БП компьютера – цвета проводов, напряжение на разъемах
Из блока питания компьютера выходит толстый жгут проводов разного цвета и на первый взгляд, кажется, что разобраться с распиновкой разъемов невозможно.
Но если знать правила цветовой маркировки проводов, выходящих из блока питания, то станет понятно, что означает цвет каждого провода, какое напряжение на нем присутствует и к каким узлам компьютера провода подключаются.
Цветовая распиновка разъемов БП компьютера
В современных компьютерах применяются Блоки питания АТХ, а для подачи напряжения на материнскую плату используется 20 или 24 контактный разъём. 20 контактный разъем питания использовался при переходе со стандарта АТ на АТХ. С появлением на материнских платах шины PCI-Express, на Блоки питания стали устанавливать 24 контактные разъемы.
20 контактный разъем отличается от 24 контактного разъема отсутствием контактов с номерами 11, 12, 23 и 24. На эти контакты в 24 контактном разъеме подается продублированное уже имеющееся на других контактах напряжение.
Контакт 20 (белый провод) ранее служил для подачи −5 В в источниках питания компьютеров ATX версий до 1.2. В настоящее время это напряжение для работы материнской платы не требуется, поэтому в современных источниках питания не формируется и контакт 20, как правило, свободный.
Иногда блоки питания комплектуются универсальным разъемом для подключения к материнской плате. Разъем состоит из двух. Один является двадцати контактным, а второй – четырехконтактный (с номерами контактов 11, 12, 23 и 24), который можно пристегнут к двадцати контактному разъему и, получится уже 24 контактный.
Так что если будете менять материнскую плату, для подключения которой нужен не 20, а 24 контактный разъем, то стоит обратить внимание, вполне возможно подойдет и старый блок питания, если в его наборе разъемов есть универсальный 20+4 контактный.
В современных Блоках питания АТХ, для подачи напряжения +12 В бывают еще вспомогательные 4, 6 и 8 контактные разъемы. Они служат для подачи дополнительного питающего напряжения на процессор и видеокарту.
Как видно на фото, питающий проводник +12 В имеет желтый цвет с черной долевой полосой.
Для питания жестких и SSD дисков в настоящее время применяется разъем типа Serial ATA. Напряжения и номера контактов показаны на фотографии.
Морально устаревшие разъемы БП
Этот 4 контактный разъем ранее устанавливался в БП для питания флоппи-дисковода, предназначенного для чтения и записи с 3,5 дюймовых дискет. В настоящее время можно встретить только в старых моделях компьютеров.
В современные компьютеры дисководы Floppy disk не устанавливаются, так как они морально устарели.
Четырехконтактный разъем на фото, является самым долго применяемым, но уже морально устарел. Он служил для подачи питающего напряжения +5 и +12 В на съемные устройства, винчестеры, дисководы. В настоящее время вместо него в БП устанавливается разъем типа Serial ATA.
Системные блоки первых персональных компьютеров комплектовались Блоками питания типа АТ. К материнской плате подходил один разъем, состоящий из двух половинок. Его надо было вставлять таким образом, чтобы черные провода были рядом. Питающее напряжение в эти Блоки питания подавалось через выключатель, который устанавливался на лицевой панели системного блока. Тем не менее, по выводу PG, сигналом с материнской платы имелась возможность включать и выключать Блок питания.
В настоящее время Блоки питания АТ практически вышли из эксплуатации, однако их с успехом можно использовать для питания любых других устройств, например, для питания ноутбука от сети, в случае выхода из строя его штатного блока питания, запитать паяльник на 12 В, или низковольтные лампочки, светодиодные ленты и многое другое. Главное не забывать, что Блок питания АТ, как и любой импульсный блок питания, не допускается включать в сеть без внешней нагрузки.
Справочная таблица цветовой маркировки,
величины напряжений и размаха пульсаций на разъемах БП
Провода одного цвета, выходящие из блока питания компьютера, припаяны внутри к одной дорожке печатной платы, то есть соединены параллельно. Поэтому напряжение на всех провода одного цвета одинаковой величины.
Напряжение +5 В SB (Stand-by) – (провод фиолетового цвета) вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.
Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.
При измерении напряжений «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» – к контактам в разъеме. Можно проводить измерения выходных напряжений непосредственно в работающем компьютере.
Напряжение минус 12 В (провод синего цвета) необходимо только для питания интерфейса RS-232, который в современные компьютеры не устанавливают. Поэтому в блоках питания последних моделей это напряжение может отсутствовать.
Отклонение питающих напряжений от номинальных значений не должно превышать значений, приведенных в таблице.
При измерении напряжения на проводах блока питания, он должен быть обязательно подключен к нагрузке, например, к материнской плате или самодельному блоку нагрузок.
Установка в БП компьютера
дополнительного разъема для видеокарты
Иногда бывают, казалось бы, безвыходные ситуации. Например, Вы купили современную видеокарту, решили установить в компьютер. Нужный слот на материнской плате для установки видеокарты есть, а подходящего разъема на проводах, для дополнительного питания видеокарты, идущих от блока питания нет. Можно купить переходник, заменить блок питания целиком, а можно самостоятельно установить на блок питания дополнительный разъем для питания видеокарты. Это простая задача, главное иметь подходящий разъем, его можно взять от неисправного блока питания.
Сначала нужно подготовить провода, идущие от разъемов для соединения со сдвигом, как показано на фотографии. Дополнительный разъем для питания видеокарты можно присоединить к проводам, идущим, например, от блока питания на дисковод А. Можно присоединиться и к любым другим проводам нужного цвета, но с таким расчетом, чтобы хватило длины для подключения видеокарты, и желательно, чтобы к ним ничего больше не было подключено. Черные провода (общие) дополнительного разъема для питания видеокарты соединяются с черным проводом, а желтые (+12 В), соответственно с проводом желтого цвета.
Провода, идущие от дополнительного разъема для питания видеокарты, плотно обвиваются не менее чем тремя витками вокруг провода, к которому они присоединяются. Если есть возможность, то лучше соединения пропаять паяльником. Но и без пайки в данном случае контакт будет достаточно надежным.
Завершается работа по установке дополнительного разъема для питания видеокарты изолированием места соединения, несколько витков и можно подключать видеокарту к блоку питания. Благодаря тому, что места скруток сделаны на удалении друг от друга, каждую скрутку изолировать по отдельности нет необходимости. Достаточно покрыть изоляцией только участок, на котором оголены провода.
Доработка разъема БП
для подключения материнской платы
При выходе из строя материнской платы или модернизации (апгрейде) компьютера, связанного с заменой материнской платы, неоднократно приходилось сталкиваться с отсутствием у блока питания разъема для подачи питающего напряжения с 24 контактами.
Имеющийся разъем на 20 контактов хорошо вставлялся с материнскую плату, но работать компьютер при таком подключении не мог. Необходим был специальный переходник или замена блока питания, что являлось дорогим удовольствием.
Но можно сэкономить, если немного самому поработать руками. У блока питания, как правило, есть много незадействованных разъемов, среди них может быть и четырех, шести или восьми контактный. Четырехконтактный разъем, как на фотографии выше, отлично вставляется в ответную часть разъема на материнской плате, которая осталась незанятой при установке 20 контактного разъема.
Обратите внимание, как в разъеме, идущем от блока питания компьютера, так и в ответной части на материнской плате каждый контакт имеет свой ключ, исключающий неправильное подключение. У некоторых изоляторов контактов форма с прямыми углами, а у иных углы срезаны. Нужно разъем сориентировать, чтобы он входил. Если не получится подобрать положение, то срезать мешающий угол.
По отдельности как 20 контактный, так и 4 контактный разъемы вставляются хорошо, а вместе не вставляются, мешают друг другу. Но если немного сточить соприкасаемые стороны обоих разъемов напильником или наждачной бумагой, то хорошо вставятся.
После подгонки корпусов разъемов можно приступать к присоединению проводов 4 контактного разъема к проводам 20 контактного. Цвета проводов дополнительного 4 контактного разъема отличаются от стандартного, поэтому на них не нужно обращать внимания и соединить, как показано на фотографии.
Будьте крайне внимательными, ошибки недопустимы, сгорит материнская плата! Ближний левый, контакт №23, на фото черный, подсоединяется к красному проводу (+5 В). Ближний правый №24, на фото желтый, подсоединяется к черному проводу (GND). Дальний левый, контакт №11, на фото черный, подсоединяется к желтому проводу (+12 В). Дальний правый, контакт №12, на фото желтый, подсоединяется к оранжевому проводу (+3,3 В).
Осталось покрыть места соединения несколькими витками изоляционной ленты и новый разъем будет готов к работе.
Для того, чтобы не задумываться как правильно устанавливать сборный разъем в разъем материнской платы следует нанести с помощью маркера метку.
Как на БП компьютера
подается питающее напряжение от электросети
Для того чтобы постоянные напряжения появились на цветных проводах блока питания, на его вход нужно подать питающее напряжение. Для этого на стенке, где обычно установлен кулер, имеется трехконтактный разъем. На фотографии этот разъем справа вверху. В нем есть три штыря. На крайние с помощью сетевого шнура подается питающее напряжение, а средний является заземляющим, и он через сетевой шнур при его подключении соединяется с заземляющим контактом электрической розетки. Ниже на некоторых Блоках питания, например на этом, установлен сетевой выключатель.
В домах старой постройки электропроводка выполнена без заземляющего контура, в этом случае заземляющий проводник компьютера остается не подключенным. Опыт эксплуатации компьютеров показал, что если заземляющий проводник не подключен, то это на работу компьютера в целом не сказывается.
Сетевой шнур для подключения Блока питания к электросети представляет собой трехжильный кабель, на одном конце которого имеется трех контактный разъем для подключения непосредственно к Блоку питания. На втором конце кабеля установлена вилка C6 с круглыми штырями диаметром 4,8 мм с заземляющим контактом в виде металлических полосок по бокам ее корпуса.
Если вскрыть пластмассовую оболочку кабеля, то можно увидеть три цветных провода. Желто — зеленый – является заземляющим, а по коричневому и синему (могут быть и другого цвета), подается питающее напряжение 220В.
Желто — зеленый провод в вилке С6 присоединяется к заземляющим боковым полоскам. Так что если придется заменять вилку, не забудьте об этом. Все о электрических вилках и правилах их подключения можете узнать из статьи сайта «Электрическая вилка».
О сечении проводов, выходящих из БП компьютера
Хотя токи, которые может отдавать в нагрузку блок питания, составляют десятки ампер, сечение выходящих проводников, как правило, составляет всего 0,5 мм2, что допускает передачу тока по одному проводнику величиной до 3 А. Более подробно о нагрузочной способности проводов Вы можете узнать из статьи «О выборе сечения провода для электропроводки». Однако все провода одного цвета запаяны на печатной плате в одну точку, и если блок или модуль в компьютере потребляет больший, чем 3 А ток, через разъем подводится напряжение по нескольким проводам, включенным параллельно. Например к материнской плате напряжение +3,3 В и +5 В подводится по четырем проводам. Таким образом, обеспечивается подача тока на материнскую плату до 12 А.
Выходы блока питания компьютера вольтаж
Блок питания — «сердце» электроснабжения компонентов компьютера. Он преобразует входящее переменное напряжение в постоянный ток напряжением +3,3 В, +5 В, +12 В.
1. Блок питания компьютера, его разъёмы и напряжения
2. Расчёт мощности
3. Основные характеристики блоков питания
Блок питания компьютера, его разъёмы и напряжения
Компоненты компьютера используют следующие напряжения:
+3,3В — Материнская плата, модули памяти, платы PCI, AGP, PCI-E, контроллеры
+5В — Дисковые накопители, приводы, PCI, AGP, ISA
+12В — Приводы, карты AGP, PCI-E
Как видно одни и те же компоненты могут использовать разные напряжения.
Функция PS_ON позволяет выключить и включить блок питания программно. Эта функция выключает блок питания когда операционная система завершит свою работу.
Сигнал Power_Good. При включении компьютера блок питания проводит самотестирование. И если выходные напряжения питания в норме он посылает сигнал на материнскую плату в чип управления питанием процессора. Если он не получит такой сигнал, система не запустится.
Бывает так что на блоке питания не хватает необходимых разъёмов. Выйти из положения можно, применяя различные переходники и разветвители:
Расчёт мощности
Мощности на выходе по каждой линии обычно написаны на наклейке блока питания и расчитываются по формуле:
Ватты (Вт) = Вольты (В) х Амперы (А)
Тем самым сложив все мощности по каждой линии получим общую мощность блока питания.
Однако, часто выходная мощность не соответствует заявленной. Лучше брать немного более мощный блок, чтобы компенсировать возможную нехватку мощности.
Предпочтение думаю лучше отдавать проверенным брендам, однако не факт что блок будет качественным. Проверить можно только одним способом — вскрыть его. Должны быть массивные радиаторы, входные конденсаторы большой ёмкости, качественный трансформатор, должны быть распаяны все детали
Основные характеристики блоков питания
Блоки питания не могут работать без нагрузки. При его проверки, к нему необходимо подключить что-нибудь. Иначе он может сгореть или, при наличии защиты, он отключится.
Запустить его можно закорачиванием двух проводков на основном разъёме ATX, зелёного и любого чёрного.
Добавлено: 5.5.2015 • : 31926
Блок питания — «сердце» электроснабжения компонентов компьютера. Он преобразует входящее переменное напряжение в постоянный ток напряжением +3,3 В, +5 В, +12 В.
1. Блок питания компьютера, его разъёмы и напряжения
2. Расчёт мощности
3. Основные характеристики блоков питания
Блок питания компьютера, его разъёмы и напряжения
Компоненты компьютера используют следующие напряжения:
+3,3В — Материнская плата, модули памяти, платы PCI, AGP, PCI-E, контроллеры
+5В — Дисковые накопители, приводы, PCI, AGP, ISA
+12В — Приводы, карты AGP, PCI-E
Как видно одни и те же компоненты могут использовать разные напряжения.
Функция PS_ON позволяет выключить и включить блок питания программно. Эта функция выключает блок питания когда операционная система завершит свою работу.
Сигнал Power_Good. При включении компьютера блок питания проводит самотестирование. И если выходные напряжения питания в норме он посылает сигнал на материнскую плату в чип управления питанием процессора. Если он не получит такой сигнал, система не запустится.
Бывает так что на блоке питания не хватает необходимых разъёмов. Выйти из положения можно, применяя различные переходники и разветвители:
Расчёт мощности
Мощности на выходе по каждой линии обычно написаны на наклейке блока питания и расчитываются по формуле:
Ватты (Вт) = Вольты (В) х Амперы (А)
Тем самым сложив все мощности по каждой линии получим общую мощность блока питания.
Однако, часто выходная мощность не соответствует заявленной. Лучше брать немного более мощный блок, чтобы компенсировать возможную нехватку мощности.
Предпочтение думаю лучше отдавать проверенным брендам, однако не факт что блок будет качественным. Проверить можно только одним способом — вскрыть его. Должны быть массивные радиаторы, входные конденсаторы большой ёмкости, качественный трансформатор, должны быть распаяны все детали
Основные характеристики блоков питания
Блоки питания не могут работать без нагрузки. При его проверки, к нему необходимо подключить что-нибудь. Иначе он может сгореть или, при наличии защиты, он отключится.
Запустить его можно закорачиванием двух проводков на основном разъёме ATX, зелёного и любого чёрного.
Добавлено: 5.5.2015 • : 31927
Из блока питания компьютера выходит толстый жгут проводов разного цвета и на первый взгляд, кажется, что разобраться с распиновкой разъемов невозможно.
Но если знать правила цветовой маркировки проводов, выходящих из блока питания, то станет понятно, что означает цвет каждого провода, какое напряжение на нем присутствует и к каким узлам компьютера провода подключаются.
Цветовая распиновка разъемов БП компьютера
В современных компьютерах применяются Блоки питания АТХ, а для подачи напряжения на материнскую плату используется 20 или 24 контактный разъём. 20 контактный разъем питания использовался при переходе со стандарта АТ на АТХ. С появлением на материнских платах шины PCI-Express, на Блоки питания стали устанавливать 24 контактные разъемы.
20 контактный разъем отличается от 24 контактного разъема отсутствием контактов с номерами 11, 12, 23 и 24. На эти контакты в 24 контактном разъеме подается продублированное уже имеющееся на других контактах напряжение.
Контакт 20 ( белый провод) ранее служил для подачи −5 В в источниках питания компьютеров ATX версий до 1.2. В настоящее время это напряжение для работы материнской платы не требуется, поэтому в современных источниках питания не формируется и контакт 20, как правило, свободный.
Иногда блоки питания комплектуются универсальным разъемом для подключения к материнской плате. Разъем состоит из двух. Один является двадцати контактным, а второй – четырехконтактный (с номерами контактов 11, 12, 23 и 24), который можно пристегнут к двадцати контактному разъему и, получится уже 24 контактный.
Так что если будете менять материнскую плату, для подключения которой нужен не 20, а 24 контактный разъем, то стоит обратить внимание, вполне возможно подойдет и старый блок питания, если в его наборе разъемов есть универсальный 20+4 контактный.
В современных Блоках питания АТХ, для подачи напряжения +12 В бывают еще вспомогательные 4, 6 и 8 контактные разъемы. Они служат для подачи дополнительного питающего напряжения на процессор и видеокарту.
Как видно на фото, питающий проводник +12 В имеет желтый цвет с черной долевой полосой.
Для питания жестких и SSD дисков в настоящее время применяется разъем типа Serial ATA. Напряжения и номера контактов показаны на фотографии.
Морально устаревшие разъемы БП
Этот 4 контактный разъем ранее устанавливался в БП для питания флоппи-дисковода, предназначенного для чтения и записи с 3,5 дюймовых дискет. В настоящее время можно встретить только в старых моделях компьютеров.
В современные компьютеры дисководы Floppy disk не устанавливаются, так как они морально устарели.
Четырехконтактный разъем на фото, является самым долго применяемым, но уже морально устарел. Он служил для подачи питающего напряжения +5 и +12 В на съемные устройства, винчестеры, дисководы. В настоящее время вместо него в БП устанавливается разъем типа Serial ATA.
Системные блоки первых персональных компьютеров комплектовались Блоками питания типа АТ. К материнской плате подходил один разъем, состоящий из двух половинок. Его надо было вставлять таким образом, чтобы черные провода были рядом. Питающее напряжение в эти Блоки питания подавалось через выключатель, который устанавливался на лицевой панели системного блока. Тем не менее, по выводу PG, сигналом с материнской платы имелась возможность включать и выключать Блок питания.
В настоящее время Блоки питания АТ практически вышли из эксплуатации, однако их с успехом можно использовать для питания любых других устройств, например, для питания ноутбука от сети, в случае выхода из строя его штатного блока питания, запитать паяльник на 12 В, или низковольтные лампочки, светодиодные ленты и многое другое. Главное не забывать, что Блок питания АТ, как и любой импульсный блок питания, не допускается включать в сеть без внешней нагрузки.
Справочная таблица цветовой маркировки,
величины напряжений и размаха пульсаций на разъемах БП
Провода одного цвета, выходящие из блока питания компьютера, припаяны внутри к одной дорожке печатной платы, то есть соединены параллельно. Поэтому напряжение на всех провода одного цвета одинаковой величины.
Таблица цветовой маркировки проводов, выходных напряжений и размаха пульсаций БП АТХ | |||||||
---|---|---|---|---|---|---|---|
Выходное напряжение, В | +3,3 | +5,0 | +12,0 | -12,0 | +5,0 SB | +5,0 PG | GND |
Цветовая маркировка проводов | оранжевый | красный | желтый | синий | фиолетовый | серый | черный |
Допустимое отклонение, % | ±5 | ±5 | ±5 | ±10 | ±5 | – | – |
Допустимое минимальное напряжение | +3,14 | +4,75 | +11,40 | -10,80 | +4,75 | +3,00 | – |
Допустимое максимальное напряжение | +3,46 | +5,25 | +12,60 | -13,20 | +5,25 | +6,00 | – |
Размах пульсации не более, мВ | 50 | 50 | 120 | 120 | 120 | 120 | – |
Напряжение +5 В SB (Stand-by) – (провод фиолетового цвета) вырабатывает встроенный в БП самостоятельный маломощный источник питания выполненный на одном полевом транзисторе и трансформаторе. Это напряжение обеспечивает работу компьютера в дежурном режиме и служит только для запуска БП. Когда компьютер работает, то наличие или отсутствие напряжения +5 В SB роли не играет. Благодаря +5 В SB компьютер можно запустить нажатием кнопки «Пуск» на системном блоке или дистанционно, например, с Блока бесперебойного питания в случае продолжительного отсутствия питающего напряжения 220 В.
Напряжение +5 В PG (Power Good) – появляется на сером проводе БП через 0,1-0,5 секунд в случае его исправности после самотестирования и служит разрешающим сигналом для работы материнской платы.
При измерении напряжений «минусовой» конец щупа подсоединяется к черному проводу (общему), а «плюсовой» – к контактам в разъеме. Можно проводить измерения выходных напряжений непосредственно в работающем компьютере.
Напряжение минус 12 В (провод синего цвета) необходимо только для питания интерфейса RS-232, который в современные компьютеры не устанавливают. Поэтому в блоках питания последних моделей это напряжение может отсутствовать.
Отклонение питающих напряжений от номинальных значений не должно превышать значений, приведенных в таблице.
При измерении напряжения на проводах блока питания, он должен быть обязательно подключен к нагрузке, например, к материнской плате или самодельному блоку нагрузок.
Установка в БП компьютера
дополнительного разъема для видеокарты
Иногда бывают, казалось бы, безвыходные ситуации. Например, Вы купили современную видеокарту, решили установить в компьютер. Нужный слот на материнской плате для установки видеокарты есть, а подходящего разъема на проводах, для дополнительного питания видеокарты, идущих от блока питания нет. Можно купить переходник, заменить блок питания целиком, а можно самостоятельно установить на блок питания дополнительный разъем для питания видеокарты. Это простая задача, главное иметь подходящий разъем, его можно взять от неисправного блока питания.
Сначала нужно подготовить провода, идущие от разъемов для соединения со сдвигом, как показано на фотографии. Дополнительный разъем для питания видеокарты можно присоединить к проводам, идущим, например, от блока питания на дисковод А. Можно присоединиться и к любым другим проводам нужного цвета, но с таким расчетом, чтобы хватило длины для подключения видеокарты, и желательно, чтобы к ним ничего больше не было подключено. Черные провода (общие) дополнительного разъема для питания видеокарты соединяются с черным проводом, а желтые (+12 В), соответственно с проводом желтого цвета.
Провода, идущие от дополнительного разъема для питания видеокарты, плотно обвиваются не менее чем тремя витками вокруг провода, к которому они присоединяются. Если есть возможность, то лучше соединения пропаять паяльником. Но и без пайки в данном случае контакт будет достаточно надежным.
Завершается работа по установке дополнительного разъема для питания видеокарты изолированием места соединения, несколько витков и можно подключать видеокарту к блоку питания. Благодаря тому, что места скруток сделаны на удалении друг от друга, каждую скрутку изолировать по отдельности нет необходимости. Достаточно покрыть изоляцией только участок, на котором оголены провода.
Доработка разъема БП
для подключения материнской платы
При выходе из строя материнской платы или модернизации (апгрейде) компьютера, связанного с заменой материнской платы, неоднократно приходилось сталкиваться с отсутствием у блока питания разъема для подачи питающего напряжения с 24 контактами.
Имеющийся разъем на 20 контактов хорошо вставлялся с материнскую плату, но работать компьютер при таком подключении не мог. Необходим был специальный переходник или замена блока питания, что являлось дорогим удовольствием.
Но можно сэкономить, если немного самому поработать руками. У блока питания, как правило, есть много незадействованных разъемов, среди них может быть и четырех, шести или восьми контактный. Четырехконтактный разъем, как на фотографии выше, отлично вставляется в ответную часть разъема на материнской плате, которая осталась незанятой при установке 20 контактного разъема.
Обратите внимание, как в разъеме, идущем от блока питания компьютера, так и в ответной части на материнской плате каждый контакт имеет свой ключ, исключающий неправильное подключение. У некоторых изоляторов контактов форма с прямыми углами, а у иных углы срезаны. Нужно разъем сориентировать, чтобы он входил. Если не получится подобрать положение, то срезать мешающий угол.
По отдельности как 20 контактный, так и 4 контактный разъемы вставляются хорошо, а вместе не вставляются, мешают друг другу. Но если немного сточить соприкасаемые стороны обоих разъемов напильником или наждачной бумагой, то хорошо вставятся.
После подгонки корпусов разъемов можно приступать к присоединению проводов 4 контактного разъема к проводам 20 контактного. Цвета проводов дополнительного 4 контактного разъема отличаются от стандартного, поэтому на них не нужно обращать внимания и соединить, как показано на фотографии.
Будьте крайне внимательными, ошибки недопустимы, сгорит материнская плата! Ближний левый, контакт №23, на фото черный, подсоединяется к красному проводу (+5 В). Ближний правый №24, на фото желтый, подсоединяется к черному проводу (GND). Дальний левый, контакт №11, на фото черный, подсоединяется к желтому проводу (+12 В). Дальний правый, контакт №12, на фото желтый, подсоединяется к оранжевому проводу (+3,3 В).
Осталось покрыть места соединения несколькими витками изоляционной ленты и новый разъем будет готов к работе.
Для того, чтобы не задумываться как правильно устанавливать сборный разъем в разъем материнской платы следует нанести с помощью маркера метку.
Как на БП компьютера
подается питающее напряжение от электросети
Для того чтобы постоянные напряжения появились на цветных проводах блока питания, на его вход нужно подать питающее напряжение. Для этого на стенке, где обычно установлен кулер, имеется трехконтактный разъем. На фотографии этот разъем справа вверху. В нем есть три штыря. На крайние с помощью сетевого шнура подается питающее напряжение, а средний является заземляющим, и он через сетевой шнур при его подключении соединяется с заземляющим контактом электрической розетки. Ниже на некоторых Блоках питания, например на этом, установлен сетевой выключатель.
В домах старой постройки электропроводка выполнена без заземляющего контура, в этом случае заземляющий проводник компьютера остается не подключенным. Опыт эксплуатации компьютеров показал, что если заземляющий проводник не подключен, то это на работу компьютера в целом не сказывается.
Сетевой шнур для подключения Блока питания к электросети представляет собой трехжильный кабель, на одном конце которого имеется трех контактный разъем для подключения непосредственно к Блоку питания. На втором конце кабеля установлена вилка C6 с круглыми штырями диаметром 4,8 мм с заземляющим контактом в виде металлических полосок по бокам ее корпуса.
Если вскрыть пластмассовую оболочку кабеля, то можно увидеть три цветных провода. Желто — зеленый – является заземляющим, а по коричневому и синему (могут быть и другого цвета), подается питающее напряжение 220В.
Желто — зеленый провод в вилке С6 присоединяется к заземляющим боковым полоскам. Так что если придется заменять вилку, не забудьте об этом. Все о электрических вилках и правилах их подключения можете узнать из статьи сайта «Электрическая вилка».
О сечении проводов, выходящих из БП компьютера
Хотя токи, которые может отдавать в нагрузку блок питания, составляют десятки ампер, сечение выходящих проводников, как правило, составляет всего 0,5 мм 2 , что допускает передачу тока по одному проводнику величиной до 3 А. Более подробно о нагрузочной способности проводов Вы можете узнать из статьи «О выборе сечения провода для электропроводки». Однако все провода одного цвета запаяны на печатной плате в одну точку, и если блок или модуль в компьютере потребляет больший, чем 3 А ток, через разъем подводится напряжение по нескольким проводам, включенным параллельно. Например к материнской плате напряжение +3,3 В и +5 В подводится по четырем проводам. Таким образом, обеспечивается подача тока на материнскую плату до 12 А.
Допуски напряжения для компьютерных блоков питания. — keypro2.ru
Опубликовано Автор AdminПравильные диапазоны напряжения для шин питания ATX
Блок питания в ПК подает различные напряжения на внутренние устройства компьютера через разъемы питания. Эти напряжения не должны быть точными, но они могут изменяться только на определенную величину, называемую допуском.
Если источник питания обеспечивает части компьютера определенным напряжением, выходящим за пределы этого допуска, то устройства, на которые подается питание, могут работать некорректно… или вообще не работать.
Ниже приведена таблица, в которой перечислены допуски для каждой шины напряжения питания в соответствии с версией 2.2 спецификации ATX.
Допуски напряжения питания (ATX v2.2)
Таблица допусков блока питания | |||
---|---|---|---|
Номинальное напряжение | Допуск в процентах | Минимальное напряжение | Максимальное напряжение |
+ 3,3 В | ± 5% | +3,135 В | +3,465 В |
+ 5VDC | ± 5% | +4,750 В | +5,250 В |
+ 5VSB | ± 5% | +4,750 В | +5,250 В |
-5VDC (если используется) | ± 10% | -4,500 В | -5,500 В |
+ 12VDC | ± 5% | +11.400 В | +12.600 В |
-12VDC | ± 10% | -10.800 В | — 13.200 В |
Power Good Delay
Хорошая задержка питания (PG Delay) — это время, которое требуется блоку питания для полного запуска и подачи правильного напряжения на подключенные устройства.
В соответствии с Руководством по проектированию блоков питания для форм-факторов настольной платформы, задержка исправности питания, называемая задержкой PWR_OK в связанном документе, должна составлять от 100 мс до 500 мс.
Power Good Delay также иногда называют PG Delay или PWR_OK Delay
Просмотров: 8 873
Как Выбрать Блок Питания Для Компьютера
Блок питания компьютера обеспечивает электропитание всех основных комплектующих компьютера — материнскую плату, процессор, видеокарты, оптические приводы, карт-ридеры, жесткие диски, систему охлаждения и т.д. Поэтому от правильного выбора блока питания зависит стабильная и долговременная работа компьютера. Давайте же узнаем, как правильно подобрать компьютерный блок питания стандарта ATX 12V для станционарного ПК.
Блок питания компьютера с одной стороны, которая выходит наружу из системного блока, имеет основной питающий электрокабель, подключаемый к розетке и тумблер включения питания. С другой, обращенной внутрь, из него выходит множество проводов с различными разъемами для подключения к сети тех или иных устройств.
Расчет мощности блока питания для компьютера (вольтаж)
Основной характеристикой, на которую нужно обращать внимание при выборе блока питания, — его мощность, которая измеряется в ваттах — Вт (w). В данный момент есть блоки питания с разными показателями от 450w, 500w, 600w, 750w и более 1000 Вт. Для каждого компьютера мощность БП рассчитывается отдельно и складывается из потребляемой мощности каждого устройства. Приведу таблицу примерного потребления комплектующих среднего универсального компьютера.
- Материнская плата ~ 40 Вт
- Процессор ~ 140 Вт
- Модуль оперативной памяти ~ 10 Вт
- Видеокарта ~ 200 Вт
- Жесткий диск ~ 10 Вт
- Вентиляторы ~ 5 Вт
- Иные комплектующие ~ 50 Вт
- Запас мощности (~20%) ~ 70 Вт
- Итого, для универсального ПК будет достаточно блока питания с мощностью ~ 500 — 550 Вт
- Для небольшого офисного компа без видеокарты подойдет 350 — 400 Вт
- Для игрового — 600 Вт и выше
Калькулятор мощности
Рекомендую классный калькулятор блока питания для компьютера, который поможет определить, какая мощность требуется для выполнения необходимых задач. Переходим по ссылке и рассчитываем
Провода компьютерного блока питания
При выборе блока питания для компьютера обратите внимание на количество разъемов разного стандарта для подключения устройств, а также на съемность кабелей (модульные кабели). На дорогих моделях лишние провода можно отсоединить, чтобы они не мешались в корпусе и не препятствовали циркуляции воздуха для охлаждения. Имеет значения и длина кабелей — при установке блока внизу корпуса ее может не хватить, поэтому лучше, чтобы кабели были от 50 см.
Схема устройства блока питания разъемов и распиновки разъемов
Чтобы узнать, какой блок питания нужен вашему компьютеру, нужно понимать его устройство, а главное распиновку и назначения разъемов кабелей. Прежде всего привожу схему:
и еще одну
Основным и самым большим разъемом является питание материнской платы. В зависимости от ее модели, плата питается разными типами коннекторов с различным количеством контактов. Как правило, современные платы имеют разъем 24pin. Однако более старые могут иметь 20-пиновый разъем, соответственно чаще всего блоки питания имеют вилку с разделенными 20+4 pin, чтобы иметь возможность подключать как старые, так и новые модели. Если же эта вилка на БП сделана монолитно, то подключить к старой плате c его уже не получится, так как у него другая распиновка от блока питания компьютера.
Стоит также обратить внимания на распиновку провода для питания процессора. Мощные современные процессоры часто имеют 8-ми пиновый разъем питания. На БП же может иметься как разделенный 8ми контактный (4+4, как на рисунке ниже), так и только 4-pin для более старых плат. В этом нет ничего страшного, если вы подключаете стары БП к новой плате, то для большинства повседневных задач на не самом мощном процессоре хватит и такого небольшого разъема, поэтому его можно смело цеплять к восьмипиновому на системной плате.
Для работы с современными комлектующими желательно иметь побольше разъемов питания SATA, а также Molex для подключения более старых жестких дисков и приводов, работающих с системной платой через шину IDE.
Показать результатыПроголосовало: 31082
Для подключения видеокарт используется специальный разъем питания PCI-E, имеющий обычно 6+2 пин для старых карт с 6 контактами для старых и 8 для новых. На мощных современных видюхах требуется 2 коннектора по 8 контактов, поэтому при установке двух таких карт — понадобится аж 8 подобных вилок.
При нехватке какого-либо типа разъемов можно использовать многочисленные переходники.
Нагрузка и напряжение
Говоря о питании, необходимо обратить внимание на размер максимальной нагрузки по линии напряжения блока питания компьютера +12V — именно по ней запитываются основные компоненты, такие как плата, процессор, видеокарта. Указана она на боковой наклейке на корпусе в разделе DC Output. В приведенном ниже примере максимальная нагрузка по линии +12 Вольт — 600W, то есть в сумме потребляемая мощность основных компонентов компьютера не должна превышать 600 Ватт.
Здесь же обратите внимание на силу тока, которую выдает эта линия (в А — амперах). Очень часто в минимальных требованиях видеокарт указывается минимальная мощность этой линии и сила тока. Если на лейбле блока питания, как на скриншоте выше, указано несколько линий 12V с силой тока меньше, в нашем случае 4 линии по 18А, то чтобы получить общую силу тока, сложите все эти значения. Получим 72А.
Приведу еще один пример наклейки — здесь уже указана общая сила тока по одной линии +12 V — 38 ампер.
На что еще обратить внимание при выборе блока питания для компьютера?
Также при выборе блока питания для персонального компьютера имейте в виду, что современные комплектующие работают с БП стандарта питания ATX 12V версии 2.х, а это означает, что если поставить старый блок питания в новый компьютер, то он работать не будет.
Наличие модуля PFC будет дополнительным плюсом к параметрам современного блока питания. PFC (Power Factor Correction) позволяет корректировать коэффициент мощности и тем самым защищает комплектующие от скачков напряжения в электросети. Он бывает пассивным или активным. Активный используется для мощных блоков, для средних и слабых будет достаточно пассивного.
Не последним параметром является количество и размер вентиляторов на блоке питания. Как правило это 1 большой вентилятор (120х120, 135х135 или 140х140 мм) снизу, но на мощных блоках может также иметься небольшой вентилятор (80х80 или 100х100 мм) на задней панели для дополнительного отвода теплого воздуха из корпуса. Чем больше вентилятор, тем меньше он будет создавать шума при работе. Модели без него или с одним маленьким лучше не приобретать.
Производители
Для стабильной работы желательно выбирать блок питания для компьютера от известных и зарекомендовавших себя брендов. Такими на сегодняшний день являются Zalman, CoolerMaster, PowerMan, Thermaltake, Enermax, Corsair, Antec, Chieftec, OCZ, FSP, Enhance, Seasonic. Других фирм БП стоит приобретать с осторожностью.
Видео
В заключение статьи — подробные обзоры моделей блоков питания от нескольких популярных производителей
Спасибо!Не помоглоЦены в интернете
Александр ВайФайкин
Выпускник образовательного центра при МГТУ им. Баумана по специальностям «Сетевые операционные системы Wi-Fi», «Техническое обслуживание компьютеров», «IP-видеонаблюдение». Автор видеокурса «Все секреты Wi-Fi»
Задать вопрос
Наиболее распространенные проблемы с компьютером и их решение.
Компьютер включается, но загрузка не начинается.
    Внешнее проявление данной ситуации: блок питания включается, вентиляторы вращаются, но на экране монитора нет изображения, индикатор активности жесткого диска не мигает и, либо нет никаких звуковых сигналов, либо они присутствуют в виде серии звуков разной длительности. Чтобы понять, что является причиной данной неисправности, желательно хотя бы в общих чертах иметь представление о том, что происходит с компьютером после того, как была нажата кнопка включения электропитания.При включении БП и установке на его выходе номинальных напряжений вырабатывается специальный сигнал, поступающий на материнскую плату для выполнения начального сброса оборудования и запуска программы самотестирования, прошитой в постоянном запоминающем устройстве (ПЗУ) BIOS — Power On Self Test или POST). POST включает в себя подпрограммы тестирования основных узлов оборудования, необходимых для выполнения начальной загрузки операционной системы (ОС). При этом прохождение тестов может сопровождаться индикацией кодов ошибок или POST-кодов на специальном индикаторном устройстве материнской платы, если такая индикация предусмотрена в конкретной модели. Также, для индикации ошибок может использоваться специальная диагностическая плата, установленная в один из слотов расширения. Кроме кодов ошибок, на подавляющем большинстве материнских плат, предусмотрена выдача звуковых сигналов через динамик системного блока, предназначенных для первичной диагностики ошибок, обнаруженных при прохождении тестов POST. Звуковые сигналы не стандартизированы, и их расшифровка выполняется в зависимости от производителя материнской платы и версии BIOS. Например, отсутствие или неисправность видеоадаптера при выполнении самотестирования AWARD BIOS вызовет 1 длинный и 2 коротких сигнала, AMI BIOS — 8 коротких. Для всех версий BIOS используется один короткий сигнал, если тестирование прошло без ошибок, и начинается этап загрузки операционной системы. Если же присутствуют прочие звуковые сигналы или их нет вообще – имеются проблемы с оборудованием, не позволяющие выполнить начальную загрузку операционной системы.
Отсутствие звуковых сигналов может означать наличие неисправности в самом начале тестирования, когда ошибка настолько серьезная, что даже нет возможности воспроизвести звук. Например – неисправен центральный процессор (CPU) или генератор тактовой частоты. Конечно, это не относится к случаям, когда нет звуковых сигналов из-за отсутствия динамика системного блока или его неисправности.
В случаях неисправности, не позволяющей выполнить начальную загрузку попробуйте максимально упростить конфигурацию оборудования. Выключите компьютер, уберите из слотов расширения все адаптеры и отключите все периферийные устройства, подключенные к компьютеру. Если имеется несколько модулей памяти — оставьте только один. Если звуковые сигналы отсутствуют, попробуйте включить системный блок вообще без модулей памяти. Если вы услышите характерный писк — материнская плата запустилась. Если нет – материнская плата неисправна.
Естественно, все манипуляции с отключением и подключением периферийных устройств, адаптеров и модулей нужно выполнять при выключенном компьютере и при отсутствии первичного электропитания 220V, потому, что в выключенном, но не обесточенном состоянии, блок питания вырабатывает дежурное напряжения +5VSb, которое подается на материнскую плату и обеспечивает включение компьютера при возникновении событий управления электропитанием (PME – Power Management Event), таких как нажатие определенных клавиш на клавиатуре, кнопок мыши, получение специальных кадров по локальной сети (Wake On Lan, Magic Packet), и т.п. Таким образом, часть оборудования системной платы выключенного компьютера находится под напряжением +5V Sb и отключение или подключение плат или устройств к ее разъемам может привести к выходу из строя блока питания, самой материнской платы или подключаемого устройства.
Комбинации звуковых сигналов при выполнении POST для конкретной версии материнской платы и BIOS можно найти на сайте производителя.
Существуют также специальные программы, разработанные энтузиастами, как например, Beep Codes Viewer. Программа позволяет получить описание кодов звуковых сигналов (beep codes) для наиболее распространенных версий BIOS. Язык — английский. Тем не менее, наиболее достоверным источником информации была и будет документация от производителя.
Если в минимальной конфигурации звуковые сигналы отсутствуют, то наиболее вероятными причинами неисправности являются блок питания, материнская плата, процессор, модули памяти.
В качестве средства отображения диагностических событий в некоторых моделях ноутбуков могут использоваться не только звуковые, но и световые сигналы с использованием светодиодных индикаторов клавиатуры (CAPS Lock, Num Lock). Расшифровку подобных сигналов нужно выполнять с использованием документации, размещаемой на сайтах производителей, например, для ноутбуков Hewlett Packard и Compaq на странице Служба поддержки клиентов HP — База знаний. На новых компьютерах для указания на определенные ошибки, используется последовательность визуальной индикации из двух частей с разными цветами. В таблице с описаниями ошибок такие сигналы обозначаются числом, например, 3.5, что означает 3 длинных мигания красным цветом и 5 коротких миганий белым цветом. Таблицы содержат сведения о проверяемом компоненте компьютера, последовательности световых и звуковых сигналов, состоянии ошибки и действиях по устранению неполадки. Таблицы сигналов для моделей разного года выпуска могут отличаться .
При некоторых неисправностях, связанных с заменой компонент или изменением настроек в BIOS, может помочь сброс настроек установкой специальной перемычки на материнской плате (Clear CMOS).
Для современных недорогих материнских плат, одной из наиболее частых причин неисправности являются вздувшиеся электролитические конденсаторы в цепях питания процессора и памяти. Обычно это легко обнаружить при визуальном осмотре.
При выполнении программы самотестирования BIOS, также выполняется опрос доступных периферийных контроллеров и информация о них записывается в энергонезависимую память ( CMOS ) — создается специальная таблица, называемая Desktop Management Interface (DMI) pool . Таблица DMI может использоваться операционными системами для определения списка доступных устройств, но в большинстве случаев, информация DMI не используется, а список создается собственными программными средствами загрузчика ОС. Тем не менее, таблица DMI создается ( или проверяется ) до загрузки операционной системы всегда. Обычно, этот процесс сопровождается сообщением «Building DMI pool» или «Verifying DMI pool data» . Как правило, процесс создания таблицы DMI длится не более нескольких секунд и, если после подобного сообщения, загрузка не началась, то возможны варианты:
— изменилась конфигурация компьютера и какая-либо подпрограмма BIOS не может правильно ее интерпретировать.
— какое – то из устройств выдает неверные данные о себе (неисправно).
— таблица DMI , записанная в энергонезависимой памяти (CMOS) повреждена и не может быть создана заново ( неисправность CMOS, севшая батарейка, конфликтующее устройство и т.п. ).
— повреждена сама подпрограмма BIOS ( например, при перепрошивке )
Возможные пути решения проблемы:
— сбросить содержимое CMOS ( Clear CMOS Configuration) и загрузить оптимальную
конфигурацию ( Load Setup Defaults, Load Optimal и т.п. )
— сбросить содержимое буфера DMI и вынудить подпрограмму самотестирования пересоздать его. Обычно эта процедура выполняется с использованием настройки в BIOS разрешением пункта Reset Configuration Data (Force Update ESCD и т.п — зависит от версии и производителя BIOS)
— если предыдущие пункты не сработали, попробуйте отключить как можно больше периферийных устройств и интегрированных контроллеров в настройках BIOS (звук, порты ввода – вывода и т.п.)
Загрузка начинается, но заканчивается сбросом и перезагрузкой.
    Подобное поведение системы, обычно, вызвано критической ошибкой, обнаруженной в процессе начальной загрузки. Информация о такой ошибке традиционно отображалась в виде текста на синем фоне, и получила название ”синий экран смерти” или BSOD (Blue Screen Of Death или BSOD).Иногда синие экраны смерти называют стоп — ошибками (stop error) или сокращенно Stop с указанием кода ошибки — Stop 0x000000F4 или ещё короче — Stop F4.
Информация синего экрана смерти обычно содержит :
— Краткое описание, например,
CRITICAL_OBJECT_TERMINATION
— код ошибки и дополнительные данные для детализации, например,
*** STOP: 0x00000050 (0xe80f26cd, 0x00000000, 0xe80f26cd, 0x00000002)
— имя программного модуля ядра или драйвера и другие параметры, если это возможно определить, например,
*** ntoskrnl.exe — Address 0x8044a2c9 base at 0x80400000 DateStamp 0x3ee6c002
Критическая ошибка не может быть исправлена аппаратно-программными средствами и работа операционной системы завершается аварийно. Синий экран смерти может возникнуть как в процессе, так и после завершения загрузки, например, когда в программе обработки ошибки также возникла неустранимая ошибка. Если подобная ситуация возникает при выполнении пользовательской программы, то она просто завершается аварийно, но если ситуация возникает при работе модуля ядра или системного драйвера, то аварийно завершается работа всей системы.
По умолчанию, операционные системы семейства Windows настроены на выполнение автоматической перезагрузки при возникновении критической ошибки. Этот режим устанавливается в Панель управления — Система — вкладка «Дополнительно» — режим «Загрузка и восстановление » — режим « Выполнить автоматическую перезагрузку»
При такой настройке, «синий экран смерти» можно просто не увидеть, начальная загрузка завершается перезагрузкой так, как будто во время ее выполнения была нажата кнопка сброса системного блока (Reset). В результате, пользователь не получает информацию синего экрана, которую можно было бы использовать для анализа причин возникновения ошибки. Для исключения перезагрузки по критической ошибке в операционных системах Windows XP и старше, нужно войти в меню загрузчика по нажатию клавиши F8 и выбрать режим
Отключить автоматическую перезагрузку при отказе системы
При загрузке в таком режиме вы сможете проанализировать данные синего экрана смерти и определить причину критической ошибки.В операционных системах Windows 7 и старше, попасть в меню загрузчика довольно проблематично из-за очень малого времени, отводимого на ожидание нажатия F8 . Приходится многократно и часто нажимать клавишу F8 в самом начале загрузки до появления логотипа Windows. А в Windows 10 по умолчанию используется новый режим (standard), при котором опрос нажатия F8 вообще не производится. В этом случае можно выполнить перевод системы в совместимый (legacy) режим загрузки с помощью редактора конфигурации загрузки bcdedit.exe:
bcdedit /set {default} bootmenupolicy legacy — включить совместимый режим загрузки для текущей конфигурации.
bcdedit /store Z:\EFI\Microsoft\Boot\BCD /set bootmenupolicy legacy — включить режим совместимости для конфигурации с хранилищем загрузки на диске Z: в папке \EFI\Microsoft\Boot\. В данном случае загрузка выполнена в другой операционной системе и изменения выполняются для диспетчера загрузки в конфигурации определяемой параметром /store
bcdedit /store Z:\EFI\Microsoft\Boot\BCD /set bootmenupolicy standard — включить стандартный режим для конфигурации с хранилищем загрузки на диске Z: в папке \EFI\Microsoft\Boot\.
В Windows 8 и Windows 10 для доступа к параметрам загрузки и восстановления Windows можно использовать стандартную утилиту Bootim.exe (Boot Immersive Menu). Утилита позволяет работать с меню загрузчика непосредственно из графической среды пользователя. Чтобы изменить параметры загрузки, достаточно запустить командную строку от имени администратора и ввести команду Bootim. После чего в графической среде можно задать нужные режимы диагностики и восстановления системы, которые будут применены при следующей перезагрузке.
Одним из примеров возникновения синего экрана смерти является случай загрузки старой операционной системы после установки новой материнской платы, или изменением режима работы контроллера жесткого диска в настройках BIOS (SATA – IDE или RAID). Подробно, практика восстановления работоспособности Windows в данном случае описана в отдельной статье
Если непосредственно перед появлением проблемы производилась установка нового программного обеспечения или устанавливались обновления Windows, или другого ПО, имеющего в своем составе системные службы или драйверы (антивирусы, брандмауэры и т.п.), то возможно, что проблема заключается не в неисправном оборудовании, а в аварийном завершении системы из-за некорректно работающих системных служб или драйверов.
Самым простым способом восстановления системы в данном случае, является
откат ее состояния на момент создания точки восстановления, когда проблемы еще не было. Механизм
точек восстановления Windows позволяет создавать, и некоторое время хранить, копии реестра и важных системных файлов. Такие копии создаются
периодически, или при серьезных изменениях системы, и в подавляющем большинстве случаев, откат на точку работоспособного состояния вернет
Windows к жизни. Но, главной проблемой такого способа восстановления системы заключается в том, что запустить средство восстановления Windows ( утилиту rstrui.exe ) можно только в среде самой ОС, которая не загружается из-за синего экрана смерти. Тем не менее, если данные точек восстановления существуют, проблему можно решить очень просто с использованием диска аварийного восстановления MicroSoft Diagnostic and Recovery Toolset ( MS DaRT), ранее известного как ERD Commander ( ERDC ). Средства аварийного восстановления MS DaRT позволяют выполнить откат системы в несколько щелчков мышью, а также быстро и легко деинсталлировать обновления системы. Даже в тех случаях, когда данные точек восстановления не кондиционны или не могут быть использованы в полном объеме, проблема может быть решена с использованием выборочной замены системных файлов вручную. Например, если Windows аварийно завершается с кодом Stop: 0xc0000218 {Registry File Failure}, это означает, что с большой долей вероятности повреждены файлы system и / или software из каталога \windows\system32\config , которые являются разделами реестра
HKLM\SYSTEM и HKLM\SOFTWARE
Повреждения файлов остальных разделов ( SAM, SECURITY, BCD ) менее вероятно, поскольку запись в них выполняется гораздо реже и они значительно меньше по размеру. Кроме того, повреждение данных файлов, вызывают другие проблемы загрузки системы и сопровождаются иными сообщениями о критической ошибке. В данном случае, для восстановления системы можно либо выполнить полный откат, либо вручную скопировать файл куста System ( Software ) из данных контрольной точки. Кроме данных точек восстановления в Windows 7-8 можно воспользоваться автоматически создаваемыми копиями файлов реестра, хранящимися в папке \Windows\System32\Config\Regback. Подробно о приемах восстановления работоспособности
Windows с использованием данных точек восстановления, если загрузка системы невозможна, изложено в статье
ERD Commander — инструкция по применению.
Компьютер самопроизвольно включается.
Подобное поведение компьютера, как правило, связано с настройками BIOS, имеющим отношение к системе управления электропитанием (ACPI — Advanced Configuration and Power Interface или интерфейсу управления электропитанием). Частью спецификации ACPI являются функции включения электропитания компьютера при возникновении определенных условий.Если коротко, то электропитание компьютера может быть включено не только нажатием кнопки POWER, но и при возникновении событий управления электропитанием (Power Management Events или PME), задаваемых настройками BIOS материнской платы. Такими событиями могут быть нажатие определенных клавиш на клавиатуре, специально сформированные кадры ETHERNET, сигнал, сформированный по внутреннему таймеру, сигнал при подаче первичного напряжения (220V) на вход блока питания и т.п.
Название и содержимое раздела управления электропитанием BIOS зависит от конкретного производителя и версии (Power Management Setup, ACPI Configuration, Advanced Power Management Setup, APM и т.п.)
Ниже приведен пример настроек раздела «Power — APM Configuration» AMI BIOS v2.61:
Restore on AC Power Lost — поведение системы при пропадании
электропитания. Значение Power Off
— система останется в выключенном состоянии,
Power On — будет выполнено включение компьютера, как только электропитание
будет восстановлено. Другими словами, если этот режим включен в BIOS — при подаче
первичного напряжения (220В) компьютер включится самостоятельно, без нажатия
кнопки POWER
Power On By RTC Alarm — включение электропитания по внутренним часам компьютера (аналог будильника).
Power On By External Modems — включение электропитания будет выполняться
при входящем звонке на внешний модем, подключенный к последовательному порту.
Power On By PCI (PCIE) Devices — разрешает включение компьютера от устройств на шине
PCI(PCI-E).
Power On By PS/2 Keyboard — разрешает включение электропитания от клавиатуры,
подключенной к разъему PS/2
В заключение добавлю, что в некоторых версиях BIOS , настройка автоматического включения электропитания при появлении первичного 220V может быть в разделе Integrated Periferals — пункт PWRON After PWR-Fail ( встречается в некоторых версиях Foenix — AwardBIOS CMOS Setup Utility )
Компьютер самопроизвольно выключается.
Подобное проявление неисправности может быть связано не только с компьютерным оборудованием, но и с внешними факторами – температурой окружающей среды, качеством первичного электропитания на входе БП ( 220 V ) и т.п. Наиболее вероятные причины самопроизвольного выключения компьютера:— Перегрев. Показания температурных датчиков можно получить с помощью специального программного обеспечения. Обычно такое ПО можно имеется на сайтах производителей оборудования (материнской платы, видеоадаптера, дисковых накопителей и т.д ). Можно также воспользоваться специальными программами мониторинга состояния системы, как например, AIDA64 ( бывший EVEREST ) компании Lavalis Consuting Group или Speccy от разработчиков более известных продуктов CCleaner и Recuva. Если самопроизвольное выключение компьютера связано с перегревом, то обычно оно сопровождается ошибками прикладных программ, синими экранами смерти, зависаниями системы.
— Срабатывает защита блока питания. Причиной срабатывания может быть недостаточная мощность БП. Дополнительным признаком работы на предельной нагрузке может быть то, что выключение происходит не всегда, а, например, при запуске игровых программ, резко увеличивающих потребление электроэнергии видеоадаптером.
Срабатывание защиты в редких случаях, может быть вызвано кратковременным коротким замыканием, возникающим при вибрации корпуса или электронных плат. Обычно это вызвано малым расстоянием между шинами питания, выводами разъемов, элементов плат или проводников с поврежденной изоляцией и корпусом. При диагностике можно воспользоваться легким простукиванием предполагаемых мест возникновения замыкания.
Компьютер зависает или самопроизвольно перезагружается.
    Речь идет только о зависаниях и перезагрузках, вызванных неисправностью или нестабильной работой оборудования.Нередко зависания и перезагрузки сопровождаются ошибками распаковки архивов,
сообщениями об ошибках отдельных программ, сообщениями системы о невозможности
выполнить приложение или открыть файл.
Как и в случае с самопроизвольным выключением, причиной может быть перегрев,
недостаточная мощность или нестабильность выходных напряжений блока питания.
Также распространенной причиной является использование разгона с целью
повышения быстродействия. Разгон всегда снижает стабильность работы системы.
Диагностика проблемы:
— проанализируйте журналы системы. Возможно, там есть записи, которые помогут установить
причины нестабильной работы.
— отмените режим автоматической перезагрузки при возникновении критической ошибки
Windows. «Пуск» — «Настройка» — «Панель управления» — «Система» — «Дополнительно» —
«Загрузка и восстановление — Параметры» — нужно убрать галочку «Выполнить автоматическую
перезагрузку». Полезно включить (если не включен) режим записи малого дампа памяти,
который может помочь в поиске причин возникновения критической ошибки с помощью
утилиты BlueScreenView, как описано
здесь в разделе «Поиск проблемного драйвера»
— попробуйте выполнить загрузку ОС в безопасном режиме. В данном режиме выполняется
загрузка только тех драйверов устройств и системных служб, которые минимально необходимы. Их перечень определяется содержимым раздела реестра
HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot
Подразделы:
Minimal — список драйверов и служб, запускаемых в безопасном режиме
(Safe Mode)
Network — то же, но с поддержкой сети.
Синий экран смерти (BSOD) с разными кодами на разных драйверах с большой вероятностью говорит о неполадках в оборудовании, обычно это:
    Несколько советов:
1. Диагностика значительно упрощается, если вам удастся зафиксировать ситуацию, т.е. — найти такую комбинацию условий, при которых сбой будет повторяться. .
2. При диагностике старайтесь максимально упростить конфигурацию оборудования — физически отключайте то, без чего можно обойтись.
3. Если у вас возникло подозрение, что причиной нестабильной работы
является перегрев, попробуйте установить дополнительные вентиляторы. При их
установке, старайтесь не создавать встречных воздушных потоков.
Можно, также, используя настройки BIOS материнской платы, искусственно
занизить производительность компьютера.
Обычно, в BIOS имеются настройки для повышения производительности (разгона)
путем увеличения тактовых частот работы процессора, памяти, шин обмена данными. Для стабильной работы, как правило, требуется еще и увеличение напряжений питания разгоняемых устройств. И первое, и второе, сопровождается ростом энергопотребления и дополнительным нагревом. Занижение тактовых частот и напряжений питания снизит нагрев элементов. Однако, учтите, что значительное снижение напряжения, как правило, еще и уменьшает стабильность их работы.
4. Если у вас используются модули оперативной памяти, не входящие в список рекомендованных производителем материнской платы, то, как и в предыдущем случае, попробуйте снизить настройками BIOS их производительность, но не уменьшайте, а, наоборот, пошагово увеличивайте напряжения питания. Если модулей несколько, попробуйте для эксперимента, использовать только один из них.
Программы для контроля и тестирования оборудованияEverest Ultimate Edition (Everest Corporate Editions) — наверно, самая популярная программа компании Lavalys Consulting Group для диагностики и тестирования аппаратных средств компьютера. Выдает более 100 страниц информации, о процессоре, материнской плате, памяти, устройствах, показания температурных датчиков, и т.д. Также может использоваться для проведения сетевого аудита и настройки на оптимальную работу. Everest Corporate Edition, по сравнению с EVEREST Ultimate Edition обладает несколько более широкими возможностями по диагностике, в том числе по анализу локальной сети. Имеется поддержка русского языка. Программа платная. Сайт программы — www.lavalys.com/
SIV (System Information Viewer) — В отличие от Everest, бесплатная. Показывает очень подробную информацию о системе, локальной сети и аппаратном обеспечении. Выдает информацию о широком наборе характеристик локального компьютера и рабочих станций: установленное оборудование и программное обеспечение, данные с датчиков температуры и напряжений, сведения о процессоре, памяти, жестких дисках и очень многое другое. По возможностям (кроме удобства представления информации) практически не уступает платному Everest. Программа постоянно обновляется. Скачать последнюю версию можно на странице загрузки производителя rh-software.com
SpeedFan — бесплатная программа для контроля материнской платы (температура, напряжения, скорости вращения вентиляторов). Имеет возможность считывания S.M.A.R.T — атрибутов жестких дисков, и соответственно, их температуры. Позволяет регулировать скорость вращения вентиляторов. Поддерживается множество аппаратных платформ, включая и IPMI для серверов.
Скачать актуальную версию SpeedFan можно на официальном сайте разработчика.
Speccy — популярная программа для получения сведений о системе от разработчиков оптимизатора Ccleaner. Сайт программы — www.ccleaner.com/speccy. Программа распространяется в бесплатном (Speccy Free) и платном (Specce Professional) вариантах, а также в составе платного пакета Ccleaner Professional .
Memtest86+ — создана на основе Memtest86 независимыми разработчиками. Сайт программы — www.memtest.org
В современных операционных системах может быть доступна программа тестирования оперативной памяти непосредственно из меню менеджера загрузки установленной ОС Windows или из меню загрузочного диска с дистрибутивом.
Если вы желаете поделиться ссылкой на эту страницу в своей социальной сети, пользуйтесь кнопкой «Поделиться»
Распиновка разъемов питания компьютера | 2 Схемы
Приводим справочные данные на цветовую маркировку и расположение проводов в гнёздах и штекерах ПК. Распиновка и подключение проводов блока питания и других основных модулей компьютера должно быть проведено аккуратно и безошибочно, чтоб не допустить замыкания при работе. Выясним, какое напряжение подается и на какие провода. Если нужны остальные гнёзда — читайте полный справочник по ПК разъёмам
Цветовая маркировка
В обычных БП ПК используется 9 цветов, обозначающих роль проводов:
- Черный — общий провод, он же заземление или GND
- Белый — напряжение -5V
- Синий — напряжение -12V
- Желтый — подает +12V
- Красный — подает +5V
- Оранжевый — подает +3.3V
- Зеленый — отвечает за включение (PS-ON)
- Серый — POWER-OK (POWERGOOD)
- Фиолетовый — дежурное питание 5VSB
Все разъёмы компьютера — название и фото
Всего при работе БП используется 8 типов разъемов, их вид и названия представлены на фото. Чтобы включился блок питания AT-ATX — надо замкнуть GND и PWR SW коннекторы. Он будет работать до тех пор, пока они замкнуты.Если используете его отдельно — ставьте на эти контакты кнопку.
Распиновка проводов разъема блока питания
Распиновка на разъем питания жесткого диска sata и esata
Схема распиновки контактов питания видеокарты
Как получить другое напряжение с БП
ПОЛОЖИТЕЛЬНОЕ | НОЛЬ | РАЗНОСТЬ |
+12 | +12 | |
+5 | -5 | +10 |
+12 | +3.3 | +8.7 |
+3.3 | -5 | +8.3 |
+12 | +5 | +7 |
+5 | +5 | |
+3.3 | +3.3 | |
+5 | +3.3 | +1.7 |
Встречаются ситуации, когда подключаемое устройство требует для своей работы такого напряжения, которое БП выдавать не способен. В этих случаях приходится извращаться. Допустим, наше дополнительное устройство (пусть это будет освещение) работает от напряжения 8.7 вольт. Его мы можем получить комбинацией проводов, которые выдают +12V и +3.3V. Для удобства, все возможные комбинации приведены в таблице.
Форум по электронике и автосхемам
Анатомия. Из чего состоит блок питания? — i2HARD
Он есть в каждом компьютере, ноутбуке и приставке. Он не влияет на вашу частоту кадров и майнинг биткоинов. У него нет миллиардов транзисторов, и в его производстве не используются новейшие полупроводниковые техпроцессы. Звучит скучно? Ничуть! Без этой штуки наши компьютеры абсолютно ничего бы не сделали.
БП, они же блоки питания (англ. PSU, Power Supply Units), не взрывают заголовки журналов как новейшие процессоры, но это интереснейшие технологии, заслуживающие нашего внимания. Так что надевайте белые халаты, маски, перчатки и приступим к вскрытию нашего скромного парнишки – блока питания, разберём его на части и рассмотрим, чем занимается каждый его орган.
И да, совсем недавно мы разбирались как правильно выбрать Блок питания. Рекомендуем к прочтению.
Что это и с чем это едят?
Многие компьютерные компоненты имеют названия, требующие чуточку технических знаний, чтобы понять, что это и зачем (например, твердотельный накопитель), но в случае блока питания всё довольно очевидно. Это блок, обеспечивающий питание.
Но мы же не можем на этом поставить точку, с гордостью заявив «статья готова». Наш цикл статей посвящен внутреннему строению, и на операционном столе у нас лежит подопытный – Cooler Master G650M. Это довольно типичный представитель, с характеристиками, подобными десяткам других моделей, но у него есть одна особенность, встречающаяся не во всех блоках питания.
Официальное фото блока питания Cooler Master.
Это блок питания стандартного размера, соответствующий форм-фактору ATX 12V v2.31, поэтому он подходит для многих компьютерных корпусов.
Есть и другие форм-факторы – например, для малых корпусов, либо вовсе уникальные по спецзаказу. Не каждый блок соответствует точным размерам, установленным стандартными форм-факторами – они могут быть одинаковой ширины и высоты, но отличаться по длине.
Этот блок питания от Cisco специально спроектирован для серверных стоек
В маркировке PSU обычно указывается их основной параметр – максимально обеспечиваемая мощность. В случае с нашим Cooler Master, это 650 Вт. Позже мы поговорим, что это на самом деле значит, а пока лишь заметим, что есть и менее мощные БП, поскольку не всем компьютерам требуется именно столько, а некоторым достаточно даже на порядок меньше. Но всё-ж большинство настольных компьютеров обеспечены питанием в диапазоне от 400 до 600 Вт.
Блоки питания вроде нашего собираются в прямоугольных, зачастую неокрашенных, металлических корпусах, отчего бывают достаточно увесистые. У ноутбуков блок питания практически всегда внешний, в пластиковом корпусе, но его внутренности очень схожи с тем, что мы увидим у рассматриваемого нами БП.
Источник фотографии nix.ru
Большинство типичных блоков питания оснащены сетевым выключателем и кулером для активной терморегуляции, хотя в ней не все БП нуждаются. И не у всех из них есть вентиляционная решётка – у серверных версий, в частности, это редкость.
Ну что-ж, как вы можете видеть на фото выше, мы уже вооружены отверткой и готовы приступить к вскрытию нашего экземпляра.
Немного теории
Но прежде чем мы начнем копаться во внутренностях, давайте зададимся вопросом, действительно ли блок питания настолько необходим? Почему нельзя подключить компьютер напрямую к розетке? Ответ заключается в том, что компьютерные комплектующие рассчитаны на совсем другое напряжение, нежели сетевое.
На графике ниже показано, каким должно быть электричество сети (в США = синяя и зеленая кривые; Великобритания = красная кривая). Ось X представляет время в миллисекундах, а ось Y – напряжение (voltage) в вольтах. Проще всего понять, что такое напряжение, глядя на разность энергий между двумя точками.
Если напряжение приложено к проводнику (например, к металлической проволоке), разница в энергии заставит электроны в материале проводника течь от более высокого энергетического уровня к более низкому. Электроны – составляющие атомов, из которых состоит проводник, и металлы имеют много электронов, которые могут свободно перемещаться. Этот поток электронов называется током (current) и измеряется в амперах.
Хорошую аналогию можно провести с садовым шлангом: напряжение сродни давлению, которое вы используете, а расход воды – это ток. Любые ограничения и препятствия в шланге – по сути как электрическое сопротивление.
Мы видим, что электричество в сети варьируется с течением времени, из-за чего оно называется напряжением переменного тока (AC, alternating current). В США сетевое напряжение меняется 60 раз в секунду, достигая пиковых значений 340 В или 170 В, в зависимости от местоположения и способа подключения. В Великобритании пиковые напряжения пониже, и частота этих колебаний также немного отличается. Большинство стран придерживаются схожих стандартов сетевого напряжения, и лишь в немногих странах пиковые напряжения более низкие или более высокие.
Потребность в блоке питания заключается в том, что компьютеры не работают с переменным током: им нужно постоянное напряжение, которое никогда не меняется, и кроме того – гораздо более низкое. На том же графике оно будет выглядеть примерно вот таким:
Но современному компьютеру требуется не одно постоянное напряжение, а четыре: +12 вольт, -12 вольт, +5 вольт и +3,3 вольта. И поскольку эти значения не меняются, такой ток называется постоянным (DC, direct current). Преобразование тока из переменного в постоянный (т.н. выпрямление) – одна из основных функций блока питания. Пришло время вскрыть его и посмотреть, как он это делает!
Преобразование тока из переменного в постоянный – одна из основных функций PSU. Пришло время посмотреть, как он это делает!
Здесь мы должны предупредить вас, что в блоке питания есть элементы, накапливающие электричество, в том числе смертельное. Поэтому разбирать PSU потенциально опасно.
Официальное фото блока питания Cooler Master.
Принцип работы этого блока питания аналогичен многим другим, и хоть маркировки на различных деталях внутри будут отличаться, принципиальных различий это не делает.
Разъём сетевого шнура находится в верхнем левом углу фотографии, и ток по сути идет по часовой стрелке, пока не достигнет выхода из блока питания (пучок цветных проводов, нижний левый угол).
Источник фото techspot.com
Если мы перевернем плату, мы увидим, что по сравнению с материнской платой, проводники и соединения на ней более широкие и массивные – это потому, что они рассчитаны на более высокие токи. Также, бросается в глаза широкая полоса в середине, будто текущая по равнине река.
Это снова говорит о том, что все блоки питания имеют два четко разделённых узла: первичный и вторичный. Первый – это настройка входного напряжения, чтобы его можно было эффективно понижать; второй – это все настройки уже выпрямленного и пониженного напряжения.
Фильтрация
Первое, что блок питания делает с сетевым электричеством, это не выпрямление и не понижение, а выравнивание входного напряжения. Поскольку в наших домах, офисах и на предприятиях имеется множество электрических устройств и приборов, постоянно включающихся-выключающихся, а также излучающих электромагнитные помехи, переменный ток в сети часто бывает «скомканный» и со случайными скачками и перепадами (частота также не постоянна). Это не только затрудняет блоку питания выполнять преобразования, но может вывести из строя некоторые элементы внутри него.
Наш БП имеет две ступени так называемых входных фильтров (transient filter), первая из которых построена сразу на входе с помощью трёх конденсаторов. Она выполняет роль, похожую на роль «лежачего полицейского» на дороге – только вместо скорости, этот фильтр гасит внезапные скачки входного напряжения.
Источник фото techspot.com
Вторая ступень фильтра более сложная, но в сущности делает то же самое.
Желтые кирпичики – это снова конденсаторы, а вот зеленые кольца, обмотанные медным проводом, это индуктивные катушки (хотя при таком использовании их обычно называют дросселями). Катушки накапливают электрическую энергию в магнитном поле, но энергия при этом не теряется, а за счет самоиндукции плавно возвращается обратно. Таким образом, внезапно появившийся высокий импульс (скачок) поглощается магнитным полем дросселя, чтобы на выходе дать ровное напряжение без всяких скачков.
Два маленьких синих диска – ещё одни представители многообразия конденсаторов, а чуть ниже них (зелёный, с длинными ножками, обтянутыми черными изоляторами) – металлооксидный варистор (MOV). Они также используются для защиты от скачков входного напряжения. Подробнее о различных типах входных фильтров можно прочитать здесь.
Источник фото techspot.com
По этому узлу блока питания часто можно определить, насколько производитель сэкономил, или к какому бюджетному классу принадлежит девайс. Более дешевые будут иметь упрощённую фильтрацию входа, а самые дешёвые и вовсе не иметь таковой (избегайте таких!).
Теперь, когда напряжение выровнено и причёсано, ему дозволяется идти дальше – собственно, к преобразованию.
Преобразование
Как мы уже сказали, блоку питания нужно изменить напряжение переменного тока, которое в американских розетках обычно в районе 120 вольт (технически, это среднеквадратичные 120 вольт, но мы не будем так язык выламывать), получив на выходе постоянное напряжение 12, 5 и 3,3 вольт.
Первым делом осуществляется преобразование переменного тока в постоянный, и наш блок использует для этого выпрямительный мост. На фото ниже это плоский черный элемент, приклеенный к радиатору.
Источник фото techspot.com
Это еще одно место, где производитель блоков питания может сократить расходы, поскольку более дешевые выпрямители хуже справляются со своей задачей (например, сильнее греются). Теперь, если пиковое входное напряжение составляет 170 В (что имеет место для сети 120 В), то пройдя через выпрямительной мост, оно станет 170 В, но уже постоянного тока.
В таком виде оно поступает на следующую стадию, и в нашем блоке это активный модуль коррекции коэффициента мощности (APFC или Active PFC, Active Power Factor Correction converter). Этот узел также стабилизирует напряжение, сглаживая «провалы» за счет накапливающих конденсаторов; кроме того, он защищает от скачков выходной мощности.
Пассивные корректоры (PPFC или Passive PFC) выполняют по сути ту же работу. Они менее эффективны, но хороши для маломощных блоков питания.
Источник фото techspot.com
APFC на фото выше представлен в виде пары больших цилиндров слева – это конденсаторы, которые накапливают выровненный ток, прежде чем отправить его дальше по цепочке процессов в нашем блоке питания.
За APFC находится ШИМ, широтно-импульсный модулятор (PWM, Pulse Width Modulator). Его предназначение заключается в том, чтобы с помощью нескольких быстро переключающихся полевых транзисторов преобразовать постоянный ток обратно в переменный. Это нужно сделать потому, что на следующем шаге нас ждёт понижающий трансформатор. Эти устройства, основанные на электромагнитной индукции, состоят из двух обмоток с разным количеством витков на металлическом сердечнике, необходимых для понижения напряжения, и работают трансформаторы только с переменным током.
Частота переменного тока (скорость, с которой он изменяется; в герцах, Гц) значительно влияет на эффективность трансформатора – чем выше, тем лучше, поэтому частота исходного питания 50/60 Гц увеличивается примерно в тысячу раз. А чем эффективнее трансформатор, тем меньше его размер. Такой тип устройств, который использует эти сверхбыстрые частоты постоянного тока, называется импульсным источником питания (Switched Mode Power Supply, SMPS).
На фото ниже вы можете видеть 3 трансформатора – самый большой имеет на единственном выходе 12 вольт, а тот, что поменьше – 5 вольт (чуть поговорим ещё о нём позже). В других БП вы можете встретить один большой трансформатор сразу на все напряжения, то есть с несколькими выходами. А самый маленький трансформатор предназначен для защиты транзисторов ШИМ и подавления его помех.
|
Источник фото techspot.com
Можно по-разному реализовать получение необходимых напряжений, защиту ШИМ, и так далее. Всё зависит от бюджетного сегмента и мощности устройства. Однако, всем одинаково необходимо снять напряжения с трансформаторов и снова выпрямить.
На фото ниже мы видим алюминиевый радиатор низковольтных диодов, выполняющих это выпрямление. А также, конкретно в этом PSU, мы видим небольшую дополнительную плату в центре фото – это узел модулей регулирования напряжения (VRM, Voltage Regulation Modules), обеспечивающий выходы 5 и 3,3 вольт.
Источник фото techspot.com
И тут нам стоит поговорить о том, что такое пульсация.
В идеальном мире, с идеальными блоками питания, переменный ток будет преобразован в абсолютно ровный, без малейших колебаний, постоянный ток. В действительности же, такой 100%-ой точности не достигается, и напряжение постоянного тока имеет хоть и незначительные, но колебания.
Этот эффект называется пульсирующим напряжением, и в наших блоках питания мы бы хотели, чтобы оно было как можно меньше. Cooler Master не предоставляет информации о величине пульсирующего напряжения в спецификации к нашему подопытному PSU, поэтому мы прибегли к сторонним результатам тестирования. Один из таких анализов был выполнен JonnyGuru.com, и они установили, что максимальное пульсирующее напряжение выхода +12 В – 0,042 В (42 милливольт).
График ниже демонстрирует отклонение фактически получаемого напряжения (синяя кривая; при этом её форма, конечно, не такая идеальная синусоида – ведь сама пульсация не постоянна) от требуемого ровного напряжения +12 В постоянного тока (красная прямая).
Это отклонение, по большей части, лежит на совести конденсаторов во всём PSU. Некачественные, дешёвые конденсаторы приводят к увеличению этой не нужной нам пульсации. Если она слишком большая, то некоторые электронные узлы компьютера, наиболее чувствительные к качеству питания, могут начать работать нестабильно. К счастью, в нашем примере 40 с лишним милливольт это нормально. Не супер, но и не плохо.
Но на получении приемлемых выходных напряжений дело ещё не заканчивается. Необходимо обеспечить управление выходами, чтобы питание на каждом из них было всегда полноценным и стабильным, независимо от мощности нагрузок на других выходах.
Источник фото techspot.com
Микросхема, которую вы видите на этом фото, называется супервизор (supervisor) и она следит за тем, чтобы на выводах не оказалось слишком высокого или низкого напряжения и тока. Работает бесхитростно – просто отключает блок питания при возникновении таких проблем.
Более дорогие PSU могут оснащаться ЦПОС, цифровым процессором обработки сигналов (DSP, Digital Signal Processor), который не только мониторит напряжения, но и может отрегулировать их при необходимости, а также отправлять подробные данные о состоянии БП на компьютер, его использующий. Для рядового пользователя эта функция достаточно спорная, но для серверов и рабочих станций – весьма желательная.
Выходы
Все блоки питания поставляются с длинными пучками проводов, торчащими сзади. Количество проводов и доступных разъёмов для запитывания устройств будут отличаться от модели к модели, но некоторые стандартные подключения должны обеспечивать все БП без исключения.
Так как напряжение – это величина разности потенциалов, то каждый выход подразумевает два провода: один для указанного напряжения (например, +12 В) и провод, относительно которого измеряется разность потенциалов. Этот провод называется заземлением, «землёй», «reference wire» или «общим» проводом, и два этих провода образуют петлю: от блока питания до устройства-потребителя, а затем обратно в БП.
Поскольку в некоторых таких замкнутых контурах токи небольшие, они могут использовать общие провода заземления.
Официальное фото блока питания Cooler Master.
Главным из обязательных разъёмов является 24-pin ATX12V v. 2.4, обеспечивающий основное питание с помощью нескольких выводов различных напряжений, а также имеющий ряд специальных выводов.
Из этих специальных отметим лишь вывод «+5 standby» – дежурное питание компьютера. Это напряжение подаётся на материнскую плату всегда, даже когда компьютер выключен, при условии, что он остаётся включен в розетку и его БП исправен. Дежурное питание нужно материнской плате для того, чтобы оставаться активной.
Большинство PSU также имеют дополнительный 8-pin разъём для материнской платы с двумя линиями +12 В, и по крайней мере один 6 или 8-pin разъём питания для PCI Express.
Со слота PCI Express видеокарты могут взять максимум 75 Вт, поэтому этот разъем обеспечивает дополнительную мощность для современных GPU.
Конкретно наш рассматриваемый блок питания по соображениям экономии фактически использует два разъема питания PCI Express на одной и той же линии. Поэтому, если у вас действительно мощная видеокарта, старайтесь выделить ей независимую линию питания, не делите её с другими устройствами.
Разница между 6 и 8-pin разъемами PCI Express – два дополнительных провода заземления. Это позволяет повысить силу тока, удовлетворяя потребности наиболее прожорливых видеокарт.
Последние несколько лет мы всё чаще стали замечать блоки питания с гордой припиской «модульный» (modular PSU). Это просто означает, что у них отстегивающиеся кабели, что позволяет использовать только необходимое количество кабелей и разъёмов, не подключая всё ненужное, освободив тем самым пространство внутри блока.
Источник фотографии nix.ru
Наш Cooler Master, как и большинство, использует довольно простую систему подключения модульных кабелей.
Каждый разъем имеет по одному проводу +12В, +5В и +3,3В, а также два провода заземления, и в зависимости от того, к какому устройству будет подключен кабель, разъем на другом конце будет использовать либо соответствующую, либо упрощённую распайку.
Представленный на фото выше разъем Serial ATA (SATA) используется для подключения питания жестких дисков, твердотельных накопителей и таких периферийных устройств, как DVD-приводы.
Этот всем знакомый разъём называется замысловато: «разъём питания AMP MATE-N-LOK 1-480424-0». Но все называют его просто Molex, невзирая на то, что это всего лишь название компании-разработчика этого разъёма. Он предоставляет по одному выводу +12В и +5В, и два провода заземления.
На выходных проводах производители тоже могут сэкономить или накрутить цену за счет более ярких или более мягких проводов. Сечение провода также играет важную роль, поскольку более толстые провода обладают меньшим сопротивлением, чем тонкие, поэтому меньше греются при прохождении тока по ним.
На что обращать внимание при выборе
В начале нашей статьи мы говорили, что большинство блоков питания имеют в названии значение своей максимальной мощности. Простым языком, электрическая мощность – это напряжение, умноженное на силу тока (например, 12 вольт x 20 ампер = 240 ватт). И хотя такое утверждение не совсем технически точное, для наших целей оно удовлетворительное.
Как и на большинстве моделей, на нашем блоке питания есть шильдик, содержащий основную информацию о том, сколько мощности может обеспечить каждая линия напряжения.
Источник фотографии nix.ru
Здесь мы видим, что суммарная максимальная мощность всех +12 В линий составляет 624 Вт. Приплюсовав все остальные мощности, мы в итоге получим 760 Вт, а не 650. Что тут не так? А дело просто в том, что линии +5 В (кроме дежурной) и +3,3 В создаются через VRM, используя одну из линий +12 В.
Ну и конечно, все выходные напряжения поступают из одного источника: сетевой розетки. Таким образом, мощность в 650 Вт – это максимум, который блок питания может обеспечить в целом по всем линиям. То есть, если у вас на линиях +12 В висит нагрузка в 600 Вт, то на все остальные линии у вас остается всего 50 Вт. К счастью, большинство оборудования в любом случае бо́льшую часть мощности берёт от линий 12 В, поэтому проблема неправильно подобранного БП встречается редко.
Правее от таблицы со спецификациями мощности на шильдике присутствует значок «80 Plus Bronze». Это рейтинг эффективности, используемый в отрасли в соответствии с требованиями к производителям блоков питания. Эффективность также отражает величину общей нагрузки, которую блок питания способен обслуживать.
20%, 50% и 100% – процент нагрузки по отношению к максимальной мощности для стандартных систем
Если наш Cooler Master нагрузить ровно на половину его максимальной мощности, то есть на 325 Вт, то его ожидаемый КПД будет в пределах 80-85% в зависимости от напряжения в сети (115/230 В).
Это означает фактическую нагрузку блока питания на сеть от 382 до 406 Вт. Более высокий рейтинг 80 PLUS не означает, что блок питания даст вам больше энергии, он просто более экономичный – меньше энергии теряет на всех этапах фильтрации, выпрямления и преобразования.
Также обратите внимание, что максимальная эффективность достигается в диапазоне между 50 и 100% нагрузки. Некоторые производители предоставляют графики, показывающие, какой КПД можно ожидать от их устройства при различных нагрузках и напряжениях в сети.
Официальное изображение Cooler Master.
График эффективности для блока питания Cooler Master V1300 Platinum. Вертикальная шкала – эффективность (КПД), горизонтальная – % нагрузки по отношению к максимальной мощности.
Иногда полезно обращать внимание на эту информацию, особенно если собираетесь раскошелиться на киловаттный блок питания. Если ваш компьютер будет потреблять близко к этому пределу мощности, то КПД блока питания будет несколько снижен.
Вы можете наткнуться на некие «одноканальные» и «многоканальные» (либо комбинированные – снабжённые переключателем) блоки питания. Термин «канал» в данном случае – просто другое слово для определенного напряжения, выдаваемого PSU. Наш Cooler Master имеет один канал 12 В и всевозможные разъёмы питания, обеспечивающие +12 В линии от этого канала. Многоканальный блок питания имеет две или более систем, обеспечивающих линии 12 вольт, однако существует большая разница в том, как это реализовано.
Многоканальные блоки питания широко применяются для серверов или дата-центров в целях отказоустойчивости – при выходе из строя одного из каналов, работоспособность системы не нарушится. Для обычных компьютеров тоже могут предлагаться многоканальные PSU, но скорее всего, вы столкнетесь с псевдо-многоканальностью, когда производитель просто разделит единственный канал на два или три якобы независимых канала. Например, наш подопытный выдает до 52 ампер по линии +12В, что эквивалентно 624 Вт электроэнергии. Дешевая «многоканальная» версия такого БП будет иметь в спецификации якобы два канала +12 В, но на самом деле это лишь два полуканала, каждый из которых будет обеспечивать только 26 А (или 312 Вт).
Хороший блок питания для настольного компьютера, использующий качественные компоненты, вовсе не требует многоканальности на +12 В, так что не беспокойтесь об этом!
Стоит ли переплачивать?
Блоки питания поставляются во всех ценовых диапазонах. Каталог на Amazon начинается с моделей от 15$ для стандартного блока 400 Вт, и доходит до полномодульных киловаттных PSU за 180-240$ от EVGA или Seasonic, и не заканчивается даже на этом. Что же вы получите за свои деньги? Что действительно стоит больше 200 долларов?
Очевидно, что чем мощнее, тем лучше, но вопрос ещё в том, как эта мощность реализована. Самые дешёвые 300 Вт модели выдают до 25 А на линиях +12В, в то время как киловаттная модель обеспечит втрое больше энергии. Современные процессоры и видеокарты практически все свои потребности удовлетворяют линиями +12 В. Уверены, что вам хватит 25 А?
Официальное фото блока питания Seasonic.
Учитывая, что актуальные аппетиты растут вместе с актуальным железом, то ваш новенький компьютер с 32-ядерным процессором в паре с 300-ваттной топовой видеокартой дешёвый блок питания явно не «затащит». С другой стороны, самые дорогие PSU легко справятся и будут иметь ещё приличный запас мощности. Ну а поскольку совокупная цена такого процессора и видеокарты может легко превысить 3500$, то стоит ли экономить ещё парой-другой сотен баксов сверху на обеспечение нормального питания для такого монстра.
Но на самом деле вы платите за качество компонентов в блоке питания. Взгляните на внутренности нашего Cooler Master в начале статьи. Вы не увидите там безумного количества всяких «шабашек», а поскольку каждый из тех немногочисленных элементов – критически важный компонент в работе устройства, нетрудно понять, почему не стоит гоняться за дешевизной.
На этом наше препарирование PSU закончено. Это очень интересное семейство устройств с на удивление сложным уровнем инженерии на всех этапах разработки и производства. Если у вас есть какие-либо вопросы о блоках питания в целом, или конкретно о вашем, смело спрашивайте в комментариях ниже. До новых встреч в нашем анатомическом кружке.
напряжений / времени, которые работают с определенным оборудованием
Настольные компьютеры полагаются на блоки питания как на основные источники энергии. Неопытному глазу блок питания может показаться довольно устрашающим. Несоответствующая проводка может нанести вред вашему ПК и привести к сгоранию блока питания и материнской платы. Тем не менее, XOTIC PC имеет почти 20-летний опыт работы с компьютерным оборудованием. В этом руководстве мы исследуем рабочую структуру, значение цветных проводов и взаимосвязь между напряжением и током и выходной мощностью.
Введение в блок питания ПК
Блок питания компьютера состоит из нескольких внутренних компонентов, таких как катушки, конденсаторы и электронные платы для регулирования тока. Вашему блоку питания требуются вентиляторы для охлаждения внутренних компонентов, но вентиляторы являются одной из основных причин отказа источника питания. Вы также найдете цветные провода, прикрепленные к печатной плате, и эти провода используются для передачи различных напряжений на основную плату и любые подключенные устройства.Типичный блок питания ПК потребляет приблизительно 110 вольт переменного электрического тока из настенной розетки, который преобразуется в гораздо меньший однонаправленный электрический ток.
Переменный ток (AC) определяет поток заряда, который периодически меняет направление. Напряжение переменного тока вырабатывается генератором переменного тока, который представляет собой особый вид электрического генератора, который используется для производства переменного тока. Постоянный ток (DC) можно описать как постоянное напряжение или ток, который вырабатывается выпрямителем, батареями или генератором переменного тока, оснащенным коммутатором.Современные источники питания оснащены несколькими цепями безопасности, которые непрерывно проверяют протекание тока для обнаружения экстремальных условий выходной мощности.
Напряжение питания компьютера
Существует три основных типа постоянного напряжения. Для питания материнской платы и любых видеокарт нового поколения требуется 12 Вольт. 5 Вольт необходимо для корпуса и вентилятора ЦП или портов USB. 3,3 Вольт используется для питания процессора. 12 Вольт также можно подавать на специальные «умные» вентиляторы шасси. Блок питания может преобразовывать электрический ток 100 В в +12 В, -12 В, + 5 В, -5 В и +3.3 В. Ваша печатная плата используется для передачи преобразованной электроэнергии через специальные кабели, чтобы вы могли питать компоненты и устройства в вашем компьютере. С помощью перечисленных выше компонентов переменное напряжение можно преобразовать в чистый постоянный ток. Конденсаторы для ПК предназначены для регулирования плавных, чистых токов в цепях вашего компьютера. Отрицательные напряжения относительно устарели на современном рынке, но вы захотите узнать, как их использовать, если вы устанавливаете новый блок питания в систему со старой материнской платой, имеющей слоты для шины ISA.Следуйте приведенному ниже общему руководству, чтобы определить шины напряжения.
- +3,3 В: Наборы микросхем, DIMMS, карты PCI / AGP / PCIe и прочие микросхемы
- +5 В: логика дисковода, низковольтные двигатели, модули SIMM, карты PCI / AGP / ISA и напряжение
- +12 В: двигатели, регуляторы выходного напряжения и карты AGP / PCIe
Цветовая кодировка блока питания
Производители обычно предоставляют спецификации для своих блоков питания по запросу, но типичные блоки питания LPX на 250 Вт и ATX на 235 Вт можно определить по следующим параметрам:
Черный: используется для заземления тока.Каждый другой цветной провод должен быть соединен с черным проводом.
Желтый: используется для обозначения +12 Вольт
- 250-ваттный LPX: максимум 10 ампер (120 ватт)
- 235-ваттный ATX: максимум 8 ампер (96 Вт)
Красный: используется для обозначения +5 В
- 250-ваттный LPX: максимум 25 ампер (125 Вт)
- 235 Вт ATX: максимум 22 А (110 Вт)
Синий: обозначает -12 В
- 250-ваттный LPX: максимум 0.5 ампер (2,5 Вт)
- 235 Вт ATX: максимум 1 А (12 Вт)
Белый: обозначает -5 В
- 250-ваттный LPX: максимум 0,5 А (2,5 Вт)
- 235-ваттный ATX: максимум 0,5 А (2,5 Вт)
Оранжевый:
- 235-ваттный ATX: используется для обозначения + 3,3 В или максимум 14 ампер (46,2 Вт)
Зеленый: используется для проверки постоянного напряжения
Фиолетовый: используется для обозначения + 5 В в режиме ожидания
Если у вас есть какие-либо вопросы о напряжениях и таймингах, которые работают с определенным оборудованием, свяжитесь с нами сегодня для получения дополнительной информации или помощи.Дайте нам знать, как мы можем помочь!
Краткая история шин питания ПК
Краткая история шин напряжения питания ПККраткая история шин питания ПК
Давайте проясним любую путаницу, связанную с термином «рельс». Под напряжением «шина» понимается к единственному напряжению, обеспечиваемому блоком питания (сокращенно от источника питания — фактически это обозначает блок питания). Блок питания ATX имеет одну шину 3,3 В. Он также имеет одна шина на 5 вольт.Шина 3,3 В имеет собственную схему в блоке питания, которая генерирует напряжение. Он также имеет множество проводов и разъемов для распределите 3,3 вольта на любое оборудование, которое в этом нуждается. Шина 5 В имеет собственный отдельный набор схем, проводов и разъемов для подачи 5 вольт. Современные блоки питания ATX12V могут иметь до четырех отдельных 12-вольтных шин. Каждые 12 Вольтовая рейка имеет собственный набор проводов и разъемов, как и у 3.3 и 5 вольт рельсы. Шины на 12 вольт генерируют одинаковое напряжение. как друг друга.Если вы хотите взглянуть на официальный ATX спецификации их можно найти на formfactors.org.
Оригинальные ПК IBM получали большую часть энергии от двух шин напряжения: 5 вольт. и 12 вольт. Их блоки питания также обеспечивали -5 и -12 вольт, но те доставлял только небольшое количество энергии. У них была шина на 5 вольт, потому что это было напряжение, необходимое для питания большинства стандартных кремниевых чипов время. Шина 12 В использовалась в основном для работы вентиляторов и гибких дисков. приводные двигатели.Оригинальный блок питания для ПК мог выдавать максимум 63,5 Вт в большинстве случаев. который был на шине 5 вольт. Со временем ПК стали больше, быстрее микросхемы которые увеличили нагрузку на 5 вольт. Люди тоже добавили новомодных устройства, такие как жесткие диски и, в конечном итоге, приводы CD-ROM, поэтому на шине 12 В чтобы доставить больше мощности. Но шина на 5 вольт все равно продолжала доставлять большая часть энергии, потому что большая часть энергии потребляется микросхемами.
Технология микросхем совершенствуется за счет использования большего количества транзисторов меньшего размера. на фишки.Поскольку транзисторы сжимаются, им необходимо работать при более низких напряжениях. Когда был создан новый стандарт ATX, к питанию была добавлена шина 3,3 В. новые фишки. Итак, ПК того времени имел смесь 3,3 вольт и 5 вольт. микросхемы напрямую подключены к соответствующим шинам напряжения. Таблица ниже показывает размеры направляющих от старого блока питания ATX на 300 Вт. Большая часть мощности поставил на рейки 3,3 и 5 вольт. Также он имеет довольно мощный 12 вольт. направляющая для компьютеров с несколькими дисководами.
Блок питания ATX 300 Вт | ||
---|---|---|
Напряжение | Максимальный ток | Максимальная мощность |
+3.3 вольта | 20,0 ампер | 66 Вт |
+5 вольт | 30,0 ампер | 150 Вт (максимум 180 Вт в сочетании +5 и +3,3) |
+12 В | 10,0 ампер | 120 Вт |
5 В в режиме ожидания | 1,0 ампер | 5 Вт |
-5 вольт | 0,5 ампер | 2,5 Вт |
-12 вольт | 0.8 ампер | 0,96 Вт |
По мере совершенствования технологии транзисторы в микросхемах продолжали сжиматься и им нужно было работать с напряжением ниже 3,3. Это было просто непрактично для продолжения работы всех микросхем напрямую от напряжения, обеспечиваемого Блок питания, потому что со временем им придется добавлять все больше и больше рельсов с более низким напряжением прошедший. Кроме того, вам приходилось иметь дело с процессорами, которым требовались разные напряжения в зависимости от того, какой процессор был подключен к материнской плате.Они временно избежать проблемы, предоставив регуляторы напряжения материнской платы который упал на 5 или 3,3 вольт до более низкого напряжения, отбросив лишние напряжение как тепло. По мере роста требований к питанию это решение быстро стало популярным. непрактично.
Вот тогда принципиально изменилось распределение мощности ПК. Старые ПК запитали свои чипы, подключив их напрямую к шинам напряжения, предоставленным БП. Но новые ПК начали использовать преобразователи постоянного тока в постоянный. материнская плата, которая принимает напряжение, обеспечиваемое блоком питания, и эффективно преобразовал его в более низкое напряжение, необходимое для микросхем.Многие из ранних Преобразователи постоянного тока в постоянный преобразуют 5 вольт в более низкое напряжение. Предположительно это потому что блоки питания того времени подавали большую часть своей мощности на 5 вольт. Но преобразование 12 вольт вместо 5 вольт сильно усложняет проводку. проще, потому что более высокое напряжение обеспечивает такое же количество мощности за счет использования меньший ток. Меньший ток позволяет использовать меньше проводов и разъемов для доставить такую же мощность. Распределение мощности намного проще при более высоких напряжениях. Максимальное напряжение, обеспечиваемое блоком питания ПК, составляет 12 вольт, поэтому оно стало самым высоким. общее входное напряжение, используемое крупнейшими преобразователями постоянного тока в постоянный.Современный процессор имеет собственный преобразователь на материнской плате, который преобразует 12 вольт во что угодно напряжение, необходимое ЦП. У современных видеокарт тоже есть свои конвертеры. на карте, которая преобразует 12 вольт в желаемое напряжение. ЦП и видеокарта, как правило, является самым большим потребителем энергии при полной загрузке, поэтому современный блок питания должен обеспечивать большую часть своей мощности на 12 вольт. Так в старые времена у вас была куча микросхем, напрямую подключенных к 3,3 или 5 вольт, и это где блок питания обеспечивает большую часть своей мощности.Но в новом компьютере БП обеспечивает большую часть своего питания на 12 вольт, а затем различные преобразователи постоянного / постоянного тока по всему компьютеру преобразовать его в любое напряжение, необходимое для этого особый набор фишек. В таблице ниже представлен более современный блок питания на 480 Вт. В максимальная мощность, доступная на 3,3 и 5 вольт, немного увеличилась, но большая часть расширенной мощности обеспечивается на шине 12 вольт.
480 Вт ATX12V 1.3 PSU | ||
---|---|---|
Напряжение | Максимальный ток | Максимальная мощность |
+3.3 вольта | 34,0 ампер | 112,2 Вт |
+5 В | 35,0 ампер | 175 Вт (максимум 200 Вт в сочетании +5 и +3,3) |
+12 В | 28,0 ампер | 336 Вт |
5 В в режиме ожидания | 2,0 ампер | 10 Вт |
-12 В | 1 ампер | 12 Вт |
Изменение распределения мощности между рельсами — вот почему вы должны осторожно вставляйте старый блок питания в новый компьютер.Старые блоки питания обеспечивают больше всего их мощности на 3,3 и 5 вольт, а более новые выдают большую часть на 12 вольт. У вас точно могут возникнуть проблемы с использованием старого 300-ваттного БП в новом компьютер, которому требуется блок питания мощностью 300 Вт, даже если разъемы питания совместимый. Новому компьютеру очень легко перегрузить шину 12 В старый БП. У вас также могут возникнуть проблемы с перегрузкой, если вставить новый блок питания в старый компьютер. Большинство блоков питания ATX12V 1.3 и более ранних обеспечивают напряжение 3,3 или 5 вольт. мощность для работы со старой материнской платой, но с некоторыми более новыми ATX12V 2.0 и новее расходные материалы уменьшили доступную мощность на 3.3 и 5. Если вы используете новый поставьте более старую материнскую плату, тогда лучше проверить, что на ней достаточно мощность на 3.3 и 5. Вы также можете столкнуться с другими проблемами. относящийся к шине -5 вольт. Поддержка -5 вольт была необязательной в блоках питания с тех пор, как ATX12V 1.3, потому что он уже редко используется. Редко включается в новые БП. Но для некоторых старых материнских плат или карт расширения ISA требуется -5. Так что даже если материнские платы и блоки питания разных эпох имеют совместимые разъемы, вы можете есть проблемы с их совместным использованием.Новые и старые блоки питания ATX могут выглядеть одинаково, но то, что происходит внутри, совсем другое.
Авторские права и копия с 2005 по 2007 год, Марк Аллен
Что такое блок питания в компьютере
Что такое блок питания в компьютере? Многие сталкиваются с различными компонентами компьютера, такими как материнская плата, процессор, графический процессор, мышь, монитор и многие другие.
Самым второстепенным компонентом является блок питания или блок питания. Самая важная часть компьютера. Это похоже на сердце, которое качает кровь в теле животного или человека.
Блок питания подает ток или питание на компьютер и его компоненты. Без блока питания пользователь вообще не сможет запустить компьютер. Без блока питания компьютер ничего не может сделать.
Так как он электронный и требует электричества в компьютере. Поставляется от БП. Блок питания на компьютере имеет множество функций и типов.
Есть питание AT или Advanced Technology. ATX или Advanced Technology Extended, EPX12V, CFX12V и многие другие.В ноутбуке есть батарейки, потому что он портативный.
Но также есть блок питания, который поставляется в небольшой переносной толстой пластиковой коробке. Что не намного мощнее компьютерного блока питания, используемого в настольных компьютерах.
Блок питания состоит из множества компонентов, таких как вентилятор, множество разноцветных проводов и многое другое. Ремонт или модернизация блока питания не всегда возможны, и нужно помнить о совместимости материнской платы и блока питания.
Он также помогает преобразовать ток, поступающий от распределительного щита, который является альтернативным током или переменным током, в постоянный или постоянный ток.
Другие компоненты компьютера предпочитают постоянный ток; напряжение в блоке питания компьютера колеблется от 3, 5 и 12.
Они не могут быть слишком низкими или слишком высокими, и если это произойдет, это вызовет множество проблем. По мере появления на рынке новых устройств, блоки питания также обновляются и становятся более продвинутыми, ATX имеет множество последних версий, используемых на многих компьютерах.
Следовательно, блок питания является неотъемлемой частью компьютера.
Что такое блок питания в компьютере?Компьютер состоит из большого количества оборудования.И блок питания или блок питания также является частью компьютера.
Тоже железо. По названию можно понять, что блок питания БП подает питание на другие части компьютера.
Он помогает преобразовать мощность, вырабатываемую из розетки, в источник питания, который затем используется другими частями компьютера.
Блок питания обычно располагается в задней части компьютера. Но в наши дни блок питания размещается в нижней части корпуса компьютера, прямо сзади.
Розетка, которая находится в стене, подключается, и затем она преобразуется с переменного тока в постоянный. Это непрерывный поток силы.
Важно знать разницу между переменным током и постоянным током. Это потрясающая работа в области технологий.
Которая всегда уступает место другим известным компонентам, таким как ЦП, материнская плата и другие.
Если нет источника питания, компьютер не сможет запуститься.
Блок питания бывает разных размеров, особенно он подходит для большинства корпусов компьютеров.
Ширина и высота могут быть одинаковыми, но длина и ее длина зависят от производителя.
Некоторыми популярными производителями блоков питания являются CORSAIR, Ultra и даже CoolMax. Они поставляются с компьютером при покупке или даже при настройке.
Многие пользователи не видят, из чего обычно состоит компьютер, потому что он в основном находится сзади и в футляре.Он состоит из вентилятора, выводящего воздух из корпуса компьютера.
Содержит три удлиненных порта (папа). Который подключен к источнику питания. Один из них состоит из двух переключателей, переключателя питания или даже переключателя напряжения питания.
Есть цветные провода, которыми они соединены с разными частями. Затем он подает питание. Например, есть провода, которые подключаются к вентиляторам, материнской плате, графическому процессору и многому другому.
Одним из наиболее важных компонентов блока питания является вентилятор, и если он не работает, это вызывает множество проблем.Блок питания обычно не подлежит ремонту.
Многие пользователи избегают открывать блок питания. Рейтинг блока питания БП указан в мощности. Чем мощнее компьютер, тем большую мощность блок питания обеспечивает другим частям компьютера.
Оба персональных компьютера состоят из одинаковых компонентов блока питания. Но есть разница во внешнем виде. В настольном компьютере блок питания поставляется в металлическом корпусе для надлежащей защиты и становится очень тяжелым.
Но в портативных компьютерах он поставляется в тонкой пластиковой коробке, которую нельзя прикрепить изнутри. Таким образом, они подключаются извне, чтобы ноутбук работал.
Также блоки питания именуются в зависимости от того, какую мощность они могут отдавать. На блоке питания есть этикетка, на которой пользователи получают информацию о блоке питания.
Например, сколько мощности может дать одна линия напряжения. Многие электронные рынки продают блоки питания, и у них разные цены на все типы блоков питания.
Пользователь должен выбрать блок питания в соответствии с бюджетом и мощностью, которую он может обеспечить.Это также зависит от потребности в мощности, которую хотят другие компоненты компьютеров.
Типы компьютерных блоков питанияВыбор правильного блока питания очень важен. Потому что, если нет источника питания, компьютер вообще не будет работать.
Традиционный блок питания или блок питания AT также известен как блок питания Advanced Technology. Это предшественник блока питания ATX. Это первый блок питания, используемый для компьютеров.
Тогда возникла потребность в компьютерах. Блок питания AT обеспечивал мощность 250 Вт, что было меньше, чем у других. Следовательно, потребность в источниках питания Advanced Technology резко упала.
ATX или Advanced Technology Extended. Это усовершенствованный тип блоков питания для компьютеров. ATX также имеет материнскую плату.
Следовательно, для соответствия материнской плате ATX необходимо приобрести блок питания ATX. Он был разработан в 1995 году известным производителем Intel.Он превзошел традиционный блок питания.
Предоставляется блок питания ATX плюс дополнительная шина напряжения 3,3. Он даже обеспечивает функцию «мягкого отключения». Блок питания отключается программно. И это позволяет блок питания ATX.
Наконец, блок питания ATX поставляется с 20-контактным разъемом, который является одинарным. И который является основным разъемом питания. Рейтинг блока питания ATX ниже 70%, а его эффективность довольно низкая.
ATX12V стал очень популярным в наши дни.Он превзошел блок питания ATX. ATX12V имеет множество вариантов или версий. Эти версии отличаются друг от друга.
ATX12V — это усовершенствованный блок питания. И это продукт чуть лучше форм-фактора ATX. Добавление нескольких улучшенных характеристик, таких как дополнительные 4-дюймовые разъемы.
Также поставляется с разъемом на 12 В. Разъем 12 В обеспечивает питание исключительно профессора. Самая последняя версия — ATX12V версии 2.4, которая используется на многих компьютерах.
Они состоят из 24-контактных разъемов того же размера, что и блок питания ATX. Можно использовать любую материнскую плату блока питания ATX с блоком питания ATX12V.
Но материнская плата ATX допускает 20-контактные разъемы. Должно быть много места для использования 24-контактного разъема в качестве лучшей альтернативы.
Остальные четыре контакта не используются. И здесь немаловажный фактор — пространство. Но блок питания ATX не может быть подключен к материнской плате ATX12V из-за количества контактов.
12 В довольно эффективен, и его КПД выше 80%, что лучше, чем у традиционных блоков питания AT и ATX.
Другой блок питания включает в себя:
- Блок питания EPS12V , который используется на материнской плате настольных компьютеров высокого класса.
- Существует ряд блоков питания меньшего размера, таких как SFX12V , также известный как малый форм-фактор, CFX12V , также известный как компактный форм-фактор, LFX12V , также известный как низкопрофильный форм-фактор и, наконец, TFX12V , также известный как как тонкий форм-фактор.Они используются в небольших компьютерных корпусах.
- ATX и ATX12V используются для настольных персональных компьютеров. Есть еще один тип компьютерного блока питания, который используется в персональных компьютерах. Он называется Внешний источник питания . Тот, который используется в игровых консолях и многих других. Это внешний источник питания, который обычно большого размера и подключается к кабелю питания.
- Всегда есть резерв для вещей. Также имеется резервный источник питания, также известный как UPS или источник бесперебойного питания.Используется при отключении основного питания.
Блок питания или блоки питания используются для преобразования переменного или переменного тока, поступающего с выхода, в постоянный ток или постоянный ток, который ниже. Напряжения различаются, и это звучит очень просто для понимания.
Напряжение питания составляет 3,3 В, 5 В и 12 В. Эти напряжения не обязательно должны быть точными.Но он может меняться только до определенного момента, ниже или выше.
Но если дело пойдет до крайности, это может вызвать проблемы. Напряжение — это произведение ватт. В наши дни обычно используются следующие источники питания: —
- Цифровые схемы требуют 3,5 вольт. Уровень допуска составляет ± 5%. Минимальное напряжение, которое он может обеспечить, составляет +3,135 В постоянного тока. При этом минимальное обеспечиваемое напряжение составляет + 3,465 В постоянного тока.
- Для + 5 В постоянного тока или напряжения постоянного тока уровень допуска снова такой же, как ± 5%.Минимальное обеспечиваемое напряжение составляет +4,750 В постоянного тока, а максимальное предоставленное напряжение составляет +5,250 В постоянного тока.
- + 5 VSB или резервное напряжение. Он также используется для цифровых схем. Уровень допуска составляет ± 5%. Минимальное и максимальное напряжения составляют + 4,750 В постоянного тока и + 5,250 В постоянного тока соответственно.
- Допустимые значения напряжения составляют ± 10% и составляют –5 В постоянного тока. Таким образом, максимальное и минимальное напряжения, которые он обеспечивает, составляют — 4,500 В постоянного тока и — 5,500 В постоянного тока соответственно.
- Постоянный ток 12 В используется для дисководов, а также для запуска двигателей и вентиляторов.12VDC и -12VDC имеют разные уровни допуска, 12VDC может колебаться от +11.400 до +12.600 VDC, а последнее колеблется от -10.800 VDC до -13.200VDC. Уровень допуска составляет ± 5% и ± 10% соответственно.
- Без источника питания компьютер не будет работать. Таким образом, пользователь не сможет использовать компьютер.
- Блок питания или блок питания обеспечивает другие части компьютера электрическим током.
- Он помогает преобразовывать переменный ток (AC), идущий от выхода или распределительного щита, в постоянный ток (DC), который идет к другим частям компьютера.
- Вентилятор, установленный в блоке питания, используется для отвода тепла, выделяемого компьютером. ИБП
- или источник бесперебойного питания помогает в питании компьютера пользователя от «скачков» и «падений напряжения».
Где в компьютере находится блок питания?
Раньше блок питания располагался вверху, сзади компьютера.Но теперь он находится внизу корпуса компьютера, сзади.
Как долго работает блок питания?
Это зависит от того, насколько хорошо с ним обращаются. Обычно срок службы БП составляет 5-7 лет. И если с ним обращаться очень хорошо, он может прослужить дольше. Бренд и качество тоже зависят.
Что вызывает сбой блока питания?
Если вентилятор перестает работать, а также из-за перегрева. Кроме того, неправильное обращение с блоком питания приведет к его отказу. Здесь тоже зависит от качества и от того, насколько хорошо работает.
ВыводыПроизводство этого оборудования не прекращается из-за его важности в мире компьютеров. Нет питания, нет работы компьютера.
Быть таким важным. За компьютером следует правильно ухаживать. А также не возиться с блоком питания. Его очень сложно ремонтировать, и возиться с ним очень опасно.
Словарь спецификаций — Rails (PSU) | ГеймерыNexus
В ПК разные компоненты используют разные уровни напряжения, поэтому блок питания должен брать электричество из стены и разделять его на 12 В, 5 В и 3.Мощность 3в. Рельс — это просто провод / путь внутри блока питания, по которому проходит электричество определенного напряжения. Шина 12 В обеспечивает питание графических процессоров и процессоров, обычно двух наиболее энергоемких компонентов. Следует отметить, что шину 12 В можно разделить на несколько шин по 12 В, и в этом случае две шины по 12 В обеспечат половину мощности суммарной мощности 12 В.
«Рельсы» — это термин, используемый для описания отдельных напряжений в блоке питания. В БП ATX12V присутствуют шины 3.3V, 5V, 5Vsb, -12V и + 12V.Некоторые производители разбивают +12 В на дополнительные части в целях безопасности, как описано в стандарте ATX12V 2.2. Тем не менее, многие производители обнаружили, что стоимость разделения рельса на рельсы еще меньшего размера с ограничением по току непомерно высока, и что многим новым устройствам (особенно видеокартам) требуется больше тока, чем может обеспечить одна из рельсов меньшего размера. В результате в стандарте ATX12V 2.3 было снято требование разделять +12 В на более мелкие рельсы в целях безопасности.Теперь большинство блоков питания используют одну шину 12 В, которая подает ток на любое устройство, в котором он нуждается.
Однако при использовании нескольких видеокарт в массиве SLI или CrossFireX разумно приобрести блок питания с несколькими «истинными» шинами +12 В, чтобы продлить срок службы блока питания (и в целях безопасности) за счет более равномерного разделения блоков питания. силовая нагрузка. Из-за тепловыделения при постоянной и серьезной нагрузке в конфигурациях с несколькими VGA, наличие нескольких шин +12 В в конечном итоге окажет положительное влияние на установки для энтузиастов или более жесткие установки.
шины +12 В обеспечивают питание нескольких различных устройств, наиболее известными из которых являются современные видеокарты и 4/8-контактный разъем для процессора.
В конце концов, только самые экстремальные пользователи должны заботиться о разнице между шиной 1x + 12V и 2x шиной + 12V.
См. Также
- Максимальная мощность (Вт)
- Форм-фактор блока питания
- 80 плюс
Подробнее
Сопутствующие товары
Номинальная мощность блока питания 12 В ATX
Номинальная мощность блока питания 12 В ATXПредставитель ATX 12 В.Номинальные характеристики блока питания (амперы)
Источники питания различаются по характеристикам в зависимости от производителя и даты изготовления — следовательно, имеющийся у вас блок питания может не точно соответствуют номинальным выходным параметрам, указанным ниже. Блок питания на 200 Вт будет аналогичным, но, вероятно, будет немного другим. цифры силы тока. Я заметил, что поставки более позднего производства имеют тенденцию указывать более высокие текущие уровни, чем раньше, но также перечислить максимальный комбинированный вывод. Помните, что приведенная ниже таблица является приблизительной и может рассматриваться только как ориентировочная.Модель (номинальная мощность) | 145 Вт | 200 Вт | 235 Вт | 250 Вт | 275 Вт | 300 Вт | 350 Вт | 400 Вт | 425 Вт | 475 Вт |
---|---|---|---|---|---|---|---|---|---|---|
+3,3 В | & nbsp | 14 | 13 | 13 | 14 | 14 | 28 | 40 | 40 | 45 |
+5 В | 18 | 22 | 22 | 25 | 30 | 30 | 32 | 40 | 40 | 40 |
+12 В | 4.2 | 10 | 8 | 10 | 10 | 12 | 15 | 15 | 15 | 18 |
-5 В | 0,5 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 | 0,3 |
-12 В | 0.5 | 1,0 | 0,5 | 0,5 | 1,0 | 1,0 | 0,8 | 1,0 | 1,0 | 2,0 |
+5 VSB * | 0,2 | 2,0 | 2,0 | 2,0 | 2,0 | 2,0 | 2,0 | 2,0 | 2,0 | 3,5 |
+3.Максимальная комбинированная мощность 3 В и + 5 В ** | & nbsp | 135 Вт | 125 Вт | 150 Вт | 150 Вт | 150 Вт | 215 Вт | 300 Вт | 300 Вт | 300 Вт |
* Напряжение в режиме ожидания — большинство системных плат на недавно произведенных компьютерах будут постоянно получать питание в режиме ожидания. чтобы разрешить пробуждение при запуске LAN.
** Немного прикладной алгебры покажет, что общая производимая мощность (ватты = вольт x ампер) будет значительно выше номинальная мощность блока питания.Тем не менее, источники питания последнего поколения будут иметь максимальную номинальную мощность для линий 3,3 и 5 В. комбинированный. Даже если вы можете получить номинальную мощность от одного напряжения, вы не сможете получить максимальную номинальную мощность. с обеих линий одновременно.
НАЗАД
Напряжение источника питания — обзор
Введение
Несмотря на важность энергопотребления и использования памяти, относительно мало внимания уделяется оптимизации мощности и памяти для приложений DSP.В этой главе будут представлены некоторые рекомендации по оптимизации приложений DSP для мощности.
Требования к конструкции с низким энергопотреблением исходят из нескольких областей, включая проблемы мобильности для портативных приложений, использующих батареи, области, связанные с эргономикой, которые определяют упаковку и другие ограничения теплового охлаждения, и, наконец, общую ценность системы, которая исходит из требований, которые поддерживают плотность каналов и другое электричество факторы затрат (рисунок 7.1).
Рисунок 7.1. Низкое энергопотребление инновационного оборудования для конечных пользователей
(любезно предоставлено Texas Instruments)Каждый милливатт мощности мобильного устройства следует рассматривать с точки зрения времени автономной работы.Даже более крупные системы, такие как широкополосные системы и системы DSL (цифровые абонентские линии), чувствительны к питанию, даже если эти системы эффективно подключены к стене. Тепло, генерируемое этими устройствами, требует большего количества охлаждающего оборудования и ограничивает количество каналов на площадь (или каналов на устройство) в этих системах. В этом смысле снижение энергопотребления стало ключевой целью разработчиков встроенных систем, включая разработчиков DSP. Ключевой задачей является достижение приемлемого уровня производительности / мощности.DSP используются в основном для достижения производительности и вычислительных целей из-за вышеупомянутой поддержки этих операций. Поскольку эти сложные алгоритмы становятся все более распространенными в портативных приложениях, компромисс между производительностью и мощностью становится очень важным. Во многих случаях вычислительная мощность должна быть компенсирована более высокими требованиями к мощности, если на протяжении всего жизненного цикла не соблюдается дисциплинированный процесс для управления мощностью и производительностью.
Так же, как размер кода и скорость влияют на стоимость, потребление энергии также влияет на стоимость.Чем больше энергии потребляет встроенное приложение, тем больше батарея требуется для его работы. Для портативного приложения это может сделать продукт более дорогим, громоздким и нежелательным. Чтобы снизить энергопотребление, вам нужно заставить приложение работать как можно меньше циклов, учитывая, что каждый цикл потребляет измеримое количество энергии. В этом смысле может показаться, что производительность и оптимизация энергопотребления схожи — для достижения целей оптимизации производительности и энергопотребления требуется наименьшее количество циклов.Стратегии оптимизации производительности и энергопотребления преследуют схожие цели, но имеют небольшие различия, как будет вскоре показано.
Ключевой задачей разработчиков встроенных DSP является разработка прикладного решения, отвечающего требованиям по производительности, цене и мощности. Достижение всех трех целей — непростая задача. Для этого может потребоваться некоторый уровень оптимизации мощности как аппаратного, так и программного обеспечения (рис. 7.2). Достижение этих одновременных целей требует управления жизненным циклом, инструментов и методов, а также правильного устройства DSP.
Рисунок 7.2. Отсутствие видимости и контроля над мощностью системы расстраивает разработчиков
(любезно предоставлено Texas Instruments)Большая часть динамической мощности, потребляемой во встроенных приложениях, поступает не от ЦП, а от процессов, используемых для передачи данных из памяти в ЦП. Каждый раз, когда ЦП обращается к внешней памяти, включаются шины, а другие функциональные блоки должны быть включены и использоваться для передачи данных в ЦП. Здесь потребляется большая часть энергии. Если программист может разрабатывать приложения DSP, чтобы минимизировать использование внешней памяти, эффективно перемещать данные в ЦП и из него, а также эффективно использовать периферийные устройства и кэш для предотвращения перегрузки кеша, циклического включения и выключения периферийных устройств и т. Д., общее энергопотребление приложения будет значительно снижено.На рис. 7.3 показаны два основных источника питания встроенных приложений DSP. Вычислительный блок включает в себя ЦП, и именно здесь выполняются алгоритмические функции. Другой — это блок передачи памяти, и именно здесь подсистемы памяти используются приложением. Блок передачи памяти — это то место, где большая часть энергии потребляется приложением DSP.
Рисунок 7.3. Основными источниками энергии для приложения DSP являются функции передачи памяти, а не вычислительный блок.
Процесс оптимизации энергопотребления является ключевым компонентом управления приложениями DSP, поскольку это процесс жизненного цикла, который следует планировать и управлять соответствующим образом. Руководитель группы DSP должен понимать всю систему, аппаратное и программное обеспечение, чтобы эффективно управлять этими усилиями. Это не совсем проблема, связанная с программным обеспечением.
Например, некоторые DSP предназначены для работы с низким энергопотреблением. Эти DSP созданы с учетом особых производственных процессов, которые рассчитаны на низкое энергопотребление.Эти архитектуры используют специальные аппаратные возможности для более эффективного управления энергопотреблением устройства, в то же время сохраняя архитектурные особенности, необходимые для обеспечения производительности, ожидаемой от DSP.
Что касается программного обеспечения, то оптимизация приложений начинается с операционной системы и накапливается в приложении. Каждый из этих подходов будет обсуждаться в этой главе.
Как и в случае с большинством методов оптимизации, включая те, которые имеют дело с производительностью и памятью, оптимизация энергопотребления во многих отношениях регулируется составным правилом 80/20 для чистой мощности в мобильных приложениях (рисунок 7.4). На диаграмме слева примерно 80% времени в мобильном приложении продукт находится в каком-то режиме ожидания. Это означает, что только 20% времени находится в рабочем режиме. В тех 20% временного интервала, в котором работает приложение, примерно 80% этого рабочего времени фактически использует подмножество периферийных устройств или подмножество функций, которые могут быть предоставлены этим новым устройством или системой. Следовательно, вам нужно работать управляемым образом, когда вы хотите использовать только разрабатываемые функции.Следовательно, 20% из этих 20% — это когда вы фактически используете полную функциональность устройства. Возьмите 20% × 20%, и вы увидите, что полная рабочая мощность действительно требуется примерно в 4% случаев. Итак, вопрос в том, что вы делаете в остальное время для более эффективного управления питанием? Здесь нам нужно потратить время на обсуждение этих методов.
Рисунок 7.4. Составное правило 80/20 чистой мощности для мобильных приложений
(любезно предоставлено Texas Instruments)Мощность в режиме ожидания становится все более важным параметром при оптимизации энергоэффективности.На Рисунке 7.5, левая диаграмма показывает рабочую мощность, довольно близкую к полному открытию дроссельной заслонки, по дискретным временным элементам этого слайда. Из процента потребляемой мощности с течением времени видно, что на левой диаграмме сжигается довольно много энергии. Если вы перейдете к правой диаграмме, мы увидим, что большую часть времени можно оптимизировать для очень низкой мощности в режиме ожидания и использовать очень эффективную мощность, находясь в режиме ожидания в течение значительного количества времени. Кроме того, при включении вы можете включить полную рабочую мощность, как выделено во втором столбце, или вы можете включить некоторое подмножество полной рабочей мощности с некоторыми периферийными устройствами включенными, некоторые периферийные устройства выключены, как это выделено в пятом столбце на этот раз. кусочек.Как видите, потребляется гораздо меньше энергии, и мы можем получить гораздо более низкую минимальную полезную рабочую мощность, используя гораздо более эффективный режим ожидания, а также включив только те функции, которые вам нужно включить.
Рисунок 7.5. Энергопотребление в режиме ожидания — важный параметр оптимизации энергоэффективности
(любезно предоставлено Texas Instruments)Управление встроенными приложениями DSP в области оптимизации энергопотребления не должно касаться в первую очередь сравнения милливатт на мегагерц или других подобных показателей.Как показано на рис. 7.6, на самом деле это лишь верхушка айсберга власти. Есть более сложный процесс, чем просто сравнение этих типов измерений. Этот процесс также включает в себя анализ того, какие обращения к внутренней памяти и внешней памяти у приложения. Часто штраф за доступ к внешней памяти может привести к значительному, а иногда даже доминирующему количеству энергопотребления системы. Сведение к минимуму доступа к вводу / выводу вне кристалла также может сэкономить электроэнергию. С периферийным устройством на кристалле, таким как USB, инженер DSP может сэкономить значительное количество энергии по сравнению симеть доступ к нему вне кристалла. Также имеет смысл включать и использовать питание только на тех периферийных устройствах, которые должны быть задействованы, поэтому хорошая детализация и гибкость включения и выключения периферийных устройств экономят электроэнергию. В дополнение к этому, минимизация операций ввода-вывода вне кристалла может сэкономить мощность, напряжение процессора и частоту процессора, поддержание напряжения на максимально низком уровне и уменьшение частоты также может оказать значительное влияние на энергопотребление процессора или ядра. Еще ниже в основу концерна идет резервное питание.Когда элементы выключены, они все еще могут пропускать мощность через негерметичные транзисторы. Следовательно, приложение может потреблять значительное количество энергии, даже если оно не выполняет большой функциональной работы. Таким образом, милливатты (мВт) в режиме ожидания являются важным элементом более глобальной истории энергоснабжения. Интеллектуальное использование состояний простоя и ожидания и степень детализации возможности входить и выходить из этих состояний, а также скорость переключения состояний могут иметь значительное влияние на количество энергии, потребляемой вашей системой в приложении.
Рисунок 7.6. МВт / МГц — это только часть истории энергопотребления для встраиваемых систем
Основные стратегии энергосбережения, используемые во встраиваемых приложениях, включают:
- •
Снижение напряжения источника питания, если это возможно.
- •
Работа на более низкой тактовой частоте.
- •
Отключение функциональных блоков с управляющими сигналами, когда они не используются.
- •
Отсоединение частей устройства от источника питания, когда они не используются.
Существует два основных стиля управления питанием:
- •
Статическое управление питанием — этот подход не зависит от активности ЦП. Примером этого является активируемый пользователем режим отключения питания.
- •
Динамическое управление питанием — этот подход основан на активности ЦП. Примером этого является отключение неактивных функциональных блоков.
В этой главе мы обсудим оба этих подхода.
Некоторые соображения по проектированию системы, которые следует учесть при начале этапа оптимизации энергопотребления, включают:
- •
Внутренняя активность ЦП — Сложность инструкции (количество параллельных операций, выполняемых инструкцией), использование внутренних шины, включая шаблоны данных на шинах, повторяющиеся инструкции и т. д.
- •
Системные часы и частота переключения — Например, если тактовая частота удваивается, ток удваивается.
- •
Доступ к памяти на кристалле и вне кристалла — На кристалле требуется меньше энергии, поскольку интерфейс внешней памяти не управляется во время доступа к внутренней памяти.
- •
ПЗУ и ОЗУ — Выполнение кода из ПЗУ требует примерно на 10% меньше тока ЦП, чем тот же код, выполняемый из SRAM.
- •
Емкостная нагрузка выходов и способы управления ею.
- •
Видимость адреса — Адреса передаются на внешнюю адресную шину даже во время доступа к внутренней памяти — полезно для отладки, но по завершении отладки следует отключить.
- •
Режимы отключения питания — Режимы холостого хода для экономии энергии.
Что такое блок питания ПК и как он работает?
SMPS подставка для импульсного блока питания . В основном это электронный блок питания, используемый в настольных компьютерных системах. Основная цель использования SMPS — передавать питание от источника переменного тока к устройствам постоянного тока при преобразовании напряжения и тока.Он в основном используется в бытовых продуктах, таких как персональные компьютеры. Импульсные источники питания могут работать в широком диапазоне частот и напряжений питания, поэтому их область применения возрастает. Из-за большого объема SMPS они теперь также используются в зарядных устройствах для мобильных телефонов, а стоимость мобильных зарядных устройств также была снижена.
Импульсные источники питания также используются для преобразования постоянного тока в постоянный , и из-за этой функции SMPS, тяжелых транспортных средств, в промышленных установках, таких как телекоммуникационные стойки, блоки питания и отдельные элементы оборудования, также используют DC / DC. импульсные преобразователи для получения питания любого необходимого напряжения.
SMPS также использует импульсный стабилизатор для эффективного преобразования электроэнергии. Блок питания компьютера изменяет A.C. (переменный ток) на низкое напряжение D.C. (постоянный ток) для работы периферийных устройств. В настоящее время компьютер использует SMPS в качестве основного источника питания. Блок питания компьютера обычно меньше и легче по сравнению с линейным блоком питания из-за меньшего размера и веса трансформатора.
В основном элементы переключателей SMPS включают катушки индуктивности, конденсаторы, трансформатор и всевозможные электрические компоненты для регулирования выходного напряжения и тока.
Фактическая работа блока питания ПК разделена на четыре различных части, и каждая из них имеет свою важную задачу для поддержания идеальной производительности электроэнергии. Вот список всех тех разделов, о которых я говорю:
- Входной выпрямитель: Первый шаг — преобразовать AC в DC с помощью процесса, называемого Rectification .Выпрямитель представляет собой модуль двухполупериодного диодного моста или , который используется для создания неконтролируемого постоянного напряжения на сглаживающем конденсаторе. Ток, потребляемый из сети этой схемой выпрямителя , возникает короткими импульсами вокруг пиков переменного напряжения. Эти импульсы обладают значительной высокочастотной энергией, что снижает коэффициент мощности.
- Инвертор: На этом этапе DC преобразуется в AC через генератор мощности. Выходной трансформатор силового генератора очень низкий с частотой обмоток от десятков до сотен килогерц.Эти частоты превышают 20 кГц и не слышны для человека. Переключение осуществляется усилителем MOSFET . Этот усилитель имеет низкое сопротивление с высокой пропускной способностью по току.
- Преобразователь напряжения : Если выходное напряжение выше 10 вольт , то используются кремниевые диоды . Если выходное напряжение на ниже, чем на 10 вольт , то в качестве выпрямителя используются диоды Шоттки . У них более быстрое время восстановления, чем у кремниевых диодов, а при проводимости падение напряжения невелико.
- Регулятор выхода : фильтр, состоящий из катушек индуктивности и конденсаторов, используется для сглаживания выхода выпрямителя . Контур управления с обратной связью используется для регулирования выходного напряжения путем изменения рабочего цикла для компенсации изменений входного напряжения.
- Вентилятор: Вентилятор находится на задней панели. Он используется для удаления воздуха внутри БП.
- Порт источника питания: Эта часть потребляет электроэнергию от домашней розетки и подает ее на блок питания.
- Выключатель питания: Выключатель питания используется для включения или ВЫКЛ блока питания.
- Переключатель напряжения: Эта деталь используется для переключения напряжения с 110/115 В на 220/230 В или наоборот. Если в вашем блоке питания нет этой детали, вполне возможно, что разъем питания вашего блока питания универсальный или он предназначен только для определенного региона.
При установке блока питания в компьютер нам необходимо подключить все жизненно важные аппаратные кабели и разъем для передачи питания на различные компоненты компьютера.Их общие спецификации для различных настольных систем определены в руководствах Intel по проектированию, которые периодически пересматриваются.
- Основной кабель питания ПК: Этот кабель подключается к задней панели блока питания и используется для питания блока питания. Это видно с внешней стороны БП.
- Кабель питания SATA / MOLEX: Этот кабель соединяет блок питания с жестким диском. SATA означает Serial ATA или Serial Advanced Technology Attachment. SATA лучше, чем PATA , так как его скорость отправки данных намного выше.
- 24-контактный ATX, основной кабель питания MOBO: Этот кабель является стандартным кабелем материнской платы, который используется в материнской плате каждого компьютера, и в основном этот кабель соединяет блок питания с материнской платой и обеспечивает все необходимое для материнской платы питание. Этот кабель доступен в виде 2 кабеля или может быть соединен с одним кабелем .
- 6-контактный или 6 + 2-контактный кабель питания PCI Express: 6-контактный кабель используется для обеспечения дополнительного питания 12 В для плат расширения PCI Express .Слоты материнской платы PCI Express генерируют максимум 75 Вт . В основном он создан для видеокарты. 6 + 2-контактный кабель такой же, как 6-контактный кабель питания PCI Express , но с на 2 контакта больше . Преимущество этого кабеля в том, что он обеспечивает максимальную мощность 150 Вт.
- 8-контактный кабель питания процессора: Этот кабель используется для подачи питания на процессор.
Номинальная мощность — Общие требования к мощности для высокопроизводительного компьютера с несколькими видеокартами могут варьироваться от 650 Вт до более 1000 Вт, , где обычным персональным компьютерам обычно требуется от от 300 до 500 Вт. Рассчитанная потребляемая мощность и примерно на 40% больше, чем у блоков питания. Это сделано для защиты системы от перегрузки и снижения производительности. Общая потребляемая мощность системы — это сумма всех номинальных мощностей всех компонентов, которые получают питание от источника. Блок питания, сертифицированный производителем самостоятельно, будет требовать выходной мощности, которая может быть вдвое или больше, чем фактически предоставленная.
КПД — Тест, проведенный в 2005 , показал, что блоки питания компьютеров на эффективны на 70-80% .Высококачественные блоки питания могут иметь КПД более 80%. В результате они энергоэффективны, тратят меньше энергии на тепло и требуют меньшего воздушного потока для охлаждения. В 2012 году БП стали более эффективными. Их КПД может достигать –90% при оптимальных уровнях нагрузки. КПД обычно достигает максимума при нагрузке 50–75%. Сейчас начаты различные действия по повышению эффективности компьютерных блоков питания. Эффективные блоки питания экономят деньги, поскольку они тратят меньше энергии, а затем сэкономленное электричество будет использоваться для обеспечения питания того же компьютера.
Преимущества и недостатки — Одним из основных преимуществ SMPS является то, что он более эффективен, чем линейные регуляторы, поскольку переключающий транзистор рассеивает мало энергии, работая в качестве переключателя. Некоторые другие преимущества SMPS включают меньшего размера и более легкий , поскольку в SMPS исключаются тяжелые трансформаторы частоты сети и тепловыделение.
Большая сложность, генерация высокой амплитуды, высокой частоты являются недостатками.Дешевый SMPS может создавать помехи для оборудования A / V , подключенного к той же фазе, из-за обратной связи с электрическими коммутационными шумами на линии электропитания.
Меры предосторожности — После того, как шнур питания был отсоединен от стены, конденсатор основного фильтра может сохранять до 325 вольт. В некоторых ИИП отсутствует конденсатор утечки, который используется для медленной разрядки конденсатора.