Сигналы и данные.
Сигнал – материальный носитель, который фиксирует информацию для переноса ее от источника к потребителю.
Он может быть дискретным и непрерывным
Дискретный сигнал слагается из счетного множества (т.е. такого множества, элементы которого можно пересчитать) элементов (говорят – информационных элементов).
Набор самых “мелких” элементов дискретного сигнала называется алфавитом, а сам дискретный сигнал называют также сообщением.
Непрерывный сигнал – отражается некоторой физической величиной, изменяющейся в заданном интервале времени, например, тембром или силой звука.
Параметры сигнала, изменяемые во времени в соответствии с передаваемым сообщением, называются информативными.
Данные – зарегистрированные сигналы
Данные не тождественны информации
Понятие информации и информационного процесса. Свойства информации, её роль в обществе.
Информация – продукт взаимодействия данных и адекватных им методов обработки.
Информация возникает и существует в момент диалектического взаимодействия объективных данных и субъективных методов обработки. Такие процессы называются информационными, все прочее время информация находится в состоянии данных.
Свойства информации:
Объективность и субъективность, полнота, доступность, достоверность, актуальность
Кодирование и основные операции с данными. Представление числовых, текстовых, графических и звуковых данных в двоичном коде.
Кодирование – выражение одного типа данных через другой.
Операции с данными:
Сбор, формализация, фильтрация, сортировка, архивация, защита, транспортировка, преобразование
Способ кодирования чисел (Система Счисления)
СС: позиционные (количественные значения каждой цифры, зависит от ее места в числе)
Непозиционные (римские цифры)
Представление чисел в информатике:
С плавающей . или , ; Естественная запись с фиксированной . или ,
Кодирование текстовых данных:
Основано на сопоставлении каждому символу алфавита двоичных кодов
Кодирование графических объектов:
Происходит на основе разложения изображения на мельчайшие составляющие – растры
Кодирование звуковой информации:
Далеки от стандартизации, основаны на FM методе и таблично-волновом синтезе.
Единицы представления данных, структуры данных и их хранение.
Бит- двоичный код
Основные структуры данных:
Линейные (списки) – простейшие структуры, отличающиеся тем, что адрес каждого элемента однозначно определяется своим номером
Табличная (матрицы) – упорядоченные структуры, позиция каждого элемента определяется номером столбца и номером строки
Иерархические – структуры данных, адрес каждого элемента определяется путем доступа к нему
Файл – единица хранения данных, последовательность произвольного числа байтов, обладающая собственным именем
Хранение файлов в иерархической структуре – файловая структур
Предмет и структура информатики. Основные этапы развития информатики.
Информатика – наука, изучающая:
Методы реализации информационных процессов средствами вычислительной техники
Состав, структуру, общие принципы функционирования ВТ
Принципы управления ВТ
Структура информатики:
Теоретический уровень (информ процессы, аппаратное обеспечение, программное обеспечение)
Практический уровень ( то же)
Информатика как наука стала развиваться с середины прошлого столетия, что связано с появлением ЭВМ и начинающейся компьютерной революцией.
Начальный этап предыстории — освоение человеком развитой устной речи.
Второй этап – возникновение письменности.
Третий этап – книгопечатание.
Четвертый этап предыстории связан с успехами точных наук , появление радио, телефона и телеграфа, к которым потом добавилось и телевидение. Кроме средств связи появились новые возможности по получению и хранению информации – фотография и кино, запись информации на магнитные носители.
С разработкой первых ЭВМ принято связывать возникновение информатики как науки, начало ее
Что такое сигнал. Виды сигналов
Практически с самого момента зарождения человеческие племена столкнулось с необходимостью не только накапливать информацию, но и обмениваться ею друг с другом. Однако если с ближними сделать это было не так уже и сложно (язык и письменность), то с теми, кто находился на дальних расстояниях, данный процесс вызывал некоторые проблемы.
Со временем они были решены с помощью изобретения сигнала. Виды сигналов поначалу были довольно примитивными (дымовые, звуковые и т. п.), но постепенно человечество открывало новые законы природы, что способствовало изобретению новых способов для передачи информации. Давайте узнаем, какие виды сигналов бывают, а также рассмотрим, какими из них чаще всего пользуются в современном обществе.
Что называется сигналом
Под этим словом подразумевается закодированная одной системой информация, которая передается по специальному каналу и может быть декодирована другой системой.
Многие ученые полагают, что способность биологических организмов или даже отдельных клеток взаимодействовать между собою (сигнализируя о наличии питательных веществ или опасности) стала основной движущей силой эволюции.
В качестве сигнала может выступать каждый физический процесс, параметры которого адаптируются под тип передаваемых данных. К примеру, в системе телефонной связи передатчик преобразует слова говорящего абонента в электрический сигнал напряжения, который по проводам передается к принимающему аппарату, возле коего находится слушающий человек.
Сигнал и сообщение
Эти два понятия весьма близки по значению – они содержат в себе определенные данные, передающиеся от отправителя к получателю. Однако между ними есть ощутимое отличие.
Для реализации поставленной цели сообщение обязательно должно быть принято адресатом. То есть его жизненный цикл состоит из трех этапов: кодирование информации – передача — декодирование сообщения.
В случае с сигналом его принятие не является обязательным условием его существования. То есть зашифрованную в нем информацию возможно декодировать, но будет ли это сделано кем-то – неизвестно.
Классификация по разным критериям сигналов: основные виды
В природе существует немало разновидностей сигналов, обладающих разными особенностями. В связи с этим для их классификации используют различные критерии этих явлений. Таким образом, выделяют три категории:
- По способу подачи (регулярный/нерегулярный).
- По типу физической природы.
- По типу функции, описывающей параметры.
Сигналы по типу физической природы
В зависимости от способа образования, виды сигналов бывают следующими.
- Электрические (носитель информации — изменяющиеся во времени ток или напряжение в электрической цепи).
- Магнитные.
- Электромагнитные.
- Тепловые.
- Сигналы ионизирующих излучений.
- Оптические/световые.
- Акустические (звуковые).
Виды сигналов последние два также являются простейшими примерами коммуникационных технических операций, цель которых — оповещение об особенностях сложившейся ситуации.
Чаще всего их используют для предупреждения об опасности или неисправностях системы.
Нередко звуковые и оптические разновидности используются в качестве координирующих для налаженной работы автоматизированного оборудования. Так некоторые виды сигналов управления (команды) являются стимулирующими для системы, чтобы начать действовать.
К примеру, в противопожарных сигнализациях при обнаружении следов дыма датчиками они издают пронзительный звук. Тот, в свою очередь, воспринимается системой как управляющий сигнал для тушения очага возгорания.
Еще одним примером того, как сигнал (виды сигналов по типу физической природы перечислены выше) активизирует работу системы в случае опасности, является терморегуляция человеческого организма. Так, если вследствие различных факторов температура тела повышается, клетки «информируют» мозг об этом, и он включает «систему охлаждения организма», более известную всем как потоотделение.
По типу функции
По данному параметру выделяется разные категории.
- Аналоговые (непрерывные).
- Квантовые.
- Дискретные (импульсные).
- Цифровой сигнал.
Все эти виды сигналов – электрические. Обусловлено это тем, что их не только легче обрабатывать, но и они без труда передаются на длинные дистанции.
Что такое аналоговый сигнал и его виды
Такое название носят сигналы естественного происхождения, изменяющиеся непрерывно во времени (континуальные) и способные принимать разные значения на некотором интервале.
Благодаря своим свойствам, они прекрасно подходят для передачи данных в телефонной связи, радиовещании, а также телевидении.
Фактически, все остальные виды сигналов (цифровые, квантовые и дискретные) по своей природе – это преобразованные аналоговые.
В зависимости от непрерывных пространств и соответствующих физических величин, выделяются разные виды аналоговых сигналов.
- Прямая.
- Отрезок.
- Окружность.
- Пространства, характеризующиеся многомерностью.
Квантованный сигнал
Как уже было сказано в прошлом пункте, это все тот же аналоговый вид, однако его отличие состоит в том, что он подвергся квантованию. При этом вся область значений его поддалась разбивке на уровни. Их количество представляется в числах заданной разрядности.
Обычно данный процесс на практике используется при сжатии звуковых или оптических сигналов. Чем больше уровней квантования, тем более точной становится трансформация аналогового вида в квантовый.
Рассматриваемая разновидность также относится к тем, которые возникли искусственным путем.
Во многих классификациях видов сигналов сигнал этот не выделяется. Однако он существует.
Дискретный вид
Этот сигнал также относится к искусственным и имеет конечное число уровней (значений). Как правило, их два или три.
На практике различие дискретного и аналогового способов передачи сигналов можно проиллюстрировать, сравнив запись звука на виниловой пластинке и компакт-диске. На первой информация подана в виде непрерывной звуковой дорожки. А вот на втором – в виде выжженных лазером точек с разной отражающей способностью.
Этот вид передачи данных возникает путем преобразования непрерывного аналогового сигнала в набор дискретных значений в форме двоичных кодов.
Упомянутый процесс именуется дискретизацией. В зависимости от количества символов в кодовых комбинациях (равномерное/неравномерное) его делят на два вида.
Цифровые сигналы
Сегодня этот способ передачи информации настойчиво вытесняет аналоговый. Как и два предыдущих, он также является искусственным. На практике он представлен в виде последовательности цифровых значений.
В отличие от аналогового, рассматриваемый намного быстрее и качественнее передает данные, параллельно очищая их от шумовых помех. Одновременно в этом заключается и слабость цифрового сигнала (виды сигналов остальные — в предыдущих трех пунктах). Дело в том, что фильтрованная таким способом информация теряет «зашумленные» частицы с данными.
На практике это означает, что из передаваемого изображения исчезают целые куски. А если речь идет о звуке – слова или даже целые предложения.
Фактически, любой аналоговый сигнал может быть модулирован в цифровой. Для этого он подвергается одновременно двум процессам: дискретизации и квантованию. Являясь отдельным способом передачи информации, цифровой сигнал не делится на виды.
Его популярность способствует тому, что в последние годы телевизоры нового поколения создаются специально для цифрового, а не аналогового способа передачи изображения и звука. Однако их можно подключать к обычным телевизионным кабелям с помощью адаптеров.
Модуляция сигналов
Все вышеперечисленные способы передачи данных связаны с таким явлением, как модуляция (для цифровых сигналов — манипуляция). Зачем она нужна?
Как известно, электромагнитные волны (с помощью которых переносятся разные виды сигналов) склонны к затуханию, а это существенно уменьшает дальность их передачи. Чтобы этого не произошло, низкочастотные колебания переносятся в область длинных высокочастотных волн. Это явление и называется модуляцией (манипуляцией).
Помимо увеличения расстояния передачи данных, благодаря ей повышается помехоустойчивость сигналов. А также появляется возможность одновременно организовывать сразу несколько независимых каналов передачи информации.
Сам процесс выглядит следующим образом. В прибор, именуемый модулятором, поступают одновременно два сигнала: низкочастотный (несет определенную информацию) и высокочастотный (безинформационный, зато способен передаваться на длинные дистанции). В этом устройстве они преобразуются в один, который одновременно совмещает в себе достоинства их обоих.
Виды выходных сигналов зависят от измененного параметра входного несущего высокочастотного колебания.
Если оно гармоническое – такой процесс модуляции именуется аналоговым.
Если периодическое – импульсным.
Если несущим сигналом является просто постоянный ток – такая разновидность называется шумоподобной.
Первых два вида модуляции сигналов, в свою очередь, делятся на подвиды.
Аналоговая модуляция бывает такой.
- Амплитудная (АМ) – изменение амплитуды несущего сигнала.
- Фазовая (ФМ) – меняется фаза.
- Частотная – влиянию подвергается только частота.
Виды модуляции сигналов импульсных (дискретных).
- Амплитудно-импульсная (АИМ).
- Частотно-импульсная (ЧИМ).
- Широтно-испульсная (ШИМ).
- Фазо-импульсная (ФИМ).
Рассмотрев, какие существуют способы передачи данных, можно сделать вывод, что, независимо от их вида, все они играют важную роль в жизни человека, помогая ему всесторонне развиваться и защищая от возможных опасностей.
Что касается аналогового и цифрового сигналов (с помощью которых передается информация в современном мире) то, вероятнее всего, в ближайшие двадцать лет в развитых странах первый будет практически полностью вытеснен вторым.
3. Виды информации и сигналов
Информация может быть двух видов: дискретная (импульсная и цифровая) и непрерывная (аналоговая). Дискретная информация характеризуется последовательными точными значениями некоторой величины, а непрерывная — непрерывным процессом изменения некоторой величины. Непрерывную информацию может, например, выдавать датчик атмосферного давления или датчик скорости автомашины. Дискретную информацию можно получить от любого цифрового индикатора: электронных часов, счетчика магнитофона и т. п.
Сигнал всегда является функцией времени. В зависимости от того, какие значения могут принимать аргумент (время t) и уровни сигналов их делят на 4 типа.
1) Непрерывный или аналоговый сигнал (случайный сигнал этого типа называется непрерывным случайным процессом). Эти сигналы определены для всех моментов времени и могут принимать все значения из заданного диапазона. Чаще всего физические процессы, порождающие сигналы являются непрерывными. Этим и объясняется второе название сигналов данного типа аналоговый т.е. аналогичные порождающим процессам.
2) Дискретизированный или дискретно непрерывные сигналы (случайные сигналы этого типа называют процессами с дискретным временем или непрерывными случайными последовательностями). Они определены лишь в отдельные моменты времени и могут принимать любые значения уровня.
3) Дискретные по уровню или квантованные сигналы (случайные сигналы этого типа называют дискретными случайными процессами). Они определены для всех моментов времени и принимают лишь разрешенные значения уровней отделенные от друг друга на величину шага квантования.
4) Дискретные по уровню и по времени сигналы (случайные сигналы этого типа называют дискретными случайными последовательностями). Они определены лишь в отдельные разрешенные моменты времени и могут принимать лишь разрешенные значения уровней.
4. Система связи
Совокупность технических средств используемых для передачи сообщений от источника к потребителю информации называется системой связи. Общая схема системы связи состоит из 5 частей.
1) Источник сообщений
2) Передатчик, который перерабатывает некоторым образом сообщения в сигналы соответственного типа определенного характеристиками используемого канала.
3) Канал связи — это комплекс технических средств, обеспечивающий передачу сигналов от передатчика к приемнику. В состав канала входит каналообразующая аппаратура, осуществляющая сопряжение выходного и входного сигналов соответственно передатчика и приемника с линией связи, и самой линии связи.
Линией связи (ЛС) называется среда, используемая для передачи сигнала от передатчика к приемнику. Это может быть, например: пара поводов, коаксиальный кабель, область распространения радиоволн, световод и т.д. Обычно входными и выходными сигналами линии связи является сигналы типа один, т.е. непрерывный. Вместе с тем на входе и выходе канала могут присутствовать сигналы и других типов. Канал называется дискретным, если на его входе и выходе присутствуют сигналы дискретные по уровню. Если сигналы на входе и выходе канала непрерывны по времени, то он называется непрерывным. В общем случае в процессе передачи в канале сигнал искажается шумом, что соответствует наличию источника шума.
4) Приемник обычно выполняет операцию обратную по отношению к операции, производимой передатчиком, т.е. восстанавливается сообщение по сигналам. Сложность построения приемника обусловлена изменением формы принимаемых сигналов, что связано с наличием шума.
5) Получатель это лицо или аппарат, для которого предназначено сообщение. Процесс преобразования сообщения в сигнал, осуществляющий в передатчике и обратный ему процесс, реализующий в приемнике назовем соответственно кодированием и декодированием.
Виды сигналов: аналоговый, цифровой, дискретный
Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.
Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.
С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот – каждая деталь завершена и связана с другими за счет специальных линий связи.
Сигнал
Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.
В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.
Описываемый код передачи данных задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.
В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.
Виды сигналов
Существует несколько типов классификации имеющихся сигналов. Рассмотрим, какие бывают виды.
- По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
- По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
- В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.
Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное — немного подумать и вспомнить школьный курс физики.
Для чего обрабатывается сигнал?
Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.
Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.
В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.
Создание и формирование
Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и цифро-аналоговый (ЦАП) преобразователи. Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.
При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.
Динамический диапазон
Диапазон сигнала вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.
Аналоговый сигнал
Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.
Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.
Цифровой сигнал
Цифровой сигнал является особым потоком данных, он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.
Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.
Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.
Применение цифрового сигнала
Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.
В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.
Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.
Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.
Дискретный сигнал
Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения – это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.
Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.
Сравнение цифрового и аналогового сигналов
Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.
Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.
Если говорить коротко, то аналоговый сигнал – способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.
Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.
Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.
Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ – только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.
Сигналы и данные Информация в материальном мире. Сигналы и данные
Все виды энергообмена сопровождаются появлением сигналов, т.е. все сигналы имеют в своей основе материальную энергетическую природу. При взаимодействии сигналов с физическими телами в последних возникают определенные изменения свойств – это явление называется регистрацией сигналов. Такие изменения можно наблюдать, измерять или фиксировать иными способами – при этом возникают и регистрируются новые сигналы, т.е. образуются данные.
Данные
Из вышесказанного следует, что данные представляют собой зарегистрированные сигналы. При этом физические методы регистрации сигналов могут быть любыми: механическое перемещение физических тел, изменение их формы или параметров качества поверхности, изменение электрических, магнитных, оптических характеристик, химического состава, изменение состояния электронной системы и т.д.
В ходе информационного процесса данные преобразуются из одного вида в другой с помощью методов.
СИГНАЛЫ → РЕГИСТРАЦИЯ СИГНАЛОВ→ ДАННЫЕ |
Операции с данными
Сбор данных
Формализация данных
Фильтрация данных
Сортировка (упорядочение) данных
Архивация (организация хранения) данных
Защита данных;
Транспортировка данных (прием и передача)
Преобразование данных
Кодирование данных
Для автоматизации работы с данными, относящимися к различным типам, необходима унификация их формы представления путем кодирования, т.е. выражение данных одного типа через данные другого типа (человеческие языки, система записи математических выражений, различные азбуки, система Брайля и др.).
В вычислительной технике используется система двоичного кодирования, основанная на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называются двоичными цифрами (binary digit или bit).
Одним битом могут быть выражены два понятия: 0 или 1. Двумя битами можно выразить четыре различных понятия: 00 01 10 11. Тремя битами – восемь различных значений: 000 001 010 011 100 101 110 111.
КОДИРОВАНИЕ ДАННЫХ | |
Обозначение (ед. инф.) | Значение |
Бит (bit — binary digit) | 0 или 1 |
2 бит | 00 01 10 11. |
3 бит | 000 001 010 011 100 101 110 111 |
1 байт = 8 бит | целые числа от 0 до 255 |
2 байт = 16 бит | числа от 0 до 65 535 |
3 байта = 24 бит | 16,5 млн. значений |
Обозначение
Значение
Слово
16 бит
Килобайт
1 К = 210 байт = 1 024 байт
Мегабайт
1 М = 1024 К = 2 20 байт ≈ 106 байт
Гигабайт
1 G = 1024 М = 2 30 байт ≈ 109 байт
Терабайт
1 Т = 1024 G = 2 40 байт ≈ 1012 байт
Для кодирования действительных чисел используют 80-разрядное кодирование. при этом число предварительно преобразуется в нормализованную форму (форму представления чисел с плавающей десятичной точкой)
ПРЕДСТАВЛЕНИЕ ДАННЫХ
С фиксированной десятичной точкой
С плавающей десятичной точкой (экспоненциальная форма)
3.14159
0.314159 ∙101 или 0.314159 Е01,
0,314159 – мантисса, 101 (Е01) — характеристика
0.0078
0.78 ∙10 -2 или 0.78 Е-02
573.49
0.57349 ∙103 или 0.57349 Е03
КОДИРОВАНИЕ ТЕКСТОВЫХ ДАННЫХ
Каждому символу сопоставляют определенное целое число
А
0100001
С
0100011
В
0100010
D …
0100100 …
Виды и характеристики носителей и сигналов
Раздел 4. Сетевые технологии обработки данных
Лекция 14 Основные виды носителей информации и их
Характеристики
Виды и характеристики носителей и сигналов.
Модуляция и кодирование.
Спектры сигналов.
Методы повышения помехоустойчивости передачи и приема
Информации
Литература: 1. Телекоммуникационные системы и сети: Учебное
пособие. В 3 томах. Том 1 – Современные технологии /
Б.И.Крук, В.Н.Попантонопуло, В.П.Шувалов; под ред.
проф. В.П.Шувалова. – Изд. 3-е, испр. и доп. – М.:
Горячая линия – Телеком, 2003.
Виды и характеристики носителей и сигналов
Как известно, чтобы доставить (перенести) сообщение, содержащее информацию, от источника к потребителю (приемнику), необходим какой-либо материальный носитель. Например, при передаче сообщения по почте таким носителем служит бумага. При передаче сообщений в среде информационно-вычислительных сетей в качестве носителей используются сигналы. Причем физическая природа сигналов в отдельных элементах сети, как правило, различна: внутри компьютера сигналы имеют вид изменяющихся статических уровней токов (напряжений) (рисунок 1, а) либо последовательностей коротких импульсов (рисунок 1, б), формируемых в пределах тактовых интервалов Т, а в
Рисунок 1 – Потенциальное и импульсное представление сообщений
линиях связи вне компьютера сигналы чаще всего представляют электрическими (в проводных линиях связи), электромагнитными (в радиолиниях связи) колебаниями или изменяющимся во времени световым потоком (в оптоволоконных линиях связи). В линиях связи локальных сетей (ограниченных длиной в несколько сот метров) также применяются импульсные сигналы. Такое разнообразие используемых в компьютерной технике сигналов является не чьей-либо прихотью, а вынужденной мерой. В первую очередь это связано с тем, что различные среды передачи сигналов имеют существенно отличающиеся электрические характеристики, влияющие на качество передачи тех или иных видов сигналов.
Главное отличие внешних линий связи от внутренних состоит в их гораздо большей протяженности, а также в том, что они проходят вне экранированного корпуса по пространствам, зачастую подверженным воздействию сильных электромагнитных помех. Если в качестве переносчика сообщений в таких линиях использовать прямоугольные импульсы, все то, о чем сказано выше, приводит к значительно большим искажениям импульсов (например, «заваливанию» фронтов), чем внутри компьютера. Поэтому для надежного распознавания импульсов на приемном конце линии связи при передаче данных внутри и вне компьютера не всегда можно использовать одни и те же скорости и способы кодирования.
Например, медленное нарастание фронта импульса из-за высокой емкостной нагрузки линии связи требует передачи импульсов с меньшей скоростью (чтобы передний и задний фронты соседних импульсов не перекрывались, и импульс успел дорасти до требуемого уровня).
На способ передачи сигналов влияет и количество проводов в линиях связи между компьютерами. Для сокращения стоимости линий связи в сетях обычно стремятся к сокращению количества проводов и из-за этого используют не параллельную передачу всех бит одного байта или даже нескольких байт, как это делается внутри компьютера, а последовательную, побитную передачу, требующую всего одной пары проводов.
Еще одной проблемой, которую нужно решать при передаче сигналов, является проблема взаимной синхронизации передатчика одного компьютера с приемником другого. При организации взаимодействия модулей внутри компьютера эта проблема решается очень просто, так как в этом случае все модули синхронизируются от общего тактового генератора. Проблема синхронизации при связи компьютеров может решаться разными способами, как с помощью обмена специальными тактовыми синхроимпульсами по отдельной линии, так и с помощью периодической синхронизации заранее обусловленными кодами или импульсами характерной формы, отличающейся от формы импульсов данных.
При выборе вида сигнала для передачи сообщений в сети в первую очередь необходимо учитывать такие характеристики линии связи, как полоса пропускания и амплитудно-частотная характеристика (АЧХ). Например, при использовании проводной (телефонной) линии связи не могут быть использованы импульсные сигналы, так как они являются широкополосными (занимают диапазон частот от единиц Гц до сотен МГц), а полоса пропускания двухпроводной телефонной линии очень ограничена (рисунок 2).
Рисунок 2 – АЧХ канала тональной частоты
Как видно из рисунка, по такому каналу без искажений можно передавать частоты в диапазоне от 300 до 3400 Гц. И хотя человеческий голос имеет гораздо более широкий спектр – примерно от 50 … 100 Гц до 8 … 10 кГц, – для приемлемого качества передачи речи диапазон в 3100 Гц является неплохим (с точки зрения стоимости) решением. Диапазон частот 300 … 3400 Гц принят Международным союзом электросвязи в качестве границ эффективного спектра речи. Но если по двухпроводной линии связи передавать импульсные сигналы, они будут претерпевать сильное затухание (в результате подавления высших частотных составляющих). Именно по этой причине в модемах (подключаемых к проводным линиям связи) предусмотрена аналоговая (амплитудная, частотная или фазовая) модуляция сигнала.
Искажение передающим каналом синусоиды какой-либо частоты приводит, в конечном счете, к искажению передаваемого сигнала любой формы, особенно если синусоиды различных частот искажаются неодинаково. Если это аналоговый сигнал, передающий речь, то изменяется тембр голоса за счет искажения обертонов – боковых частот. При передаче импульсных сигналов, характерных для компьютерных сетей, искажаются низкочастотные и высокочастотные гармоники, в результате фронты импульсов теряют свою прямоугольную форму (рисунок 3). Вследствие этого на приемном конце линии сигналы могут плохо распознаваться.
Линия связи искажает передаваемые сигналы из-за того, что ее физические параметры отличаются от идеальных. Так, например, медные провода всегда представляют собой некоторую распределенную по длине комбинацию активного сопротивления, емкостной и индуктивной нагрузки. В результате для синусоид различных частот линия будет обладать различным полным сопротивлением, а значит, и передаваться они будут по-разному. Волоконно-оптический кабель также имеет отклонения, мешающие идеальному распространению света. Если линия связи включает промежуточную аппаратуру, то она также может вносить дополнительные искажения, так как невозможно создать устройства, которые бы одинаково хорошо передавали весь спектр синусоид, от нуля до бесконечности.
Рисунок 3 – Различия в сигналах на входе и выходе проводной
(кабельной) линии связи
Модуляция и кодирование
При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования – на основесинусоидального несущего сигнала и на основепоследовательности прямоугольных импульсов. Первый способ часто называется также модуляцией или аналоговой модуляцией,подчеркивая тот факт, что кодирование осуществляется за счет изменения параметров аналогового сигнала. Второй способ обычно называют цифровым кодированием. Термины «модуляция» и «кодирование» часто используют как синонимы. Эти способы отличаются шириной спектра результирующего сигнала и сложностью аппаратуры, необходимой для их реализации.
При использовании прямоугольных импульсов спектр результирующего сигнала получается весьма широким. Применение синусоиды приводит к спектру гораздо меньшей ширины при той же скорости передачи информации. Однако для реализации синусоидальной модуляции требуется более сложная и дорогая аппаратура, чем для реализации прямоугольных импульсов.
В информационно-вычислительных сетях цифровое кодирование применяется на каналах высокого качества, а модуляция на основе синусоидальных сигналов предпочтительнее в том случае, когда канал вносит сильные искажения в передаваемые сигналы. Обычно модуляция используется в глобальных сетях при передаче данных через аналоговые телефонные каналы связи, которые были разработаны для передачи голоса в аналоговой форме и поэтому плохо подходят для непосредственной передачи импульсов.
Статьи к прочтению:
Лекция \
Похожие статьи:
Виды сигналов и их формирование Физические сигналы и их математическое описание
Материальными переносчиками информации служат сигналы, представляющие собой физические процессы, удовлетворяющие следующим условиям:
1. Они допускают возможность управления параметрами процесса в соответствии с выбором алгоритма.
2. Эти сигналы (процессы) могут быть воспринимаемы и, регистрироваться соответствующими устройствами.
3. Эти системы могут быть передавать или распространяться по соответствующим линиям связи.
В настоящее время в информационных системах наибольшее распространение, имеют сигналы, на основе процессов электромагнитной природы.
В общем случае всякий сигнал представляет собой изменяющиеся во времени физическую величину (ток, напряжение, полярность).
Сигналы могут носить как непрерывный, так и дискретный характер. Однако такое деление имеет достаточно условный характер и определяется в основном соотношении между временем действия сигнала и интервалом его восприятия.
Непрерывные сигналы
В качестве непрерывных сигналов передачи данных (СПД) чаще всего используются электромагнитные процессы, изменяющиеся по гармоническому закону.
.
Для таких сигналов характерными параметрами является амплитуда, частота и начальная фаза.
Гармонические сигналы в чистом виде практически не пригодны для передачи информации, потому что если известны исходные параметры этого процесса в некий начальный момент времени, то параметры этого процесса фактически будут известны и в любом последующий момент времени.
То есть силу периодической повторяемости такого процесса оказываются известным наперед.
Поэтому нанесение информации на гармонические переносчики достигается в результате определенного изменения одного из характерных параметров этого процесса: амплитуды, частоты или вазы.
Дискретные сигналы
Такого типа сигналы реализуются в виде кратковременных отклонений, используемого физического процесса от исходного стационарного значения.
Если в качестве дискретного сигнала используется кратковременное воздействие электрического тока, то такие сигналы называются видео импульсами.
Если импульсный сигнал характеризуется кратковременным высокочастотном процессом, то такой сигал, называется радиоимпульсным при этом огибающая радиоимпульса рассматривается как видеоимпульса.
Форма этих сигналов может быть различной.