единица измерения конденсатора — фарада. Конденсатор имеет емкость 1Ф. Когда разность потенциалов 1В заряжает его электричеством 1С, то есть 1А. Если у нас есть этот конденсатор, и мы подключим к нему 1 В, он сможет удерживать 1C электричества i.е. электронов, мы скажем, что у него есть один … это конденсатор 1Ф.
Обычно значения конденсатора находятся в диапазоне субфарад, а я бы сказал, очень субфарадном диапазоне. Общие значения здесь — конденсатор 27 пФ. Вот тот, который составляет 0,05 мФ. Что это значит? Что ж, когда вы говорите 27 пФ, вы имеете в виду 27 * 10-12, а 0,06 мФ — это 0,06 * 10-6. Конденсаторы обычно имеют очень маленькие значения, намного меньше 1Ф.
Факторы, влияющие на емкость
Физические характеристики конденсатора определяют его емкость.Три основных фактора, определяющих ценность конденсатора, — это площадь пластины, расстояние между пластинами и материал диэлектрика. Здесь мы видим тарелки. Здесь мы видим диэлектрический материал. Здесь мы видим разделение. Давайте рассмотрим эти три фактора более подробно.
Прежде всего, Площадь плиты . Увеличение площади пластины вдвое увеличит размер заряда, если все остальные факторы останутся прежними. Здесь у нас есть площадь пластины. Если мы увеличим площадь этой пластины, если мы удвоим ее, мы удвоим размер конденсатора.
Разделение пластин . Если мы удвоим расстояние между пластинами при сохранении всех остальных факторов, у нас будет только половина электростатической интенсивности. Размер пластины прямо пропорционален емкости. Если мы разделим их на расстояние … чем шире расстояние, мы получим обратно пропорциональную зависимость, а это означает, что по мере увеличения расстояния емкость уменьшается.
Наконец, Диэлектрический материал . Диэлектрическая проницаемость — это мера способности материала концентрировать электростатическое поле.Способность концентрировать электростатическое поле. Мы собираемся обнаружить, что существует множество различных типов диэлектрических материалов. Некоторые из них гораздо лучше других концентрируют электростатическое поле. Это способность удерживать электростатическое поле.
Теперь понятие диэлектрической проницаемости аналогично концепции проницаемости. Помните, что в отношении проницаемости, о которой мы говорили с трансформаторами, материал сердечника обладал способностью передавать магнитное поле. Что ж, электростатическое поле и диэлектрическая проницаемость — аналогичные понятия.Проницаемость аналогична проницаемости. Диэлектрическая проницаемость измеряется как диэлектрическая проницаемость k. Величина емкости напрямую связана с k.
Теперь на этом конкретном сайте есть симуляция. Пожалуйста, иди туда. Я собираюсь переехать туда в это время. Это касается факторов, влияющих на емкость. Здесь мы имеем симуляцию большого конденсатора. Что мы собираемся сделать здесь, так это изменить диэлектрический материал, изменить площадь пластины и изменить расстояние между пластинами.Когда мы это сделаем, мы увидим, как повлияет на емкость этого устройства?
Прежде всего, рассмотрим диэлектрический материал. Мы начинаем с бумаги между ними. Посмотрим, как мы это изменим, посмотрим. Давайте сначала изменим воздух. Теперь обратите внимание, что с воздухом наша емкость составляет 44,27 мФ. Воздух — плохой диэлектрический материал. Перейдем к бумаге. Обратите внимание, что он значительно подскочил до 154 мФ, до бакелита до 212 мФ, и если мы обратимся к слюде, вы заметите, что он подскочил до 239 мФ.Слюда была намного лучше. Я собираюсь оставить это на бумаге только потому, что считаю, что это лучше всего отображается на экране.
А теперь изменим площадь пластины. Обратите внимание, что теперь площадь пластины очень большая. Пойдем и изменим это. Я собираюсь уменьшить его до наименьшего размера, который я смогу взять 0,02 кв. Площадь пластины… теперь обратите внимание, что значение емкости составляет 30,99 мФ. По мере того, как он растет, обратите внимание, что он прыгнул до 61 мФ, затем до 123 мФ и, наконец, до 154 мФ. И снова площадь пластины прямо пропорциональна емкости.
Наконец, расстояние. Теперь это расстояние между пластинами. Если мы войдем и изменим это расстояние, мы заметим, что собираемся… мы начнем с 154mF, где расстояние очень велико. Обратите внимание, когда я делаю его меньше, емкость значительно увеличивается. Обратите внимание, что на 0,001 МОм емкость подскочила до более чем 3000 мФ. Когда у нас есть 0,02M, обратите внимание, что он полностью падает до 154mF. Хорошо. Это послужило началом для конденсаторов. Здесь у нас будет еще один раздел.Это завершает 7,3 А.
Видеолекции, созданные Тимом Фигенбаумом в Общественном колледже Северного Сиэтла.
Конденсаторы различных типов и их применение
Конденсатор
Конденсаторы широко используются в качестве электронного компонента в современных схемах и устройствах. Конденсатор имеет долгую историю и используется более 250 лет назад. Конденсаторы являются старейшим электронным компонентом, который изучается, проектируется, разрабатывается и используется. С развитием технологий конденсаторы выпускаются разных типов в зависимости от их характеристик.В этой статье мы обсудим самые популярные и полезные типы конденсаторов. Конденсатор является компонентом, и он имеет способность накапливать энергию в виде электрического заряда, который создает электрическую разность между его пластинами, и он похож на небольшую аккумуляторную батарею.
Что такое конденсатор?Конденсатор является пассивным компонентом и накапливает электрическую энергию в электрическом поле. Эффект конденсатора известен как емкость.Он состоит из двух близких проводников и разделен диэлектрическим материалом. Если пластины подключены к источнику питания, они накапливают электрический заряд. Одна пластина накапливает положительный заряд, а другая пластина — отрицательный. Электрический символ конденсатора показан ниже.
Обозначение конденсатора
Емкость
Емкость — это отношение электрического заряда (Q) к напряжению (В), математическое разложение приведено ниже.
C = Q / V
Где
- Q — электрический заряд в кулонах
- C — емкость в фарадах
- V — напряжение между пластинами в вольтах
Ниже перечислены различные типы конденсаторов.
- Электролитический конденсатор
- Слюдяной конденсатор
- Бумажный конденсатор
- Пленочный конденсатор
- Неполяризованный конденсатор
- Керамический конденсатор
Электролитический конденсатор
Этот изолирующий слой очень тонкий, можно изготавливать конденсаторы с большим значением емкости для физического размера, который мал, а расстояние между двумя пластинами очень мало.Типы конденсаторов в большинстве электролитических являются поляризованными, то есть на клемму конденсатора подается постоянное напряжение, и они должны иметь правильную полярность.
Если положительный вывод к положительному выводу и отрицательный к отрицательному выводу из-за неправильной поляризации приведет к разрыву изолирующего оксидного слоя и необратимому повреждению. Все поляризованные электролитические конденсаторы имеют четкую полярность с отрицательным знаком, указывающим на отрицательный вывод, и полярность должна соблюдаться.
Электролитические конденсаторы обычно используются в цепи питания постоянного тока, потому что они имеют большую емкость и малы для снижения напряжения пульсаций. Эти электролитические конденсаторы используются для связи и развязки. Недостатком электролитических конденсаторов является их относительно низкое напряжение из-за поляризации электролитического конденсатора.
Слюдяной конденсаторЭтот конденсатор представляет собой группу природных минералов, а в конденсаторах из серебряной слюды используется диэлектрик.Существует два типа слюдяных конденсаторов: фиксированные конденсаторы и серебряные слюдяные конденсаторы . Фиксированные слюдяные конденсаторы считаются устаревшими из-за их худших характеристик. Серебряные слюдяные конденсаторы изготавливаются путем прослоения листа слюды, покрытого металлом с обеих сторон, и затем этот узел покрывается эпоксидной смолой для защиты окружающей среды. Слюдяные конденсаторы используются в конструкции, требующей стабильного, надежного конденсатора относительно небольшого размера.
Слюдяной конденсатор
Слюдяные конденсаторы — это конденсаторы с низкими потерями, используемые на высоких частотах, и этот конденсатор очень стабилен химически, электрически и механически из-за его специфической кристаллической структуры, связывающей его, и это обычно слоистая структура.Чаще всего используются слюда мусковит и флогопит. Мусковитовая слюда лучше по электрическим свойствам, а другая слюда обладает стойкостью к высоким температурам.
Бумажный конденсаторКонструкция бумажного конденсатора находится между двумя листами оловянной фольги, отделенными от бумаги, или промасленной бумагой и тонкой вощеной. Сэндвич из тонкой фольги и бумаги затем скатывается в цилиндрическую форму и помещается в пластиковую капсулу.Две тонкие фольги бумажных конденсаторов прикрепляются к внешней нагрузке.
Бумажный конденсатор
На начальном этапе, если конденсаторы использовались между двумя фольгами конденсатора, бумага использовалась между двумя фольгами, но в наши дни используются другие материалы, такие как пластмассы, поэтому он называется бумажным конденсатором. Диапазон емкости бумажного конденсатора составляет от 0,001 до 2 000 мкФ, а напряжение очень высокое, до 2000 В.
Пленочный конденсаторПленочные конденсаторы также являются конденсаторами, и в качестве диэлектрика в них используется тонкий пластик.Пленочный конденсатор изготавливается чрезвычайно тонким с использованием сложного процесса вытягивания пленки. Если пленка производственная, она может быть металлизирована в зависимости от свойств конденсатора. Для защиты от воздействия окружающей среды электроды добавляются и собираются.
Пленочный конденсатор
Существует различных типов пленочных конденсаторов. Доступны , такие как полиэфирная пленка, металлизированная пленка, полипропиленовая пленка, пленка из ПТЭ и полистирольная пленка. Основное различие между этими типами конденсаторов заключается в том, что материал, используемый в качестве диэлектрика, и диэлектрик следует выбирать в соответствии с их свойствами.Применение пленочных конденсаторов — стабильность, низкая индуктивность и низкая стоимость.
Емкость пленки PTE является термостойкостью и используется в аэрокосмической и военной технике. Конденсатор с металлизированной полиэфирной пленкой используется там, где требуется длительная стабильность при относительно низком уровне.
Неполяризованные конденсаторыНеполяризованные конденсаторы подразделяются на два типа конденсаторов с пластиковой фольгой, а другой — электролитический неполяризованный конденсатор.
Неполяризованный конденсатор
Конденсатор из пластиковой фольги неполяризован по своей природе, а электролитические конденсаторы, как правило, представляют собой два последовательно соединенных конденсатора, которые расположены друг за другом, поэтому в результате получается неполяризованный конденсатор с половинной емкостью. Неполяризованный конденсатор требует подключения переменного тока последовательно или параллельно с сигналом или источником питания.
Примерами являются фильтры кроссовера динамиков и сеть коррекции коэффициента мощности. В этих двух приложениях на конденсатор подается большой сигнал переменного напряжения.
Керамический конденсаторКерамические конденсаторы являются конденсаторами и используют керамический материал в качестве диэлектрика. Керамика — один из первых материалов, используемых в производстве конденсаторов в качестве изолятора.
Керамический конденсатор
В керамических конденсаторах используется много геометрических форм, и некоторые из них представляют собой керамический трубчатый конденсатор. Конденсаторы с барьерным слоем устарели из-за своего размера, паразитных эффектов или электрических характеристик.Два распространенных типа керамических конденсаторов — это многослойный керамический конденсатор , (MLCC) и керамический дисковый конденсатор.
Многослойные керамические конденсаторы изготавливаются по технологии поверхностного монтажа (SMD), они меньше по размеру, поэтому широко используются. Номиналы керамических конденсаторов обычно находятся в диапазоне от 1 нФ до 1 мкФ, и возможны значения до 100 мкФ.
Керамические дисковые конденсаторы изготавливаются путем покрытия керамического диска серебряными контактами с обеих сторон, и для достижения большей емкости эти устройства состоят из нескольких слоев.Керамические конденсаторы будут иметь высокочастотные характеристики из-за паразитных эффектов, таких как сопротивление и индуктивность.
Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о конденсаторах MCQ
В этой статье мы рассказали о различных типах конденсаторов и их использовании. Я надеюсь, что, прочитав эту статью, вы получили некоторые базовые знания о типах конденсаторов. Если у вас есть какие-либо вопросы об этой статье или о реализации, пожалуйста, оставьте комментарий в разделе ниже.Вот вопрос к вам в конденсаторах, в которых хранится заряд электролита?
Как работают конденсаторы? — Объясни, что материал
Криса Вудфорда. Последнее изменение: 10 июля 2020 г.
Посмотрите в небо большую часть времени, и вы увидите огромные конденсаторы парит над твоей головой. Конденсаторы (иногда называемые конденсаторами) устройства хранения энергии, которые широко используются в телевизорах, радиоприемники и другое электронное оборудование. Настройте радио на станции, сделайте снимок со вспышкой с помощью цифрового камеру или щелкни каналов на вашем HDTV, и у вас все хорошо использование конденсаторов.В конденсаторы, которые дрейфуют по небу, более известны как облака и, хотя они совершенно гигантские по сравнению с конденсаторами, которые мы используем в электронике они точно так же накапливают энергию. Давайте принимать подробнее рассмотрим конденсаторы и как они работают!
Фотография: Типичный конденсатор, используемый в электронных схемах. Этот называется электролитическим конденсатором и рассчитан на 4,7 мкФ (4,7 мкФ). с рабочим напряжением 350 вольт (350 В).
Что такое конденсатор?
Фото: Маленький конденсатор в транзисторной радиосхеме.
Возьмем два электрических провода (то, что пропускает электричество через них) и разделите их изолятором (материал тот не пропускает электричество очень хорошо) и вы делаете конденсатор: то, что может хранить электрическую энергию. Добавление электроэнергии к конденсатору называется зарядный ; высвобождая энергию из конденсатор известен как разрядный .
А конденсатор немного похож на батарею, но у него другая работа делать.Батарея использует химические вещества для хранения электрической энергии и высвобождения это очень медленно через цепь; иногда (в случае кварца смотреть) это может занять несколько лет. Конденсатор обычно высвобождает это энергия намного быстрее — часто за секунды или меньше. Если вы берете например, снимок со вспышкой, вам понадобится камера, чтобы огромная вспышка света за доли секунды. Конденсатор прилагается к вспышке заряжается в течение нескольких секунд, используя энергию вашего аккумуляторы фотоаппарата. (Для зарядки конденсатора требуется время, и это почему обычно приходится немного подождать.) Как только конденсатор полностью заряжен, он может высвободить всю эту энергию. в мгновение ока через ксеноновую лампочку-вспышку. Зап!
Конденсаторыбывают всех форм и размеров, но обычно они те же основные компоненты. Есть два проводника (известные как пластины , , в основном по историческим причинам) и между ними есть изолятор. их (называемый диэлектриком ). Две пластины внутри конденсатора подключены к двум электрическим соединения на внешней стороне называются клеммами , которые похожи на тонкие металлические ножки можно подключить в электрическую цепь.
Фото: Внутри электролитический конденсатор немного похож на швейцарский рулет. «Пластины» — это два очень тонких листа металла; диэлектрик — маслянистая пластиковая пленка между ними. Все это упаковано в компактный цилиндр и покрыто металлическим защитным футляром. ВНИМАНИЕ! Открывать конденсаторы может быть опасно. Во-первых, они могут выдерживать очень высокое напряжение. Во-вторых, диэлектрик иногда состоит из токсичных или едких химикатов, которые могут обжечь кожу.
Изображение: как электролитический конденсатор изготавливается путем скатывания листов алюминиевой фольги (серого цвета) и диэлектрического материала (в данном случае бумаги или тонкой марли, пропитанной кислотой или другим органическим химическим веществом).Листы фольги подключаются к клеммам (синим) наверху, поэтому конденсатор можно подключить в цепь. Изображение любезно предоставлено Управлением по патентам и товарным знакам США из патента США 2089683: Электрический конденсатор Фрэнка Кларка, General Electric, 10 августа 1937 г.
Вы можете зарядить конденсатор, просто подключив его к электрическая цепь. При включении питания электрический заряд постепенно накапливается на пластинах. Одна пластина получает положительный заряд а другая пластина получает равный и противоположный (отрицательный) заряд.Если вы отключаете питание, конденсатор держит заряд (хотя со временем он может медленно вытекать). Но если подключить конденсатор ко второй цепи, содержащей что-то вроде электрического электродвигателя или лампочки-вспышки, заряд будет стекать с конденсатора через двигатель или лампу, пока на пластинах не останется ничего.
Хотя конденсаторы фактически выполняют только одну работу (хранение заряда), их можно использовать для самых разных целей в электротехнике. схемы. Их можно использовать в качестве устройств отсчета времени (потому что для этого требуется определенное, предсказуемое количество времени для их зарядки), как фильтры (схемы, которые пропускают только определенные сигналы), для сглаживания напряжение в цепях, для настройки (в радиоприемниках и телевизорах), а также для множество других целей.Большие суперконденсаторы также могут быть используется вместо батареек.
Что такое емкость?
Количество электрической энергии, которую может хранить конденсатор, зависит от его , емкость . Емкость конденсатора немного похожа на размер ведра: чем больше ведро, тем больше воды оно может вместить; чем больше емкость, тем больше электричества может выдержать конденсатор. хранить. Есть три способа увеличить емкость конденсатор. Один из них — увеличить размер тарелок.Другой — сдвиньте пластины ближе друг к другу. Третий способ — сделать диэлектрик как можно лучше изолятор. Конденсаторы используют диэлектрики из всевозможных материалов. В транзисторных радиоприемниках Настройка осуществляется большим переменным конденсатором , который между пластинами нет ничего, кроме воздуха. В большинстве электронных схем конденсаторы представляют собой герметичные компоненты с диэлектриками из керамики такие как слюда и стекло, бумага, пропитанная маслом, или пластмассы, такие как майлар.
Фото: Этот переменный конденсатор прикреплен к главной шкале настройки в транзисторном радиоприемнике.Когда вы поворачиваете циферблат пальцем, вы поворачиваете ось, проходящую через конденсатор. Это вращает набор тонких металлических пластин, так что они перекрываются в большей или меньшей степени с другим набором пластин, продетых между ними. Степень перекрытия пластин изменяет емкость, и именно это настраивает радио на определенную станцию.
Как измерить емкость?
Размер конденсатора измеряется в единицах, называемых фарад (F), названный в честь английского пионера электротехники Майкла Фарадея (1791–1867).Один фарад — это огромная емкость так что на практике большинство конденсаторов, с которыми мы сталкиваемся, просто доли фарада — обычно микрофарады (миллионные доли фарада, пишется мкФ), нанофарады (тысячные доли фарада, написанные нФ), и пикофарады (миллионные доли фарада, написано пФ). Суперконденсаторы хранят гораздо большие заряды, иногда оценивается в тысячи фарадов.
Почему конденсаторы накапливают энергию?
Если вы находите конденсаторы загадочными и странными, и они на самом деле не имеют для вас смысла, вместо этого попробуйте подумать о гравитации.Предположим, вы стоите у подножия ступенек. и вы решаете начать восхождение. Вы должны поднять свое тело против земного притяжения, которая является притягивающей (тянущей) силой. Как говорят физики, чтобы подняться, нужно «работать». лестница (работать против силы тяжести) и использовать энергию. Энергия, которую вы используете, не теряется, но хранится в вашем теле в виде гравитационной потенциальной энергии, которую вы могли бы использовать для других целей (например, спуск вниз по горке на уровень земли).
То, что вы делаете, когда поднимаетесь по ступеням, лестницам, горам или чему-либо еще, работает против Земли. гравитационное поле.Очень похожая вещь происходит с конденсатором. Если у вас есть положительный электрический заряд и отрицательный электрический заряд, они притягиваются друг к другу, как противоположное полюса двух магнитов — или как ваше тело и Земля. Если вы их разделите, вам придется «поработать» против этого электростатического заряда. сила. Опять же, как и при подъеме по ступенькам, энергия, которую вы используете, не теряется, а накапливается зарядами, когда они отдельный. На этот раз она называется электрической потенциальной энергией . И это, если вы не догадались к настоящему времени это энергия, которую накапливает конденсатор.Две его пластины содержат противоположные заряды и разделение между ними создает электрическое поле. Вот почему конденсатор накапливает энергию.
Почему у конденсаторов две пластины?
Фото: Очень необычный регулируемый конденсатор с параллельными пластинами, который Эдвард Беннетт Роза и Ноа Эрнест Дорси из Национального бюро стандартов (NBS) использовали для измерения скорости света в 1907 году. Точное расстояние между ними. пластины можно регулировать (и измерять) с помощью микрометрического винта.Фото любезно предоставлено Национальным институтом стандартов и технологий цифровых коллекций, Гейтерсбург, Мэриленд 20899.
Как мы уже видели, конденсаторы имеют две токопроводящие пластины. разделены изолятором. Чем больше тарелки, тем ближе они являются, и чем лучше изолятор между ними, тем больше заряда конденсатор можно хранить. Но почему все это правда? Почему бы и нет у конденсаторов только одна большая пластина? Попробуем найти простой и удовлетворительное объяснение.
Предположим, у вас есть большой металлический шар, установленный на изоляционном деревянная подставка.Вы можете хранить определенное количество электрического заряда на сфера; чем он больше (чем больше радиус), тем больше заряда вы можете хранить, и чем больше заряда вы храните, тем больше потенциал (напряжение) сферы. Однако в конце концов вы достигнете точка, в которой, если вы добавите хотя бы один дополнительный электрон ( наименьшая возможная единица заряда) конденсатор перестанет работать. Воздух вокруг него разобьется, превратившись из изолятора в проводник: заряд будет лететь по воздуху на Землю (землю) или другой ближайший проводник в виде искры — электрического тока — в мини- заряд молнии.Максимальный заряд, который вы можете хранить на сфера — это то, что мы подразумеваем под ее емкостью. Напряжение (В), заряд (Q) и емкость связаны очень простым уравнением:
C = Q / V
Таким образом, чем больше заряда вы можете сохранить при данном напряжении, не вызывая воздух для разрушения и искры, тем выше емкость. Если бы ты мог как-то хранить больше заряда на сфере, не доходя до точки там, где вы создали искру, вы бы эффективно увеличили ее емкость. Как ты мог это сделать?
Забудьте о сфере.Предположим, у вас есть плоская металлическая пластина с максимально возможный заряд, хранящийся на нем, и вы обнаружите, что пластина находится на определенное напряжение. Если вы поднесете вторую идентичную тарелку близко к это, вы обнаружите, что можете хранить гораздо больше заряда на первой пластине для такое же напряжение. Это потому, что первая пластина создает электрический поле вокруг него, которое «индуцирует» равный и противоположный заряд на второй тарелке. Таким образом, вторая пластина снижает напряжение. первой пластины. Теперь мы можем хранить больше заряда на первой пластине не вызывая искры.Мы можем продолжать делать это, пока не достигнем исходное напряжение. С большим запасом заряда (Q) точно так же напряжение (В), уравнение C & равно; Q / V сообщает нам, что мы увеличили емкость нашего устройства накопления заряда, добавив вторую пластину, и именно поэтому конденсаторы имеют две пластины, а не одну. На практике дополнительная пластина дает огромную разницу в , что Вот почему все конденсаторы на практике имеют две пластины.
Как увеличить емкость?
Интуитивно очевидно, что если вы сделаете тарелки больше, вы сможете хранить больше заряда (так же, как если бы вы сделали шкаф больше, вы можете набить больше вещи внутри него).Так что увеличение площади пластин также увеличивает емкость. Менее очевидно, если мы уменьшим расстояние между пластинами, что также увеличивает емкость. Это ведь чем короче расстояние между пластинами, тем больше эффект пластины располагаются одна на другой. Вторая тарелка, будучи ближе, еще больше снижает потенциал первой пластины, и это увеличивает емкость.
Изображение: диэлектрик увеличивает емкость конденсатора за счет уменьшения электрического поле между пластинами, что снижает потенциал (напряжение) каждой пластины.Это означает, что вы можете хранить больше заряд на пластинах при одинаковом напряжении. Электрическое поле в этом конденсаторе исходит от положительной пластины. слева к отрицательной пластине справа. Поскольку противоположные заряды притягиваются, полярные молекулы (серые) диэлектрика выстраиваются в линию в противоположном направлении — и это то, что уменьшает поле.
Последнее, что мы можем сделать, чтобы увеличить емкость, — это изменить диэлектрик (материал между пластинами). Воздух работает неплохо, но другие материалы даже лучше.Стекло как минимум в 5 раз больше эффективнее воздуха, поэтому самые ранние конденсаторы (Leyden банки, используя обычное стекло в качестве диэлектрика) работали так хорошо, но это тяжело, непрактично, и его трудно втиснуть в небольшие помещения. Вощеный бумага примерно в 4 раза лучше воздуха, очень тонкая, дешевая, легко изготавливать крупными кусками и легко скатывать, что делает его отличным, практический диэлектрик. Лучшие диэлектрические материалы сделаны из полярных молекулы (с более положительным электрическим зарядом с одной стороны и с другой стороны, больше отрицательного электрического заряда).Когда они сидят в электрическое поле между двумя пластинами конденсатора, они совпадают со своими заряды направлены напротив поля, что эффективно его уменьшает. Это снижает потенциал на пластинах и, как и раньше, увеличивает их емкость. Теоретически вода, состоящая из крошечных полярные молекулы, будут отличным диэлектриком, примерно в 80 раз лучше воздуха. На практике, правда, не все так хорошо (протекает и высыхает и превращается из жидкости в лед или пар при относительно умеренные температуры), поэтому в реальных конденсаторах он не используется.
Диаграмма: Различные материалы делают диэлектрики лучше или хуже в зависимости от того, насколько хорошо они изолируют пространство между пластинами конденсатора и уменьшают электрическое поле между ними. Измерение, называемое относительной диэлектрической проницаемостью, говорит нам, насколько хорошим будет диэлектрик. Вакуум является наихудшим диэлектриком, и его относительная диэлектрическая проницаемость равна 1. Другие диэлектрики измеряются относительно (путем сравнения) с вакуумом. Воздух примерно такой же. Бумага примерно в 3 раза лучше.Спирт и вода, которые имеют полярные молекулы, являются особенно хорошими диэлектриками.
.