Site Loader

Введение в электричество — Атлас Копко Россия

Поиск по вики-сайту о сжатом воздухе

  • Компрессоры
  • Подготовка воздуха
  • Промышленные газы
  • Основная информация
  • Рекомендации

Compressed Air Wiki Basic Theory Electricity

Чтобы получить из обычного воздуха сжатый, нужна энергия. Эта энергия поступает в виде электричества: переменного или постоянного тока. В этой статье мы представим краткое введение в электричество.

Электричество является результатом временного отделения электронов от протонов, которое приводит к созданию разницы электрических потенциалов (или напряжения) между зонами с избытком и с недостатком электронов. Когда электроны находят электропроводящий путь для своего движения, возникает электрический ток. Первые электрические системы использовали энергию постоянного тока (DC), где электрический заряд потока электронов является однонаправленным. Для получения постоянного тока используются аккумуляторные батареи, фотоэлектрические (PV) солнечные батареи и генераторы. Переменный ток (AC), используемый, например, для электропитания офисов и производственных цехов, а также для вращения стандартных двигателей с постоянной частотой вращения, производится генератором переменного тока. Он периодически изменяет свою амплитуду и направление по плавной синусоиде.

Величина напряжения и тока возрастает от нуля до максимального значения, затем падает до нуля, изменяет направление, увеличивается до максимального значения в противоположном направлении и затем снова становится равной нулю. Таким образом, ток завершает период T, измеряемый в секундах, в течение которого он проходит через все свои значения. Частота является величиной, обратной периоду, она показывает количество полных циклов в секунду и измеряется в герцах. f = 1/T, где f = частота (Гц), T = время одного цикла (с). Амплитуды тока или напряжения обычно выражаются среднеквадратичным значением (RMS) за один цикл. Учитывая изменение по синусоиде, соотношение среднеквадратичных значений тока и напряжения равно: среднеквадратичное значение = (пиковое значение) / V2.

К периодическим, но несинусоидальным импульсам тока и напряжения относятся любые волны, не являющиеся чистыми синусоидами. В качестве простых примеров можно назвать квадратные, треугольные или прямоугольные формы сигнала. Часто они выводятся из математических функций и могут быть представлены комбинацией чистых синусоидальных волн разных частот, иногда кратных самой низкой (называемой несущей) частоте.

ток: i(t) = I0 + i1(t) + i2(t) + … + in(t) + …напряжение: v(t) = V0 + v1(t) + v2(t) + … + vn(t) + …

Другие статьи по этой теме

Electrical Installation in Compressor Systems

In this article we will take a look at the electrical system that makes sure the compressor works like it should. This includes the motors, cables, voltage control and short-circuit protection.

Read more

Электроэнергия

Электричество играет большую роль в процессе сжатия воздуха. Узнайте больше об электроэнергии и взаимосвязи между активной, реактивной и полной мощностью.

Read more

Электродвигатель

Узнайте об основах электродвигателей и о том, как они используются в современных воздушных компрессорах.

Read more

Как осуществляется производство (генерация) электрической энергии?

Производство (Генерация) электроэнергии — это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации:

Тепловая электроэнергетика. В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов:

Конденсационные (КЭС, также используется старая аббревиатура ГРЭС). Конденсационной называют не комбинированную выработку электрической энергии;

Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

КЭС и ТЭЦ имеют схожие технологические процессы. В обоих случаях имеется котёл, в котором сжигается топливо и за счёт выделяемого тепла нагревается пар под давлением. Далее нагретый пар подаётся в паровую турбину, где его тепловая энергия преобразуется в энергию вращения. Вал турбины вращает ротор электрогенератора — таким образом энергия вращения преобразуется в электрическую энергию, которая подаётся в сеть. Принципиальным отличием ТЭЦ от КЭС является то, что часть нагретого в котле пара уходит на нужды теплоснабжения;

Ядерная энергетика. К ней относятся атомные электростанции (АЭС). На практике ядерную энергетику часто считают подвидом тепловой электроэнергетики, так как, в целом, принцип выработки электроэнергии на АЭС тот же, что и на ТЭС. Только в данном случае тепловая энергия выделяется не при сжигании топлива, а при делении атомных ядер в ядерном реакторе. Дальше схема производства электроэнергии ничем принципиально не отличается от ТЭС: пар нагревается в реакторе, поступает в паровую турбину и т. д. Из-за некоторых конструктивных особенностей АЭС нерентабельно использовать в комбинированной выработке, хотя отдельные эксперименты в этом направлении проводились;

Гидроэнергетика. К ней относятся гидроэлектростанции (ГЭС). В гидроэнергетике в электрическую энергию преобразуется кинетическая энергия течения воды. Для этого при помощи плотин на реках искусственно создаётся перепад уровней водяной поверхности (т. н. верхний и нижний бьеф). Вода под действием силы тяжести переливается из верхнего бьефа в нижний по специальным протокам, в которых расположены водяные турбины, лопасти которых раскручиваются водяным потоком. Турбина же вращает ротор электрогенератора. Особой разновидностью ГЭС являются гидроаккумулирующие станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, так как они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы;

Альтернативная энергетика. К ней относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:

Ветроэнергетика — использование кинетической энергии ветра для получения электроэнергии;

Гелиоэнергетика — получение электрической энергии из энергии солнечных лучей;

Общими недостатками ветро- и гелиоэнергетики являются относительная маломощность генераторов при их дороговизне. Также в обоих случаях обязательно нужны аккумулирующие мощности на ночное (для гелиоэнергетики) и безветренное (для ветроэнергетики) время;

Геотермальная энергетика — использование естественного тепла Земли для выработки электрической энергии. По сути геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, то есть, там, где естественные источники тепла наиболее доступны;

Водородная энергетика — использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах;

Стоит также отметить альтернативные виды гидроэнергетики: приливную и волновую энергетику. В этих случаях используется естественная кинетическая энергия морских приливов и ветровых волн соответственно. Распространению этих видов электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы (и волнение моря соответственно) были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды Чёрном море в прилив и отлив минимальны.

 


Вернуться назад

 

Превращение тепла в электричество | Новости Массачусетского технологического института

Что, если бы ваш кондиционер работал не на обычном электричестве, а на солнечном тепле в теплый летний день? Благодаря достижениям в области термоэлектрических технологий это устойчивое решение может однажды стать реальностью.

Термоэлектрические устройства изготавливаются из материалов, которые могут преобразовывать разницу температур в электричество без каких-либо движущихся частей — качество, которое делает термоэлектрики потенциально привлекательным источником электричества. Это явление обратимо: если к термоэлектрическому устройству подать электричество, оно может создать разницу температур. Сегодня термоэлектрические устройства используются для приложений с относительно низким энергопотреблением, таких как питание небольших датчиков вдоль нефтепроводов, резервные батареи на космических зондах и охлаждение мини-холодильников.

Но ученые надеются разработать более мощные термоэлектрические устройства, которые будут улавливать тепло, производимое в качестве побочного продукта промышленных процессов и двигателей внутреннего сгорания, и превращать это тепло впустую в электричество. Однако эффективность термоэлектрических устройств или количество энергии, которое они могут производить, в настоящее время ограничены.

Теперь исследователи из Массачусетского технологического института обнаружили способ увеличить эту эффективность в три раза, используя «топологические» материалы, обладающие уникальными электронными свойствами. В то время как в предыдущих работах предполагалось, что топологические материалы могут служить эффективными термоэлектрическими системами, было мало понимания того, как электроны в таких топологических материалах будут перемещаться в ответ на разницу температур, чтобы вызвать термоэлектрический эффект.

В статье, опубликованной на этой неделе в журнале Proceedings of the National Academy of Sciences , исследователи Массачусетского технологического института определяют основное свойство, которое делает некоторые топологические материалы потенциально более эффективными термоэлектрическими материалами по сравнению с существующими устройствами.

«Мы обнаружили, что можем раздвинуть границы этого наноструктурированного материала таким образом, что топологические материалы станут хорошим термоэлектрическим материалом, в большей степени, чем обычные полупроводники, такие как кремний», — говорит Те-Хуан Лю, постдоктор кафедры механики Массачусетского технологического института. Инжиниринг. «В конце концов, это может быть способ чистой энергии, который поможет нам использовать источник тепла для выработки электроэнергии, что уменьшит выброс углекислого газа».

Лю является первым автором статьи PNAS , в которой участвуют аспиранты Цзявэй Чжоу, Чживэй Дин и Цичень Сун; Мингда Ли, доцент кафедры ядерной науки и техники; бывший аспирант Болин Ляо, ныне доцент Калифорнийского университета в Санта-Барбаре; Лян Фу, адъюнкт-профессор физики Биденхарна; и Ган Чен, профессор Содерберга и заведующий кафедрой машиностроения.

Путь, пройденный свободно

Когда термоэлектрический материал подвергается воздействию градиента температуры, например, один конец нагревается, а другой охлаждается, электроны в этом материале начинают течь от горячего конца к холодному, генерируя электрический ток. Чем больше разница температур, тем больше вырабатывается электрического тока и тем больше вырабатывается энергии. Количество энергии, которое может быть получено, зависит от конкретных транспортных свойств электронов в данном материале.

Ученые заметили, что некоторые топологические материалы могут быть превращены в эффективные термоэлектрические устройства с помощью наноструктурирования — метода, который ученые используют для синтеза материала путем формирования его характеристик в масштабе нанометров. Ученые считают, что термоэлектрическое преимущество топологических материалов связано с пониженной теплопроводностью их наноструктур. Но неясно, как это повышение эффективности связано с присущими материалу топологическими свойствами.

Чтобы попытаться ответить на этот вопрос, Лю и его коллеги изучили термоэлектрические характеристики теллурида олова, топологического материала, который, как известно, является хорошим термоэлектрическим материалом. Электроны в теллуриде олова также обладают особыми свойствами, которые имитируют класс топологических материалов, известных как материалы Дирака.

Команда исследователей стремилась понять влияние наноструктурирования на термоэлектрические характеристики теллурида олова, моделируя движение электронов через материал. Чтобы охарактеризовать перенос электронов, ученые часто используют измерение, называемое «средний свободный пробег», или среднее расстояние, которое электрон с данной энергией мог бы свободно пройти в материале, прежде чем он был бы рассеян различными объектами или дефектами в этом материале.

Наноструктурированные материалы напоминают лоскутное одеяло из крошечных кристаллов, каждый из которых имеет границы, известные как границы зерен, которые отделяют один кристалл от другого. Когда электроны сталкиваются с этими границами, они имеют тенденцию рассеиваться различными путями. Электроны с длинной длиной свободного пробега будут сильно рассеиваться, как пули, рикошетящие от стены, в то время как электроны с более короткой длиной свободного пробега подвержены гораздо меньшему воздействию.

В ходе моделирования исследователи обнаружили, что характеристики электронов теллурида олова оказывают значительное влияние на их длину свободного пробега. Они нанесли на график диапазон энергий электронов теллурида олова в зависимости от соответствующей длины свободного пробега и обнаружили, что полученный график сильно отличается от графиков для большинства обычных полупроводников. В частности, для теллурида олова и, возможно, других топологических материалов результаты показывают, что электроны с более высокой энергией имеют более короткую длину свободного пробега, в то время как электроны с более низкой энергией обычно имеют более длинную длину свободного пробега.

Затем команда изучила, как эти свойства электронов влияют на термоэлектрические характеристики теллурида олова, по существу суммируя термоэлектрические вклады электронов с разными энергиями и длинами свободного пробега. Оказывается, способность материала проводить электричество или генерировать поток электронов в условиях температурного градиента во многом зависит от энергии электронов.

В частности, они обнаружили, что электроны с более низкой энергией имеют тенденцию оказывать негативное влияние на генерацию разности потенциалов и, следовательно, электрического тока. Эти низкоэнергетические электроны также имеют большую длину свободного пробега, а это означает, что они могут рассеиваться границами зерен более интенсивно, чем электроны с более высокой энергией.

Уменьшение размера

Сделав еще один шаг вперед в своих симуляциях, команда экспериментировала с размером отдельных зерен теллурида олова, чтобы увидеть, влияет ли это на поток электронов при температурном градиенте. Они обнаружили, что когда они уменьшали диаметр среднего зерна примерно до 10 нанометров, сближая его границы, они наблюдали повышенный вклад электронов с более высокой энергией.

То есть при меньших размерах зерен электроны с более высокой энергией вносят гораздо больший вклад в электрическую проводимость материала, чем электроны с более низкой энергией, поскольку они имеют более короткую длину свободного пробега и с меньшей вероятностью рассеиваются на границах зерен. Это приводит к большей разности напряжений, которая может быть сгенерирована.

Более того, исследователи обнаружили, что уменьшение среднего размера зерен теллурида олова примерно до 10 нанометров дает в три раза больше электричества, чем материал, произведенный с более крупными зернами.

Лю говорит, что, хотя результаты основаны на моделировании, исследователи могут добиться аналогичных результатов, синтезируя теллурид олова и другие топологические материалы и регулируя размер их зерна с помощью метода наноструктурирования. Другие исследователи предположили, что уменьшение размера зерна материала может повысить его термоэлектрические характеристики, но Лю говорит, что они в основном предполагали, что идеальный размер должен быть намного больше 10 нанометров.

«В ходе нашего моделирования мы обнаружили, что можем уменьшить размер зерна топологического материала намного больше, чем считалось ранее, и на основе этой концепции мы можем повысить его эффективность», — говорит Лю.

Теллурид олова — всего лишь один из многих топологических материалов, которые еще предстоит изучить. По словам Лю, если исследователи смогут определить идеальный размер зерна для каждого из этих материалов, топологические материалы вскоре могут стать жизнеспособной и более эффективной альтернативой производству чистой энергии.

«Я думаю, что топологические материалы очень хороши для термоэлектрических материалов, и наши результаты показывают, что это очень многообещающий материал для будущих приложений», — говорит Лю.

Это исследование было частично поддержано Твердотельным центром преобразования солнечной тепловой энергии, Центром передовых исследований в области энергетики Министерства энергетики США; и Агентство перспективных оборонных исследовательских проектов (DARPA).

Поделитесь этой новостной статьей:

Упоминания в прессе

Boston Globe

Исследователи Массачусетского технологического института усовершенствовали аккумуляторы с жидким натрием, потенциально проложив путь к использованию аккумуляторов для хранения возобновляемой энергии, сообщает Laney Ruckstuhl для Бостон глобус . «В отличие от литий-ионных аккумуляторов, используемых в мобильных телефонах и ноутбуках, аккумуляторы с жидким натрием не потеряют свою емкость быстро».

Полная история через Boston Globe →

Связанные ссылки

  • Gang Chen
  • Liang Fu
  • Mingda Li
  • Отдел машиностроения
  • Департамент физики
  • Департамент по техническому инженерии
  • .
  • Школа наук

Как работает солнечная энергия? | Министерство энергетики

Перейти к основному содержанию

Количество солнечного света, падающего на поверхность земли за полтора часа, достаточно, чтобы справиться с потреблением энергии во всем мире в течение полного года. Солнечные технологии преобразуют солнечный свет в электрическую энергию либо с помощью фотоэлектрических (PV) панелей, либо с помощью зеркал, концентрирующих солнечное излучение. Эта энергия может быть использована для выработки электроэнергии или сохранена в батареях или тепловых накопителях.

Ниже вы можете найти ресурсы и информацию об основах солнечного излучения, фотоэлектрических и концентрирующих солнечно-тепловых технологиях, интеграции систем электросетей и неаппаратных аспектах (мягких затратах) солнечной энергии. Вы также можете узнать больше о том, как использовать солнечную энергию и отрасль солнечной энергетики. Кроме того, вы можете глубже погрузиться в солнечную энергию и узнать, как Управление технологий солнечной энергии Министерства энергетики США проводит инновационные исследования и разработки в этих областях.

Солнечная энергия 101

Солнечное излучение — это свет, также известный как электромагнитное излучение, испускаемый солнцем. В то время как каждое место на Земле получает некоторое количество солнечного света в течение года, количество солнечной радиации, достигающей любой точки на поверхности Земли, варьируется. Солнечные технологии улавливают это излучение и превращают его в полезные формы энергии.

Основы солнечного излучения

Узнать больше

Существует два основных типа технологий использования солнечной энергии: фотогальваника (PV) и концентрация солнечной тепловой энергии (CSP).

Основы фотоэлектричества

Вы, вероятно, больше всего знакомы с фотоэлектрическими элементами, которые используются в солнечных панелях. Когда солнце светит на солнечную панель, энергия солнечного света поглощается фотоэлементами в панели. Эта энергия создает электрические заряды, которые движутся в ответ на внутреннее электрическое поле в клетке, заставляя течь электричество.

Основы солнечной фотоэлектрической технологии Узнать больше

Основы проектирования солнечной фотоэлектрической системы Узнать больше

PV Cells 101: введение в солнечную фотоэлектрическую батарею Узнать больше

Солнечная производительность и эффективность Узнать больше

Основы концентрации солнечной и тепловой энергии

Системы концентрации солнечной тепловой энергии (CSP) используют зеркала для отражения и концентрации солнечного света на приемниках, которые собирают солнечную энергию и преобразуют ее в тепло, которое затем можно использовать для производить электроэнергию или хранить для последующего использования. Он используется в основном на очень больших электростанциях.

Основы концентрации солнечной и тепловой энергии Узнать больше

Система накопления тепла, концентрирующая солнечную и тепловую энергию. Основы Узнать больше

Система Power Tower, концентрирующая солнечную и тепловую энергию. Основы Узнать больше

Линейная концентраторная система, концентрирующая солнечную и тепловую энергию. Основы Узнать больше

Основы системной интеграции

Технология использования солнечной энергии не ограничивается выработкой электроэнергии с помощью фотоэлектрических систем или систем CSP. Эти системы солнечной энергии должны быть интегрированы в дома, предприятия и существующие электрические сети с различными сочетаниями традиционных и других возобновляемых источников энергии.

Основы интеграции солнечных систем Узнать больше

Солнечная интеграция: распределенные энергетические ресурсы и микросети Узнать больше

Солнечная интеграция: основы инверторов и сетевых услуг Узнать больше

Солнечная интеграция: основы солнечной энергии и хранения Узнать больше

Основы мягких затрат

На стоимость солнечной энергии также влияет ряд не связанных с оборудованием затрат, известных как мягкие затраты. Эти расходы включают в себя получение разрешений, финансирование и установку солнечных батарей, а также расходы, которые несут солнечные компании, чтобы привлечь новых клиентов, оплатить поставщикам и покрыть свою прибыль. Для систем солнечной энергии на крыше мягкие расходы составляют наибольшую долю общих затрат.

Основы затрат Solar Soft Узнать больше

Основы общественной солнечной энергетики Узнать больше

Соедините точки: инновации в жилищной солнечной энергии Узнать больше

Развитие солнечной рабочей силы Узнать больше

Going Solar Basics

Солнечная энергия может помочь снизить стоимость электроэнергии, внести свой вклад в отказоустойчивую электрическую сеть, создать рабочие места и стимулировать экономический рост, генерировать резервное питание в ночное время и при отключении электроэнергии в сочетании с хранилища и работают с одинаковой эффективностью как в малых, так и в больших масштабах.

Основы общественной солнечной энергетики Узнать больше

Руководство фермера по переходу на солнечную энергию Узнать больше

Руководство домовладельца по переходу на солнечную энергию Узнать больше

Потенциал солнечной крыши Узнать больше

Основы солнечной энергетики

Солнечные энергетические системы бывают самых разных форм и размеров. Жилые системы находятся на крышах по всей территории Соединенных Штатов, и предприятия также предпочитают устанавливать солнечные батареи. Коммунальные предприятия также строят большие солнечные электростанции, чтобы обеспечить энергией всех потребителей, подключенных к сети.

Ежеквартальное обновление солнечной промышленности Узнать больше

Ресурсы солнечной энергии для соискателей Узнать больше

Анализ затрат на солнечную технологию Узнать больше

Истории успеха Узнайте больше

Погрузитесь глубже

Узнайте больше об инновационных исследованиях, которые Управление технологий солнечной энергии проводит в этих областях.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *