Site Loader

Содержание

Проблемы, теория и реальность светодиодов для современных систем отображения информации высшего качества — Компоненты и технологии

Результатом интенсивного развития технологий в области производства оптоэлектронных приборов на основе полупроводниковых светоизлучающих кристаллов стало широкое использование светодиодов в системах отображения информации и световой сигнализации. Большой выбор цветов свечения, комбинация мощного излучения с любой формой пространственного распределения и возможность получения любого оттенка в широком динамическом диапазоне яркостей открывают огромные перспективы использования светодиодов в качестве источников света для этих устройств.

Реализация таких возможностей в этой области применения светодиодов достигается решением ряда технических задач, возникающих в процессе разработки конструкции светодиода. Анализу проблем конструкций светодиодов и кристаллов, оценке результатов собственных исследований характеристик и прогнозу тенденций повышения качества светодиодов посвящена данная статья.

Полупроводниковые источники света

Когда-то задача высечь огонь из чего бы то ни было была самой актуальной для человечества. На определенном этапе огню, полученному с помощью кремния, «было поручено» большое количество функций, одной из которых является его важная составляющая — свет. По-разному решалась эта задача в прежние века, но здесь речь пойдет о самом современном способе получения света из камня.

Основой для построения современных полупроводниковых источников света служит излучающий кванты света p-n-переход. Существует множество вариантов его создания в полупроводнике, но мы остановимся только на тех структурах, которые способны излучать кванты электромагнитного излучения при протекании через них электрического тока. Это гетероструктуры с широкозонными p-n-переходами, ширина запрещенной зоны которых более 1,9 эВ. В настоящее время созданы структуры, способные излучать во всем видимом диапазоне, в ближнем ИК и ультрафиолете. Большой выбор цветов свечения, комбинация мощного излучения с любой формой пространственного распределения и возможность получения любого оттенка в широком динамическом диапазоне яркостей открывают огромные перспективы использования светодиодов в качестве различных источников света.

Светодиоды

Светодиод — это полупроводниковый прибор, преобразующий энергию электрического тока в световую, основой которого является излучающий кристалл. Излучение светодиода занимает достаточно узкою полосу (до 25–30 нм) шкалы спектрального распределения плотности энергетической яркости и поэтому носит характер квазимонохроматического излучения.

На основе вышеперечисленных полупроводниковых кристаллов с излучающими p-n-переходами создано огромное множество различных светоизлучающих светодиодов.

Конструкция светодиода определяет направление, пространственное распределение, интенсивность излучения, электрические, тепловые, энергетические и другие характеристики излучения от полупроводникового кристалла. И конечно, взаимное влияние всех этих параметров друг на друга. Детальное изучение информации о светодиодах различных конструкций и назначения и от различных производителей, сравнение ее с полученной в условиях лаборатории позволило сделать некоторые важные выводы о качестве и возможностях применения светодиодов.

В последнее время светодиоды все больше претендуют на использование их в освещении, художественной подсветке, сигнальной технике. Все это стало возможным благодаря достаточно быстрому росту энергетических показателей, надежности и долговечности квазимонохроматических источников излучения. Малое потребление электрической энергии, легкость формирования диаграммы направленности с помощью различной оптики, простота управления и, самое важное, специфическое восприятие излучения глазом делают светодиоды незаменимыми для создания полноцветных экранов, вывесок и других средств представления информации в виде динамического изображения. Однако это порождает особые требования к характеристикам светодиодов. Исследования, оценки и сравнения этих характеристик и стали предметом обсуждения в данной статье.

Теория светотехнических и электрических характеристик современных светодиодов и ее связь со спецификациями производителей

Самой распространенной и обобщающей единицей, характеризующей энергетические параметры светодиода, является осевая сила света [cd]. Однако эта величина абсолютно нечитаема, если не указать угол излучения Θ по некоторому уровню от Iνmax. Обычно говорится об угле излучения по уровню половины максимальной силы света — Θ0,5Iνmax, хотя иногда указывают и силу света по уровню 0,1IνmaxΘ0,1Iνmax. Совокупность двух параметров — угла излучения и осевой силы света — уже дает представление (хотя и очень грубое), в каком направлении распространяется и какой будет сила света при различных углах наблюдения. Для более точного определения величины силы света при любом угле наблюдения обычно приводится двухкоординатная плоская зависимость

Iν(Θ), часто называемая индикатрисой излучения (рис. 1).

Индикатриса излучения светодиода с овальной линзой в полярных координатах. Изображены вертикальная (меньший угол) и горизонтальная (больший угол) плоскости излучения (Рис. 1)

Рис. 1. Индикатриса излучения светодиода с овальной линзой в полярных координатах. Изображены вертикальная (меньший угол) и горизонтальная (больший угол) плоскости излучения

Важной энергетической характеристикой излучения светодиода является световой поток

F(lm), определяющийся как интеграл всей энергии, заключенной под пространственной индикатрисой излучения [1]. Именно этот параметр производители светодиодов часто указывают в спецификациях. Особенно это касается мощных приборов с большим углом излучения и равномерным пространственным распределением, стремящимся к ламбертовскому. Однако даже в этом случае невозможно достоверно оценить распределение светового потока внутри диаграммы и, соответственно, правильно оценить силу света светодиода. Подавляющее большинство простых математических пересчетов единиц, которыми пользуются потребители светодиодной продукции, оказываются абсолютно неверными и приводят к большой ошибке в проектировании энергетических характеристик устройств на светодиодах. Особенно это заметно при попытках пересчета несимметричных диаграмм направленности излучения (например, светодиодов с овальной оптикой) и индикатрис узконаправленных светодиодов. Поэтому стоит остановиться на некоторых методах определения светового потока и связи его с другими фотометрическими единицами, потому как только непосредственным измерением этой величины можно с большой точностью получить ее значение.

Методы определения светового потока на основе малых сферических интеграторов (радиус сферы составляет порядка 300–400 мм) широко используются в электронной промышленности. При этом светодиод располагается во входном окне сферы. При измерениях светодиодов с разным пространственным распределением силы излучения можно получить большие ошибки, так как геометрия распределения освещенности на внутренней поверхности интегратора будет различной.

Классический подход к измерениям полного светового потока с помощью сферического интегратора — это размещение источника излучения в центре сферы.

Но даже в этом случае связь с эталоном люмена, погрешности, связанные с неравномерностью спектральных и зонных характеристик внутренней поверхности сферы, требуют особого внимания. Поэтому наиболее перспективным с точки зрения точности и информативности является метод пространственного сканирования силы света — гониофотометрический метод. Используемые для этих целей приборы — гониометр с достаточным угловым разрешением и фотометрическая головка с известным коэффициентом преобразования. Суть этого метода основана на пошаговой фиксации значений силы света при повороте светодиода на известный угол. Уменьшение погрешности измерений и получение наиболее достоверного углового распределения возможно при минимальном значении шага угла поворота светодиода относительно фотометра (или наоборот). Современные гониофотометрические установки имеют шаг 3–10 угловых минут. Одновременно выполняются измерения осевой силы света и ее пространственное распределение. На основании этих данных рассчитывается световой поток.

Получение светового потока светодиода F с пространственным распределением силы света произвольной формы определяется с помощью индикатрис излучения большого числа плоскостей (nIν(Θ) при n ? ?) и последующим вычислением среднего значения F [2].

Распределение светового потока внутри диаграммы направленности позволяет судить о том, какая его часть попадет к наблюдателю в зависимости от угла его зрения. Следует напомнить, что МКО 1931 ггода регламентирует так называемого «стандартного колориметрического наблюдателя», угол зрения которого определен в 1 градус (рис. 2). Это обстоятельство учитывается при выборе данного параметра светоизлучающего светодиода в зависимости от его назначения. Однако часто пользуются лишь индикатрисой излучения, что не всегда верно при расчетах восприятия изображения, необходимой его интенсивности на разных расстояниях от источника и размеров самого источника излучения.

Элементарный световой поток, заключенный в телесном угле dΩ (Рис. 2)

Рис. 2. Элементарный световой поток, заключенный в телесном угле

Применительно к экрану, табло или бегущей строке как к источнику излучения совокупности светодиодов, площадью которого нельзя пренебречь по отношению к расстоянию l до наблюдателя, не выполняется закон «обратных квадратов» [3]; используется другая единица, с помощью которой характеризуется энергетика излучения такого протяженного источника — яркость Y [кд/м

2].

Яркость определяется как сила света источника c произвольным распределением излучения по отношению к площади его излучающей поверхности [4].

Эффективность излучателя света характеризуется отношением светового потока (lm) к потребляемой электрической мощности (W). Эта величина, называемая светоотдачей, для светодиодов из материалов типа AIIIBV стала больше, чем у ламп накаливания во всех основных цветах видимого диапазона. Современные светодиоды имеют эффективность, достигающую 20–30 lm/W, а КПД колеблется от 9–16% в приборах на основе нитрида галлия и его твердых растворов (GaN, InxGa1–xN, AlxGa1–xN) и до 25–55% — у светодиодов на основе гетероструктур из твердых растворов (InyAlxGa1–x–yP).

Помимо энергетических, светодиоды характеризуются колориметрическими характеристиками. Знание этих параметров особенно важно при формировании правильной цветопередачи изображения в любом устройстве отображения информации, при использовании в светосигнальной технике, при проектировании оттенков подсветки в архитектуре и т. д.

МКО 1931 года установила трехкоординатную XYZ-систему обозначения цвета любого источника излучения (рис. 3). Как уже отмечалось, светодиоды являются достаточно узкополосными (квазимонохроматическими) излучателями, полуширина спектров которых составляет всего 15–30 нм, что соответствует средней тепловой энергии электронов, поэтому координаты цветности их излучения лежат практически на линии «чистых» цветов локуса МКО 1931 года. Однако имеется и более простая единица, характеризующая цвет, — доминирующая длина волны λdom, получаемая как результат пересечения прямой, проходящей через точку равноэнергетического источника типа «Е» и точку с координатами цветности данного светодиода и локуса МКО 1931 г. Именно ее указывают в технических характеристиках на светодиоды монохроматического излучения. Лишь отдельные фирмы, и NICHIA в их числе, указывают координаты цветности, что, по сути, правильнее. Но для устройств отображения информации, где важность цветопередачи изображения имеет очень высокий статус, этих характеристик зачастую оказывается недостаточно. Поэтому разработчики пользуются, как правило, спектральными характеристиками светодиодов, преобразования которых могут позволить получить ряд параметров спектрального распределения излучения, позволяющих детально оценить возможность использования конкретного светодиода в формировании необходимого оттенка или гаммы цветов. Спектр излучения характеризуется, помимо указанных, такими характеристиками, как центральная λc и максимальная λmax длины волн, полуширина спектра λ1/2, интегральный коэффициент K[Lm/Wopt] [5].

Цветовой график МКО 1931 года (Рис. 3)

Рис. 3. Цветовой график МКО 1931 года

Здесь E(λ) — относительное спектральное распределение светодиода, V(λ) — относительная спектральная световая эффективность.

Так, например, для получения высококачественного изображения на светодиодном экране, работающем по схеме формирования белого из трех основных цветов, — RGB необходимо, чтобы полуширина спектра источника каждого цвета была минимальна, что обеспечит высокую чистоту цвета поля изображения.

Не менее важными также являются электрические характеристики светодиодов. Это прямые и обратные вольт-амперные характеристики (рис. 4–6), зависимости прямого напряжения Uƒ и прямого тока Iƒ от температуры окружающей среды, люменамперные характеристики (зависимости интенсивности излучения от прямого тока через светодиод). По этим параметрам можно определить необходимые характеристики источников питания проектируемых устройств и рассчитать режимы оконечных устройств коммутации, нагрузкой которых будут используемые светодиоды.

Типичные прямые вольт-амперные характеристики светодиодов (Рис. 4)

Рис. 4. Типичные прямые вольт-амперные характеристики светодиодов

Зависимость потребляемой мощности Pdis от прямого тока Iƒ и динамическое сопротивление Rdin светодиодов. Зеленым цветом — на основе InGaN/AlGaN/GaN, красным — на основе AlInGaP/GaP (Рис. 5)

Рис. 5. Зависимость потребляемой мощности Pdis от прямого тока и динамическое сопротивление Rdin светодиодов. Зеленым цветом — на основе InGaN/AlGaN/GaN, красным — на основе AlInGaP/GaP

Типичные обратные вольт-амперные характеристики светодиодов (Рис. 6)

Рис. 6. Типичные обратные вольт-амперные характеристики светодиодов

Следует отметить, что все описанные выше характеристики светодиодов находятся в непосредственной зависимости друг от друга, поэтому, как правило, лишь их совокупность позволяет правильно судить о тех или иных параметрах светодиода. Однако наиболее точно определить соответствие заявленным производителем параметров светодиода, его качество и долговечность можно лишь проведя комплекс измерений и расчетов его характеристик.

Светоды. Основы полупроводниковой оптоэлектроники

Если в кристалле полупроводника создан p-n-переход, то есть граница между областями с дырочной (p-) и электронной (n-) проводимостью, то при положительной полярности внешнего источника тока на контакте к p-области (и отрицательной — на контакте к n-области) потенциальный барьер в p-n-переходе понижается и электроны из n-области инжектируются в р-область, а дырки из p-областив n-область. Инжектированные электроны и дырки рекомбинируют, передавая свою энергию либо квантам света (излучательная рекомбинация), либо, через дефекты и примеси, тепловым колебаниям решетки (безызлучательная рекомбинация). Вероятность излучательной рекомбинации пропорциональна концентрации электронно-дырочных пар, поэтому наряду с повышением концентраций основных носителей в p- и n-областях желательно уменьшать толщину активной области, в которой идет рекомбинация. Но в обычных p-n-переходах эта толщина не может быть меньше диффузионной длины — среднего расстояния, на которое диффундируют инжектированные носители заряда, пока не рекомбинируют.

Задача ограничения активной области рекомбинации решена в конце 60-х годов Алфёровым и его сотрудниками. Были предложены и практически изготовлены гетероструктуры, сначала на основе GaAs и его твердых растворов типа AlGaAs, а затем и на основе других полупроводниковых соединений (рис. 7).

Вид излучающего кристалла с гетероструктурой типа InGaN/AlGaN/GaN на подложке из Al2O3. Показана активная область (область p-n-перехода) и расположение омических контактов. (Рис. 7)

Рис. 7. Вид излучающего кристалла с гетероструктурой типа InGaN/AlGaN/GaN на подложке из Al2O3. Показана активная область (область p-n-перехода) и расположение омических контактов.

В гетероструктурах толщина активной области рекомбинации может быть много меньше диффузионной длины.

Рассмотрим энергетическую диаграмму гетероструктуры (рис. 8), в которой между внешними p- и n-областями полупроводника с большими величинами ширины запрещенной зоны Eg2, Eg3 расположен тонкий слой с меньшей шириной Eg*. Толщину этого слоя d можно сделать очень малой, порядка сотен или даже десятков атомных слоев. Помимо потенциального барьера обычного p-n-перехода на гетерограницах слоя образуются потенциальные барьеры для электронов ΔEc и дырок ΔEν. Если приложить к переходу прямое смещение, возникнет инжекция электронов и дырок с обеих сторон в узкозонный слой. Электроны будут стремиться занять положения с наименьшей энергией, спускаясь на дно потенциальной ямы в слое, дырки устремятся вверх — к краю валентной зоны в слое, где минимальны их энергии.

Энергетическая диаграмма p-n-гетероструктуры типа InGaN/AlGaN/GaN при прямом смещении Uƒ. (Рис. 8)

Рис. 8. Энергетическая диаграмма p-n-гетероструктуры типа InGaN/AlGaN/GaN при прямом смещении .

Широкозонные внешние части гетероперехода можно сильно легировать с обеих сторон, добиваясь больших концентраций в них равновесных носителей. И тогда, даже не легируя активную узкозонную область примесями, удается достичь при инжекции значительных концентраций неравновесных электронно-дырочных пар в слое. Отказ от легирования активной области принципиально важен, поскольку атомы примеси, как уже говорилось, могут служить центрами безызлучательной рекомбинации. Попав в яму, инжектированные электроны наталкиваются на потенциальный барьер ΔEc, дырки — на барьер ΔEν, поэтому и те и другие перестают диффундировать дальше и рекомбинируют в тонком активном слое с испусканием фотонов.

Применяемые материалы группы AIIIBV имеют диапазон ширины запрещенной зоны от 1,9 до 3,5 эВ (рис. 9). Твердые растворы AlGaInP на различных подложках излучают в диапазоне от 650 до 580 нм, структуры на основе GaN, InGaN имеют наибольший квантовый выход в пределах 540–400 нм.

Спектры электролюминесценции светодиодов на основе гетероструктур InGaN/AlGaN/GaN (сплошные линии) и AlInGaP/GaP (штриховые) (Рис. 9)

Рис. 9. Спектры электролюминесценции светодиодов на основе гетероструктур InGaN/AlGaN/GaN (сплошные линии) и AlInGaP/GaP (штриховые)

Рекомбинация электронно-дырочных пар в таких материалах происходит преимущественно с выделением кванта света. Энергия кванта пропорциональна ширине запрещенной зоны Eg — энергии, которую должен затратить заряд для прохода через эту зону. О вероятности излучательной рекомбинации в узкозонном слое говорит внутренний квантовый выход излучения ηi (число излучаемых фотонов на одну электронно-дырочную пару). В гетероструктурах величина i теоретически может быть близка к 100%.

Некоторые особенности конструкции и параметров светодиодов для систем отображения информации

Несмотря на большое количество модификаций конструкций излучающих кристаллов, нельзя однозначно отдать предпочтение какой-либо одной. Если не говорить о качестве самого производства кристалла и соблюдения технологических процессов при их производстве, то выбор определяется, как правило, исходя из идеи построения оптической системы светодиода, на которую работает излучающий кристалл, и задачи, которую впоследствии должен решать этот светодиод.

В устройствах отображения информации светодиоды собраны в группы (кластеры) и не работают поодиночке (рис. 10).

Фрагмент полноцветного кластерного экрана. Пиксели собраны из светодиодов основных цветов (Рис. 10)

Рис. 10. Фрагмент полноцветного кластерного экрана. Пиксели собраны из светодиодов основных цветов

Практически на всех режимах воспроизведения изображения в работе участвует подавляющее большинство светодиодов одновременно. И здесь самым важным условием выбора светодиодов для таких устройств является идентичность большого числа характеристик приборов всех используемых цветов (если речь идет о полноцветных системах) одновременно. Иначе будет нарушено условие правильной цветопередачи и линейности яркости устройства в зависимости от угла обзора.

В настоящее время одной из самых передовых является конструкция светодиода с применением овальных линз (рис. 11), формирующих пространственное распределение с существенной разницей в углах излучения в горизонтальной и вертикальной плоскостях.

Светодиоды фирмы «СОТСО» типа LO5SMQ __-BOG с овальной оптикой 110×50 град. (Рис. 11)

Рис. 11. Светодиоды фирмы «СОТСО» типа LO5SMQ __-BOG с овальной оптикой 110×50 град.

В некоторых случаях для достижения такого эффекта и для обеспечения максимальной равномерности диаграммы в материал линзы локально или по всему объему вводится диспергатор. В результате получается достаточно рациональная конструкция: с одной стороны, широкий (как правило, 110 градусов по уровню 0,5) угол в горизонтальной плоскости дает возможность построить экран, наблюдаемый под большими углами в этой плоскости без искажений, с другой стороны, небольшой вертикальный (30–50 градусов по уровню 0,5) ограничивает бесполезное распространение светового потока в пространство, где нет наблюдения. Таким образом, весь световой поток от кристалла равномерно направляется на наблюдателя. Сложность в том, что распределение светового потока внутри диаграммы направленности светодиодов разного цвета свечения редко бывают одинаковыме. Хотя угловые характеристики по уровню 0,5, указываемые в спецификациях, совпадают. Это связано с особенностью конструкций кристаллов, их геометрическими размерами, правильно подобранной оптикой, процентным содержанием диспергатора в материале линзы и т. д. Невыполнение этого условия и приводит к появлению описанных искажений изображения, сформированного кластером из таких светодиодов (рис. 12). Поэтому важно понимать, что построение качественного устройства воспроизведения полноцветного изображения, где имеет место смешение цветов и формирование оттенков, невозможно без учета характеристик распределения светового потока внутри диаграммы пространственного распределения излучения. Это условие касается также условия минимального разброса интенсивностей излучения (силы света) всех светодиодов одного цвета, невыполнение которого проявляется в виде неравномерной засветки поля светящегося полотна. Глаз способен различить разницу яркостей двух элементов, находящихся в пределах его разрешения и отличающихся друг от друга всего на несколько процентов (при условии нахождения в пределах насыщения). Как показывает практика, выполнение этого условия в начале эксплуатации светодиодного устройства вовсе не означает, что оно сохранится в процессе работы. Этот факт будет обсужден в следующем разделе статьи.

Относительная диаграмма пространственного распределения силы света кластера из трех светодиодов R, G, B фирмы Toyoda Gosei типа E1L4E-S с овальной оптикой и линейным расположением светодиодов в горизонтальной плоскости. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета светодиодов. Показаны расхождения в направленности излучения каждого светодиода относительно оптической оси кластера. (Рис. 12)

Рис. 12. Относительная диаграмма пространственного распределения силы света кластера из трех светодиодов R, G, B фирмы Toyoda Gosei типа E1L4E-S с овальной оптикой и линейным расположением светодиодов в горизонтальной плоскости. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета светодиодов. Показаны расхождения в направленности излучения каждого светодиода относительно оптической оси кластера.

Следующим важным параметром, идентичность которого должна быть соблюдена обязательно, является колориметрическая характеристика. Следствием невыполнения этого требования будет появление различных неоднородностей воспроизведения цвета. Система управления формированием цвета будет настроена на определенное соотношение интенсивностей основных цветов по формуле (7) исходя из спектральных параметров,

описанных в разделе 3 статьи, чтобы получить белый цвет с необходимыми координатами цветности. Однако достаточно отличающиеся по цветовым параметрам светодиоды будут выделяться и исказят цветопередачу. Этот дефект будет тем более заметен, чем меньше ширина спектрального распределения излучения светодиода. Стоит отметить, что глаз очень чувствителен к изменению цвета и способен различать квазимонохроматическое излучение с точностью до 1–2 нм.

Кроме идентичности параметров спектрального распределения необходимо остановиться на некоторых их значениях, требуемых для формирования правильной цветопередачи. МКО 1931 года рекомендует следующие координаты основных цветов (табл. 1).

Таблица 1

Следующим шагом в разработке конструкций светодиодов для систем отображения информации высокого качества стали многокристальные светодиоды с различным цветом излучения и полноцветный (RGB, Full сolor) прибор, содержащий три кристалла в одном корпусе (рис. 13), позволяющий формировать любой оттенок свечения (в том числе белый) как результат матрицирования трех цветов.

Полноцветные светодиоды для SMD-монтажа (Рис. 13)

Рис. 13. Полноцветные светодиоды для SMD-монтажа

Кристаллы расположены на одной общей подложке и находятся друг от друга на расстоянии, не превышающем 1–3 своих линейных размеров. Именно с использованием таких приборов стал возможен отказ от кластеров при изготовлении полноцветных экранов с высокой разрешающей способностью и яркостью до 2500 кд/м2. Размер пикселя при этом получается равным размеру одного светодиода, а смешение цветов вообще происходит в точке с размером примерно 0,8×0,3 мм. Более того, будучи расположенными на одном основании, все три кристалла имеют одинаковую температуру в любой момент времени, поэтому все тепловые уходы их параметров происходят одновременно, независимо от большой разницы прямых токов, и не влияют на результирующий цвет и интенсивность, сформированные в этот момент системой управления (в отличие от кластеров на дискретных светодиодах, где нет единой термостабилизации). Максимальный эффект этого свойства проявляется при формировании и воспроизведении белого цвета с большой частотой смены полей.

К достоинству описанной конструкции светодиода в части теплового режима стоит отнести и возможность использования его в импульсном режиме. Благодаря способности кристалла работать на больших (сотни МГц) частотах возможно получение импульсной оптической мощности, равной десяти номинальным долговременным, с сохранением фронтов до 10 нс (в зависимости от частоты повторения импульсов), при этом прямой ток через кристалл может достигать 100 мА.

Как правило, такие светодиоды исполняются в виде безвыводных элементов для SMD-монтажа и практически не имеют оптической системы, формирующей специфическую диаграмму направленности, поэтому она приближается по форме к cosΘ. Однако взаимное геометрическое расположение кристаллов все же вносит искажения в равномерность смешения световых потоков (рис. 14).

Абсолютная (а) и относительная (б) диаграммы пространственного распределения силы света трехкристального RGB-SMD-светодиода LM1-TPP1-01 TTQ фирмы COTCO с дельтаобразным расположением кристаллов внутри корпуса. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета свечения кристаллов. Показаны расхождения в направленности излучения относительно оптической оси светодиода (Рис. 14)

Рис. 14. Абсолютная (а) и относительная (б) диаграммы пространственного распределения силы света трехкристального RGB-SMD-светодиода LM1-TPP1-01 TTQ фирмы COTCO с дельтаобразным расположением кристаллов внутри корпуса. Черным цветом обозначена диаграмма в режиме баланса белого, близкого к источнику D65, остальными цветами — соответствующие цвета свечения кристаллов. Показаны расхождения в направленности излучения относительно оптической оси светодиода

Но по сравнению со светодиодами с овальной оптикой качество равномерности распределения намного выше на отдаленных от оптической оси углах, соответственно больше и угол наблюдения без искажений. Существуют и конструкции многокристальных светодиодов с различными оптическими системами, упорядочивающими смешение потоков кристаллов и формирующих подобие диаграммы направленности овальных светодиодов. Например, светодиоды фирмы «Корвет-Лайтс» (рис. 15), позволяющие использовать кристалл при повышенных плотностях тока — до 80 А/см2, и обладающих увеличенной по сравнению с другими конструкциями светоотдачей.

а — светодиод с оптикой Френеля на цилиндре, б — светодиод с обычной цилиндрической линзой (Рис. 15)

Рис. 15. а — светодиод с оптикой Френеля на цилиндре, б — светодиод с обычной цилиндрической линзой

Однако равномерного смешения световых потоков кристаллов при использовании оптической системы получить не удается, поэтому широкого распространения такие приборы не получили, несмотря на свои незаурядные энергетические характеристики, едва ли до сих пор кем-либо достигнутые.

Также в таких светодиодах существует проблема с упорядочением идентичности параметров кристаллов, о которой говорилось выше, — ведь необходимо, чтобы все три кристалла были по параметрам очень близки к соответствующим в других светодиодах. Добиться такого сочетания необходимо уже на уровне монтажа кристаллов в корпус, иначе выход приборов с близкими параметрами будет невысок относительно всей партии. Такое действие достаточно трудоемко с технологической точки зрения и приводит к удорожанию продукта. Как правило, за основу берут один параметр, который можно скорректировать уже в составе светодиода. Это сила света. Цветовые характеристики кристаллов тестируются и разделяются еще до монтажа. Впоследствии интенсивность свечения каждого кристалла каждого светодиода в составе табло, например, доводится до одинакового значения программными средствами либо коррекцией питания. Таким образом реализуется идентичность характеристик в трех кристальных светодиодах, используемых группами.

Подавляющее большинство систем управления интенсивностями свечения светодиодов реализовано на принципе широтно-импульсной модуляции (ШИМ) с большим количеством дискретов. Достоинства этого принципа управления, кроме удобства цифровой обработки данных сигнала, с точки зрения режимов работы светодиодов в том, что прямой ток через светодиод остается постоянным всегда, а изменяется лишь длительность импульса этого тока. Глаз интегрирует световой поток за период времени до следующего импульса, и получается, что время свечения светодиода, пропорциональное времени импульса, определяет интенсивность излучения. Это условие можно учесть программно и на самых малых уровнях интенсивности при самых коротких импульсах, когда интеграционная характеристика глаза приобретает функцию ех с большими значениями х, и на самых больших, когда наступает насыщение, сохраняя тем самым линейность яркостной характеристики. Постоянство прямого тока через светодиод определяет соответствующее постоянство большинства ключевых параметров светодиода, в основном зависящих прямо или косвенно только от тока (люмен-амперная характеристика, зависимость полуширины спектра излучения, вольт-амперная характеристика и т. д.). Таким образом, при использовании подобных систем управления устройством отображения информации проблемы уходов характеристик светодиодов сведены преимущественно только к температурным зависимостям. И хотя это также является довольно серьезной темой для обсуждения, стоит говорить об этом отдельно, чтобы рассмотреть все подробности.

Анализ параметров и прогноз качества светодиодов для систем отображения информации от различных производителей методом исследования деградационных характеристик

Ведущими в мире производителями полупроводниковых кристаллов считаются компании NICHIA, Toyoda Gosei, Hewlett-Packard, CREE, Osram, Lumileds, Epistar. Эти компании отличаются друг от друга не только количеством произведенной продукции, а, что самое важное, принципиально различными конструкциями кристаллов собственных разработок. Поэтому, исследуя конкретный светодиод, помимо его технических характеристик немаловажно знать, на основе кристалла какого производителя он изготовлен. Как правило, знание этого обстоятельства, сразу ответит на многие вопросы опытному пользователю светодиодами еще до рассмотрения им других данных. Однако любая наука базируется на исключительно объективных сведениях. Получить их — довольно непростое дело, но в этом разделе хотелось бы обсудить именно такие — объективные результаты исследований параметров кристаллов и светодиодов, полученные в результате многих тысяч измерений и расчетов их характеристик. Во внимание были взяты лишь физические величины, цифры, показания приборов и сравнительные характеристики на их основе.

Были досконально исследованы светодиоды более чем 20 фирм-производителей, в том числе использующих кристаллы указанных выше компаний-лидеров.

Самому детальному исследованию были подвергнуты светодиоды на основе кристаллов Lumileds, Epistar, CREE производства СОТСО, RETOP, ACOL, LASEMTECH, Inc., светодиоды на основе кристаллов Toyoda Gosei, NICHIA.

Параллельно исследовались светодиоды на основе кристаллов, произведенных в Юго-Восточной Азии. Это приборы фирм Brightek, ETR, GUANGYI, Lanbaoli elektroniks, Golden Valley Opto, Lite-Max optо, SINO, ULTRALIGHT electronic, Sitronics Co., LED YI LIU, КENA, Shuen, Ningbo Foryard Opt., SANDER, Ledman и др.

Все образцы исследовались по одинаковой методике. Исследования велись при одинаковых условиях и с максимально возможным количеством измеряемых параметров. Во время наработки каждый светодиод питался от отдельного индивидуального стабилизированного источника тока с точностью поддержания тока ±0,5 мА. Это исключает возможность появления деградации параметров из-за колебаний прямого тока через кристалл. Большинство выводов сделано на основе наблюдений за изменениями зависимостей параметров в течение не менее 10 тыс. часов непрерывной работы светодиодов.

Помимо величин, изменяющихся в зависимости от прямого тока через кристалл, поддающихся моделированию или измерению (световой поток или сила света — люмен-амперная характеристика, вольт-амперная характеристика, зависимость координат цветности от прямого тока и т. д.), есть и такие, как, например, срок службы, необратимая деградация и т. п., которые не могут быть достоверно установлены в зависимости от изменения вышеуказанного параметра. Значения этих характеристик можно косвенно предположить исходя из определения степени близости условий работы кристаллов при различных токах к условиям их работы на нормируемом производителем токе и нормируемого при этом токе срока службы. А также анализируя поведение спектральных и фотометрических характеристик излучения при больших токах, по которому можно достаточно точно судить о «здоровье» кристалла, светодиода в целом и его возможном потенциале.

Необходимость данных этого исследования возникает при моделировании новых конструкций светодиодных устройств, учитывающих возможность работы кристаллов при больших плотностях тока, прогнозов ухода параметров при колебаниях температуры окружающей среды, а также при конструировании устройств отображения информации и сигнализации высокой надежности.

К каждому типу исследуемых светодиодов обязательно применялся метод последовательных измерений большого количества параметров в зависимости от времени наработки (деградационные характеристики параметров — зависимости их значений от времени наработки), что в свою очередь подтвердило эффективность метода для определения качества светодиодов. Появилась возможность связать малые отклонения от типичных в характеристиках у светодиодов без времени наработки с характеристиками после некоторой наработки, приводящие впоследствии к выходу светодиода из строя. Это позволяет сделать достоверный прогноз качества, срока службы и поведения характеристик прибора в процессе всего времени эксплуатации, не прибегая к длительным испытаниям.

По поведению показателей наиболее важных параметров приборов различных конструкций и производителей в течение временной наработки все светодиоды были условно разделены на насколько групп по степени изменения характеристик и изначального (без наработки) соответствия значениям, обозначенным в спецификациях.

Группа 1.

Результаты исследований прежде всего выявили общее повышение энергетики выхода используемых кристаллов относительно прежних показателей. Наиболее продвинутой в плане освоения новых технологий в производстве светодиодов оказалась фирма СОТСО, которая применила в своих светодиодах новый тип кристалла на основе InGaN/GaN на подложке SiC. Это кристаллы серий CREE XBright™, CREE XThin™, устанавливаемые способом «flip-chip» на эвтектическую прослойку, нанесенную на рамку светодиода. Они стали удачным продолжением в усовершенствовании кристаллов MBright™ на подложке SiC, отличающейся лучшей, чем сапфир, совместимостью кристаллических решеток подложки и выращенной на ней структуры InGaN/GaN. Применение кристалла XBright™ позволило практически сравнять энергетические показатели светодиодов синего и зеленого цвета излучения со светодиодами фирмы NICHIA, не изменяя цены и, что самое важное, надежности светодиода. А светодиоды с кристаллом CREE XThin™ фирмы Ledman превзошли по энергетическим параметрам идентичные по характеристикам приборы лидера производства светодиодов. Например, высший ранг наиболее используемых в экранах светодиодов с овальной линзой и углом излучения 110×50 град. светодиодов фирмы NICHIA NSP_546 имеет осевую силу света до 2,4 кд (зеленый цвет), в то время как фирма СОТСО заявляет 2,3 кд у LO5SMQPG4-BOG-A1, что подтвердилось при исследованиях. Синий СОТСО LO5SMQBL4-BOG-A1 также с углом излучения 110×50 град. имеет осевую силу света до 0,75 кд (табл. 2). Световой поток кристаллов CREE представлен в таблице 3.

Таблица 2

Таблица 3

Световая отдача кристаллов CREE XThin™ достигает 35–40 lm/W за счет значительного уменьшения прямого падения напряжения Uƒ во всем диапазоне токов. На рис. 16, 17 показана эволюция вольт-амперных характеристик семейства кристаллов CREE, наглядно поясняющая это утверждение.

Прямые вольт-амперные характеристики кристаллов CREE (Рис. 16)

Рис. 16. Прямые вольт-амперные характеристики кристаллов CREE

Зависимость потребляемой мощности Pdis от прямого тока Iƒ и динамическое сопротивление Rdin кристаллов CREE (Рис. 17)

Рис. 17. Зависимость потребляемой мощности Pdis от прямого тока и динамическое сопротивление Rdin кристаллов CREE

Использование таких светодиодов позволяет формировать экраны и табло с шагом пикселей 22 мм и яркостью до 8000 кд/см2. При шаге пикселей 19 мм можно достичь яркости 10 тыс. кд/см2. При этом полностью сохраняется надежность и долговечность работы экрана.

В чем секрет этих светодиодов? Особая конструкция кристаллов CREE XBright™, CREE XThin™ (рис. 18) одновременно решает несколько задач:

Кристаллы фирмы CREE. а — MBright™, б — XBright™, высота 250 мкм, в — XThin™, высота 115 мкм (Рис. 18)

Рис. 18. Кристаллы фирмы CREE. а — MBright™, б — XBright™, высота 250 мкм, в — XThin™, высота 115 мкм

  • Великолепный отвод тепла от p-n-перехода (тепловое сопротивление «p-n-переход — кристаллодержатель» — всего 2–5 град./Вт), активная область расположена всего в 2–3 мкм от эвтектического слоя.
  • Выгодное с точки зрения хода оптических лучей расположение граней и распределение излучения внутри кристалла по всему объему. Поэтому выход квантов наблюдается по всей поверхности граней кристалла, а их площадь примерно в четыре раза больше, чем у кристалла на подложке из Al2O3 (рис. 19).
  • Кристалл на подложке из сапфира. Высота 110 мкм, тепловое сопротивление «p-n-переход — кристаллодержатель» 80–150 град/Вт (Рис. 19)

    Рис. 19. Кристалл на подложке из сапфира. Высота 110 мкм, тепловое сопротивление «p-n-переход — кристаллодержатель» 80–150 град/Вт

  • Площадь верхнего омического контакта, несмотря на маленький размер, не влияет на равномерность растекания тока, так как p-n-переход расположен в противоположной стороне от него, а распределение тока формируется толщей подложки SiC и специальным слоем AuSn. Нижний контакт занимает всю площадь нижней грани. Поэтому вся площадь активной области работает при одинаковой плотности тока и нет локализации излучения, находящейся в зависимости от расположения омического контакта.
  • Высокая механическая прочность эвтектического соединения кристалла с металлической рамкой светодиода. Устраняются проблемы разности коэффициентов линейного расширения кристалла и материала рамки (подложки) при увеличении температуры работающего кристалла.
  • Кристалл имеет большой динамический диапазон и запас по импульсным токовым нагрузкам. Линейность люмен-амперной характеристики сохраняется вплоть до тока 120 мА, что соответствует его плотности почти в 200 А/см2. Кристаллы конструкций на рис. 19 теряют линейность, едва достигая плотности тока 100–120 А/см2.

Технология посадки кристалла способом «flip-chip» встречается не впервые. Toyoda Gosei применяет эту технологию для кристаллов на подложках из Al2O3. Светодиоды фирмы отличаются высокой надежностью, которую, помимо конструкции кристалла, обеспечивает еще и смонтированный рядом с излучающим кристаллом быстродействующий диод Шоттки, включенный обратно и шунтирующий светодиод при подаче большого обратного напряжения. Однако светотехнические параметры этих светодиодов ниже, чем у СОТСО.

Группа 2.

Другая часть производителей, которые используют в производстве своих светодиодов кристаллы преимущественно конструкций—прототипов NICHIA, разделилась на несколько категорий по различным качественным показателям приборов на однотипных кристаллах. Но все они не достигли таких значений силы света и других энергетических показателей светодиодов, как у ведущих фирм. Часто реальные параметры светодиодов разнились с заявленными в спецификациях, обладая и по этим данным не самыми лучшими характеристиками. Делается это недобросовестным производителем исключительно для того, чтобы обозначить свою продукцию среди других на должном уровне и сделать ее продаваемой, потому как проверить истинность параметров потребителю в подавляющем большинстве случаев бывает невозможно, а по виртуальным, написанным на бумаге характеристикам светодиоды обладают неплохими параметрами. Но выясняется, что все далеко не так.

Группа 3.

Следующая категория — светодиоды с большим фактором деградации квантового выхода от времени наработки, связанного как с некачественным кристаллом, так и с нарушением технологии при сборке светодиода. В эту группу попали светодиоды фирм Lite-Max optо, SINO, ULTRALIGHT electronic, GUANGYI, Ningbo Foryard Opt., SANDER, использующие кристаллы неизвестных производителей из Юго-Восточной Азии. Подавляющее большинство этих кристаллов имеет широко известную структуру, представленную на рис. 19. Однако их характеристики не имеют ничего общего с такими же кристаллами производства NICHIA, по всей вероятности, из-за несовершенства оборудования и несоблюдения технологического процесса их выращивания. Детальные результаты измерения, получения и моделирования деградационных характеристик требуют более тщательного, чем просто ознакомительное, обсуждения из-за большого объема вплотную связанных друг с другом параметров и непременно станут темой будущих статей. Стоит привести здесь одну из самых наглядных диаграмм, иллюстрирующих процесс деградации наиболее важного параметра светодиода во времени— пространственного распределения силы света в зависимости от времени наработки Iν(T) (рис. 20). Возможно построение зависимости изменения светового потока от времени наработки (как наиболее корректной с точки зрения физики процесса), но наглядность этого графика для пользователя будет недостаточна для объяснения картины происходящих изменений в светотехнических параметрах, к которым привязано большинство спецификаций на светодиоды. «Интегральность» этого параметра не позволит проследить за изменениями угловых характеристик и значений силы света на разных участках диаграммы. Как видно из диаграммы, помимо значительного уменьшения осевой силы света , происходит одновременное уменьшение и перераспределение светового потока по углу излучения, изменение угловых характеристик светодиода по разным уровням и, как следствие, пропорциональное этому явлению изменение светотехнических характеристик устройства отображения информации в целом. Это наиболее заметно, если подобная деградация происходит лишь у части светодиодов, образуя пятна и области с нарушенной цветопередачей и разной яркостью. Однако протекание подобной деградации у светодиодов никогда не происходит равномерно у всех образцов из-за различия причин ее появления. А самое главное, что применяемые в кластере светодиоды, как говорилось ранее, выполнены на основе кристаллов разных структур, изменения параметров которых изначально не могут быть одинаковыми. Поэтому сам факт появления деградации, отличающейся по характеру от нормальной для этих материалов кристаллов, уже говорит о недопустимости его возникновения у светодиодов, составляющих полотно изображения устройства. Как правило, поведение именно этого графика (рис. 20) в первые несколько сотен часов работы может многое сказать об отклонении и других характеристик светодиода от нормы.

Рис. 20. Зависимость Iν(T) светодиода SF-5EDB24 110×50 фирмы SINO. Дана диаграмма углового распределения силы света в вертикальной плоскости излучения. Цифрами обозначено время наработки в часах (h). Цвет цифры соответствует цвету кривой на графике (Рис. 20)

Рис. 20. Зависимость Iν(T) светодиода SF-5EDB24 110×50 фирмы SINO. Дана диаграмма углового распределения силы света в вертикальной плоскости излучения. Цифрами обозначено время наработки в часах (h). Цвет цифры соответствует цвету кривой на графике

Группа 4.

Еще одну категорию составляют светодиоды (Sitronics Co., LED YI LIU и др.) с большим разбросом параметров (более ±50% по ) в партии из нескольких сотен штук, усугубляющимся деградацией и не позволяющим использовать их в аппаратуре, требующей единства характеристик всех светодиодов группы. Поэтому их детальное рассмотрение не приводится.

Исследования статистических данных производства больших партий (до 1 млн штук) некоторых производителей (например, СОТСО) показали, что вне зависимости от категории (группы светодиодов, разбитых по принципу идентичности или малого, до ±10%, разброса параметров) количество образцов, определенных описанным методом как неизбежно выходящих из строя, практически одинаково и составляет примерно 12–15%.

Некоторые данные о результатах этих исследований сведены в таблицу 4.

Таблица 4

Причем изначально эти светодиоды признаются годными, потому как действительно соответствуют всем параметрам производителя, указанным в спецификации. Конечно, приведенные цифры колеблются в зависимости от качества партии применяемых пластин кристаллов, соблюдения технологической дисциплины и т. д. Однако селекция потенциально неисправных образцов на производстве является продолжением и развитием описанной методики (с помощью деградационных характеристик) определения критериев, по которым необходимо проводить этот отбор. Таким образом удастся использовать качественные светодиоды, отсортированные по необходимым критериям, и быть уверенным в том, что их параметры не изменятся непредсказуемо непосредственно в проектируемом изделии.

Некоторые итоги исследований

Подытоживая сказанное, стоит заметить, что проводимые исследования и постоянный мониторинг новаций и разработок позволяют не только судить о состоянии рынка светодиодной продукции, но и принимать правильные решения в стратегии использования тех или иных светодиодов в устройствах на их основе. Нельзя не уделять внимание некоторым, принципиально разнящимся с классическими, разработкам в области создания новых средств для полупроводниковой оптоэлектроники. Именно такой подход требуется при проектировании современных устройств отображения информации и оправдан качеством и высокими параметрами производимых экранов и табло на светодиодах при устойчивой тенденции к снижению их стоимости.

Литература

  1. Sze S. M. Physics of Semiconductor devices. 1984.
  2. Moss T. S. Semiconductor Opto — Electronics. 1973.
  3. Абрамов В. С., Никифоров С. Г., Соболь П. А., Сушков В. П. Свойства зеленых и синих InGaN-светодиодов // «Светодиоды и лазеры» № 1, 2. 2002. С. 30–33.
  4. Агафонов Д. Р., Аникин П. П., Никифоров С. Г. Вопросы конструирования и производства светоизлучающих диодов и систем на их основе // «Светотехника» № 6. 2002. С. 6–11.

Расчет сопротивления для светодиода — как подобрать?

Онлайн программа для расчета резистора при подключении светодиодов

Светодиод – нелинейный полупроводниковый прибор, которому для правильной и надежной работы необходим стабильный ток. Перегрузки по току могут вывести светодиод из строя. Самый простой вариант схемы питания в таком случае – ограничительный резистор, включенный последовательно. Расчет номинального сопротивления  и мощности резистора для светодиода не очень сложная задача, если правильно понимать физику процесса. Рассмотрим общие принципы такого расчета, а затем разберем несколько конкретных примеров из практики.

Теория

В общем случае схема выглядит так.

Рисунок 1

Между контактами «+» и «-» прикладывается напряжение. Обозначим его буквой U. Ток через резистор и светодиод будет протекать одинаковый, т.к. соединение последовательное. Согласно закону Ома получаем:

где R – сопротивление резистора;

rLED– сопротивление светодиода (дифференциальное).

Отсюда выражаем формулу, по которой можно произвести расчет сопротивления резистора R при заданном токе I:

Разберемся что такое дифференциальное сопротивление светодиода rLED. Для этого нам потребуется его вольтамперная характеристика (ВАХ).

Рисунок 2

Как видно из графиков ВАХ светодиодов – нелинейна. Говоря простым языком, его сопротивление постоянному току r=U/I есть переменная величина, которая уменьшается с ростом напряжения. Поэтому вводится понятие дифференциального сопротивления rLED=dU/dI, которое характеризует сопротивление диода в отдельно взятой точке кривой ВАХ.

Чтобы произвести расчет резистора для светодиода, определяем по графику прямое напряжение на светодиоде ULED при заданном токе I. Затем подставляем получившееся значение в формулу (2) и получаем

Еще один способ решения задачи – графический.

Допустим необходимо рассчитать сопротивление резистора для обеспечения светодиоду рабочего тока величиной 100 мА при напряжении источника питания – 5 вольт.

Для этого сначала на графике ВАХ светодиода отмечаем точку соответствующую току 100 мА (см. рисунок 3), затем проводим через эту точку и точку соответствующую 5 вольтам на оси абсцисс нагрузочную прямую до пересечения с осью ординат. Определяем значение тока, соответствующее этому пересечению (в нашем случае 250 мА) и по закону Ома производим расчет сопротивления резистора R= U / Iкз= 5 В / 0,25 А =20 Ом. Перед расчетом не забываем осуществлять перевод единиц измерения к надлежащему виду.

Рисунок 3

Следующим шагом будет определение мощности рассеиваемой на резисторе. Формула должна быть знакома всем из школьной физики (как и закон Ома):

P=I2×R.          (4)

Практика

Рассмотрим несколько конкретный пример расчета.

Исходные данные: напряжение питания 12В, белый светодиод XPE (CREE) требуется включить на номинальный ток 350 мА согласно схеме, представленной на рисунке 1.

Находим в data sheet значение прямого падения напряжения при токе 350 мА (рисунок 4).

Рисунок 4

Типовое значение по таблице — 3,2 вольта. Максимальное значение может достигать 3,9 вольт. То есть в результате производственного процесса может получиться как светодиод с прямым напряжением 3,2 В так и 3,9 В (или любым другим промежуточным значением), но вероятность получения 3,2 вольт наиболее высока (если хотите – это «математическое ожидание» этой величины). По этой причине в расчет обычно берется типовое значение.

Используя формулу (3) и калькулятор получаем:

R=(12-3,2)/0,35»25,1 Ом.

Ближайшее значение из ряда Е24 – 24 Ом. Значение тока при этом сопротивлении получится 367 мА, что на 5% превышает требуемое значение. Если учесть еще и допуск на номинал резистора, который для ряда Е24 также 5%, то в худшем случае получается вообще 386 мА. Если такое отклонение не допустимо, то можно добавить в цепь последовательно еще один резистор номиналом 1 Ом. Все эти действия рекомендуется сопровождать реальными измерениями сопротивлений резисторов и получающихся токов, иначе ни о какой точности не может идти и речи. Резистор 24 Ом может иметь погрешность в сторону увеличения до 25,2 Ом, добавив 1 Ом, получим 26, 2 и «перекос» силы тока через светодиод в противоположную сторону.

Предположим, что нам не нужна высокая точность задания тока и резистор 24 Ом нас устраивает.

Определим мощность, которая будет рассеиваться на резисторе по формуле (4):

P=0,3672×24»3,2 Вт.

Номинальная мощность рассеяния резистора должна быть с запасом не менее 30%, иначе он будет перегреваться. А если условия отвода тепла затруднены (например, в корпусе плохая конвекция), то запас должен быть еще больше.

В итоге выбираем резистор мощностью 5 Вт с номинальным сопротивлением 24 Ом.

Для того чтобы оценить эффективность получившегося светотехнического устройства необходимо рассчитать КПД схемы питания:

Таким образом, КПД подобной схемы питания составляет всего 27%. Такая низкая эффективность обусловлена слишком высоким питающим напряжением 12 вольт, а точнее разницей между U и ULED. Получается, что 8,8 вольт мы вынуждены «гасить» на резисторе за счет бесполезного рассеяния мощности в окружающее пространство. Для повышения КПД требуется либо снизить напряжения питания, либо найти светодиод с большим прямым напряжением. Как вариант можно включить несколько светодиодов последовательно, выполнив подбор таким образом, чтобы суммарное падение было ближе к напряжению питания, но ни в коем случае не превышало его.

Необходимое значение сопротивления для резистора можно и подобрать, если имеется в наличии магазин сопротивлений и амперметр. Включаем магазин и амперметр в цепь последовательно светодиоду (на место предполагаемого резистора), устанавливаем максимальное значение сопротивления и подключаем к источнику напряжения. Далее начинаем уменьшать значение сопротивления до тех пор, пока сила тока не достигнет нужного значения или светодиод нужной яркости (в зависимости от того, что будет являться критерием). Останется только считать значение сопротивления с магазина и выполнить подбор ближайшего номинала.

Ремарка

В данных расчетах мы пренебрегли зависимостью прямого напряжения светодиода от его температуры, однако не следует забывать, что такая зависимость существует и характеризуется параметром «температурный коэффициент напряжения» или сокращенно ТКН. Его значения отличается для разных видов светодиодов, но всегда имеет отрицательное значение. Это значит что при повышении температуры кристалла, прямое напряжение на нем становится меньше. Например, для рассмотренного выше белого светодиода XPE значение ТКН (оно приводится производителем в data sheet) составляет -4 мВ/°С. Следовательно при увеличении температуры кристалла на 25°С, прямое напряжение на нем уменьшится на 0,1 В.

Рисунок 5

Многие ведущие производители светодиодов имеют на официальных сайтах специальный сервис – «онлайн калькулятор», предназначенный для вычисления параметров светодиодов в различных режимах эксплуатации (в зависимости от температуры, тока и пр.). Этот инструмент значительно облегчает процедуры расчета и экономит время разработчику.

| Определение прямой ветви вах диода

Из выше изложенного следует, что прямой максимальный ток Iпр. мах и обратное максимальное напряжение Uобр. макс являются определяющими факторами при выборе диода.

Теперь теоретически мы знаем, что диод в одну сторону пропускает ток, а в другую нет. В настоящей работе мы экспериментально проверим это свойство.

3.2.  Полупроводнико́вый стабилитро́н, или диод Зенера — полупроводниковый диод, работающий при обратном напряжении, когда на анод подают отрицательный потенциал, в режиме начинающегося пробоя. До этого режима через стабилитрон протекает незначительный ток утечки, а его сопротивление весьма высоко. При наступлении пробоя ток через стабилитрон резко возрастает, а его дифференциальное сопротивление падает до величины, составляющей для различных приборов от долей ома до сотен ом. Рабочим участком вольтамперной характеристики (режимом стабилизации) является участок обратной ветви, который почти параллелен оси токов (рис.2). Если ток стабилитрона превысит максимальный ток стабилизации возникнет необратимый электрический пробой, то есть стабилитрон сгорит.

Основное назначение стабилитронов — стабилизация напряжения. Серийные стабилитроны изготавливаются на напряжения от 3 В до 400 В. Если менее 3 В их называют стабисторами и они работают на прямой ветви характеристики. В нашей работе используется стабилитрон на номинальное напряжение стабилизации 5,6 В.

Рисунок 3. ВАХ стабилитрона Рисунок 4. Стабилизатор напряжения    

В простейших (параметрических) стабилизаторах стабилизация напряжения Uн на нагрузке основана на свойстве стабилитрона сохранять постоянство напряжения при изменении (в определенных пределах) проходящего через него тока. Схема простейшего параметрического стабилизатора на полупроводниковом стабилитроне изображена на рис.3. Если входное напряжение стабилизатора Uвx увеличится при неизменном сопротивлении нагрузки Rн из-за повышения напряжения сети, то в соответствии с вольтамперной характеристикой стабилитрона незначительное увеличение напряжения на нем приведет к значительному увеличению тока Iст, протекающего через стабилитрон. Следовательно, увеличатся ток потребляемый из сети 1б=Iст+Iн и падение напряжения IбRб на балластном сопротивлении Rб. На основании второго закона Кирхгофа произойдет перераспределение напряжений цепи (Uн=UвхIбRб) и выходное напряжение Uн изменится незначительно.

При неизменном входном напряжении Uвx и увеличении тока нагрузки Iн, увеличится 1б, что увеличит падение напряжения IбRб на балластном сопротивлении Rб и, следовательно, уменьшит напряжение на стабилитроне. В соответствии с характеристикой стабилитрона уменьшится ток стабилитрона Iст, соответственно уменьшится IбRб и выходное напряжение Uн=UвхIбRб изменится незначительно.

Для нормальной работы стабилизатора необходимо обеспечить условия, при которых ток стабилитрона не должен выходить за пределы рабочего диапазона I сm min + Icm mах. Поэтому величину балластного сопротивления выбирают из условия

где номинальный ток стабилизации,  Iнток нагрузки.

Коэффициент стабилизации характеризующий стабильность выходного напряжения Uн , при изменении входного напряжения Uвх показывает, во сколько раз напряжение на выходе стабилизатора при постоянной нагрузке изменяется меньше относительно изменения напря — жения на входе:

,

где rД – дифференциальное сопротивление стабилитрона,

изменения соответствующих напряжений.

3.3.Принцип работы светоизлучающих диодов (светодиодов) основан на излучающей рекомбинации в объеме р-n перехода при инжекции (увеличении концентрации) неосновных носителей заряда под действием прямого напряжения. В результате чего переход испускает электромагнитные волны в узком диапазоне спектра, которые могут находиться в световом (видимом) или инфракрасном (невидимом) диапазоне. Диапазон излучения светодиода зависит от химического состава использованных полупроводников (арсенид галия, галия фосфид, галия нитрид и другие).

Вольт-амперная характеристика светодиодов аналогична вах диода. Главные электрические характеристики светодиодов это номинальные напряжение и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например четырехкристальные светодиоды обычно рассчитаны на 80 мА, в свою очередь одноватные светодиоды обычно потребляют 300-400 мА. Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан.

Примерные напряжения светодиодов в зависимости от цвета

Цвет излучения

Длинна волны, нм

Напряжение, В

Инфракрасные

Красные

Оранжевые

Желтые

Зеленые

Синие

Фиолетовые

Ультрафиолетовые

Белые

больше 760

610 — 760

590 — 610

570 — 590

500 — 570

450 — 500

400 — 450

короче 400

Широкий спектр

до 1.9

от 1.6 до 2.03

от 2.03 до 2.1

от 2.1 до 2.2

от 2.2 до 3.5

от 2.5 до 3.7

от 2.8 до 4

от 3.1 до 4.4

от 3 до 3.7

Светодиоды характеризуются и оптическими характеристиками: цвет свечения, яркость свечения, угол излучения.

Зависимость яркости от температуры практически линейная, в интервале рабочей температуры яркость может изменяться в 2-3 раза. Светодиоды обладают высоким быстродействием (наносекунды).

Правила подключения светодиодов

Светодиод пропускает электрический ток только в одном направлении, а это значит что для того чтобы светодиод излучал свет, он должен быть правильно подключен. У светодиода два контакта: анод(плюс) и катод (минус). Обычно, длинный контакт у светодиода — это анод, но бывают и исключения. Плюс источника следует подключать к плюсу светодиода. Обратное допустимое напряжение светодиодов не велико и составляет несколько вольт, поэтому при неправильной полярности подключения они сгорают. Светодиодам важно не только правильная полярность подключения и нужное значение напряжения, но и оптимальная сила тока. Поэтому последовательно с ним всегда необходимо подключать резистор, который наклоняет прямую ветвь вах направо. Если это не сделать, то незначительное увеличение напряжения питания (сети) вызовет очень большое увеличение тока и светодиод сгорит. Иногда этим правилом пренебрегают, но результат чаще всего один — светодиод или сразу сгорает, или его ресурс значительно сокращается.

Инфракрасные светодиоды используют для передачи информации на расстояние, например, для управления телевизором с пульта управления. Светодиоды видимого излучения используют для освещения и индикации различных состояний устройств.

Важными достоинствами светоизлучающих диодов является малая потребляемая мощность, высокая чистота цвета свечения, стабильность цвета свечения от времени наработки и температуры и конечно огромный срок службы — до 50 000 часов (лампы накаливания – 1000 часов, люминесцентные – 7000 часов).

4.  Порядок выполнения работы

4.1. Экспериментальное определение направления проводимости диода и его вольтамперной характеристики (ВАХ).

Известно устройство Keithley 2400, которое автоматически определяет ВАХ диода. Оно состоит из генератора пилообразного напряжения, измерителя тока и работает совместно с интерфейсом LabTracer и компьютером. Результат измерения представлен в цифровом и графическом виде.

Настоящая работа выполняется на лабораторном модуле «полупроводниковые приборы», представленном на рис.1, для чего собрать схему по рис.5. На схеме обозначены внешние компоненты: диод VD типа 2Д102Б и мультиметры один с пределом измерения 200 мА другой – 2 В.

Рисунок 5. Определение прямой ветви ВАХ диода

Установить значение сопротивления Rн равным нулю для чего переместить его движок в крайнее верхнее положение. Сопротивлением RP1 установить напряжение Uвх равное нулю переместив его движок в крайнее нижнее положение. Подать на клеммы «+,-» напряжение 12 В. Увеличивая Uвх сопротивлением RP1 установить ток в цепи 50 мА затем снижая его до нуля определить по показаниям приборов пять точек прямой ветви ВАХ. Результаты занести в таблицу 4.

Питание светодиодов, простейшие драйверы

На эту тему:  Электронный балласт для светодиодной лампы. Схемотехника.
Стабилизатор тока светодиода. Схемотехника.
Драйверы светодиодов

Очень часто при покупке светодиода задаётся вопрос: «На сколько он вольт?» Разумеется, если речь идёт о LED-лампе, модуле, ленте, панели – законченном устройстве, уже содержащем схему управления или хотя бы просто резистор – то да, они выпускаются на стандартные напряжения. В подавляющем большинстве это 12В постоянного тока или 220 переменного. В промышленной аппаратуре встречаются и другие значения питающего напряжения, но в данной статье мы не будем касаться таких устройств, а рассмотрим, как правильно запитать дискретные светодиоды простейшими средствами – без готовых (и недешёвых) промышленных драйверов.

Прежде всего, следует помнить, что практически для всех электрических процессов в основном важно не напряжение, а ток. Физика описывает механическое действие тока, химическое действие тока, тепловое действие тока… Не напряжения, а именно тока. А какое напряжение необходимо приложить, зависит от требуемого тока и сопротивления нагрузки: U=IR (производное закона Ома).

И вот это самое R (сопротивление) зачастую непостоянно, и зависимость тока от напряжения нелинейная. Даже в обычной лампочке накаливания сопротивление нити возрастает (как и у всех металлов) с повышением температуры. Но такая нелинейность нам на руку: как бы сам собой стабилизируется ток – его увеличение ведёт к разогреву волоска, это повышает  сопротивление и, следовательно, противодействует дальнейшему увеличению тока. Именно поэтому лампы накаливания можно питать фиксированным напряжением: необходимый ток установится автоматически.

Со светодиодами – сложнее. Их вольтамперная характеристика (ВАХ), как и у всех полупроводниковых диодов, при достижении некоторого напряжения становится очень крутой, почти вертикальной, и малейшее его отклонение может вызвать значительное изменение тока. И даже при очень точном и стабильном напряжении к тем же результатам может привести тепловое смещение характеристики. Наконец, светодиоды имеют разброс параметров, и при одном и том же напряжении ток может сильно отличаться даже у приборов из одной партии.

Рабочий участок характеристики лежит в очень узком диапазоне напряжений и зависит от длины волны излучаемого света и материала светодиода: 1,5…2,1 В для арсенида галлия (красных, оранжевых, желтых), но более 2,4 В для красных же из AlInGaP… Таблица по всем цветам и материалам обширна, а для расчетов, в общем, не нужна. С достаточной точностью можно считать напряжение светодиодов

  • красных – 2 В,
  • желтых – 2,5 В,
  • зелёных – 3 В,
  • синих и белых – 3,5 В.

В принципе так можно было бы и отвечать на вопрос из первого предложения статьи, но с оговоркой, что любое отклонение напряжения приведет либо к перегоранию светодиода, либо к тому, что он будет излучать лишь несколько процентов своего номинального светового потока.

Таким образом, светодиоды следует питать только фиксированным током (не напряжением!), а уж просто его ограничить или стабилизировать с высокой точностью – зависит от того, какое качество освещения, эффективность и долговечность излучателя необходимы.

При использовании светодиодов для индикации или подсветки небольшой мощности, вполне допустимо погасить ток до уровня 60-70% максимально допустимого просто последовательно включенным резистором с сопротивлением:

R=(U-UVD)/I, где U – напряжение питания, UVD – рабочее напряжение светодиода (или суммарное нескольких, включенных последовательно), I – необходимый ток.

Мощность, выделяющаяся на резисторе P=I2R при питании маломощных светодиодов от низковольтных источников, обычно не превышает 100 мВт и позволяет использовать маленькие детали.

Максимально допустимый ток практически всех маломощных диодов (полностью пластиковых, не имеющих площадки для радиатора) составляет 20 мА, а мощность – не более 50 мВт. Исключение – квадратные «Пираньи», которые могут содержать несколько кристаллов, включенных параллельно, или кристаллы большой площади, и рассеивать, соответственно, до 200 мВт. Это немного, но в случае близкого расположения нескольких светодиодов может вызвать ощутимый нагрев, что необходимо учитывать в конструкции – обеспечивать конвекцию воздуха, не заливать теплоизолирующими полимерами и т.д.

Из формулы видно, что тот же самый ток можно получить при различном сопротивлении – в зависимости от напряжения и количества светодиодов. Например, около 14 мА будет протекать через диод с рабочим напряжением 3 В при его питании от 12-вольтового источника через резистор 643 Ом. И такой же ток, но через 3 аналогичных диода, обеспечит резистор в 214 Ом. В первом случае существенно меньше будет изменение тока при отклонениях напряжения питания и температурном дрейфе ВАХ, зато во втором – в 9 раз меньше потери энергии на резисторе (относительно потребляемой излучателями). Палка о двух концах: экономичность против стабильности и долговечности. Практически для нормальной работы светодиодов достаточно, чтобы на резисторе падала где-то треть-четверть напряжения питания.

Если количество светодиодов не укладывается в это условие (их суммарное напряжение превосходит или незначительно меньше напряжения источника), применяют групповое включение нескольких параллельно соединённых последовательных цепочек с резистором в каждой. Просто параллельное соединение светодиодов используется только в дешёвых китайских фонарях и не может гарантировать равномерного распределения тока между излучателями даже одной партии, не говоря уже о раздельно приобретенных компонентах.

Например, необходимо запитать 10 белых маломощных светодиодов от источника в 9 В (достаточно стабильного, не «гуляющего», как бортовая сеть автомобиля на 30-40%). В таком случае можно выбрать ток достаточно близкий к максимально допустимому. Скажем, 17 мА.

Последовательное соединение 3х3,5 В уже неприемлемо: недостаточно напряжения питания. Значит, останавливаемся на схеме из пяти цепочек по 2 диода – как раз треть питания на резисторах, сопротивлением R = (9 В-2*3,5 В)/17 мА=117 Ом. Конечно, не обязательно искать соответствующие прецизионные, вполне подойдёт ближайшее значение из стандартного ряда – 120 Ом.

Ток, потребляемый от источника, составит 5*17=85 мА, а мощность P=U*I=9 В*85 мА=765 мВт. То есть подойдёт блок питания мощностью всего 1 Вт (щелочная батарейка «Крона» прослужит около сотни часов).

Именно так (параллельные группы только не из двух, а из трёх последовательно соединённых диодов и резистора) устроены 12-вольтовые светодиодные ленты. Поэтому резать их можно только по специально отмеченным границам – на целое количество групп.

Стабилизировать ток в маломощной цепочке проще всего полевым транзистором VT с начальным током стока, слегка превышающим рабочий ток светодиодов (КП302, КП307 и т.п.), подобрав его точное значение изменением сопротивления R в пределах нескольких десятков Ом.

Более серьёзные схемы для стабилизации тока, а также для питания светодиодов от сети 220 В рассмотрены в статье про самодельные LED-лампы. В случае же еще больших мощностей или совсем низковольтного питания (менее 3В), или для максимальной эффективности использования самых дорогих излучателей рекомендуется уже применять промышленные драйверы: себестоимость самодельного устройства такой сложности будет выше, чем у серийно выпускаемого.

Назад к каталогу статей >>>

ПИТАНИЕ СВЕТОДИОДОВ

ПИТАНИЕ СВЕТОДИОДОВ

     В любом сетодиоде имеется сильная зависимость тока от напряжения, которая описывается вольтамперной характеристикой. Так как она экспоненциальная, для питания светодиода необходимо задавать ток. Светодиоды питают от источника напряжения, а ток задают резистором. Сопротивление данного резистора указывает наклон прямой на графике ВАХ. Для питания мощных светодиодов используют источники тока на микросхемах — преобразователях, потому что такие светодиоды работают на предельных токах, и увеличение тока может сократить срок службы светодиода. Если использовать простые резисторы — понизится кпд светильника, возникнет дополнительный нагрев всей конструкции, что может вызвать эффект теплового разгона. Расчёт балластного резистора ведут по закону ома, с последующим учётом мощности рассеяния тепла на данном резисторе.


     Информацию о поведении светодиода дает его вольтамперная характеристика, похожая на ВАХ обычного кремниевого диода. При обратном включении светодиода, через него протекает малый ток утечки и светодиод не излучает свет. Обратное напряжение, приложенное к светодиоду, не должно превышать предельно допустимого, иначе будет пробой p-n-перехода. Нормальный рабочий режим LED прибора показывает правая, круто уходящая вверх часть вольтамперной характеристики. Току Iпр соответствует прямое напряжение Uпр питания светодиода. Все светодиоды допускается питать в импульсном режиме, при этом импульсный ток может быть выше, чем значения постоянного тока. Особенно при малой длительности импульсов и высокой частоте. На графике видно, что светодиоды различных цветов свечения имеют так-же разные напряжения. Это следует учитывать при объединении LED приборов в цепочки и гирлянды.


     Вообще, при выборе тока и метода питания LED прибора, нужно учитывать, что даже при небольшом увеличении паспортных данных параметров питания, падает основной показатель качества светодиода — время, за которое его световой поток снизится до уровня 70% от начального. Следует знать, что каждые 10 градусов сверх положенных по ТТХ — снижают срок службы примерно в 2 раза. Для расчета температуры светодиодного кристалла и соответствующего пересчета срока службы светодиода есть специальный калькулятор. Так как светодиоды, а особенно современные сверхмощные LED приборы имеют вполне приличную цену, поэтому к вопросам питания лучше подходить с позиции перестраховки — снижая примерно на 20% рекомендуемые значения тока светодиода, что существенно увеличит его ресурс.

     ФОРУМ по LED приборам.

   Светодиоды

Страница не найдена | Кафедра физики твердого тела ПетрГУ

หน้าหลัก
http://rtlabs.nitk.ac.in/ http://www.ei.ksue.edu.ua/ http://www.unajma.edu.pe/ http://www.drbrambedkarcollege.ac.in/ https://esperanza.eastern.edu/ https://www.hsri.or.th/ https://www.agrft.uni-lj.si/ http://www4.fe.usp.br/ https://www.cnba.uba.ar/
Home
bak hocam 2yildir kullandigim siteye gelip kod ekliyorsun not yazip kodlarini siliyorum (insan olan utanir kusura bakma hocam diyip giderdi) kendine dusmanmi ariyorsun? belliki sen disli birine denk gelmemissin hayatin boyunca ama ben cok ugrastim cokta denk geldim bu sekilde tanimadigin birini tehtit etmen ya deli oldugunu gosterir yada tecrubesizligini sen bana isimi ogretecegine once baskalarina ait olan sitelere girmemeyi ogren ondan sonra bana isimi ogretirsin ben cok takintili bir adamim beni kotu bir insan olmaya zorlama rica ediyorum bak lutfen birbirimizi uzmeyelim emin ol bu site felan umrumdami saniyorsun? olay tamamen prensip meselesi sen benim yatakodama gelip beraber yatacagiz diyorsun oyle bir olay yok isine bak oldu 10 kisi daha cagir 500 kod eklesin herkes yorumbacklink isimi yapiyorsun? sacmalamissin daha fazla beni muatap etme kendinle yaptigin terbiyesizligin farkina var illa darbe yiyincemi aklin basina gelecek anlamiyorum ki o kadar yaziyorum ki birbirimize kotuluk yapmayalim kalp kirmayalim birbirimizi uzmeyelim sana daha once boyle notlar yazan bir linkci gordun mu Allah askina ben bazen goruyorum ana baci duymadigim kufurler yaziyor adamlar birbirine sen benim gibi bir insani uzuyorsun ama lutfen.. 8yildir ben kimseyle ortak site kullanmadim babam gelse onunlada kullanmam en hassas oldugum konudur bu bir daha kod eklememeni siddetle tavsiye ediyorum yoksa farkli seyler olur ve kendine nur topu gibi manyak bir dusman edinirsin bos yere bu polemigi uzatiyorsun haksiz olan sensin kod disinde birsey yazmak istersen yazabilirsin ama rica ediyorum isi inada bindirme senden ERDEMLİ DÜRÜST VE OLGUN bir davranis bekliyorum beni anladigini umuyorum ve tekrar inşAllah kod eklemeyecegini umuyorum olumlu olumsuz notunu buraya yazablirsin bende bir daha bu siteyi kullanmiyacagim sanada kullandirmam tabiki is site isi degil prensip isi.. ihtiyacin olabilir site sayin azdir bunlar dogal seyler ben gerekirse kendim eklerim senin kodlarini oyle bir durumda kendi kodlarimida silerim sadece senin olur ama o son not garip bir insan oldugunu dusunduruyor bana ve inan ugrasacak vaktim de kafamda yok kendine sardirma hepimiz ekmek davasindayiz senle isim yok benden sana kotulukte gelmez ama beni zorlama lutfen.. zaten kafamda bir dunya sorun var hayat acimasiz hayat zor benim derdim bana yetiyor butun ictenligim ve iyi niyetim ile sana bu notu yaziyorum bu kadar sozden sonra kod ekleyecegini sanmiyorum birde seninle ugrasmayayim guzel kardesim arkadasim lutfen rica ediyorum LUTFEN barış her zaman erdemli insanlarin isidir lutfen ayni olgunluk ile senden olumlu donusunu bekliyorum eger yazdiklarimda kalp kirici yada incitici birsey varsa lutfen kusura bakma 1-2defa kontrol ettim ama belki gozumden kacmis olabilir hakkini helal et ve en iyisi ikimiz icinde helallesip bu isi noktalamaktir inan kotu biri degilim selam ve sevgiyle..

Последовательное соединение светодиодов достоинства и недостатки

Ранее мы рассказывали о параллельном соединении светодиодов. Посмотрели на плюсы и минусы, достоинства и недостатки… Масло масляное))) Ну уж простите. Сегодняшний пост будет посвящен самому распространенному виду соединений — последовательное соединение светодиодов. Не забываем посмотреть и параллельно-последовательное соединение светодиодов, статья о которых появилась намного позднее.

Как только нам приходится в электрических схемах задействовать не один, а несколько светодиодов, то обязательно возникает дилемма — как правильно соединить их. Какую схему выбрать?

Если Вы начали читать эту статью, то Вас также интересует данный вопрос… Сразу и еще аз оговорюсь, что последовательное соединение светодиодов самое эффективное. Но тут есть свои минусы — не всегда это реализуемо. Почему это так, нужно углубиться в физику ( не пугайтесь, не так это страшно ))

Вольтамперная характеристика любых светодиодов (ВАХ)


Что такое ВАХ сильно углубляться не будем. По простому — это зависимость тока от напряжения. Этой информации нам и будет достаточно. Вольт-амперная характеристика у любого светодиода, как и у любого диода имеет нелинейную характеристику.

Мы взяли обычный белый диод. При напряжении от 2,5-3В ток увеличивается с 2 до 15 мА. Это достаточно большое увеличение. Отсюда вытекает, что при больших изменения тока падение напряжения будет невелико.

Не смотря на то, что любой завод выпускает чипы с одной характеристикой в каждой партии, падение напряжение будет разным у каждого экземпляра. Не на много, но на десятые доли вольта это точно. Именно из-за этого источник питания светодиодов должен стабилизировать ток, а не напряжение. Такие источники питания принято называть светодиодными драйверами.

Последовательное соединение светодиодов


На схеме мы видим традиционное последовательное соединение светодиодов, подключенных к аккумулятору.

Данное соединение предполагает одинаково яркое свечение светодиодов. Но тут нам «мешает» резистор.

Кстати резистор проще рассчитать в таких случаях, используя наш новый калькулятор расчета резистора для последовательного соединения светодиода. Также можно рассчитать калькулятором резистор для одного светодиода.

Рассмотрим не много другой пример. А именно, возьмем светодиодный драйвер и подключим его к трем последовательным светодиодам.

В результате того, что сила тока в замкнутой цепи одинакова, то и через каждый диод будет течь одинаковый ток I1=I2=I3. Соединение без резистора при помощи драйвера также обеспечивает одинаковую яркость, а разница падения напряжения на диодах не играет никакого значения. Отражается только на величине разности потенциалов между точкой 1 и 2.

Расчет драйвера для последовательного соединения светодиодов


Описанное выше последовательное соединение LEDs может вызвать большие вопросы по поводу выбора самого драйвера.

Используя ниже приведенный алгоритм расчета Вы всегда самостоятельно сможете рассчитать драйвер, в зависимости от выбранного соединения.

Допустим нам необходимо запитать три светодиода, соединенных последовательно током 700 мА.

Падение напряжения (вымышленно) при таком токе составляет от 3,2 до 3,4 В.

Минимальное напряжение Umin=3*3.2=9.6 V

Максимальное напряжение Umax=3.4*3=10.2 V

Мощность потребляемая светодиодами составит: Р=10,2*0,7=7,14 Вт.

Итого: наш драйвер должен иметь:

Выходной ток 700 мА

Выходное напряжение 10,2В +- 5%

Выходная мощность не менее 7,2 Вт

Это все! Как видите. никаких проблем. Рассматривать расчет резистора при отсутствии драйвера не буду. Это пережитки прошлого.

Любой производитель уже выпускает светодиодные драйверы на любой вкус и цвет. При этом стоимость их ничтожно мала. А эффективность от»коробочки» на много больше, чем от простого резистора.

Плюсы и минусы последовательного соединения светодиодов


Плюс один и большой — дешевизна в конструкции.

Минусов же при последовательном соединении как минимум два:

  1. Если выйдет из строя хотя бы один светодиод, естественно погаснет и вся цепочка. Тут, правда, можно еще один плюс найти… Если диод закоротит, то цепь не оборвется и остальные чипы продолжат свою работу.
  2. Если светодиодов много, то низковольтное питание реализовать архисложно. А это уже проблема. Особенно, если необходимо иметь безопасность в первую очередь.

[sc name=»calacresistor» ]

Видео на тему последовательного соединения светодиодов


Для тех, кому лень читать много букавак, то предлагаем посмотреть простенькое видео на тему: «последовательное соединение светодиодов». Из него вы быстро почерпнете информацию как правильно подключать диоды при таком соединении.

Восковые светодиодные свечи и чайные свечи Real Feel от Festive Lights

Дом там, где сердце… и свечи!

Использование свечей в домашнем декоре — это внутренняя тенденция, которую мы наблюдаем на протяжении десятилетий, и она стала основным элементом стиля, который не подает никаких признаков исчезновения. Какими бы красивыми ни были настоящие свечи, всегда есть опасность, связанная с настоящим пламенем, особенно вокруг животных и детей; есть еще беспорядок от капающего воска. Все больше и больше светодиодные свечи с батарейным питанием становятся все более популярными, они обеспечивают полное свечение, но без беспорядка традиционных свечей, и нет риска их возгорания.Победа — победа!

Если вы предпочитаете эстетику минимализма для домашнего декора, вам подойдут серые свечи; размещение свечей на столбах внутри гладких фонарей добавляет дополнительное измерение и дополнительные очки стиля. Вы даже можете приобрести стеклянные банки со светодиодными свечами, уже размещенными внутри, для идеального интерьера. Для более традиционного образа кремовые свечи привнесут ощущение деревенского шарма; сделанные из воска, они выглядят как настоящие свечи, а некоторые даже имеют эффект капающего воска.

Скажите «Да» простому свадебному освещению

Свечи

используются не только в домашних условиях, они являются прекрасным дополнением свадебного декора и декора мероприятий.Вы также можете выбрать те, у которых есть функция таймера или пульт дистанционного управления, чтобы вам даже не приходилось помнить их включение или выключение! Доступен огромный выбор стилей, от церковных свечей и конических свечей до мерцающих свечей и даже свечных фонарей — есть один, который подойдет для любого стиля и темы.

Огромная тенденция, которую мы наблюдаем во всем Instagram, Pinterest и журналах о свадебном стиле, — это использование свечей или фонарей в проходе; они выглядят безумно красиво, и не стоит беспокоиться, что платье невесты загорится от прохладных на ощупь светодиодов! Из них получаются потрясающие украшения для свадебного стола, и они отлично подходят для подсвечников вокруг места проведения, чтобы добавить окружающее освещение.Мы рекомендуем смешивать их с цветами и листвой в выбранной вами цветовой гамме, чтобы создать самый сказочный вид.

Рождество, омела и свечи

Уютные свечи десятилетиями использовались и во время Рождества, и мы наблюдаем огромную тенденцию к восприятию ностальгии путем создания традиционной эстетики. Закрепите свечи для рождественской елки, сделав сезонное украшение легким, и это простой способ добавить этот традиционный стиль, но с современной интерпретацией. Отличный способ добавить сезонного очарования — использовать свечи с алфавитом, чтобы произнести любимую праздничную фразу или инициалы близких.Еще один полезный совет — используйте свечи на батарейках как часть сезонного украшения стола, чтобы ваши гости получали удовольствие не только от живота, но и для глаз!

Среди дизайнеров интерьеров широко признано, что декоративные элементы, размещенные группами с нечетными числами, создают более эстетичный стиль. Обязательно сделайте это со свечами, если вы показываете набор свечей, а также используете разную высоту, при этом более высокие свечи размещаются сзади, чтобы их все еще было видно.

Пакет из 12 беспламенных свечей Светодиодные свечи из настоящего воска цвета слоновой кости Φ3 x

НАСТОЯЩИЙ ВОСК И СВЕЧИ С НАСТОЯЩИМ ПЛАМЕНЕМ: Корпус свечи сделан из парафинового воска, однако на нем нет горящего фитиля, дыма или грязно капающего воска. Гладкая отделка, классический цвет слоновой кости и элегантный дизайн — используйте свечи с настоящим пламенем там, где вы собираетесь использовать настоящие свечи.

ПРОСТАЯ И УДОБНАЯ ЭКСПЛУАТАЦИЯ: с помощью одного пульта дистанционного управления вы можете управлять всеми нашими беспламенными свечами Comenzar различных размеров.Функция таймера позволяет установить 2H | 4H | 6H | 8H с автоматическим включением и выключением. Будет работать каждые 24 часа.

БЕЗОПАСНОСТЬ ПРЕЖДЕ ВСЕГО: эти беспламенные свечи можно использовать, не беспокоясь о пламени, абсолютно никаких опасностей возгорания или возгорания, безопасно для семей с домашними животными или маленькими детьми (детьми). С удивительным набором беспламенных свечей вы можете спокойно проводить идеальные вечера в атмосфере.

СВЕЧИ, РАБОТАЮЩИЕ ОТ АККУМУЛЯТОРА, МОЩНЫЕ СВЕТОДИОДНЫЕ ЛАМПЫ: Для каждой свечи требуются 2 батарейки AA (не входят в комплект), ожидаемый срок службы батареи составляет прибл.200 часов (требуется полноценный аккумулятор), при этом срок службы светодиодных ламп до 50 000 часов.

Как зажечь свечу
Установите переключатель OFF-ON внизу в положение ON. Свеча будет гореть, пока вы вручную не переведете переключатель в положение ВЫКЛ.
Кнопка ВКЛ-ВЫКЛ: Подсветка свечи Вкл. = Выкл. (Примечание: перед использованием пульта дистанционного управления переключите кнопку ВКЛ-ВЫКЛ в положение ВКЛ в нижней части светодиодных свечей).
ТАЙМЕР: установите функцию автоматического включения / выключения времени, установите значение 2 часа / 4 часа / 6 часов / 8 часов.
Режим: мерцающие свечи; Немигающие огни.
Управление яркостью: левая кнопка для уменьшения яркости Правая кнопка для увеличения яркости.

Дополнительные советы:
1. Эта свеча сделана из настоящего воска и легко воспламеняется. Не пытайтесь зажечь эту свечу.
2. Беречь от прямых солнечных лучей, источников тепла и экстремальных температур, иначе свеча может размягчиться или расплавиться.
3. Однако постоянное использование таймера может значительно сократить срок службы батареи.

В пакет включено:
12 светодиодных свечей (размер: Φ 3 «x H 4» / 7.5 см x 10 см)
1 x пульт дистанционного управления

Сделай сам рустикальные светодиодные конические свечи, покрытые воском

Узнайте, как сделать свои собственные рустикальные конические свечи с помощью этого простого урока!

В средней и старшей школе я каждый год спорил с отцом из-за рождественских свечей в окне моей спальни. Все эти маленькие лампочки в моем окне раздражали меня и не давали уснуть, поэтому я отключала их, когда ложилась спать.

Если бы тогда были современные светодиодные рождественские свечи с батарейным питанием, я бы оставил их включенными, потому что они светятся слабее — почти как настоящая свеча, а не раздражающе яркая лампочка от старой свечи!

В сегодняшнем уроке я расскажу, как сделать своими руками светодиодные конические светодиодные свечи, покрытые воском, которые можно украшать круглый год!

Это сообщение может содержать партнерские ссылки, что означает, что я могу делать комиссию за покупки, сделанные по этим ссылкам, без каких-либо дополнительных затрат для вас.

Как и многие из моих руководств, этот проект очень настраиваемый. Вы можете использовать пчелиный воск, как я, соевый воск для более белого цвета или даже цветной или ароматный воск. Вы можете украсить свечи на Рождество, завязать на них кружево на весну или сделать их жуткими на Хэллоуин.

Материалы, необходимые для изготовления конических светодиодных свечей с восковым покрытием

  • Светодиодные конические свечи!
  • Воск. Я использовал пчелиный воск, но вы можете использовать практически любой свечной воск. Вы не против использовать воск.
  • Нож для хобби или резак для коробок
  • Декоративные элементы (по желанию). Я использовал немного кружева и мешковины.
  • Варежки для духовки, полотенце или что-то еще, чтобы держать емкость с расплавленным воском.
  • Пергаментная бумага или коврик с антипригарным покрытием.

Как сделать покрытые воском светодиодные свечи

Основной процесс очень просто — растопите немного воска и окуните в него конус! Если у вас нет большого количества воска и глубокой емкости, вам, вероятно, придется осторожно наклонять емкость, предпочтительно стакан или банку с высокими стенками, и опускать по половине свечи за раз.

Вы можете растопить воск в микроволновке или в пароварке на плите. Для двух свечей я растопил около 2 унций воска. Растапливание большего количества воска требует больше времени, но также облегчает погружение свечи.

Если вы используете микроволновую печь , внимательно следите за ней. Он может растаять всего за 2 минуты или примерно за 4-5 минут, поэтому внимательно следите за воском и обязательно используйте контейнер, безопасный для микроволновой печи.

Чтобы установить пароварку , поместите воск в банку или другую нагреваемую емкость с высокими стенками.Банки для консервирования подойдут! Налейте в кастрюлю несколько дюймов воды и осторожно поместите в нее банку, наполненную воском. Старайтесь не ставить банку прямо на дно. Вы можете осторожно поставить край банки на край сковороды, удерживать ее на месте щипцами или даже установить сковороду с пароваркой и поставить банку на корзину. Поставьте пароварку на средне-слабую горелку и внимательно за ней наблюдайте. Некоторые воски плавятся очень быстро!

Пока воск тает, выложите квадрат пергаментной бумаги.

После того, как воск растает, осторожно используйте рукавицы для духовки, полотенце или что-то подобное, чтобы держать емкость с расплавленным воском в одной руке, и осторожно окуните нижний конец конуса в воск. Полезно держать емкость для парафина на боку — вам нужно, чтобы воск попал как минимум на половину конуса. Снимите свечу с воска и дайте стечь излишкам. Подержите его в воздухе в течение нескольких секунд, прежде чем положить на вощеную бумагу — вам нужно, чтобы воск был в основном прохладным, чтобы он не расплющивался о бумагу и не выглядел забавно.

Обновление

— Ношение силиконовых протекторов для пальцев — действительно хорошая идея на случай, если ваши пальцы случайно окажутся слишком близко к воску! Они также отлично подходят для работы с горячим клеем.

Frienda 12 Pieces Hot Glue Gun Finger Caps Силиконовые протекторы для пальцев для …
  • Защитите кончики пальцев: силиконовые колпачки для пальцев могут защитить ваши кончики пальцев, когда вы используете клеевой пистолет для рукоделия, позволяют работать с горячим клеем …
  • Простота использования: изготовлена ​​из качественного силикона, гибкая и не влияет на гибкость пальцев при ношении, легко надевается и снимается, подходит для…
  • Легко чистить: он станет чистым сразу после намокания с мылом и водой, вытереть насухо для следующего использования.

Повторите этот процесс с нижним концом оставшихся конусов.

При необходимости немного разогрейте воск.

Повторите процесс погружения для «верхнего» конца ваших конусов, быстро вращая каждый конус, когда вы снимаете его с воска, чтобы любые капли естественным образом падали вниз, добавляя реалистичный вид «горящей свечи».

После того, как свечи полностью остынут и воск перестанет липнуть, используйте нож для хобби или нож для резки коробок (или даже обычный кухонный нож без зубцов), чтобы аккуратно срезать воск вокруг основания, где он откручивается, чтобы добавить батарейки.

Добавьте батарейки, закрутите заглушки, и вы практически готовы к игре!

Если хотите, можете украсить конусы, покрытые воском. Я обмотал каждую свечу простой лентой из кружева и мешковины и удерживал ее на месте с помощью горячего клея. Как упоминалось выше, вы можете добавить что угодно, чтобы придать свечам индивидуальность в свой интерьер или время года!

Эту же технику можно использовать и для свечей на колоннах, которые отлично подходят для скатертей и дисплеев в доме.Мне нравятся свечи, но я боюсь оставлять их без присмотра или хранить в местах, где они могут представлять опасность пожара, поэтому использование светодиодных свечей, пропитанных воском, — фантастическое решение для меня.

Как насчет вас? Вы один из тех, кто может оставить горящие свечи и не паниковать? Или вы настаиваете на том, чтобы не спускать с них глаз, как я?

Фонтаны свечи воска СИД Essentials подарка

Подарочные предметы — Восковый светодиодный фонтан для свечей — Зеленый воск — 3.5 «x 7,25» — пульт дистанционного управления

Прейскурантная цена: 44,99 долларов США

Наша цена: 31,49 долларов США

Экономия: 13,50 долларов США


Новинка! Компактная конструкция! Такое же отличное качество, как у aquaflame! Удаленный готов! Это новый и компактный Gift Essentials Wax LED свеча водный фонтан меры 3.5 дюймов в диаметре и 7,25 дюйма в высоту и сделан из настоящего воска зеленого цвета, который имеет градуированный цветовой узор, который становится светлее снизу вверх. В компактные размеры делают его идеальным для декора столешницы или столешницы. Такой же отличное качество, как у классических фонтанов для свечей aquaflame, но по более низкой цене. цена и даже построены так же, как и более новые акриловые пламени с акриловым корпусом, покрытым воском, что предотвращает утечки воды. Водный фонтан также готов к дистанционному управлению (пульт в комплекте) и может быть включен и выключен, не поворачивая фонтан свечи вбок и риск разлива воды повсюду! Пульт также управляет функцией 5-часового таймера (5 часов работы, 19 часов отключения).Подарок Свечные фонтаны Essentials сочетают в себе теплое сияние свечей с успокаивающим звуком бурлящей воды. Работает от 3-х батареек типа C (продаются отдельно).
Подарочные предметы — Восковый светодиодный фонтан для свечей — Белый воск в джутовой упаковке — 3.5 «x 7,25» — пульт дистанционного управления

Прейскурантная цена: 44,99 долларов США

Наша цена: 31,49 долларов США

Экономия: 13,50 долларов США


(1)

Новинка! Компактная конструкция! Такое же отличное качество, как у aquaflame! Удаленный готов! Это новый и компактный Gift Essentials Wax LED свеча водный фонтан меры 3.5 дюймов в диаметре и 7,25 дюйма в высоту Он сделан из настоящего белого воска и имеет основу, обернутую джутом. В компактные размеры делают его идеальным для декора столешницы или столешницы. Такой же отличное качество, как у классических фонтанов для свечей aquaflame, но по более низкой цене. цена и даже построены так же, как и более новые акриловые пламени с акриловым корпусом, покрытым воском, что предотвращает утечки воды. Водный фонтан также готов к дистанционному управлению (пульт в комплекте) и может быть включен и выключен, не поворачивая фонтан свечи вбок и риск разлива воды повсюду! Пульт также управляет функцией 5-часового таймера (5 часов работы, 19 часов отключения).Подарок Свечные фонтаны Essentials сочетают в себе теплое сияние свечей с успокаивающим звуком бурлящей воды. Работает от 3-х батареек типа C (продаются отдельно).
Подарочные предметы — Восковый светодиодный фонтан для свечей — Синий воск — 3.5 «x 7,25» — пульт дистанционного управления

Прейскурантная цена: 44,99 долларов США

Наша цена: 31,49 долларов США

Экономия: 13,50 долларов США


Новинка! Компактная конструкция! Такое же отличное качество, как у aquaflame! Удаленный готов! Это новый и компактный Gift Essentials Wax LED свеча водный фонтан меры 3.5 дюймов в диаметре и 7,25 дюйма в высоту и сделан из настоящего воска синего цвета, который имеет градуированный цветовой узор, который становится светлее снизу вверх. В компактные размеры делают его идеальным для декора столешницы или столешницы. Такой же отличное качество, как у классических фонтанов для свечей aquaflame, но по более низкой цене. цена и даже построены так же, как и более новые акриловые пламени с акриловым корпусом, покрытым воском, что предотвращает утечки воды. Водный фонтан также готов к дистанционному управлению (пульт в комплекте) и может быть включен и выключен, не поворачивая фонтан свечи вбок и риск разлива воды повсюду! Пульт также управляет функцией 5-часового таймера (5 часов работы, 19 часов отключения).Подарок Свечные фонтаны Essentials сочетают в себе теплое сияние свечей с успокаивающим звуком бурлящей воды. Работает от 3-х батареек типа C (продаются отдельно).
Подарочные предметы первой необходимости — Восковый светодиодный фонтан для свечей — Тисненый геометрический ромбовидный узор — Белый воск — 4 «x 8» — Пульт дистанционного управления

Прейскурантная цена: 44 доллара.99

Наша цена: 31,49 долл. США

Экономия: 13,50 долл. США


Новинка! Компактная конструкция! Такое же отличное качество, как у aquaflame! Удаленный готов! Это новый и компактный фонтан со светодиодной свечой Gift Essentials Wax размером 4 дюйма в диаметре и высотой 8 дюймов и изготовлен из настоящего белого воска с тисненым геометрическим ромбовидным узором.В компактные размеры делают его идеальным для декора столешницы или столешницы. Такой же отличное качество, как у классических фонтанов для свечей aquaflame, но по более низкой цене. цена и даже построены так же, как и более новые акриловые пламени с акриловым корпусом, покрытым воском, что предотвращает утечки воды. Водный фонтан также готов к дистанционному управлению (пульт в комплекте) и может быть включен и выключен, не поворачивая фонтан свечи вбок и риск разлива воды повсюду! Пульт также управляет функцией 5-часового таймера (5 часов работы, 19 часов отключения).Подарок Свечные фонтаны Essentials сочетают в себе теплое сияние свечей с успокаивающим звуком бурлящей воды. Работает от 3-х батареек типа C (продаются отдельно).
Основы подарка — Восковая светодиодная свеча, фонтан — Тисненый серебряный узор снежинки — Белый воск с текстурированным серебряным сахарным блеском — 4 «x 8» — Пульт дистанционного управления

Прейскурантная цена: 44 доллара.99

Наша цена: 31,49 долл. США

Экономия: 13,50 долл. США


Новинка! Компактная конструкция! Такое же отличное качество, как у aquaflame! Удаленный готов! Это новый и компактный фонтан со светодиодной свечой Gift Essentials Wax размером 4 дюйма в диаметре и высотой 8 дюймов Он сделан из настоящего белого воска с текстурированным серебряным сахарным блеском и украшен тиснением серебряных снежинок.В компактные размеры делают его идеальным для декора столешницы или столешницы. Такой же отличное качество, как у классических фонтанов для свечей aquaflame, но по более низкой цене. цена и даже построены так же, как и более новые акриловые пламени с акриловым корпусом, покрытым воском, что предотвращает утечки воды. Водный фонтан также готов к дистанционному управлению (пульт в комплекте) и может быть включен и выключен, не поворачивая фонтан свечи вбок и риск разлива воды повсюду! Пульт также управляет функцией 5-часового таймера (5 часов работы, 19 часов отключения).Подарок Свечные фонтаны Essentials сочетают в себе теплое сияние свечей с успокаивающим звуком бурлящей воды. Работает от 3-х батареек типа C (продаются отдельно).
Основы подарка — Восковый светодиодный фонтан для свечей — Голубой воск со встроенными ракушками — 4 «x 8» — Пульт дистанционного управления

Прейскурантная цена: 44 доллара.99

Наша цена: 31,49 долл. США

Экономия: 13,50 долл. США


Новинка! Компактная конструкция! Такое же отличное качество, как у aquaflame! Удаленный готов! Это новый и компактный фонтан со светодиодной свечой Gift Essentials Wax размером 4 дюйма в диаметре и высотой 8 дюймов и изготовлен из настоящего светло-голубого воска с вкрапленными ракушками.В компактные размеры делают его идеальным для декора столешницы или столешницы. Такой же отличное качество, как у классических фонтанов для свечей aquaflame, но по более низкой цене. цена и даже построены так же, как и более новые акриловые пламени с акриловым корпусом, покрытым воском, что предотвращает утечки воды. Водный фонтан также готов к дистанционному управлению (пульт в комплекте) и может быть включен и выключен, не поворачивая фонтан свечи вбок и риск разлива воды повсюду! Пульт также управляет функцией 5-часового таймера (5 часов работы, 19 часов отключения).Подарок Свечные фонтаны Essentials сочетают в себе теплое сияние свечей с успокаивающим звуком бурлящей воды. Работает от 3-х батареек типа C (продаются отдельно).
Подарочные предметы — Восковый светодиодный фонтан для свечей — Серый воск — 3.5 «x 7,25» — пульт дистанционного управления

Прейскурантная цена: 44,99 долларов США

Наша цена: 31,49 долларов США

Экономия: 13,50 долларов США


(1)

Новинка! Компактная конструкция! Такое же отличное качество, как у aquaflame! Удаленный готов! Это новый и компактный Gift Essentials Wax LED свеча водный фонтан меры 3.5 дюймов в диаметре и 7,25 дюйма в высоту и сделан из настоящего воска серого цвета, который имеет градуированный цветовой узор, который становится светлее снизу вверх. В компактные размеры делают его идеальным для декора столешницы или столешницы. Такой же отличное качество, как у классических фонтанов для свечей aquaflame, но по более низкой цене. цена и даже построены так же, как и более новые акриловые пламени с акриловым корпусом, покрытым воском, что предотвращает утечки воды. Водный фонтан также готов к дистанционному управлению (пульт в комплекте) и может быть включен и выключен, не поворачивая фонтан свечи вбок и риск разлива воды повсюду! Пульт также управляет функцией 5-часового таймера (5 часов работы, 19 часов отключения).Подарок Свечные фонтаны Essentials сочетают в себе теплое сияние свечей с успокаивающим звуком бурлящей воды. Работает от 3-х батареек типа C (продаются отдельно).
Основы подарка — Восковый светодиодный фонтан для свечей — Белый воск со встроенными ягодами падуба — 4 «x 8» — Пульт дистанционного управления

Прейскурантная цена: 44 доллара.99

Наша цена: 33,49 долларов США

Экономия: 11,50 долларов США


Новинка! Компактная конструкция! Такое же отличное качество, как у aquaflame! Удаленный готов! Это новый и компактный фонтан со светодиодной свечой Gift Essentials Wax размером 4 дюйма в диаметре и высотой 8 дюймов и сделан из настоящего белого воска с ягодами падуба.В компактные размеры делают его идеальным для декора столешницы или столешницы. Такой же отличное качество, как у классических фонтанов для свечей aquaflame, но по более низкой цене. цена и даже построены так же, как и более новые акриловые пламени с акриловым корпусом, покрытым воском, что предотвращает утечки воды. Водный фонтан также готов к дистанционному управлению (пульт в комплекте) и может быть включен и выключен, не поворачивая фонтан свечи вбок и риск разлива воды повсюду! Пульт также управляет функцией 5-часового таймера (5 часов работы, 19 часов отключения).Подарок Свечные фонтаны Essentials сочетают в себе теплое сияние свечей с успокаивающим звуком бурлящей воды. Работает от 3-х батареек типа C (продаются отдельно).

Hollowick 4-Pack LED Wax Pillar W / Magnetic Remote — Универсальные компании

Hollowick 4-Pack LED Wax Pillar W / Magnetic Remote — Универсальные компании

{«id»: «», «email»: «», «default_address»: null, «first_name»: «», «last_name»: «», «name»: «»}

{«домен»: «spa-5.myshopify.com «}

Омолаживающие дезинфицирующие салфетки, 160 карат

Просмотреть полную информацию о продукте

Интенсивный крем-проявитель-окислитель

Просмотреть полную информацию о продукте

Салфетки Intrinsics Silken Esthetic Wipes, 200 карат

Просмотреть полную информацию о продукте

Spa Essentials Esthetic Wipes, 200 карат

3 доллара.99 Доставка по $ 99 + Заказы | Другие специальные предложения 3,99 долларов США за доставку
при заказе на сумму более 99 долларов США Вы получили право на доставку за $ 3,99 В связи с празднованием Дня Независимости наш офис будет закрыт в понедельник, 5 июля. Мы снова откроемся во вторник, 6 июля. $ 3,99 Доставка для заказов от $ 49 + $ 3.99 Доставка по $ 99 + Заказы | Другие специальные предложения Вы получили доставку на $ 3,99

LED vs.Восковые свечи: как выбрать лучшее

Свечи

, несомненно, являются наиболее распространенным типом декора, используемым на особых мероприятиях всех типов. Сужения, столбы и обеты усиливают настроение события, добавляя сияние, которое можно интерпретировать как изысканное, романтическое или потустороннее. В настоящее время все они доступны в двух основных вариантах: светодиодные и восковые. Что вы должны использовать для своих мероприятий?

Восковые свечи традиционные, используются из поколения в поколение как в практических, так и в эстетических целях.Они являются одним из основных продуктов литературы — в каждом замке свеча капает на стене, или одна в руке, когда героиня на цыпочках заходит за угол темного коридора, чтобы исследовать неизвестное. Современная мифология утверждает, что свет от мерцающей восковой свечи заставляет любого выглядеть даже лучше, чем на самом деле.

Относительно экономичные восковые свечи самых разнообразных форм, размеров и цветов, как правило, используются в таблицах и в качестве акцентов на таблицах характеристик. Они могут быть заключены в чашки, фонари или светильники или использоваться «голыми» в стоячих или подвесных канделябрах.

Свечи из сои и пчелиного воска считаются экологически чистыми. Свечи из пчелиного воска выделяют отрицательные ионы при горении, что очищает воздух. Различные разновидности фитилей горят чище, чем другие, особенно деревянные и хлопчатобумажные.

Светодиодные свечи

тоже «зеленые». Многоразовые и исключительно долговечные, они универсальны и могут использоваться снова и снова для любых мероприятий. Некоторые люди предпочитают светодиодные фонари, потому что они не представляют опасности возгорания, что является требованием для многих объектов.Тем не менее, они бывают самых разных цветов и размеров, и многие из них предназначены для естественного «мерцания», как традиционные восковые свечи.

Некоторые люди никогда не заметили бы разницы, если бы все их свечи были заменены светодиодными, в то время как другие почувствовали связь или эмоциональную привязанность к традиционному воску.

Выбор того, что использовать, часто зависит от предпочтений ваших клиентов. Некоторые люди никогда не заметили бы разницы, если бы все их свечи были заменены светодиодными, в то время как другие почувствовали бы связь или эмоциональную привязанность к традиционному воску.Клиенты с тяжелой аллергией будут благодарны за альтернативу без выбросов, а светодиодные свечи — отличный вариант, чтобы сохранить их в безопасности и комфорте.

Светодиодные свечи

также экономят труд. Если вы регулярно украшаете специальные мероприятия, вы более чем знакомы с процессом очистки контейнеров. Удаление воска вручную может занять много времени (особенно, если вы не предпримете шагов по подготовке контейнеров заранее), тогда как единственная работа, связанная со светодиодными свечами, — это их включение и выключение и очень, очень редко меняя батарейки.

Лучшим ответом для ваших событий может быть комбинация обоих типов. Вы можете использовать традиционные восковые свечи на гостевых столах для создания атмосферы и светодиодные фонари в декоре столов общественного питания или в предметах декора, которые труднее обслуживать, таких как люстры.

Лучшая часть использования свечей в качестве декора — это то, что у вас есть множество различных способов оказать огромное влияние на общий вид ваших мероприятий. Какой твой любимый тип свечей? Воск или светодиод?

Фотографии любезно предоставлены 100 свечей.

Цитрусовые светодиодные восковые свечи на батарейках, набор из 3 | Право на акции | Коллекции

Цитрусовые светодиодные восковые свечи на батарейках, набор из 3 | Право на акции | Коллекции | Плуг перейти к содержанию Перейти в меню навигации

Расчетное время доставки не распространяется на персонализированные, большие или тяжелые товары (более 20 фунтов), требующие специальной доставки, товары, отправленные напрямую от производителя, или товары, отсутствующие на складе.

Оценка доставки применима только к прилегающей территории США. Суббота, воскресенье и государственные праздники не считаются рабочими днями для этих расчетных дней доставки.

любимый

Расчетная дата отправки: 17.08.2021

Эти восхитительные свечи-столбы с цитрусовыми фруктами добавляют летнего очарования, независимо от того, включены они или нет.Настоящие восковые свечи имеют великолепный дизайн с цитрусовыми фруктами, который прекрасен в любое время дня.

Беспламенные свечи с питанием от батареек означают, что вы можете наслаждаться видом мерцающего пламени без беспорядка, копоти, дыма или возгорания. Они прекрасны в спальне!

Ваш набор из трех предметов включает по одному, каждый из которых украшен изображениями ломтиков лимона, лайма и апельсина. Каждая свеча рассчитана на две батарейки АА, в комплект не входят.

Зажгите свой дом безопасно с помощью этого ассортимента восковых светодиодных свечей с цитрусовыми, которые станут идеальным весенним или летним прикосновением.

  • Набор из трех беспламенных свечей с декором из цитрусовых
  • Беспламенные свечи безопасны и легки
  • Белые свечи, украшенные изображениями дольок лимона, лайма и апельсина
  • Изготовлены из настоящего парафина, а не из пластика
  • Каждая свеча требует двух AA батарейки, в комплект не входят

Диаметр 3 «x 4» В

Размеры
Диаметр 3 дюйма x Высота 4 дюйма

.

Недавно просмотренные и рекомендации

Покупатель, который купил этот товар, тоже купил…

Чтобы пообщаться с представителем, заполните форму ниже и нажмите «Чат». Хотя требуются только ваше имя и адрес электронной почты, мы сможем лучше обслужить вас, если вы предоставите свой номер телефона.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *