2.2. Виды мощности. Треугольник мощностей
В цепях переменного тока различают три понятия мощности: активная Р, реактивная Q, полная S.
Соотношения между мощностями могут быть получены из треугольника мощностей, который образуется путем умножения всех сторон треугольника напряжений на значение тока I.
Рис.2.3. Треугольник мощностей
Здесь:
QL— реактивная индуктивная мощность,
QC — реактивная емкостная мощность.
Активная мощность [Вт] — характеризует необратимый процесс преобразования электромагнитной энергии источника в другие виды энергии: механическую, тепловую, световую и т.д.
Реактивная мощность [Вар] (вольт-ампер реактивный) — характеризует обратимый процесс преобразования электромагнитной энергии источника в энергию магнитного поля катушки и энергию электрического поля конденсатора.
Полная мощность [ВА] (вольт-ампер) — характеризует наибольшее значение активной мощности при заданных действующих значениях тока и напряжения.
Как видно из выражения активной мощности, если мощность, потребляемая приемником в данной цепи, является вполне определенной величиной, то при неизменном напряжении на зажимах цепи и с уменьшением
. | (2.11.) |
Поэтому даже при полной загрузке током источника, но при низком
Наибольшего значения активная мощность достигает при = 1, т.е. когда = 0, или, как следует из выражения (2.10), когда . Такой режим работы называется резонансом напряжений. Явление резонанса напряжений как положительный эффект используется в технике слабых токов (в радиотехнике). В технике сильных токов резонанс напряжений является аварийным режимом, т.к. в этом случае напряжения на реактивных элементах могут достигать значений, намного превышающих приложенное напряжение, что может привести к пробою изоляции конденсаторов и катушек индуктивности.
2.3. Параметры цепи и характер нагрузки
Работа электрической цепи может быть описана, по крайней мере, тремя основными параметрами: напряжением (U), током (I) и активной мощностью (P). Произведение напряжения и тока в цепи дает нам полную мощность цепи (S = UI), а реактивную мощность (Q) можно найти из треугольника мощностей, зная полную и активную мощности.
Если активная мощность равна полной (P = S), то реактивная мощность обращается в ноль (Q = 0), тогда характер нагрузки является активным, а схема замещения цепи содержит только активное сопротивление.
Если активная мощность в цепи равна нулю (P = 0), то полная мощность равна реактивной (Q = S), тогда характер нагрузки становится реактивным: или индуктивным (если в цепи содержится реактивное индуктивное сопротивление), или емкостным (если в цепи содержится реактивное емкостное сопротивление), а схема замещения содержит или индуктивность, или емкость.
Если
активная мощность имеет значение
отличное от нуля, но при этом меньше
полной (0 < P < S), то мы имеем случай,
когда характер нагрузки смешанный.
Какой конкретно характер нагрузки
будет, — зависит от разницы между
реактивными сопротивлениями Х
Таким образом характер нагрузки может быть определен, если известна структура цепи. Это легко сделать для простых электрических цепей. Для более сложных электрических цепей, содержащих большое количество электротехнических устройств, обычно используют фазометр, позволяющий определить угол сдвига фаз между напряжением и током и его характер: емкостной или индуктивный.
Электрическая мощность и ее виды
Электрическая мощность и ее виды
Date 16.03.2012 Author By ipadminka Category Документация
Говоря об электрической мощности, большинство людей подразумевают под ней некую силу. Однако еще со школьного курса физики можно вспомнить, что сила и мощность являются хоть и взаимозависимыми, но разными понятиями.
Изначально мощность является характеристикой, относящейся к определенному событию. При этом если оно привязано к какому-либо предмету, то понятие мощности условно соотносят и с ним.
Воздействием силы можно назвать любое физическое действие. А сила, при помощи которой был пройден определенный путь, будет равна совершенной работе. В свою очередь работа, проделанная за определенный временной промежуток времени, приравнивается к мощности. Таким образом, мощность является физической величиной, равной отношению совершенной за определенное время работы к этому же времени. Но учитывая то, что мощность — это еще и мера измерения энергии, то можно утверждать, что она также является и скоростью преобразования энергии в системе. Однако приведенные выше определения в большей мере касаются механической мощности, а ведь в современной жизни, которая изобилует всевозможными электроприборами, просто необходимо иметь понятие о том, что такое ЭЛЕКТРИЧЕСКАЯ МОЩНОСТЬ. А мощностью электрического тока называют произведение тока на напряжение. И именно потому, что она в равной степени зависит от тока и от напряжения, одна и та же электрическая мощность может быть получена или при большом токе и низком напряжении или, наоборот, при высоком напряжении и малом токе. Это свойство электромощности положено в основу передачи электроэнергии на удаленные расстояния от электростанций при помощи трансформаторного преобразования на повышающих и понижающих электроподстанциях.
Различают два основных вида электрической мощности: активную и реактивную. Активная электромощность характеризуется безвозвратной трансформацией в иные виды энергии, такие как тепло, свет, движение и т. д. Единица измерения этой физической величины – ватты (Вт). В быту электроэнергию, как правило, измеряют в киловаттах, а на электростанциях энергия исчисляется в еще более крупных единицах – мегаваттах. Измерить активную электрическую мощность можно умножив один вольт на один ампер.
Реактивная электрическая мощность характеризует электронагрузку в различного рода электрических устройствах и равняется произведению рабочего тока и падения напряжения на синус угла сдвига фаз между ними. Единицей измерения реактивной мощности является вольт-ампер реактивный (ВАр).
Измеряют электрическую мощность при помощи специального прибора – ваттметра, имеющего 2 обмотки. Одна обмотка состоит из толстого провода и включается вместе с потребителем, фиксируя изменения величины тока. Вторая состоит из тонкого провода и включается параллельно, учитывая напряжение.
определение величины и выражения для расчёта энергии, единицы измерения
Электрическая мощность — это одна из главных физических величин, характеризующаяся преобразованием и передачей энергии. Её понятие непосредственно связывается с током и напряжением в сети. Этот параметр важен и учитывается не только при разработке электротехнического оборудования, но и при построении электрических цепей. Для определения её величины используется формула мощности, по которой выполнить расчёт совершенно несложно.
Суть понятия
При протекании через проводник электрического тока вокруг него возникает электромагнитное поле. Образуется оно из-за движущихся элементарных частиц, обладающих зарядом. Магнитное поле считается основным признаком присутствия электрического. При изменении одного происходит изменение и другого. Если ток в проводнике пропадёт, то электромагнитное поле всё равно никуда не исчезнет, разве что потеряет свою интенсивность.
Электромагнитное поле распространяется в виде излучения, или как выражаются учёные — пространственного возмущения. Это испускание свободно распространяется в любой физической среде. Характеризуется оно частотой, длиной и поляризацией (направлением) волны. А также одним из параметров излучения является количество энергии, переносимой волной (интенсивность).
Численно интенсивность определяется как усреднённый период колебания волны, пронизывающей площадку, расположенную перпендикулярно ей. При этом она связана с плотностью энергии и скоростью распространения волны. Поток электромагнитной энергии находится с учётом вектора Пойтинга, который принимает во внимание плотность, интенсивность и напряжённость поля.
То есть математически, интенсивность описывается выражением: I (t) = 1/T ∫ {s (t)} dt, где S (t) — вектор Пойтинга. В простом понимании её смысл заключается в том, что количественная составляющая электроэнергии изменяется во времени, при этом скорость изменения зависит от напряжённости электрического поля и магнитной индукции.
Для обозначения именно электрической составляющей электромагнитного поля было введено понятие электрическая мощность. Под ней понимают физическую величину, характеризующую передачу или преобразование электрической энергии.
Физическое определение
Основной характеристикой любого электрического прибора является мощность. Передача электричества от источника питания к нагрузке сопровождается преобразованием энергии из одного вида в другую. Выработанное электричество передаётся по электрической цепи (например, линии передачи) при этом происходит её частичное рассеивание. Другими словами, часть электричества превращается в иную энергию: тепловую, световую, механическую.
Это преобразование характеризуется интенсивностью, обозначающей, какое её количество перейдёт в другой вид за единицу времени. Интенсивность, с которой происходит трансформирование, и называют мощностью.
Согласно Международной системе единиц (СИ) измеряется мощность тока в ваттах. Сокращённое его обозначение в русском языке имеет вид — Вт, а в международном — W. В технической литературе саму величину обозначают с помощью латинской буквы P.
Математическое определение, соответствующее сказанному, выглядит как P = dW / dt, то есть характеризует изменение энергии во времени. Будь то генерируемая источниками мощность или передающаяся по линиям электропередач, она имеет одинаковый физический смысл. Её значение рассчитывается в зависимости от формы сигнала, то есть постоянных и переменных составляющих.
Так как её изменение происходит во времени, то для удобства понимания процесса были введены понятия мгновенных значений. С их помощью можно провести вычисление энергии для любой точки во времени.
Мгновенные величины
Под мгновенной мощностью понимается величина энергии, соответствующая произведению значений разности потенциалов и силы тока на определённом участке цепи. Любое твёрдое физическое тело состоит из кристаллической решётки, в составе которой находятся носители заряда — электроны. Их мерой является кулон. Они могут быть как свободными, так и прикреплёнными к атомам. Свободные частички хаотично перемещаются в теле, компенсируя энергию своего движения различным направлением по отношению друг к другу.
Если же к телу, обладающему свободными электронами, приложить электромагнитное поле, то их движение станет упорядоченным. Такое их перемещение называется силой тока. Определяется ток отношением количества зарядов, прошедших через проводник, с единичным поперечным сечением за единицу времени: I = dQ/dT. Величиной его измерения считается ампер.
Чтобы переместить заряд в проводнике, необходимо затратить работу, которая называется напряжением. То есть это физическая величина, соответствующая затраченной энергии для передвижения заряда из одной точки в другую. Отличие значений энергий в этих точках называется разностью потенциалов. Измеряется напряжение в вольтах. А его значение может быть вычислено по формуле: U = A/q.
При перемещении в теле проводника электроны сталкиваются с различными примесями и дефектами кристаллической решётки. В результате их часть заряда передаётся этим структурам, то есть фактически происходит отбор мощности. Забранная энергия частично преобразуется в тепло и свет. Количество тех или иных флуктуаций (неоднородностей) на пути прохождения тока было названо сопротивлением, величиной обратной проводимости. В соответствии с СИ обозначается она буквой R, а измеряется в омах.
Мгновенная зависимость всех трёх величин между собой была установлена физиком-экспериментатором Симоном Омом. Согласно его закону, сила тока прямо пропорциональна разности потенциалов и обратно пропорциональна сопротивлению на участке цепи. То есть равна: I = U/R.
Формула для общего случая
Так как напряжение — это работа, то, умножив её на количество перенесённых зарядов, получится энергия, затраченная для перемещения частиц от одного края проводника к другому. Энергия, в общем понимании, это работа за единицу времени. Поэтому можно записать следующее выражение Pab = A/dt, где:
- dt — интервал времени, за который все свободные заряды были перенесены;
- A — непосредственно сама работа.
Формулу мощности тока для одного заряда можно записать P = U/dt, а исходя из неё для всех зарядов как Pab = q*U/dt, где q — количество зарядов прошедших из одной точки (a) в другую (b) за промежуток времени dt.
Исходя из определения, данного силе тока, она практически является зарядом. В случае изменения во времени ток можно описать выражением I = q/dt. Тогда, исходя из этой формулы, верным будет утверждение, что q = I*dt. Если подставить полученную формулу вместо q в выражение, описывающее мощность, получится Pab = U* (I*dt/dt) = U*I.
Если время изменения бесконечно мало, то можно принять, что напряжение и ток практически не изменяются. В результате мгновенная электрическая мощность будет равна P (t) = u (t)*i (t). Как видно из формулы, значение мощности для любой точки времени будет прямо пропорционально мгновенным значениям тока и разности потенциалов. При этом если цепь неидеальная, то она содержит определённое сопротивление. Используя закон Ома для участка цепи, формулу для нахождения мгновенной мощности можно переписать в виде P (t) = i (t)2*R = u (t)2/R.
Мощность одновременно связана сразу с несколькими величинами и соответствует полной работе, затрачиваемой на перемещение некоторого количества кулонов за единицу времени (одну секунду). Из определения следует, что одно и то же значение мощности можно получить разными способами, например, уменьшая силу тока, но увеличивая напряжение. Такой подход и используется при передаче энергии на большие расстояния. Для этого применяются трансформаторы, понижающие и повышающие ток.
Виды электрической мощности
Существующую в природе электрическую мощность делят на два вида: активную и реактивную. Первая характеризуется таким превращением, которое происходит безвозвратно. То есть электрическая энергия трансформируется в тепло, свет, кинематику и другие виды. Такое преобразование считается полезным, так как оно идёт на обогрев, приготовление еды, освещение помещений, превращается в механическую силу, например, работа дрели, насоса и тому подобное.
Реактивная же мощность связывается с потерями энергии, то есть с той частью, которая не выполняет полезную работу. Возникает она из-за индуктивной или ёмкостной составляющих электрической цепи. Эти параметры характеризуются сопротивлением, зависящим от частоты сигнала. Поэтому для электроцепей с постоянным током понятие реактивной мощности не применяется.
В цепи же переменного тока наблюдается сдвиг сигналов напряжения и тока относительно друг друга. Обозначается он греческой буквой φ (фи). Причём если преобладает ёмкостная составляющая, то ток опережает напряжение, а когда индуктивная, то наоборот.
Присутствие ёмкостного и индуктивного сопротивления считается паразитным, так как на нём происходит бесполезное нагревание (потеря энергии). Но, кроме сопротивления, эти паразитные величины обладают способностью накапливать мощность, конденсатор — электрическую, а индуктивность — магнитную. Как только эта энергия достигнет максимально возможного значения, они начинают отдавать её в цепь. Для учёта величины реактивной мощности вводится понятие sin φ.
Поэтому полная формула мощности для электрического тока переменного сигнала складывается из двух составляющих и находится из выражения S = (P2+Q2)½, где:
- P — активная составляющая, Вт. P = U * I cos φ;
- Q — реактивная часть, ВА (вольт-амперы). Q = U * I * sin φ.
При этом sin φ и cos φ являются коэффициентами мощности переменного сигнала. Типичным примером источника активной мощности является нагреватель. Он делается из материала с высоким внутренним сопротивлением току, поэтому сигнал, проходя через него, преобразовывает свою электрическую энергию полностью в тепловую. В качестве же устройств, обладающих реактивной мощностью, можно привести приборы содержащие трансформаторы, например, перфоратор, холодильник.
Реактивный коэффициент
По-другому он называется коэффициентом мощности и является безразмерной величиной, вводимой для вычисления реактивной составляющей. Говоря научным языком, он показывает, насколько сдвигается фаза переменного тока, протекающего через нагрузку, от возникшего на ней напряжения. Численно он принимается равным косинусу сдвига. Математически это сдвиг интерпретируется как косинус угла между векторными значениями тока и напряжения.
Простыми же словами, коэффициент мощности, обозначаемый φ, указывает на ту часть расходуемой электроэнергии, которая преобразуется в полезную работу. Например, при cos φ = 0,9 девяносто процентов от полной энергии уйдёт на совершение полезного действия, а остальные десять будут считаться потерями. Поэтому если в паспорте на какой-либо прибор указано, что мощность изделия составляет 500 Вт, а cos φ = 0,5, то полный расход его энергии будет составлять 500/0,5 = 250 ВА.
То есть коэффициент φ находится из отношения потребляемой устройством энергии к значению полной мощности. Нередко в паспорте оборудования указывается и составляющая φ (характер нагрузки). Она может быть резистивно-ёмкостной или резистивно-индуктивной. При этом сам коэффициент соответственно является опережающим или отстающим.
Если же напряжение в цепи изменяется по синусоидальному закону, а ток по несинусоидальному, то нагрузка никакой реактивной составляющей иметь не будет, а коэффициент принимается равным главной волне (первой гармонике). Под несинусоидальными понимаются искажения электрического сигнала, связанные с гармониками, преобладающими над основной частотой.
В математике формулой для нахождения коэффициента мощности является выражение: cos φ= P/S. Поэтому чем больше его значение, тем меньше потребляет устройство энергию из сети. Существуют различные способы поднятия значения cos φ, даже до максимального значения, равного единице, называемые коррекцией. Наиболее эффективным является добавление в схему сложного электронного узла, размещаемого на входе устройства.
Цепь переменного тока
В цепи переменного сигнала напряжение и ток описываются с помощью следующих формул: U = Um*sin w*t и I = Im**sin w*, где: Um и Im — мгновенные значения величин (измеренные в определённое значение времени), а w — циклическая частота. Подставляя эти формулы в выражение для нахождения мощности, можно получить следующее: P = Um*Im *sin2w*t = U*I — U*I *cos2w*t, где U*I = Um*Im/2.
Исходя из полученного выражения, видно, что активная мощность состоит из двух частей — постоянной U*I и переменной U*I *cos2w*t, при этом среднее её значение находится как P = I*U. В электрической цепи, содержащей реактивную составляющую (например, индуктивность), значение мгновенной мощности будет вычисляться по формуле: q = u*i. Соответственно: u = Um *sinw*t и i = Im*sin (w*t — p/2) = -Im*cosw*t.
Подставив эти выражения в главную формулу можно получить следующее реактивное обозначение мощности Q = Um*Im*sinw*t*cosw*t = Um*Im*sin2w*t/2 = U*I *sin2w*t. Проанализировав это математическое определение, можно установить, что реактивная энергия состоит только из переменной части, которая изменяется с удвоенной частотой, при этом её среднее значение равно нулю.
Так как полная мощность равна сумме активной и реактивной энергий, то с учётом фазового сдвига для цепи переменного тока, содержащей активное сопротивление R и реактивное L, C, она будет равна: S = u*i = Um*Im*sin w*t*sin (w*t- φ). Раскрыв скобки и заменив мгновенные величины на действующие, получится: S =U*I*cos φ — U*I*cosφ*cos2w*t-U*i*sinφ*sin2w*t. Полная мощность состоит из сумм мгновенной активной мощности P = U*I*cosφ — U*I*cosφ*cos2w*t и мгновенной реактивной Q = -U*i*sinφ*sin2w*t. Отрицательное значение возникает из-за сдвига фаз, приводящего в определённый момент времени к противофазе. Итоговые же значения для цепи переменного тока будут равны P = U*I*cosφ и Q = U*I*sinφ.
В электротехнике существует такое понятие, как треугольник мощности. Представляет он собой прямоугольную геометрическую фигуру, катетами которой являются Q и P, а гипотенузой S. Угол между катетом и гипотенузой обозначается φ. Исходя из того, мощность равна:
- активная — P = Z*I2;
- реактивная — Q = X*I2;
- полная — S = R*I.
Применив теорему Пифагора, получится формула для нахождения полной мощности S = (P 2 + Q 2)½.
Измерение электрической энергии
Исходя из выражения P= U*I можно сделать вывод, что энергию можно измерить с помощью приборов, предназначенных для замера напряжения и тока. Понадобится, используя амперметр и вольтметр, получить данные, а после, подставив их в формулу, рассчитать значение мощности. Суть измерения заключается в том, что одновременно в цепь параллельно подключается вольтметр, а в разрыв цепи амперметр. Такой метод называется косвенным, а использование двух приборов снижает точность полученного результата.
Поэтому были разработаны специальные тестеры, предназначенные для прямого измерения энергии — ваттметры. Такого рода измерители могут использоваться в однофазных цепях как постоянного, так и переменного тока. Но при этом ваттметры разделяются на две категории:
- Цифровые — в основе их схемотехники используется микропроцессорный блок, анализирующий полученный сигнал и по сложным алгоритмам вычисляющий результат, который выводится на экран прибора в цифровом виде. Их погрешность измерения составляет не более 0,1.
- Аналоговые — использующие в работе электродинамические и ферродинамические измерительные головки. Выполняются они в виде катушек, отклоняющих стрелку. Шкала отклонения проградуирована в ваттах. В зависимости от влияния поля, стрелка отклоняется на измеренную величину. Первого типа устройства имеют класс точности около 0,1−0,5, а второго — 1,5−2.
Аналоговые приборы практически уже мало где используются, в основном для нахождения мощности устройств, подключённых к промышленной сети с частотой 50 Гц. На постоянном токе их результаты посредственные, так как на измерительные катушки влияет гистерезис сердечников (эффект насыщения).
Отдельную подгруппу тестеров составляют варметры. Это специальные измерители, предназначенные для вычисления реактивной мощности. А также для косвенного метода используется электроизмерительный прибор, получивший название фазометр. С помощью его можно найти угол сдвига фаз сигнала, то есть фактически определить коэффициент мощности.
Пример расчёта
Необходимо рассчитать параметр двигателя, подключённого к трёхфазной сети. Номинальное напряжение его работы (Uн) составляет 0,25 кВ. Паспортная мощность (Pн) равняется 5 кВт, а коэффициент мощности (cos φ) 0,6. КПД двигателя (ηн) 0,93.
Полная расчётная мощность определяется по формуле: S = Pн/cosφ* ηн. Если подставить в неё исходные значения, то получится: S = 5/0,6*0,93 = 8,9 кВ*А. Активная энергия P находится с помощью выражения P = Pн/ ηн и равна 5,37 кВт. При желании можно вычислить и ток. Для трёхфазной сети он будет: I = S / *Uн = 8,9/ *0,25 = 20,6 А.
Таким образом, мощность в цепи постоянного тока может быть только активной, зависящей от тока и напряжения. Но для цепи изменяемого тока она складывается из двух частей — активной и реактивной. Причём активная энергия характеризуется полезной работой, а реактивная — паразитной, снижающей КПД.
Емкостная и индуктивная нагрузка
В этой статье подробно рассмотрены три основных типа потребляемой мощности, которые используются в бытовых приборах и автомобилях.
Что это такое
Первым делом необходимо узнать, что такое активная энергия. Эта величина, расходуемая нагрузкой в обычном сопротивлении. Это относится к нагревательный устройствам (чайники, электрические камины, микроволновые печи и прочее). Расходуемая мощность данных устройств полностью активная. В таким устройствах используемая энергия навсегда и полностью трансформируется в другую группу энергии.
Мощность указывается символом P и обозначается в Ваттах (Вт).
Чтобы найти эту величину, необходимо воспользоваться формулой:
P = U * I;
В таком случае работа будет выполняться без изменений.
График индуктивной мощности
В цепях с переменным напряжением есть только активная энергия, потому что показатели мгновенной и средней мощности там сходятся.
Индуктивная работа — через нее проходит сила тока и отстает от напряжения. В результате будет расходоваться реактивная энергия.
Для примера, такая нагрузка используется в асинхронных двигателях, датчиках холостого хода, реакторах, трансформаторов тока, выпрямителях и прочих преобразователях.
Асинхронный двигатель индуктивного вида
Откуда появляется
Образование названия «реактивная мощь» относится к необходимости выделения энергии, которая расходуется нагрузкой, с формированием электромагнитных полей.
Этот компонент используется при индуктивном типе. Например, во время подсоединения электрических двигателей. Все бытовые приборы, а также некоторые промышленные и сельскохозяйственные объекты используют данный тип нагрузки.
Три основных вида на примере генератора
В электроцепях, когда работа будет активного вида, то внутри ток не отстает от показателей напряжения. Если энергия будет индуктивного вида, то ток будет запаздывать в отличии от напряжения. При емкостной, ток будет идти быстрее напряжения. Ниже подробно разобраны три типа работ, а также сфера их применения.
Виды энергии
Ниже представлены основные виды нагрузок, которые используются в повседневной жизни. Они могут быть как в бытовых приборах, как и в различных двигателях или датчиках.
Активная
Для данной работы используется закон Ома, который выполняется в каждую секунду времени и схож с правилом для переменного тока. Такой тип применяется в лампах для освещения или в электроплитах.
Активно емкостная нагрузка формула
Емкостная
Этот вид превращает в течении определенного времени энергию электрического тока в электрополе, а далее превращает ее в электрический ток. А также, здесь сила тока будет опережать напряжение.
В качестве примера может быть конденсатор. К сожалению, встретить полные реактивные нагрузки невозможно ни в одном приборе. Каждый вид не имеет коэффициент полезного действия 100%, потому что существуют потери энергии в воздухе и прочее. Потому чаще всего используется название активно-реактивной работы.
Индуктивная
Данный вид превращает энергию в магнитное поле, а далее меняет ее в электрический ток. Сила тока в этом случае будет отставать от напряжения. Для примера можно взять индуктивную катушку или датчик дросселя на автомобиле.
Функционирование выпрямителей
Как влияют нагрузки на функционирование выпрямителей и напряжение в цепи
В любой цепи выпрямителя, нагрузка будет иметь исключительно активное сопротивление.
На практике такие приборы достаточно редко функционируют на полном активном сопротивлении, потому что в большинстве вариантов их оснащают электрическими элементами, содержащими индуктивные и емкостные части.
Бывает, что работа содержит части с индуктивной мощностью (обмотки реле, дроссельные заслонки и так далее). Также выпрямители могут спокойно функционировать на встречной электродвижущей силе, например при зарядке АКБ для автомобилей. Также мощность может быть смешанного вида, в которой есть все три параметра.
График зависимости с выпрямителем
Емкостная и индуктивная нагрузка чаще всего встречаются в повседневной жизни и бытовых приборах.
На предприятиях также устанавливают конденсаторные установки, потому что они обладают рядом плюсов:
- уменьшение расходов электрической энергии;
- уменьшение расходов на ремонт и обслуживание промышленных приборов;
- сдерживание шумов в сети;
- снижение искажения фаз;
- увеличение возможности сети электроснабжения, благодаря чему можно подсоединять электрические приборы без увеличения стоимости питания;
- уменьшение сопротивления в сети;
- снижение уровня высокочастотных помех.
Данные установки достаточно дорого стоят, поэтому нет смысла использовать их в квартирах, домах или небольших офисах.
Конденсаторные установки
В заключении необходимо отметить, что такие нагрузки необходимо знать для того, чтобы правильно рассчитать мощность каких-либо приборов. Помимо всех перечисленных типов, существуют также резистивные и активные. Информацию о них можно найти на соответствующих форумах по электрике.
1.2 Типы и виды производственной мощности
Производственная мощность как многозадачная и неотъемлемая часть каждого предприятия может классифицироваться по различным типам, видам, разделам, по своему функциональному и другому назначению.
Виды производственной мощности предприятия
Виды производственных мощностей в зависимости от условий работы:
1) теоретическая производственная мощность – максимально возможный выход продукции в идеальных условиях работы.
2) практическая производственная мощность – определяет наивысший уровень производства, который достигается при сохранении приемлемой степени эффективности с учетом допустимых потерь рабочего времени, связанных с ремонтом оборудования и режимом работы предприятия.
3) нормальная производственная мощность – характеризует средний уровень хозяйственной деятельности, достаточный для удовлетворения спроса на продукцию предприятия с учетом колебания спроса и тенденций.
4) плановая производственная мощность – соответствует годовой нормальной производственной мощности.
Подразделение по временному состоянию и планированию:
1) Проектная мощность. Определяется при проектировании реконструкции (расширению) действующего или строительства нового предприятия. Она считается оптимальной, поскольку состав и структура оборудования соответствуют структуре трудоемкости проектной номенклатуры продукции, которая должна быть достигнута в течение нормативного срока освоения.
2) Текущая (фактически достигнутая) производственная мощность. Определяется периодически в связи с изменением условий производства (номенклатуры и трудоемкости изделий) или превышением проектных показателей. При этом рассчитывают входную (на начало года), выходную (на конец года) и среднегодовую мощность предприятия.
3) Резервная мощность предприятия. Она должна постоянно предусматриваться в определенных отраслях: электроэнергетике и газовой промышленности — для покрытия пиковых нагрузок в электро- и газовых сетях, надежного обеспечение энергоресурсами на период выполнения ремонтно-аварийных работ; пищевой индустрии — для переработки увеличенного объема сельскохозяйственного сырья в высокоурожайные года; на транспорте — для перевозки большего количества пассажиров в летние месяцы; в машиностроении — для подготовки производства и освоения выпуска новых видов оборудования и конструкционных материалов.
Также выделяют мощность: проектную, входящую, выходящую и среднегодовую.
1) Проектная мощность определяется при изготовлении оборудования исходя из производительности в единицу рабочего времени.
2) Мощность входящая — это мощность на начало планового периода, к примеру, на 1 января текущего года или на конкретную дату предшествующего периода. Определяется по данным бухгалтерской отчетности.
3) Мощность выходящая (исходящая) — это мощность на конец отчетного периода, которая определяется по формуле
Мк =Мн + Мс + Мр + Мп + Миз – Мв,
Мн — производственная мощность на начало периода;
Мс — ввод мощности в результате строительства;
Мр — прирост мощности вследствие реконструкции предприятия;
Мп — увеличение мощности в результате технического перевооружения и других мероприятий;
Миз — увеличение (уменьшение) мощности вследствие изменения номенклатуры (трудоемкости) продукции;
Мв — уменьшение мощности вследствие выбытия оборудования.
4) Среднегодовая мощность (Мгод) — это мощность, которой будет располагать предприятие (цех, участок) в среднем за расчетный период или за год, она определяется балансовым методом:
Мгод =Мн + (МввЧвв)/12-(МвЧв)/12
Мн — производственная мощность на начало периода;
Мвв — производственные мощности, введенные в действие в течение года;
Мв — выбывшие в течение года производственные мощности;
Чвв — число месяцев эксплуатации введенной в действие производственной мощности;
Чв — число месяцев с момента выбытия производственной мощности до конца года.
До недавнего времени баланс производственной мощности составляли все промышленные предприятия, сейчас его составляют крупные фирмы. Баланс составляется по номенклатуре и ассортименту выпускаемой продукции. В балансе отражаются величина производственной мощности на конец года, изменение (увеличение, уменьшение) за год, средняя годовая производственная мощность, степень ее использования, коэффициент сменности и работы оборудования и средний коэффициент загрузки оборудования.
Разделение мощности по характеру производства:
Универсального характера. Универсальные производственные мощности пригодны для производства различной продукции одного профиля. К ним относятся, например, цеха по производству хлебобулочных, макаронных изделий, парфюмерно-косметической, кондитерской продукции.
Специализированного характера. Специализированные мощности предназначены для выпуска только определенной продукции (например, производство деталей для атомных турбин, котлов, кабеля). Первый тип мощностей можно использовать более эффективно, так как их можно достаточно быстро переналадить на выпуск определенного сорта или вида продукции. Второй тип к такой переналадке не приспособлен, и специализированные мощности могут использоваться только при наличии всех необходимых материальных, трудовых и финансовых ресурсов.
Виды мощности, используемые при исследовании электрических систем. Расчет мощности в цепях постоянного тока
Ответы на контрольные вопросы:
1. Виды мощности, используемые при исследовании электрических систем.
Различают мгновенную, среднюю и импульсную мощности электрического тока
Мгновенная мощность определяется выражением
p=ui,
Средняя мощность Р равна среднему значению мгновенной мощности за время, равное периоду колебаний.
р=1/Т∫pdt
Импульсная мощность определяют как среднюю мощность за время действия импульса напряжения или тока р=1/tн∫pdt
В цепях синусоидального тока различают средне активную, реактивную и полную мощности, которые рассчитываются по формулам:
P=UIcosφ=I2R
Q=UIsinφ=I2X
S=UI=I2Z
В цепях несинусоидального тока активную и реактивную мощности рассчитывают по формуле:
P=∑Pk
Q=∑Qk
где P и Q – мощности отдельных гармоник
2. Как рассчитывают мощности в цепях постоянного тока
В цепях постоянного тока мощность рассчитывается по формулам
P = U∙I = I2∙R = U2∙P-1
где U и I – значения постоянного напряжения и тока; R – сопротивление цепи.
3. Как рассчитывают мощность в цепи переменного тока?
В цепях синусоидального тока различают средние активную, реактивную и полную мощности, которые рассчитываются по формулам:
где — действующие значения напряжения и тока в цепи; — активное, реактивное, полное сопротивление цепи соответственно; — сдвиг фаз.
В цепях несинусоидального тока активную и реактивную мощности рассчитывают по формуле:
где — мощности отдельных гармоник
Ферродинамические ваттметры применяются для измерения мощности в цепях переменного тока, главным образом, промышленной частоты.
4. Как определяют импульсную и среднюю мощности?
Различают мгновенную, среднюю и импульсную мощности электрических тока. При этом средняя мощность равна среднему значению мгновенной мощности за время, равное периоду колебания:
Импульсную мощность определяют как среднюю мощность за время действия импульса напряжения или тока:
Между импульсной и средней мощностями имеется взаимосвязь, определяемая выражением:
5. Какие методы измерения мощности используют на низкой частоте?
Методы измерения мощности делятся на электрические, тепловые и механические. Электрические методы могут быть прямыми и косвенными. Тепловые и механические являются косвенными.
Косвенный электрический метод измерения мощности основан на использовании амперметра и вольтметра.
Прямой электрический метод измерения мощности основан на использовании электродинамических, ферродинамических или электронных ваттметров.
Схема измерения мощности методом амперметра и ваттметра
Схема включения электродинамических и ферродинамических ваттметров
6. Какие методы измерения мощности используют на высокой частоте?
В диапазоне СВЧ измерения этих величин затруднены, так как размеры входных цепей измерительных приборов соизмеримы с длиной волны. Любое отличие сопротивлений источника и нагрузки от характеристического сопротивления передающего тракта приводит к неоднозначности отсчета напряжения, В волноводах измерение напряжения вообще невозможно. Поэтому на высокой и сверхвысокой частотах измерение мощности производят только по эквивалентному тепловому эффекту. Наиболее широкое распространенное получение приборы, базирующиеся на тепловых методах измерения мощности. К их числу относят системы калориметрических ваттметров, которые измеряют приращение температуры рабочего тела
Производственная мощность — Википедия
Материал из Википедии — свободной энциклопедии
Производственная мощность — максимальный возможный годовой выпуск продукции производственной единицы (отрасли промышленности, предприятия, его подразделения, рабочего места).
Расчёт производственной мощности осуществляют в единицах измерения продукции. Мощность более крупной производственной единицы определяют по мощности его ведущего подразделения: мощность участка — по мощности ведущей группы оборудования; мощность цеха — по ведущему участку; мощность предприятия — по ведущему цеху. Ведущим подразделением считают то, в котором сосредоточена значительная часть производственных основных фондов, выполняющих основные технологические операции по изготовлению продукции. Сумма мощностей отдельных предприятий по одному и тому же виду продукции составляет производственную мощность отрасли по данному виду продукции.
При расчёте производственной мощности используют данные о:
- производственных основных фондах;
- режиме работы оборудования и использовании площадей;
- прогрессивных нормах производительности оборудования и трудоёмкости изделий;
- квалификации рабочих.
Если известна производительность оборудования, то производственную мощность определяют как произведение паспортной производительности оборудования в единицу времени и планового фонда времени его работы; в условиях многономенклатурного производства — как частное от деления фонда времени работы оборудования на трудоёмкость комплекта изделий, изготовляемых на данном оборудовании.
Степень использования производственной мощности характеризуется коэффициентом использования производственной мощности, который равен отношению годового выпуска продукции к среднегодовой мощности данного года. Для обеспечения планируемого объёма производства и определения потребности в приросте мощностей составляют баланс производственных мощностей.