Site Loader

Содержание

Опасный ток для человека. Величина, виды воздействий

В быту и на производстве мы сталкиваемся с различными электроприборами, электроустановками. Соблюдая правила электробезопасности и обладая знаниями в данной сфере можно уменьшить вероятность попадания под опасное воздействие электрического тока и напряжения.

В данном вопросе объединяются знания инженерного и медицинского характера, применение которых в комплексе, увеличит результат по снижению уровня электротравм дома и на производстве.

Действие электрического тока на организм человека

Ток, в отличие от других опасных сред, не обладает цветом, запахом, невидим.

Электрический ток оказывает следующие виды воздействия на организм человека: термическое, электролитическое, биологическое. Рассмотрим каждое из этих воздействий более подробно.

Термическое воздействие заключается в ожогах участков тела, нагреве сосудов и нервных окончаний. Этот вид действия называют еще тепловым. Потому что тепловая энергия, полученная из электрической образует ожоги.

Электролитическое воздействие приводит к разложению крови и других жидкостей в организме посредством процесса электролиза, что вызывает нарушения в физико-химическом составе этих жидкостей. Суть повреждений сводится к молекулярному уровню – загустевание крови, изменение заряда белков, паро- и газообразование в организме.

Биологическое воздействие электротока на организм сопровождается раздражением и возбуждением органов. Это вызывает судороги, сокращения.

В случае с сердцем и легкими это воздействие может привести к летальному исходу по причине прекращения деятельности органов дыхания и сердца.

Биологическое воздействие вызывает механические повреждения органов, суставов человека. Также механические повреждения может вызвать падение человека с высоты из-за воздействия электрического тока.

Опасная, безопасная и смертельная сила тока для человека

Нельзя считать какую-либо величину тока безопасной для человека. Существует лишь более и менее опасная величина электротока. Каждый человек имеет внутреннее сопротивление, на величину которого влияет множество факторов (толщина кожи, влажность помещения и тела человека, путь протекания тока).

Самым опасным путем протекания тока является направление нога-голова, рука-голова, так как при этом путь идет через сердце, мозг, органы дыхания. А большая величина тока может вызвать остановку сердца и остановку дыхания. Именно эти причины являются наиболее вероятными причинами летальных исходов при протекании электротока.

Считается, что постоянный ток более безопасный, чем переменный в сетях до 500В. При напряжении выше 500 вольт опасность постоянного тока возрастает.

Частота сети влияет на степень тяжести электротравмы. Промышленная частота в 50 Гц является более опасной, чем частота в 500Гц. При высокой частоте наблюдается так называемый «скин-эффект», когда ток проходит не по всему проводнику, а лишь по его поверхности. А значит, внутренние органы напрямую не затрагиваются.

Также на степень опасности воздействия тока на человека влияет продолжительность нахождения человека под воздействием тока. Здесь зависимость линейная – чем дольше, тем больше разрушений и неблагоприятных последствий.

Приведем пороговые значения переменного и постоянного тока и возможные реакции организма на эти воздействия:

Проходя через человеческое тело, ток может создавать электрические травмы или электрические удары.

Электрический удар подразумевает, что ток возбуждает ткани организма, что вызывает их сокращение и судороги. Существует 4 группы электроударов: судороги, судороги с потерей сознания, потеря сознания с нарушением дыхания и работы сердца, клиническая смерть.

При электрической травме ток наносит прямые повреждения тканям и органам человека. Это могут быть электрические ожоги, металлизация кожи, электрические метки и механические повреждения.

Электрические ожоги бывают токовыми и дуговыми. Действие токового ожога связано с прохождением тока через тело человека. Дуговой ожог возникает между человеком и проводником электротока высокого напряжения, вследствие возникновения дуги между ними. Температура дуги может достигать тысяч градусов по Цельсию. Такой ожог гораздо опаснее и может плюс ко всему сопровождаться возгоранием одежды пострадавшего.

Металлизация кожи происходит, когда под действием тока в кожу попадают частицы металла, при этом проводимость кожи увеличивается, что повышает травмоопасность.

Электрические метки – это места, через которые ток входит и выходит из тела человека. Наиболее часто встречаются на ногах и руках.

В любом случае следует стараться избегать касания токоведущих частей проводящими предметами (ловить рыбу под ЛЭП, нести стремянку вблизи шин напряжения), не использовать провода и кабели с ослабленной изоляцией, соблюдать правила безопасности при нахождении и работе в электроустановках. Берегите здоровье себя и своих родных.

Физика 8 класс. Источники электрического тока :: Класс!ная физика

Физика 8 класс. ИСТОЧНИКИ ЭЛЕКТРИЧЕСКОГО ТОКА

Источник тока — это устройство, в котором происходит преобразование какого-либо вида энергии в электрическую энергию.
В любом источнике тока совершается работа по разделению положительно и отрицательно заряженных частиц, которые накапливаются на полюсах источника.

Существуют различные виды источников тока:

Механический источник тока

— механическая энергия преобразуется в электрическую энергию.


К ним относятся : электрофорная машина (диски машины приводятся во вращение в противоположных направлениях. В результате трения щеток о диски на кондукторах машины накапливаются заряды противоположного знака), динамо-машина, генераторы.

Тепловой источник тока

— внутренняя энергия преобразуется в электрическую энергию.


Например, термоэлемент — две проволоки из разных металлов необходимо спаять с одного края, затем нагреть место спая, тогда между другими концами этих проволок появится напряжение.
Применяются в термодатчиках и на геотермальных электростанциях.

Световой источник тока

— энергия света преобразуется в электрическую энергию.

Например, фотоэлемент — при освещении некоторых полупроводников световая энергия превращается в электрическую. Из фотоэлементов составлены солнечные батареи.

Применяются в солнечных батареях, световых датчиках, калькуляторах, видеокамерах.

Химический источник тока

— в результате химических реакций внутренняя энергия преобразуется в электрическую.

Например, гальванический элемент — в цинковый сосуд вставлен угольный стержень. Стержень помещен в полотняный мешочек, наполнен-ный смесью оксида марганца с углем. В элементе используют клейстер из муки на растворе нашатыря. При взаимодействии нашатыря с цинком, цинк приобретает отрицательный заряд, а угольный стержень — положительный заряд. Между заряженным стержнем и цинковым сосудом возникает электрическое поле. В таком источнике тока уголь является положительным электродом, а цинковый сосуд — отрицательным электродом.

Из нескольких гальванических элементов можно составить батарею.

Источники тока на основе гальванических элементов применяются в бытовых автономных электроприборах, источниках бесперебойного питания.
Аккумуляторы — в автомобилях, электромобилях, сотовых телефонах.


УСЛОВНЫЕ ОБОЗНАЧЕНИЯ

Условное обозначение источника тока на электрической схеме

или батареи, состоящей из нескольких источников

Устали? — Отдыхаем!

Работа электрического тока — Основы электроники

Протекая по цепи электрический ток совершает работу. Опять сравним протекание электрического тока с потоком воды в трубе. Если этот поток направить, например, на лопасти генератора, то поток будет совершать работу, вращая генератор. Таким же образом электрический ток совершает работу, протекая по проводнику. И эта работа тем больше, чем больше сила тока и напряжение в цепи.

Таким образом, работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока в цепи, напряжению на этом участке и времени действия тока

. Работа электрического тока обозначается латинской буквой A.

Формула работы электрического тока имеет вид:

A = I*U*t

Произведение I*U есть не что иное, как мощность электрического тока.

Тогда формула работы электрического тока примет вид:

A = P*t

Работа электрического тока измеряется в ваттсекундах или иначе говоря в джоулях.

Поэтому, если мы хотим узнать, какую работу про­извел ток, протекая по цепи в течение нескольких секунд, мы должны умножить мощность на это число секунд.

Например, через реостат с сопротивлением 5 Ом протекает ток си­лой 0,5 А. Нужно определить, какую работу произведет ток в течение 4 часов (14 400 сек.). Так как работа тока в одну секунду будет равна:

P=I2R = 0,52*5= 0,25*5 =1,25 Вт,

то за время t=14400 сек. она будет в 14 400 раз больше. Следователь­но, работа электрического тока А будет равна:

А = Р*t= 1,25*14 400= 18 000 вт-сек.

Ваттсекунда (джоуль) являет­ся слишком малой единицей для измерения работы тока. По­этому на практике пользуются единицей, называемой ваттчас (втч).

Один ваттчас равен 3 600 Дж, так как в часе 3 600 сек.

1втч = 3 600 Дж.

В нашем последнем примере работа тока, выраженная в ваттчасах, будет равна:

А = 1,25*4=5 втч.

В электротехнике для измерения работы тока применяют­ся еще большие единицы, называемые гектоваттчас (гвтч) и киловаттчас (квтч):

1 квтч =10 гвтч =1000 втч = 3600000 Дж,

1 гвтч =100 втч = 360 000 Дж,

1 втч = 3 600 Дж.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Какой ток для какого электрода: выбор, постоянный и переменный, сварочные электроды

На этой странице вы найдете информацию по сварочным токам для разных марок электродов.
Ниже показаны обозначения токов, которые используются производителями электродов и использованы в нашем каталоге.
Внизу страницы даны подборки электродов по сварочным токам.

Как сварочный ток для электродов влияет на сварку

При осуществлении сварочного процесса необходимо правильно подбирать величину тока. Именно данный параметр в большей степени влияет на качество сварного шва.

Низкий показатель сварочного тока может привести к нестабильности горения дуги, появлению непроваренных участков, процесс сваривания будет постоянно прерываться и в итоге сварщик получит некачественное соединение.

Слишком высокая величина приведет к перегреву или прожогу в зоне сваривания, а также к интенсивному разбрызгиванию.

В целом на выбор показателей силы напряжения влияют несколько факторов:

Какой ток для какого электрода

Правильный выбор тока для сварки электродами является залогом комфортного рабочего процесса, качественного сварного шва и всего изделия в целом. Для каждой марки существует рекомендуемая величина силы напряжения. Данные сведения прописаны на упаковке сварочных материалов. С приблизительными цифрами вы можете ознакомиться далее.

Ток сварки для электрода 4 мм

Распространенными являются стержни с диаметром 4 мм. Их востребованность обусловлена тем, что такие расходники подходят для работы с большими и мелкими швами. Сила напряжения при сваривании данным прутком лежит в границах от 110 до 200 А.

Ток сварки для электрода 3 мм

Сварочное напряжение для расходников диаметром 3 мм. должно находится в границах от 65 до 130 А. Перед осуществлением работ рекомендуется выставлять среднее значение – 80-90 А. Во время проведения сварочного процесса это поможет определить какой ток для сварки электродом 3мм. является оптимальным.

Ток сварки для электрода 2 мм

При 2 мм. потребуется напряжение от 30 до 80 А. Большой разброс в значениях зависит от металла и выбранного пространственного положения.

Важно! Следует помнить, что данные значения являются относительными. На практике сила тока зависит от марки. Каждая марка имеет собственные показатели, прописанные на упаковке. Поэтому для того, чтобы, например, выяснить какой нужен ток для электрода 4 мм., необходимо ознакомиться с рекомендациями производителей. Опытные сварщики могут полагаться на собственные знания и опыт и иметь некоторые предпочтения.

Полезное видео

Небольшой ролик, где практик-сварщик делится опытом выставления значения тока. Хороший совет эмпирически подбирать силу тока от большего к меньшему.

[ads-pc-2][ads-mob-2]

Чем отличаются электроды постоянного тока от переменного

Кратко разъяснить отличия электродов постоянного и переменного тока можно двумя утверждениями:

  1. Сварочные материалы, предназначенные для переменного тока, успешно применяются и для сварки с помощью постоянного тока. Поэтому специалисты часто называют такие электроды универсальными. Подробнее о них чуть далее.
  2. В то время как электроды для постоянного напряжения, как правило, не подойдут для сваривания переменным током.

Однако, следует помнить, что материалы второй группы гарантируют более качественное соединение. При выполнении ответственных работ данный факт выходит на первый план.

Что такое универсальные электроды

Универсальные сварочные материалы – это электроды постоянного и переменного тока. То есть те расходники, которые одинаково эффективно работают и на переменном, и на постоянном напряжении. Данная категория сварочных материалов имеет несколько преимуществ:

  • хорошая и стабильная дуга;
  • повышенная производительность работ;
  • достаточно высокая экономичность;
  • низкий уровень разбрызгивания;
  • хорошее отделение шлака;
  • возможность сваривать неочищенную от загрязнений, окисленную, влажную и поврежденную коррозией поверхность;
  • минимальные требования к оборудованию и сварщику.

Чем отличается постоянная сварка от переменной

Преимущества сварки на постоянном напряжении:
  • значительная экономия сварочных материалов обеспечивается за счет минимального разбрызгивания;
  • постоянка гарантирует простоту и удобство работы для сварщика;
  • обеспечивает высокую производительность труда;
  • воздействие погодных и иных влияний никоим образом не сказывается на стабильности и устойчивости дуги;
  • постоянное напряжение может применяться для работы с тонкостенными изделиями;
  • на конструкции не остается непроваренных участков;
  • после завершения сварочного процесса мастер получает качественный и аккуратный шов.
Преимущества сваривания на переменном токе:
  • простота использования и более низкая стоимость оборудования, работающего на данном виде напряжения;
  • удобство и легкость сварочных работ в целом;
  • переменка обеспечивает высокое качество соединения.
Недостатки:
  • на повышенных режимах иногда появляется магнитное дутье – отклонение дуги от оси электрода;
  • дороговизна оборудования, которое работает на постоянном напряжении.
Недостатки:
  • на повышенных режимах иногда появляется магнитное дутье – отклонение дуги от оси электрода;
  • дороговизна оборудования, которое работает на постоянном напряжении.

Популярные марки электродов для переменного и постоянного тока


1. Электроды МР-3С являются наиболее востребованными материалами универсального типа. Преимущества: легкая воспламеняемость дуги как при первом, так и при последующих розжигах; рутиловая обмазка обеспечивает защиту шва от быстрого окисления и от вкраплений шлака; высокий уровень постоянства дуги.
[ads-pc-3][ads-mob-3]

2. АНО-37 предназначены для сварочных и ремонтных работ конструкций из углеродистых и низколегированных сталей. Достоинства: малочувствительны к присутствию загрязнений и ржавчины; достаточно широкие зазоры хорошо закрываются расходниками данной марки; легкое зажигание дуги; шов прекрасно формируется даже на небольших величинах сварочного напряжения; хорошо подойдет для начинающего сварщика (даже новичок может сделать качественное изделие).

3. ОК 46.00 используются для конструкционных и углеродистых сталей. Плюсы: легкий поджиг; подходят для заваривания широких зазоров, нечувствительны к ржавым и загрязненным поверхностям; минимальное количество брызг; сварка производится во всех пространственных положениях.

4. Электроды ОЗС-4 применяются для работы с углеродистыми сталями. Преимущества: не восприимчивы к плохо очищенному от загрязнений, ржавчины и влаги металлу; легкая зажигаемость дуги; возможность осуществления сварки на повышенных режимах; изделия средних и больших толщин успешно свариваются данной маркой.

5. Одной из самых популярных импортных марок универсальных расходников является LB-52U. Востребованность сварочных материалов японского производства обусловлена несколькими причинами: высокий уровень производительности; минимальное разбрызгивание; отличные механические свойства; стабильность дуги сохраняется в режиме низкого и высокого напряжения.

6. АНО-4 используются для сварки ответственных конструкций из углеродистых сталей. Достоинства: допускается сваривание влажного, ржавого или плохо очищенного металла; легкое зажигание дуги и её стабильное горение; небольшая склонность к образованию пор; сварные швы отличаются высоким качеством; нечувствительны к изменению длины дуги.

[ads-pc-4][ads-mob-4]

Обозначения сварочного тока для электродов, напряжение и полярность

Переменный и постоянный ток, любая полярность

Переменный и постоянный ток, обратная полярность (плюс на электроде)

Переменный и постоянный ток, прямая полярность (минус на электроде)

Постоянный ток, обратная полярность (плюс на электроде)

Постоянный ток любой полярности

Подборки марок электродов по применяемым для сварки токам

Как измерять силу электрического тока амперметром

Для измерения силы тока применяется измерительный прибор, который называется Амперметр. Силу тока приходится измерять гораздо реже, чем напряжение или сопротивление, но, тем не менее, если нужно определить потребляемую мощность электроприбором, то без зная величины потребляемого ним тока, мощность не определить.

Ток, как и напряжение, бывает постоянным и переменным и для измерения их величины требуются разные измерительные приборы. Обозначается ток буквой I, а к числу, чтобы было ясно, что это величина тока, приписывается буква А. Например, I=5 A обозначает, что сила тока в измеренной цепи составляет 5 Ампер.

На измерительных приборах для измерения переменного тока перед буквой А ставится знак «~«, а предназначенных для измерения постоянного тока ставится ««. Например, –А означает, что прибор предназначен для измерения силы постоянного тока.

О том, что такое ток и законы его протекания в популярной форме Вы можете прочитать в статье сайта «Закон силы тока». Перед проведением измерений настоятельно рекомендую ознакомиться с этой небольшой статьей. На фотографии Амперметр, рассчитанный на измерение силы постоянного тока величиной до 3 Ампер.

Схема измерения силы тока Амперметром

Согласно закону, ток по проводам течет в любой точке замкнутой цепи одинаковой величины. Следовательно, чтобы измерять величину тока, нужно прибор подключить, разорвав цепь в любом удобном месте. Надо отметить, что при измерении величины тока не имеет значение, какое напряжение приложено к электрической цепи. Источником тока может быть и батарейка на 1,5 В, автомобильный аккумулятор на 12 В или бытовая электросеть 220 В или 380 В.

На схеме измерения также видно, как обозначается амперметр на электрических схемах. Это прописная буква А обведенная окружностью.

Приступая к измерению силы тока в цепи необходимо, как и при любых других измерениях, подготовить прибор, то есть установить переключатели в положение измерения тока с учетом рода его, постоянного или переменного. Если не известна ожидаемая величина тока, то переключатель устанавливается в положение измерения тока максимальной величины.

Как измерять потребляемый ток электроприбором

Для удобства и безопасности работ по измерению потребляемого тока электроприборами необходимо сделать специальный удлинитель с двумя розетками. По внешнему виду самодельный удлинитель ничем не отличается от обыкновенного удлинителя.

Но если снять крышки с розеток, то не трудно заметить, что их выводы соединены не параллельно, как во всех удлинителях, а последовательно.

Как видно на фотографии сетевое напряжение подается на нижние клеммы розеток, а верхние выводы соединены между собой перемычкой из провода с желтой изоляцией.

Все подготовлено для измерения. Вставляете в любую из розеток вилку электроприбора, а в другую розетку, щупы амперметра. Перед измерениями, необходимо переключатели прибора установить в соответствии с видом тока (переменный или постоянный) и на максимальный предел измерения.

Как видно по показаниям амперметра, потребляемый ток прибора составил 0,25 А. Если шкала прибора не позволяет снимать прямой отсчет, как в моем случае, то необходимо выполнить расчет результатов, что очень неудобно. Так как выбран предел измерения амперметра 0,5 А, то чтобы узнать цену деления, нужно 0,5 А разделить на число делений на шкале. Для данного амперметра получается 0,5/100=0,005 А. Стрелка отклонилась на 50 делений. Значит нужно теперь 0,005×50=0,25 А.

Как видите, со стрелочных приборов снимать показания величины тока неудобно и можно легко допустить ошибку. Гораздо удобнее пользоваться цифровыми приборами, например мультиметром M890G.

На фотографии представлен универсальный мультиметр, включенный в режим измерения переменного тока на предел 10 А. Измеренный ток, потребляемый электроприбором составил 5,1 А при напряжении питания 220 В. Следовательно прибор потребляет мощность 1122 Вт.

У мультиметра предусмотрено два сектора для измерения тока, обозначенные буквами А– для постоянного тока и А~ для измерения переменного. Поэтому перед началом измерений нужно определить вид тока, оценить его величину и установить указатель переключателя в соответствующее положение.

Розетка мультиметра с надписью COM является общей для всех видов измерений. Розетки, обозначенные mA и 10А предназначены только для подключения щупа при измерении силы тока. При измеряемом токе менее 200 мA штекер щупа вставляется в розетку mA, а при токе величиной до 10 А в розетку 10А.

Внимание, если производить измерение тока, многократно превышающего 200 мА при нахождении вилки щупа в розетке mA, то мультиметр можно вывести из строя.

Если величина измеряемого тока не известна, то измерения нужно начинать, установив предел измерения 10 А. Если ток будет менее 200 мА, то тогда уже переключить прибор в соответствующее положение. Переключение режимов измерения мультиметра допустимо делать только обесточив измеряемую цепь.

Расчет мощности электроприбора по потребляемому току

Зная величину тока, можно определить потребляемую мощность любого потребителя электрической энергии, будь то лампочка в автомобиле или кондиционер в квартире. Достаточно воспользоваться простым законом физики, который установили одновременно два ученых физика, независимо друг от друга. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля – Ленца.

где
P – мощность, измеряется в ваттах и обозначается Вт;
U – напряжение, измеряется в вольтах и обозначается буквой В;
I – сила тока, измеряется в амперах и обозначается буквой А.

Рассмотрим, как посчитать потребляемую мощность на примере:
Вы измеряли ток потребления лампочки фары автомобиля, который составил 5 А, напряжение бортовой сети составляет 12 В. Значит, чтобы найти потребляемую мощность лампочкой нужно напряжение умножить на ток. P=12 В×5 А=60 Вт. Потребляемая лампочкой мощность составила 60 Вт.

Вам надо определить потребляемую мощность стиральной машины. Вы измеряли потребляемый ток, который составил 10 А, следовательно, мощность составит: 220 В×10 А=2,2 кВт. Как видите все очень просто.

В чем разница между сваркой переменным и постоянным током? – Всё для сварки

Если вы уже работали со сваркой или хотя бы немного знакомы с ней, то, скорее всего, слышали термины “AC” и “DC”. AC и DC — это различные типы токов, которые используются в процессе сварки. Поскольку при сварке используется электрическая дуга, создающая тепло, необходимое для расплавления металла, ей необходим стабильный ток с различной полярностью, которая зависит от свариваемого материала.

Чтобы сделать качественный сварной шов, для начала нужно понять, что означают эти два тока на сварочном аппарате, а также на электродах.

Но сначала: в чем разница между сваркой переменным и постоянным током?

Сварка DC и AC относится к полярности тока, проходящего через электрод аппарата. AC означает переменный ток, а DC — постоянный. Прочность и качество сварного шва будут зависеть от полярности электрода.

Что такое полярность?

Скорее всего, вы знакомы с термином «полярность».

Электрические цепи имеют полюса — отрицательный и положительный. В цепи с постоянным током (DC) движение электронов идет в одном направлении от плюса к минусу. Применительно к сварке отрицательный полюс получает меньше тепловой нагрузки.

Переменный ток (AC), как следует из названия, меняется в направлении, в котором он идет. Половину времени он идет в одном направлении, а другую половину — в противоположном. Переменный ток меняет свою полярность примерно 120 раз в секунду при токе 60 Гц.

Прямая полярность при сварке постоянным током дает более глубокое проплавление металла. А обратная полярность отлично подходит для сварки тонколистовых заготовок за счет меньшего тепловложения.

Покрытые электроды иногда могут использовать любую полярность, в то время как некоторые будут работать только на одной.

Качественный сварной шов предполагает правильное проплавление и равномерное наплавление валика, а для этого необходимо использовать правильную полярность. При неправильной полярности вы не только получаете плохое проплавление и неравномерное образование валика, но и чрезмерное разбрызгивание и перегрев, а в некоторых случаях можно даже потерять контроль над дугой.

Электрод также может быстро сгореть.

Большинство сварочных аппаратов для дуговой сваркиимеют обозначенные клеммы или направления, чтобы сварщики точно знали, как настроить сварочный аппарат на переменный или постоянный ток. Некоторые сварочные аппараты также используют переключатели для изменения полярности, а некоторые требуют переподключение клемм кабеля.

Сварка различными токами

Различные типы сварных швов требуют разного вида токов из-за природы их возникновения и оказываемого ими воздействия.

Сварка переменным током

Сварка переменным током считается уступающей сварке постоянным током и поэтому используется редко. Сварочные аппараты переменного тока чаще всего используются только при отсутствии аппаратов постоянного тока.

Сварку переменным током чаще всего используют для соединения толстолистового металла, быстрой наплавки и TIG-сварки с высокой частотой, хотя иногда она также используется для устранения проблем, связанных со сварочной дугой. Проблемы с дугой возникают, когда она прерывает сварное соединение, которое должно свариваться при более высоких уровнях тока, что происходит в основном при работе с электродами, имеющими большой диаметр.

Сварка переменным током также может использоваться для намагниченных металлов, что невозможно при сварке постоянным током. Постоянное изменение направления тока при сварке переменным током означает, что намагниченный металл не будет влиять на электрическую дугу.

Переменный ток также лучше подходит при работе с высокими температурами. Так как он обеспечивает высокий уровень тока, что создает глубокий провар, и поэтому используется для сварки при строительстве кораблей.

Сварка переменным током хорошо подходит для ремонта оборудования, так как многие из них имеют намагниченные поля и участки, подвергшиеся ржавчине.

Однако, нестабильность направления при сварке переменным током также может быть недостатком в том, что процесс имеет меньшую производительность, чем при сварке постоянным током.

Сварка постоянным током

Сварка постоянным током, как и сварка переменным током, имеет свои преимущества, и используется в случаях, когда сварка переменным током не может обеспечить должного результата, например, вертикальная сварка, пайка одним припоем или TIG-сварка нержавеющей стали.

Сварка на постоянном токе имеет более высокую скорость осаждения, она лучше всего подходит для сварщиков, которым требуются большие размеры наплавленного слоя. Несмотря на то, что сварка переменным током обеспечивает лучшее проплавление, она имеет более низкую скорость осаждения, что может быть непригодно.

При сварке постоянным током образуется также меньше брызг, чем при сварке переменным током, что делает сварочный шов более равномерным и гладким. Постоянный ток также является более надежным, и поэтому с ним легче работать, так как электрическая дуга остается стабильной.

Сварка постоянным током часто используется для сварки тонких металлов. Оборудование, работающее с этим типом тока, также дешевле, что помогает сократить расходы.

Однако, несмотря на то, что само оборудование имеет более низкую стоимость, процесс фактического использования постоянного тока немного дороже.

Это происходит из-за того, что необходимо специальное оборудование для преобразования переменного тока на постоянный, потому что это не предусмотрено электрической сетью. Однако, поскольку постоянный ток лучше подходит для большинства видов сварочных процессов, эти затраты считаются необходимыми.

Хотя сварка постоянным током лучше для многих металлов, она не рекомендуется при работе с алюминием, так как для этого требуется выделение тепла высокой интенсивности, что невозможно при использовании постоянного тока. Кроме того, если при работе с постоянным током будет создаваться магнитное поле, то возрастет риск дугового разряда, что может быть опасно.

Какой электрод использовать?

Так как вид используемого тока влияет на полярность на электроде, надо учитывать используемый электрод.

Для сварки методом TIG чаще применяют постоянный ток прямой полярности. Иногда также используют ток обратной полярности или переменный ток. В этих случаях применяют вольфрамовые электроды с легирующими добавками для улучшения стабильности дуги.

Например, используют:

  • WP — вольфрамовые электроды для сварки на переменном токе;
  • WL-20 и WL-15 — легированные вольфрамовые электроды для сварки на постоянном и переменном токах.

Для ММА сварки в основном использую покрытые плавящиеся электроды.

В настоящее время производители выпускают электроды с четырьмя видами обмазки:

  • Кислое (маркировка “А”). В его составе железо и марганец в довольно большом объеме. Можно сваривать неочищенный металл.
  • Основное (маркировка “Б”). Эти электроды можно использовать для работы на переменном токе, но из-за малого потенциала ионизации не рекомендуется этого делать.
  • Рутиловое (маркировка “Р”). Лучше всего подходит для работы на переменном токе. Небольшое разбрызгивание металла и хорошее качество шва.
  • Целлюлозное (маркировка “Ц/С”). Подходит для работы на переменном и постоянном токе, но выдает много брызг металла.

Существует несколько различных видов электродов для сварки переменным током, но многие из них могут использоваться как для сварки переменным током, так и для сварки постоянным током.

Выбор правильной полярности и тока, а также правильного электрода может иметь решающее значение для выполнения хорошего сварного шва.

Выбор режима ручной дуговой сварки

Дуговую сварку контролируют ряд параметров, а именно:

  • сварочный ток
  • напряжение дуги
  • скорость сварки
  • род и полярность тока
  • положение шва в пространстве
  • тип электрода и его диаметр

Поэтому перед началом работы следует подобрать значения этих параметров так, чтобы сварочный шов получился требуемого размера и хорошего качества.

1.1 Сварочный ток (выбор сварочного тока посредством подбора диаметра электрода)

Важнейшим параметром при работе ручной дуговой сварки является сила сварочного тока. Именно сварочный ток будет определять качество сварочного шва и производительность сварки в целом.

Обычно рекомендации по выбору силы сварочного тока приведены в инструкции пользователя, которая поставляется в комплекте со сварочным аппаратом. Если таковой инструкции нет, то силу сварочного тока можно выбрать в зависимости от диаметра электрода. Большинство производителей электродов размещают информацию о величинах сварочного тока прямо на упаковках своей продукции.

Диаметр электрода подбирают в зависимости от толщины свариваемого изделия. Однако помните, что увеличение диаметра электрода уменьшает плотность сварочного тока, что приводит к блужданию сварочной дуги, её колебаниям и изменениям длины. От этого растет ширина сварочного шва и уменьшается глубина провара – то есть качество сварки ухудшается. Кроме того, уровень сварочного тока зависит от расположения сварочного шва в пространстве. При сварке швов в потолочном или вертикальном положении рекомендуется диаметр электродов не меньше 4 мм и понижение силы сварочного тока на 10-20 %, относительно стандартных показателей тока при работе в горизонтальном положении.

Таблица 1.1
Примерное соотношение толщины металла, диаметра электрода и сварочного тока
Толщина металла, мм 0,5 1-2 3 4-5 6-8 9-12 13-15 16
Диаметр электрода, мм 1 1,5-2 3 3-4 4 4-5 5 6-8
Сварочный ток, А 10-20 30-45 65-100 100-160 120-200 150-200 200-250 200-350

1.2 Напряжение дуги (длина сварочной дуги)

После того, как сила сварочного тока определена, следует рассчитать длину сварочной дуги. Расстояние между концом электрода и поверхностью свариваемого изделия и определяет длину сварочной дуги. Стабильное поддержание длины сварочной дуги очень важно при сварке, это сильно влияет на качество свариваемого шва. Лучше всего использовать короткую дугу, т.е. длина которой не превышает диаметр электрода, но это достаточно тяжело осуществить даже при наличии солидного опыта. Поэтому оптимальной длиной дуги принято считать размер, который находится между минимальным значением короткой дуги и максимальным значением (превышает диаметр электрода на 1-2 мм)

Таблица 1.2
Примерное соотношение диаметра электрода и длины дуги
Диаметр электрода, мм 1 1,5-2 3 3-4 4 4-5 5 6-8
Длина дуги, мм 0,6 2,5 3,5 4 4,5 5 5,5 6,5

1.3 Скорость сварки

Выбор скорости сварки зависит от толщины свариваемого изделия и от толщины сварочного шва. Подбирать скорость сварки следует так, что бы сварочная ванна заполнялась жидким металлом от электрода и возвышалась над поверхностью кромок с плавным переходом к основному металлу изделия без наплывов и подрезов. Желательно поддерживать скорость продвижения так, что бы ширина сварочного шва превосходила в 1,5-2 раза диаметр электрода.

Если слишком медленно перемещать электрод, то вдоль стыка образуется достаточно большое количество жидкого металла, который растекается перед сварочной дугой и препятствует её воздействию на свариваемые кромки – то есть результатом будет непровар и некачественно сформированный шов.

Неоправданно быстрое перемещение электрода тоже может вызывать непровар из-за недостаточного количества тепла в рабочей зоне. А это чревато деформацией швов после охлаждения, вплоть до трещин.

Наиболее простой способ подбора скорости сварки ориентирован на приблизительно среднее значение размеров сварочной ванны. В большинстве случаев сварочная ванна имеет размеры: ширина 8–15 мм, глубина до 6 мм, длина 10–30 мм. Важно следить, что бы сварочная ванна равномерно заполнялась плавленным металлом, т.к. глубина проплавления почти не изменяется.

На рисунке видно, что при увеличении скорости заметно уменшается ширина шва, при этом глубина проплавления остается почти неизменной. Очевидно, что наиболее качественные швы (в этом примере) – при скоростях 30 и 40 м/ч.

1.4 Род и полярность тока

У большинства моделей бытовых аппаратов для ручной дуговой сварки на выходе путем выпрямления переменного тока образуется постоянный сварочный ток. При использовании постоянного тока возможны два варианта подключения электрода и детали:

  • При прямой полярности деталь подсоединяется к зажиму «+», а электрод к зажиму «-»
  • При обратной полярности деталь подключается к «-», а электрод – к «+»

На положительном полюсе выделяется больше тепла, чем на отрицательном. Поэтому обратную полярность при работе с электродами применяют во время работ по сварке тонколистового металла, чтобы его не прожечь. Можно использовать обратную полярность при сварке высоколегированных сталей во избежание их перегрева, а на прямой полярности лучше варить массивные детали

Постоянный ток
Прямая полярность Обратная полярность
  • Сварка с глубоким проплавлением основного металла
  • Сварка низко- и среднеуглеродистых и низколегированных сталей толщиной 5 мм и более электродами с фтористо-кальциевым покрытием: УОНИ-13/45, УОНИ-13/55 и др.
  • Сварка чугуна
  • Сварка с повышенной скоростью плавления электродов
  • Сварка низколегированных и низкоуглеродистых сталей (типа 16Г2АФ), средне- и высоколегированных сталей и сплавов
  • Сварка тонкостенных листовых конструкций

Низколегированные стали — это конструкционные стали, в которых содержится не больше 2,5% легирующих элементов (углерода, хрома, марганца, никеля и т.д., причем углерода не должно быть более 0,2 %), широко применяются в строительстве, судостроении, трубопрокатном производстве. Сварку низколегированных сталей можно производить как ручным способом, так и автоматически, вне зависимости от полярности тока.

1.5 Зажигание (возбуждение) сварочной дуги

Зажигание (возбуждение) сварочной дуги можно производить 2-мя способами.

Первый способ: Чиркаем концом электрода о поверхность металла (напоминает движение зажигаемой спички). Данный способ чаще всего применяют на новом электроде. Этот метод прост и особых профессиональных навыков не требует. Второй способ можно назвать «касанием», т.к. электрод подводят вертикально (перпендикулярно) к месту начала сварки и после легкого прикосновения к поверхности изделия отводят верх на расстояние примерно в 3-5 мм. Чаще всего этот способ применяют в труднодоступных, узких и прочих неудобных местах.

Электрическое обучение | BrightRidge

Что такое электричество?
Электричество — это форма энергии, которая производит тепло и свет. Электричество также может называться «электрической энергией».

Где начинается электричество?
Электричество начинается с атома. Атомы состоят из протонов, нейтронов и электронов. Электричество создается, когда внешняя сила заставляет электроны перемещаться от атома к атому. Поток электронов называется «электрическим током».”

Что заставляет электроны двигаться?
Напряжение — это «внешняя сила», которая заставляет электроны двигаться. Напряжение — это потенциальная энергия. Потенциальная энергия обладает способностью выполнять работу. Пример потенциальной энергии — топор, который держат над деревом. Если топор упадет на кусок дерева, оно расколется. Обратите внимание на слово «если». Потенциальная энергия работает ТОЛЬКО, если это разрешено.

Что такое напряжение?

Напряжение — это «внешняя сила», которая заставляет электроны двигаться.Напряжение — это потенциальная энергия. Некоторые характеристики напряжения:

  • Напряжение не видно и не слышно.
  • Напряжение — это толчок или сила.
  • Voltage само по себе ничего не делает.
  • Voltage может работать.
  • Напряжение появляется между двумя точками.
  • Напряжение всегда есть.

Какие два вида электричества?

Статическое электричество возникает при дисбалансе положительно и отрицательно заряженных атомов.Затем электроны прыгают от атома к атому, высвобождая энергию. Два примера статического электричества: молния и трение ногами о ковер, а затем прикосновение к дверной ручке.

Текущее электричество — это постоянный поток электронов. Существует два вида текущего электричества: постоянный ток (DC) и переменный ток (AC). При постоянном токе электроны движутся в одном направлении. Батареи вырабатывают постоянный ток. В переменном токе электроны текут в обоих направлениях. Электростанции вырабатывают переменный ток.Переменный ток (AC) — это тип электричества, который BrightRidge передает вам для использования.

Что такое проводники и изоляторы?

Проводники — это все, через что легко проходит электричество. Примеры электрических проводников — медь, алюминий и вода.

Изоляторы — это материалы, которые не позволяют электричеству легко проходить через них. Некоторые примеры изоляторов — резина, стекло и пластик.

Что такое электрический ток? — Определение, единицы и типы — Видео и стенограмма урока

Постоянный и переменный ток

Сегодня широко используются два разных типа тока.Это постоянный ток, сокращенно DC, и переменный ток, сокращенно AC. В постоянного тока электроны текут в одном направлении. Батареи создают постоянный ток, потому что электроны всегда текут с «отрицательной» стороны на «положительную».

В постоянном токе электроны движутся в одном направлении.

Переменный ток , сокращенно AC, толкает электроны вперед и назад, изменяя направление потока несколько раз в секунду.В Соединенных Штатах ток меняет направление со скоростью 60 герц, или 60 раз за одну секунду. Генераторы, используемые на электростанциях для производства электроэнергии для вашего дома, предназначены для выработки переменного тока. Вы, вероятно, никогда не замечали, что свет в вашем доме на самом деле мерцает при изменении направления тока, потому что это происходит слишком быстро, чтобы наши глаза могли его обнаружить.

Итак, зачем нам два типа тока и какой из них лучше? Что ж, это хороший вопрос, и тот факт, что мы все еще используем оба типа тока, должен сказать вам, что они оба служат определенной цели.Еще в 19 веке считалось, что для эффективной передачи энергии на большие расстояния между электростанцией и домом ее необходимо передавать при очень высоком напряжении. Проблема заключалась в том, что подавать в дом действительно высокое напряжение было чрезвычайно опасно для людей, живущих в нем.

Решением этой проблемы было снижение напряжения прямо за пределами дома, прежде чем отправлять его внутрь. С технологией, существовавшей в то время, было намного легче снизить напряжение переменного тока, чем постоянного, поэтому переменный ток выиграл как предпочтительный тип тока.По сей день мы все еще используем переменный ток для передачи электроэнергии на большие расстояния, в основном из-за его способности легко преобразовываться в другие напряжения.

Итак, зачем нам вообще DC? Что ж, в первую очередь, важно понимать, что в настоящее время у нас нет никакого способа хранить электрическую энергию. «Но постойте!» — скажете вы. «А что насчет батарей? Разве они не хранят электрическую энергию? На самом деле, батареи преобразуют электрическую энергию и хранят ее в виде химической энергии. Как мы упоминали ранее, батареи создают только постоянный ток и, в свою очередь, могут заряжаться только постоянным током.Это означает, что переменный ток необходимо сначала преобразовать в постоянный, прежде чем его можно будет использовать с батареей. Пока не будет изобретена батарея переменного тока, постоянный ток всегда будет необходим.

За последние несколько десятилетий постоянный ток стал более важным из-за широкого использования электроники. Все наши высокотехнологичные игрушки, такие как компьютеры и сотовые телефоны, содержат детали, которые работают только от постоянного тока. Это означает, что даже если многие из наших гаджетов подключаются к розетке переменного тока, мощность внутри устройства преобразуется в постоянный ток, прежде чем оно будет использовано.

Единицы тока

Единицей измерения тока является ампер , но это слово часто сокращают до «ампер». Вероятно, самое распространенное место, где можно увидеть что-то с номинальным током, — это коробка автоматического выключателя в вашем доме. Цифры на переключателях показывают, сколько ампер тока может пройти через прерыватель, прежде чем он отключится для защиты проводов. Это подводит нас к важному моменту. Ток измеряется количеством электрического заряда, который проходит через заданную точку, например автоматический выключатель, за период времени в одну секунду.Поскольку электрический заряд измеряется в кулонах, а время — в секундах, истинной единицей измерения тока является кулон в секунду. Но разве не легче сказать «амперы»? К счастью для нас, один ампер определяется как один кулон в секунду, так что технически это одно и то же.

Краткое содержание урока

Подведем итоги тому, что мы узнали. Проводники содержат много свободных электронов, которые обычно перемещаются от атома к атому в случайных направлениях. Когда к проводнику прикладывается напряжение, все свободные электроны текут в одном направлении, которое называется током.В то время как электрическая энергия передается через проводник почти со скоростью света, отдельные электроны движутся гораздо медленнее.

Существует два вида электрического тока: постоянный и переменный. В постоянном токе, сокращенно DC, электроны движутся в одном направлении. Этот тип тока создается, когда электроны движутся по цепи, чтобы перейти от «отрицательного» конца к «положительному» концу батареи. Постоянный ток имеет важные применения в хранении энергии и для питания многих наших электронных устройств.

В переменном токе, сокращенно AC, электроны меняют направление несколько раз в секунду. Этот тип тока создается генераторами на электростанции, потому что он лучше всего подходит для передачи электроэнергии на большие расстояния. Наконец, единицей измерения тока является ампер, который определяется как один кулон заряда, проходящий через заданную точку за одну секунду.

Результаты обучения

После этого урока вы сможете:

  • Обобщать, как движутся электроны в токе
  • Различия между переменным и постоянным током
  • Определить текущую единицу

видов электрического тока | Sciencing

Электрический ток бывает двух видов: переменного тока и постоянного тока, сокращенно AC и DC.Оба типа имеют свое собственное применение с точки зрения выработки и использования электроэнергии, хотя переменный ток является более распространенным типом электрического тока в доме. Разница в том, что постоянный ток течет только в одном направлении, а переменный ток быстро меняет направление.

Электричество — это поток электронов

Электричество — это результат движения электронов. Во всех веществах отрицательно заряженные электроны в атомах перемещаются беспорядочно. Когда электроны начинают течь в определенном направлении внутри вещества или от одного объекта к другому, в результате возникает электричество.Движение электронов можно использовать для получения энергии. Движение электронов происходит, когда два объекта трутся друг о друга и электроны переносятся друг на друга, что является статическим электричеством. Когда электроны протекают в токе, например, через проводник, такой как медный провод, электричество называется электрическим током.

Как на самом деле течет ток?

Электрический ток — это поток электронов, но электроны не прыгают непосредственно из точки происхождения тока в точку назначения.Вместо этого каждый электрон перемещается на небольшое расстояние к следующему атому, передавая свою энергию электрону в этом новом атоме, который перескакивает на другой атом, и т. Д. Отдельные электроны движутся не быстро, но сам ток движется со скоростью света. Ток нагревает проводник. Этот механик производит свет в лампочках и тепло в электрических плитах.

Постоянный ток и переменный ток

Постоянный ток — это электрический ток, который течет только в одном направлении.Обычное место, где можно найти постоянный ток, — это батареи. Аккумулятор сначала заряжается постоянным током, который затем преобразуется в химическую энергию. Когда аккумулятор используется, он превращает химическую энергию обратно в электричество в форме постоянного тока. Аккумуляторы нуждаются в постоянном токе для зарядки, и они будут производить только постоянный ток.

Вам нужен индукционный генератор для выработки переменного тока. Английский физик Майкл Фарадей открыл электромагнитную индукцию, а Никола Тесла в сотрудничестве с Westinghouse Company разработал большие индукционные генераторы, которые питают сегодня цивилизацию.Поскольку у индукционного генератора есть вращающийся ротор, вырабатываемое им электричество меняет направление один раз и обратно с каждым циклом ротора. В Соединенных Штатах период этого цикла был стандартизирован и составлял 60 Гц.

Переменный ток побеждает

Когда электричество производится в больших масштабах, например, на электростанции, оно имеет опасно высокое напряжение, которое необходимо понизить на стороне пользователя. Это легче сделать с переменным током, чем с постоянным.Однако это не основная причина того, что переменный ток является предпочтительным для домашнего потребления. В конце 19-го века борьба между промышленными производителями Westinghouse и General Electric, которые продвигали электричество постоянного тока, закончилась в пользу Westinghouse, когда она успешно запитала Чикагскую всемирную ярмарку 1893 года, используя переменный ток. С тех пор переменный ток питает дома и все остальное, что потребляет ток в линиях электропередач.

Типы тока — значение, типы измерителей тока и ответы на часто задаваемые вопросы

Движение электронов производит электричество.Отрицательно заряженные электроны в атомах спонтанно перемещаются во всех веществах. Продукт электронов, движущихся в определенном направлении внутри материала или от одного объекта к другому, — это электричество. Электронное движение можно использовать для выработки электроэнергии. Когда два объекта трутся друг о друга, электроны перемещаются от одного объекта к другому, в результате чего возникает статическое электричество. Электричество называется электрическим током, поскольку электроны текут в токе, например, по проводнику или медному проводу.

Существует два основных типа тока: постоянный ток и переменный ток.

1. Постоянный ток — или постоянный ток, это ток, который течет с постоянной скоростью в одном направлении. Оба электрона в замкнутом контуре проходят в одном и том же направлении по контуру. Это тип тока, который вырабатывает большинство цепей, подключенных к батарее. Это связано с тем, что батареи предназначены для того, чтобы электроны могли течь только в одном направлении от их анода (отрицательная клемма) к катоду (положительная клемма) через проводящий провод (в отличие от протекания через саму батарею в противоположном направлении). направление).

2. Постоянный ток: Постоянный ток (также известный как постоянный ток, не зависящий от времени ток или стационарный ток) — это тип постоянного тока (DC), сила которого не меняется со временем.

3. Переменный ток. Переменный ток — переменный ток, который колеблется и меняет направление с фиксированной частотой. Количество колебаний в секунду рассчитывается в герцах (Гц), где 1 Гц соответствует 1 секунде-1.

В этой статье будут подробно изучены различные типы токов, типы океанических течений и типы трансформаторов тока.

Типы океанских течений

Циркуляция океана получает энергию от двух источников на поверхности моря, которые приводят к двум типам океанских течений

(1) ветровая циркуляция, вызываемая ветровым напряжением на поверхности моря, и

(2) термохалинная циркуляция, которая вызвана изменениями плотности воды на поверхности моря в результате взаимодействия тепла океана и воды с атмосферой, что приводит к обмену плавучестью. Поскольку скорость ветра влияет на плавучесть морского воздуха и обмен импульсом, эти две формы циркуляции не полностью разделены.Циркуляция, приводимая в движение ветром, является более мощной из двух, создавая круговороты, преобладающие в области океана.

Различные типы трансформаторов тока

Трансформатор тока (C.T.) — это тип «измерительного трансформатора», который вырабатывает переменный ток во вторичной обмотке, пропорциональный току, измеренному в первичной обмотке. Трансформаторы тока минимизируют токи высокого напряжения до приемлемой величины, позволяя обычному амперметру безопасно отслеживать реальный электрический ток, протекающий в линии передачи переменного тока.Простой трансформатор тока работает по несколько иной концепции, чем традиционный трансформатор напряжения.

Существует три типа трансформаторов тока: с обмоткой, тороидальный и стержневой.

  1. Трансформатор тока с обмоткой — Первичная обмотка трансформатора физически соединена последовательно с проводником, через который проходит измеряемый ток цепи. Величина вторичного тока определяется коэффициентом трансформации трансформатора.

  2. Тороидальный трансформатор тока — в тороидальном трансформаторе тока нет первичной обмотки.Вместо этого ток, протекающий по сети, переносится линией, пропущенной через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенное сердце», которое позволяет их открывать, собирать и закрывать, не прерывая цепь, к которой они подключены.

  3. Трансформатор тока стержневого типа — Первичная обмотка этого типа трансформатора тока представляет собой фактический кабель или шину главной цепи, что эквивалентно одиночному переключателю. Обычно они прикручиваются к токоведущему блоку и полностью экранированы от высокого рабочего напряжения системы.

Типы измерителей тока

1. Измерители тока ротора — это механические измерители тока, которые зависят от подсчета оборотов гребного винта. Измеритель тока Экмана, который бросает шарики в сосуд для подсчета числа оборотов, — это реализация середины двадцатого века. Измеритель радиотока Roberts — это система, которая устанавливается на заякоренном буе и отправляет свои данные на обслуживающее судно по радио. Чтобы уменьшить погрешность, вызываемую вертикальным перемещением, измерители тока Савониуса вращаются вокруг вертикальной оси.

2. Двумя наиболее распространенными моделями являются доплеровские акустические измерители тока и измерители времени прохождения. В обоих методах используется керамический преобразователь для излучения звука в воду. Более популярно использование доплеровских инструментов. Акустический доплеровский профилировщик течения (ADCP) — один из таких инструментов, который использует эффект Доплера звуковых волн, рассеиваемых обратно от частиц в водной толще, для определения скорости течения воды в диапазоне глубин. По крайней мере, два акустических сигнала, один выше и один ниже по течению, используются приборами измерения времени прохождения для расчета скорости воды.Среднюю скорость воды между двумя точками можно измерить, точно рассчитав время, необходимое для прохождения от излучателя до приемника в обоих направлениях. Скорость воды можно рассчитать в трех измерениях, используя разные траектории.

3. Измерители тока наклона работают по принципу сопротивления-наклона и, в зависимости от типа, предназначены для плавания или опускания. Подземный плавучий корпус обычно крепится к морскому дну с помощью гибкого троса или троса в плавающем измерителе тока наклона. Понижающийся ток наклона эквивалентен возрастающему току наклона, за исключением того, что счетчик подвешен к точке подключения.

Знаете ли вы?

Инверторы и трансформаторы могут даже использоваться для преобразования определенного входного напряжения постоянного тока в совершенно другое выходное напряжение переменного тока (большее или меньшее), но выходная мощность всегда должна быть меньше входной мощности: сохранение энергии требует, чтобы инвертор и трансформатор не может отдавать больше мощности, чем потребляет, и некоторая часть энергии неизбежно теряется в виде тепла, когда течет электричество. На самом деле КПД инвертора часто превышает 90%, в то время как фундаментальная физика сообщает нам, что некоторая энергия — даже небольшая — все еще где-то тратится.

Что такое электрический ток — виды и его действие

Электричество — великий дар науки человечеству. Мы почти постоянно пользуемся электричеством, и это стало частью нашего современного образа жизни. Мы не можем даже представить свою жизнь без этого драгоценного дара. Электрический ток — это ядро ​​электричества. А что такое электрический ток? Электрический ток — это движение заряженных частиц в проводе. Например, поток воды в реке или океане называется потоком воды, так же, как в электрическом токе текут заряженные частицы.

Электрические расходы

В атоме три частицы; электрон, протон и нейтрон. Электрон — отрицательно заряженная частица, в то время как протон заряжен положительно. Электроны и протоны притягиваются друг к другу, в то время как электрон-электрон (как заряды) и протон-протон (как заряды) отталкиваются друг от друга.

Частицы электрического заряда — это электроны и дырки. Отверстия на самом деле дефицит электронов. В проводнике присутствуют электроны и дырки, но в основном электроны.В то время как в полупроводнике электроны и дырки присутствуют почти в равном количестве. Эти заряженные частицы являются основой для создания множества электронных устройств, таких как диоды, транзисторы и т. Д.

Что такое электрический ток?

Когда к батарее подключается электрический провод , к нему прикладывается электрический потенциал. Это заставит электроны течь от отрицательной клеммы к положительной клемме батареи. Свободные электроны, которые движутся, передавая кинетическую энергию, ответственны за проводящие свойства элемента.Это движение электронов, которые на самом деле являются носителями заряда, производит ток. Таким образом, электрический ток — это скорость прохождения электрического заряда через проводник во времени.

Электрический ток обозначается символом « I ». Заряд носителей заряда обозначается « Q ».

Следовательно, I = Q / t

Единица электрического тока

Электрический ток — это количество заряда, проходящего через проводник во времени.Единица заряда — кулон, время — секунды. Итак, формула для тока составляет C / s или мы называем это ампер .

1 Ампер электрического тока означает, что 1 кулон заряда проходит через проводник за 1 секунду.

Направление электрического тока

Направление потока тока и электронов

Когда мы подключаем батарею к электрическому проводнику, электроны с отрицательной клеммы батареи начинают двигаться к положительной клемме батареи.Таким образом, электроны движутся от отрицательного полюса аккумулятора к положительному. В то время как направление обычного тока — от положительной клеммы к отрицательной клемме аккумулятора.

Виды электрического тока

В основном есть два типа тока.

Переменный ток : Переменный ток (AC) — это поток зарядов, который периодически меняет свое направление. Этот тип источника питания используется для электроснабжения зданий, офисов и т. Д. Вы получаете электропитание переменного тока от сетевой розетки у себя дома.

Постоянный ток: Постоянный ток (DC) — это поток зарядов только в одном направлении. В источнике постоянного тока электроны выходят из отрицательной клеммы и движутся к положительной клемме батареи. Мы питаем большинство маломощных устройств от источника постоянного тока. Если мы хотим питать эти устройства от сетевой розетки, вам необходимо сначала преобразовать их в источник постоянного тока (DC).

Разница между переменным и постоянным током

Воздействие электрического тока

Существует два основных эффекта электрического тока:

  1. Тепловое воздействие: Ток рассеивается в виде тепла.Выделяемое тепло прямо пропорционально протекающему току. Если текущий ток меньше, тепла будет меньше, а если текущий ток больше, будет произведено больше тепла.

Этот эффект нагрева полезен по-разному. Этот эффект нагрева используется в электронагревателе. Здесь сопротивление увеличивается, чтобы увеличить количество тепла. Кроме того, он также используется в электрическом предохранителе. Чем больше тепла, тем больше разорвется плавкий предохранитель и, следовательно, разорвется цепь.

2. Магнитный эффект: Мы можем наблюдать магнитное поле на проводе с током.Вы можете поместить компас рядом с проводником, находящимся под электрическим напряжением, и вы увидите отклонение компаса. Это показывает наличие магнитного поля. Это хорошо известный эксперимент Эрстеда .

Это все об электрическом токе. Теперь вы можете понять, насколько важен электрический ток в нашей повседневной жизни, и, конечно же, невозможно представить современный мир без электричества. Но важно знать, с чего все началось с изучения электрического тока.Сегодня для передачи данных используется ток, и это всего лишь минутная величина тока по сравнению с лампочкой. Мы используем подключение к Интернету, Ethernet и другие вещи, основанные на текущей информации. С каждым днем ​​ток становится все более важным в нашей жизни.

Что такое электрический ток? | Живая наука

Электрический ток — это движущийся электрический заряд. Он может принимать форму внезапного разряда статического электричества, такого как молния или искра между вашим пальцем и пластиной выключателя заземления.Однако чаще, когда мы говорим об электрическом токе, мы имеем в виду более контролируемую форму электричества, вырабатываемую генераторами, батареями, солнечными элементами или топливными элементами.

Большая часть электрического заряда переносится электронами и протонами внутри атома. Протоны имеют положительный заряд, а электроны — отрицательный. Однако протоны в основном иммобилизованы внутри атомных ядер, поэтому перенос заряда из одного места в другое выполняют электроны. Электроны в проводящем материале, таком как металл, в значительной степени могут свободно перемещаться от одного атома к другому по своим зонам проводимости, которые являются высшими электронными орбитами.По словам Серифа Урана, профессора физики в Питтсбургском государственном университете, достаточная электродвижущая сила (ЭДС) или напряжение создает дисбаланс заряда, который может заставить электроны перемещаться по проводнику в виде электрического тока.

Хотя сравнивать электрический ток с потоком воды в трубе несколько рискованно, есть некоторые сходства, которые могут облегчить понимание. По словам Майкла Дубсона, профессора физики в Университете Колорадо Болдера, мы можем представить поток электронов в проводе как поток воды в трубе.Предостережение: в этом случае труба всегда заполнена водой. Если мы откроем клапан на одном конце, чтобы вода попала в трубу, нам не нужно ждать, пока вода дойдет до конца трубы. Мы получаем воду из другого конца почти мгновенно, потому что поступающая вода выталкивает воду, которая уже находится в трубе, к концу. Вот что происходит в случае электрического тока в проводе. Электроны проводимости уже присутствуют в проводе; нам просто нужно начать толкать электроны на одном конце, и они почти сразу же начнут течь на другом конце.

Согласно веб-сайту HyperPhysics Государственного университета Джорджии, фактическая скорость электрона в проводе составляет порядка нескольких миллионов метров в секунду, но он не движется прямо по проводу. Он подскакивает почти наугад и движется только со скоростью несколько миллиметров в секунду. Это называется дрейфовой скоростью электрона. Однако скорость передачи сигнала, когда электроны начинают выталкивать другой конец провода после того, как мы щелкаем выключателем, почти равна скорости света, которая составляет около 300 миллионов метров в секунду (186 000 миль в секунду).В случае переменного тока, когда ток меняет направление 50 или 60 раз в секунду, большая часть электронов никогда не выходит из провода.

Несбалансированность начислений может быть создана несколькими способами. Первым известным способом было создание статического заряда путем трения друг о друга двух разных материалов, например, протирания кусочка янтаря мехом животных. Затем можно создать ток, прикоснувшись янтарем к телу с меньшим зарядом или к земле. Однако этот ток имел очень высокое напряжение, очень низкую силу тока и длился всего долю секунды, поэтому его нельзя было заставить выполнять какую-либо полезную работу.

Постоянный ток

Следующим известным способом создания дисбаланса зарядов была электрохимическая батарея, изобретенная в 1800 году итальянским физиком Алессандро Вольта, в честь которого названа единица электродвижущей силы — вольт (В). Его «гальваническая куча» состояла из стопки чередующихся цинковых и медных пластин, разделенных слоями ткани, пропитанной соленой водой, и создавал устойчивый источник постоянного тока (DC). Он и другие улучшили и усовершенствовали свое изобретение в течение следующих нескольких десятилетий.По данным Национального музея американской истории, «батареи привлекли внимание многих ученых и изобретателей, и к 1840-м годам они обеспечивали током новые электрические устройства, такие как электромагниты Джозефа Генри и телеграф Сэмюэля Морса».

Другие источники постоянного тока включают топливные элементы, которые объединяют кислород и водород в воду и вырабатывают электрическую энергию в процессе. Кислород и водород можно подавать в виде чистых газов или из воздуха и химического топлива, такого как спирт. Другой источник постоянного тока — фотоэлектрический или солнечный элемент.В этих устройствах фотонная энергия солнечного света поглощается электронами и преобразуется в электрическую энергию.

Переменный ток

Большая часть электроэнергии, которую мы используем, поступает в виде переменного тока из электросети. Переменный ток вырабатывается электрическими генераторами, которые работают по закону индукции Фарадея, с помощью которого изменяющееся магнитное поле может индуцировать электрический ток в проводнике. В генераторах есть вращающиеся катушки из проволоки, которые проходят через магнитные поля при вращении.Когда катушки вращаются, они открываются и закрываются относительно магнитного поля и производят электрический ток, который меняет направление на противоположное каждые пол-оборота. Ток проходит полный прямой и обратный цикл 60 раз в секунду, или 60 герц (Гц) (50 Гц в некоторых странах). Генераторы могут работать от паровых турбин, работающих на угле, природном газе, масле или ядерном реакторе. Они также могут приводиться в действие ветряными турбинами или водяными турбинами на плотинах гидроэлектростанций.

Из генератора ток проходит через серию трансформаторов, где он повышается до гораздо более высокого напряжения для передачи.Причина этого в том, что диаметр проводов определяет величину тока или силы тока, которую они могут проводить без перегрева и потери энергии, но напряжение ограничивается только тем, насколько хорошо линии изолированы от земли. Интересно отметить, что ток передается только по одному проводу, а не по двум. Две стороны постоянного тока обозначены как положительная и отрицательная. Однако, поскольку полярность переменного тока меняется 60 раз в секунду, две стороны переменного тока обозначаются как горячая и заземленная.В линиях электропередачи на большие расстояния провода проходят через горячую сторону, а земля проходит через землю, замыкая цепь.

Поскольку мощность равна напряжению, умноженному на силу тока, вы можете послать больше мощности по линии при той же силе тока, используя более высокое напряжение. Затем высокое напряжение понижается по мере того, как оно распределяется по сети подстанций, пока не достигает трансформатора рядом с вашим домом, где оно наконец понижается до 110 В. (В Соединенных Штатах настенные розетки и лампы работают от 110 В. при 60 Гц.В Европе почти все работает от 230 В при 50 Гц.)

Как только ток достигает конца линии, большая часть его используется одним из двух способов: либо для обеспечения тепла и света через электрическое сопротивление, либо для механического движения. через электрическую индукцию. Есть еще несколько применений — на ум приходят люминесцентные лампы и микроволновые печи — которые работают на разных принципах, но львиная доля энергии идет на устройства, основанные на сопротивлении и / или индуктивности. Фен, например, использует и то, и другое одновременно.

Это подводит нас к важной особенности электрического тока: он может выполнять работу. Он может освещать ваш дом, стирать и сушить одежду и даже поднимать гаражные ворота одним щелчком выключателя. Однако все более важной становится способность электрического тока передавать информацию, особенно в виде двоичных данных. Хотя для подключения к Интернету вашего компьютера требуется лишь небольшая часть электрического тока, скажем, электрического обогревателя, он становится все более и более важным для современной жизни.

Дополнительные ресурсы

Различные типы токов

Обзор

Электрическая сеть представляет собой соединение электрических элементов, таких как резисторы, катушки индуктивности, конденсаторы, линии передачи, источники напряжения, источники тока и переключатели. Электрическая цепь — это особый тип сети, в которой есть замкнутый контур, обеспечивающий обратный путь для тока. Электрические сети, которые состоят только из источников (напряжения или тока), линейных сосредоточенных элементов (резисторов, конденсаторов, индукторов) и линейных распределенных элементов (линий передачи), могут быть проанализированы алгебраическими методами и методами преобразования.Резистивная цепь — это цепь, содержащая только резисторы и идеальные источники тока и напряжения. Анализ резистивных цепей менее сложен, чем анализ цепей, содержащих конденсаторы и катушки индуктивности. Если источники являются постоянными (DC) источниками, результатом будет цепь постоянного тока. Сеть, содержащая активные электронные компоненты, называется электронной схемой. Такие сети обычно нелинейны и требуют более сложных инструментов проектирования и анализа.

Цепи постоянного тока

Постоянный ток (DC) — это однонаправленный поток электрического заряда.Постоянный ток вырабатывается такими источниками, как батареи, термопары, солнечные элементы и электрические машины коммутаторного типа динамо-типа. Постоянный ток может течь в проводнике, таком как провод, но также может течь через полупроводники, изоляторы или даже через вакуум, как в электронных или ионных пучках. Электрический заряд течет в постоянном направлении, что отличает его от переменного тока. Термин, ранее использовавшийся для обозначения постоянного тока, был гальваническим током.

Цепь постоянного тока — это электрическая цепь, состоящая из любой комбинации источников постоянного напряжения, источников постоянного тока и резисторов.В этом случае напряжения и токи в цепи не зависят от времени. Конкретное напряжение или ток в цепи не зависит от прошлого значения напряжения или тока в цепи. Это означает, что система уравнений, представляющая цепь постоянного тока, не включает интегралы или производные по времени. Если к цепи постоянного тока добавляется конденсатор или катушка индуктивности, полученная цепь, строго говоря, не является цепью постоянного тока. Однако большинство таких цепей имеют решение постоянного тока. Это решение выдает напряжения и токи в цепи, когда цепь находится в установившемся режиме постоянного тока.Такая схема представлена ​​системой дифференциальных уравнений. Решение этих уравнений обычно содержит изменяющуюся во времени или переходную часть, а также постоянную или установившуюся часть. Именно эта часть установившегося состояния и является решением постоянного тока. В электронике цепь, которая питается от источника постоянного напряжения, такого как батарея, или выход источника постоянного тока, обычно называют цепью постоянного тока, даже если имеется в виду, что эта схема питается постоянным током.

На рисунке показана простая цепь постоянного тока.На принципиальных схемах, подобных этой, электрические элементы представлены символами и обычно помечены соответствующими характеристиками, такими как сопротивление резистора ~ . Электрический потенциал и ток также могут быть помечены в различных точках цепи. Однако имейте в виду, что условные обозначения принципиальных схем различаются в разных учебниках и предметных областях, что приводит к тому, что для одних и тех же элементов схемы используются разные символы.

Пример условных обозначений элементов схемы

Набор примеров элементов схемы и связанных с ними символов, обычно используемых в принципиальных схемах.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *