Устройство ЖК (LCD) монитора компьютера
Здравствуйте, уважаемые читатели блога Pc-information-guide.ru. Сегодня поговорим об устройстве жидкокристаллического (жк) монитора, точнее о его дисплее. Ведь именно экран монитора, это то место, на которое мы с вами дольше всего смотрим при работе за компьютером.
Надо сказать, современные жидкокристаллические мониторы в значительной степени отличаются от своих «предшественников» — ЭЛТ мониторов (мониторов с электронно-лучевыми трубками), которые сейчас уже нигде не продаются. Вообще, мониторы с электронно-лучевой трубкой стали активно исчезать с прилавков магазинов электроники уже начиная года так с 2007. И это было обусловлено рядом причин, о которых будет сказано чуть ниже.
Рано или поздно это должно было произойти, я имею ввиду массовый переход на жидкокристаллические мониторы, несмотря на скептическое отношение к ним большинства пользователей, уже владеющих ЭЛТ. И действительно, первые модели ЖК мониторов обладали рядом недостатков, которых лишены современные модели, и главным недостатком пожалуй были очень небольшие углы обзора, в основном по горизонтали. Картинка инвертировалась и уходила в негатив буквально при малейшем отклонении головы от положения, когда взгляд падал строго перпендикулярно плоскости экрана.
Вторым аргументом «в пользу» мониторов с электронно-лучевыми трубками служило то, что жк мониторы на первых порах обладали действительно малым временем отклика матрицы, причем это было заметно невооруженным взглядом, когда динамическая смена картинки (например при просмотре фильма) сопровождалась всевозможными шлейфами и артефактами на экране.
Но почему же несмотря на «сырость» тогдашних ЖК мониторов, они все же получили массовую популярность? Я думаю дело в том, что ЭЛТ тоже не были лишены недостатков, они имели большие габариты, часто их глубина (толщина) была примерно равна диагонали самого экрана. К тому же, длительное пребывание за ними приводило к быстрому утомлению, в основном из-за мерцания и интенсивного электромагнитного излучения. Ну а поскольку прогресс идет в направлении уменьшения устройств и их технологического совершенствования, то логично было бы предсказать такую популярность, какую на сегодняшний день имеют LCD мониторы.
Главное отличие ЭЛТ от ЖК мониторов
В основе работы ЭЛТ монитора лежит специальная стеклянная трубка, внутри которой вакуум. Так же, внутри стеклянной колбы находятся электронные пушки, испускающие поток заряженных частиц (электронов).
Эти электроны заставляют светиться точки люминофора, которым тонким слоем изнутри покрыта передняя стенка электронно-лучевой трубки. То есть энергия электронов превращается в свет, вот эти самые светящиеся точки и формируют изображение.
Принцип работы ЖК монитора совершенно иной. Здесь уже нет никаких трубок, а изображение формируется совершенно другим способом. Жидкокристаллические дисплеи уже имеют в своем названии указание на то, с помощью чего создается изображение на экране. Да да, именно жидкие кристаллы, которые были открыты еще в 1888 году, играют ключевую роль в формировании картинки.
Устройство LCD монитора больше напоминает слоеный пирог, каждый слой имеет свое назначение. Итак, можно выделить несколько слоев, из которых и состоит наш монитор.
Первый слой — это система подсветки ЖК матрицы, она может быть выполнена с применением люминесцентных ламп с холодным катодом, либо светодиодов. Вторым слоем идет рассеивающий фильтр, который позволяет повысить уровень равномерности подсветки всей матрицы. Далее идет первый вертикальный поляризационный фильтр, который пропускает только вертикально направленные световые волны. Четвертым слоем представлена сама матрица, представляющая собой две прозрачные стеклянные пластины, между которыми расположены молекулы поляризационного вещества — жидкие кристаллы. Пятым слоем идут специальные цветофильтры, отвечающие за окрас каждого субпикселя. Ну и последним слоем идет второй, уже горизонтальный поляризационный фильтр, который, как вы уже наверное догадались, пропускает только лишь горизонтальные волны. Вот и все устройство ЖК монитора. Разберем подробнее.
В жидкокристаллической матрице каждый кристалл отвечает за определенную точку в изображении на экране. Когда монитор работает, свет от системы подсветки проходит через слой жидких кристаллов и зритель видит некую «мозаику» из пикселей, окрашенных в разные цвета. Каждый пиксель состоит из трех субпикселей, красного, зеленого и синего.
С помощью этих трех базовых цветов экран способен отображать до 17 млн. различных оттенков цветов. Такая глубина цвета достигается различным количеством света, проходящего через каждый пиксель. 17 миллионов возможных сочетаний — 17 млн. возможных цветов.
Даже видео имеется, где крупным планом показана структура пикселей LCD монитора.
Любой свет, как известно, имеет направление, поскольку это еще и электромагнитная волна, она еще имеет поляризацию. Луч может быть вертикальным, горизонтальным, иметь любой промежуточный угол.
Очень важно, учитывая, что первый фильтр пропускает только вертикально направленные лучи. Излучение проходит сквозь каждый субпиксель и достигает второго поляризационного фильтра, который пропускает только горизонтальные лучи. Иначе говоря, не весь свет, излученный системой подсветки способен дойти до пользователя.
Кристаллы изменяют поляризацию световой волны, чтобы она прошла через второй фильтр. Вообще, жидкие кристаллы — крайне интересная субстанция. Их молекулы действительно ведут себя, как молекулы жидкого вещества, находясь в постоянном движении. Но как и положено кристаллам, их ориентация остается неизменной.
Ориентация кристаллов меняется только под воздействием электрического поля. Когда это происходит, субстанция начинает изменяться. Возможно выборочное изменение ориентации вплоть до субпикселя. То есть кристаллы играют роль крошечных оптических линз, которые меняют поляризацию световых волн.
Итак, жидкие кристаллы контролируют поляризацию, а значит и интенсивность света, проходящего через второй фильтр. Секрет устройства ЖК монитора заключается в том, что не каждый луч сможет добраться до зрителя, а интенсивность свечения каждого пикселя задается углом поворота (поляризацией) жидких кристаллов.
Ну а на этом здесь все, увидимся в следующих статьях блога pc-information-guide.ru, ах да, и да прибудет с вами апгрейд!
Технология жидкокристаллических мониторов (LCD) / Мониторы и проекторы
Оригинал: HWExtremeПеревод: Дмитрий Чеканов, Сергей Мильчаков
Введение
Отметим, что первые жидкие кристаллы отличались своей нестабильностью и были мало пригодными к массовому производству. Реальное развитие ЖК технологии началось с изобретением английскими учеными стабильного жидкого кристалла — бифенила (Biphenyl). Жидкокристаллические дисплеи первого поколения можно наблюдать в калькуляторах, электронных играх и в часах.
Насладимся плоским экраном
Время идет, цены падают, а ЖК мониторы становятся все лучше и лучше. Теперь они обеспечивают качественное контрастное, яркое, отчетливое изображение. Именно по этой причине пользователи переходят с традиционных ЭЛТ-мониторов на жидкокристаллические. Раньше жидкокристаллические технологии были медленнее, они не были настолько эффективными, и их уровень контрастности был низок. Первые матричные технологии, так называемые пассивные матрицы, вполне неплохо работали с текстовой информацией, но при резкой смене картинки на экране оставались так называемые «призраки». Поэтому такого рода устройства не подходили для просмотра видеофильмов и игр. Сегодня на пассивных матрицах работает большинство черно-белых портативных компьютеров, пейджеры и мобильные телефоны. Так как ЖК технология адресует каждый пиксель отдельно, четкость получаемого текста выше в сравнении с ЭЛТ-монитором. Отметим, что на ЭЛТ-мониторах при плохом сведении лучей пиксели, из которых состоит изображение, размываются.
Существует два вида ЖК мониторов: DSTN (dual-scan twisted nematic — кристаллические экраны с двойным сканированием) и TFT (thin film transistor — на тонкопленочных транзисторах), также их называют соответственно пассивными и активными матрицами. Такие мониторы состоят из следующих слоев: поляризующего фильтра, стеклянного слоя, электрода, слоя управления, жидких кристаллов, ещё одного слоя управления, электрода, слоя стекла и поляризующего фильтра.
В первых компьютерах использовались восьмидюймовые (по диагонали) пассивные черно-белые матрицы. С переходом на технологию активных матриц, размер экрана вырос. Практически все современные ЖК мониторы используют панели на тонкопленочных транзисторах, обеспечивающих яркое, четкое изображение значительно большего размера.
Как работает ЖК монитор
Поперечное сечение панели на тонкопленочных транзисторах представляет собой многослойный бутерброд. Крайний слой любой из сторон выполнен из стекла. Между этими слоями расположен тонкопленочный транзистор, панель цветного фильтра, обеспечивающая нужный цвет — красный, синий или зеленый, и слой жидких кристаллов. Вдобавок ко всему существует флуоресцентная подсветка, освещающая экран изнутри.
При нормальных условиях, когда нет электрического заряда, жидкие кристаллы находятся в аморфном состоянии. В этом состоянии жидкие кристаллы пропускают свет. Количеством света, проходящего через жидкие кристаллы, можно управлять с помощью электрических зарядов — при этом изменяется ориентация кристаллов.
Как и в традиционных электроннолучевых трубках, пиксель формируется из трех участков — красного, зеленого и синего. А различные цвета получаются в результате изменения величины соответствующего электрического заряда (что приводит к повороту кристалла и изменению яркости проходящего светового потока).
TFT экран состоит из целой сетки таких пикселей, где работой каждого цветового участка каждого пикселя управляет отдельный транзистор. Именно здесь стоит поговорить о разрешении. Для нормального обеспечения экранного разрешения 1024х768 (режим SVGA) монитор должен располагать именно таким количеством пикселей.
Почему именно ЖК?
Жидкокристаллические мониторы обладают совершенно иным стилем. В традиционных электроннолучевых мониторах формообразующим фактором был кинескоп. Его размер и форму нельзя было изменять. В ЖК мониторах кинескопа нет, поэтому можно производить мониторы любой формы.
Сравните 15-дюймовый ЭЛТ-монитор весом 15 кг с жидкокристаллической панелью глубиной (вместе с подставкой) менее 15 см и весом 5-6 кг. Преимущества таких мониторов понятны. Они не такие громоздкие, не имеют проблем с фокусировкой, а их четкость облегчает работу на высоких разрешениях экрана, пусть даже его размер не так велик. Например, даже 17-дюймовый жидкокристаллический монитор прекрасно показывает в разрешении 1280х1024, тогда как даже для 18-дюймовых ЭЛТ-мониторов это предел. К тому же, в отличие от ЭЛТ-мониторов, большинство ЖК — цифровые. Это означает, что графической карте с цифровым выходом не придется производить цифроаналоговые преобразования, какие она производит в случае с ЭЛТ-монитором. Теоретически, это позволяет более тщательно передавать информацию о цвете и о местоположении пикселя. В то же время, если подключать ЖК монитор к стандартному аналоговому VGA выходу, придется проводить аналого-цифровые преобразования (ведь ЖК-панели — это цифровые устройства). При этом могут возникнуть различные нежелательные артефакты. Теперь, когда приняты соответствующие стандарты и все большее количество карт обеспечивается цифровыми выходами, ситуация значительно упростится.
Преимущества ЖК мониторов
- ЖК мониторы более экономичные;
- У них нет электромагнитного излучения в сравнении c ЭЛТ-мониторами;
- Они не мерцают, как ЭЛТ-мониторы;
- Они легкие и не такие объемные;
- У них большая видимая область экрана.
Разрешение: ЭЛТ-мониторы могут работать на нескольких разрешениях в полноэкранном режиме, когда ЖК монитор может работать только с одним разрешением. Меньшие разрешения возможны лишь при использовании части экрана. Так, например, на мониторе с разрешением 1024х768 при работе в разрешении 640х480 будет задействовано лишь 66% экрана.
Измерение диагонали: размер диагонали видимой области ЖК монитора соответствует размеру его реальной диагонали. В ЭЛТ-мониторах реальная диагональ теряет за рамкой монитора более дюйма.
Сведение лучей: в жидкокристаллических мониторах каждый пиксель включается или выключается отдельно, поэтому не возникает никаких проблем со сведением лучей, в отличие от ЭЛТ-мониторов, где требуется безукоризненная работа электронных пушек.
Сигналы: ЭЛТ-мониторы работают на аналоговых сигналах, а ЖК мониторы используют цифровые сигналы.
Отсутствие мерцания: качество изображения на ЖК мониторах выше, а при работе нагрузка на глаза меньше — сказывается ровная плоскость экрана и отсутствие мерцания.
Как выбирать ЖК монитор?
«Внешность обманчива» — это высказывание применимо ко всему, включая и жидкокристаллические мониторы. Большинство неопытных покупателей делают свой выбор под влиянием внешности монитора. При покупке монитора в первую очередь стоит учитывать следующее.
«Мертвые пиксели» — на плоской панели может не работать несколько пикселей. Распознать их нетрудно — они всегда одного цвета. Они возникают в процессе производства и восстановлению не подлежат. Приемлемым считается, когда в мониторе не более трех таких пикселей. В некоторых случаях, такие пиксели могут раздражать — особенно при просмотре фильмов. Поэтому если для вас критично отсутствие мертвых пикселей, перед покупкой конкретного монитора проверьте его.
Угол просмотра — Если вы когда-либо ранее пользовались ноутбуком, вы, вероятнее всего, знаете, что работать за ЖК монитором лучше всего под определенным углом. У некоторых мониторов значение этого угла довольно велико, таким образом вы можете видеть изображение на мониторе даже в тех случаях, когда монитор не находится непосредственно перед вами. Отметим, что некоторые владельцы ноутбуков находят небольшие значения угла полезными — в тех случаях, когда требуется, чтобы ваш сосед не видел, что происходит на экране вашего монитора. Итак, угол в 120 градусов считается неплохим.
Контрастность — сами по себе пиксели не вырабатывают свет, они лишь пропускают свет от подсветки. И темный экран вовсе не означает, что подсветка не работает — просто пиксели блокируют этот свет и не пропускают его сквозь экран. Под контрастностью LCD монитора подразумевается, сколько уровней яркости могут создавать его пикселы. Обычно, контрастность 250:1 считается хорошей.
Яркость — насколько ярким может быть ЖК монитор? По правде сказать, яркость жидкокристаллического дисплея может быть выше яркости электронно-лучевой трубки. Но, как правило, яркость ЖК монитора не превышает 225 кандел на квадратный метр — это сопоставимо с яркостью телевизора.
Размер экрана — как и у ЭЛТ-мониторов, размер ЖК мониторов определяются диагональю. Однако заметим, что у ЖК мониторов нет черной рамочки, какая имеется у ЭЛТ-мониторов. Поэтому экран в 15,1 дюйма на самом деле показывает 15,1 дюйма (обычно это соответствует разрешению 1024х768). ЖК монитор размером 17,1 дюйма будет работать в разрешении 1280х1024.
Как выбирать ЖК монитор?
Существует множество различных производителей ЖК мониторов. Наиболее известны мониторы Viewsonic, Sony, Silicon Graphics, Samsung, Nec, Eizo Nano и Apple. Обычно за такими мониторами сидят крутые ребята. Обратите, ни один современный фильм не обходится без ЖК мониторов — ведь они так привлекательны. Вспомнить, к примеру, последние боевики: Лару Крофт из «Томб Райдера» окружали Sony N50, а в «Рыбе-меч» в компьютерной комнате использовались Silicon Graphics 1600SW. Разве они не выглядят привлекательно?
выглядят хорошо, легко, очень тонкий (всего 1,2 см) — 15″
Толщиной лишь 1,2 см, красивы, дороги, качественная картинка, и вообще, вещь — загляденье — 18″
Viewsonic VP181 — дорогой, имеет входы-выходы для TV, VCD, DBD, кроме того, встроенный колонки — 18″;
Apple Cinema Display — отличаются высоким разрешением, имеют большой экран, отличаются дизайном — 22″;
Sony M81 — тонкие, но на самом деле выглядят несколько иначе, не так, как на этом рисунке — 18″
SGI 1600SW — отличаются дизайном, превосходными характеристиками, дорогие — 17″;
Sony L181 — очень тонкие, очень дорогие, но используют технологию Trinitron — 18″;
Eizo Nano — выглядят изящно, дорогие — 18″
Дополнительные материалы:
LCD, PDP, LEP мониторыLCD мониторы по версии 2002 года
Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.
LCD и E-Ink дисплеи / Habr
Demain n’existe pas!
В последней статье из серии «Взгляд изнутри» речь зашла о повседневных вещах, но, не смотря на обилие материала, полученного в этом направлении в течение прошедшего месяца, всё-таки давайте вернёмся к тематике, связанной с IT.
Специально ко Дню Защитника Отечества на препарационный стол легли LCD и E-Ink дисплеи, которые, так или иначе, достались мне в несколько побитом жизнью виде.
Как Антон кидал телефон об стену, а также о результатах скрупулёзного разбора дисплеев читайте под катом.
Предисловие
Жил-был на свете Антон Городецкий.
Бросила жена, он грустил не по-детски…
Так начинается известная песня группы Уматурман. Так же начинается и история с исследованием дисплеев. После первой публикации на Хабре пришёл ко мне мой друг-аспирант ФНМ МГУ и говорит: «Я тут свой мобильник разбил, не хочешь ли ты его распилить?» Я удивился, потому что этот человек всегда носил с собой китаефон, который я считал практически не убиваемым. Придя однажды домой, Антон по привычке кинул телефон в шкаф, но, видимо, что-то не рассчитав попал аккурат дисплеем в ребро полки.
Осознавая свои смехотворные потери от утраты мобильного и ввиду общего плохого настроения в тот день, он поступил, как истинный джентльмен, швыряя вновь и вновь бездыханное тело телефона о бетонную стену. Когда же останки дошли до меня, то половина китаефона просто отсутствовала, дисплей был покрыт мелкой паутинкой трещин.
Пришлось отложить его до лучших времён (как я тогда полагал, пока кто-нибудь таким же образом не поступит с iPhone или другим сенсорным смартфоном) и начать заниматься HDD и CD, потом лампочками, флешками и т.д.
Через некоторое время уже мой сосед приносит мне треснувший E-Ink дисплей. Его друг разбил тонкое стекло в небезызвестной читалке с порядковым номером 601 во время игры в страйкбол, кажется, и отдал читалку практически даром для ремонта и восстановления.
Вот это уже было интереснее, две технологии можно сравнить между собой, попытаться разглядеть RGB-субпиксели и микрокапсулы, в которых плавают заряженные частицы. Но я надеялся на получение смартфона с ёмкостным сенсором, чтобы сравнить заодно его и резистивный сенсор китаефона.
И вот Василий (научный коллега по одной из лабораторий факультета), приехав к нам на ХимФак из Черноголовки и увидев, чем я собственно занимаюсь с электронным микроскопом, сказал, что готов пожертвовать телефон известного корейского производителя с несколько побитым дисплеем для разборки и распила с пометкой «ради науки ничего не жалко».
Несмотря на все заверения, что сенсор ёмкостной, он оказался резистивным, пусть и более продвинутой конструкции, нежели сенсорная панель китаефона. Из этого телефона была добыта важная деталь, которая ждёт своего часа распила – матрица фото/видео камеры…
Часть теоретическая
Как устроен LCD дисплей?
Мы все так давно пользуемся плоскими телевизорами, мониторами, телефонами, смартфонами, что уже и забыли, что когда-то хороший монитор весил килограмм 10-15 (у нас один такой мастодонт ещё стоит и, главное, исправно работает!).
Всё это стало возможным, благодаря открытиям вековой давности (жидкие кристаллы открыты в 1888 году) и развитию технологий в последние 30-40 лет (1968 год – устройство для отображения информации, использовавшее ЖК, 1970-е – общедоступность жидких кристаллов). Многое о жидких кристаллах и ЖК-мониторах можно подчерпнуть на Wiki.
Итак, практически любой ЖК-монитор состоит из следующих основных частей: активной матрицы, представляющей собой набор транзисторов, с помощью которых и формируется изображение, слоя жидких кристаллов со светофильтрами, которые либо пропускают свет, либо нет, и системы подсветки, которую на сегодняшний день стараются полностью перевести на светодиоды. Хотя на моём «стареньком» Asus G2S дисплей великолепного качества подсвечивается именно люминесцентными лампами.
Как это всё работает? Свет, поступая от источника (LED или лампы) через специальную прозрачную пластину-волновод, рассеивается таким образом, чтобы вся матрица имела равную освещённость по всей свой площади. Далее фотоны проходят поляризационный фильтр, который пропускает только волны с заданной поляризацией. Затем проникнув через стеклянную подложку, на которой находится активная матрица из тонкоплёночных транзисторов, свет попадает на молекулу жидкого кристалла.
Эта молекула получает «команду» от нижележащего транзистора, на какой угол повернуть поляризацию световой волны, чтобы она, пройдя сквозь ещё один поляризационный фильтр, задала интенсивность свечения отдельного субпиксела. А за окраску субпиксела отвечает слой светофильтров (красных, зелёных или синих). Смешиваясь, волны от трёх невидимых глазу человека субпикселей формируют пиксел изображения заданного цвета и интенсивности.
а) Схематическое устройство LCD дисплея, б) устройство жидкокристаллической плёнки в деталях.
Очень наглядно, как мне кажется, это продемонстрировано в ролике компании Sharp:
Помимо хорошо зарекомендовавшей себя технологии LCD + TFT (thin-film transistors – тонкоплёночные транзисторы) существует активно продвигаемая технология органических светодиодов OLED + TFT, то есть AMOLED – active matrix OLED. Основное отличие последней заключается в том, что роль поляризатора, слоя ЖК и светофильтров играют органические светодиоды трёх цветов.
По сути, это молекулы, способные при протекании электрического тока испускать свет, а в зависимости от количества протекшего тока менять интенсивность окраски, подобно тому, как это происходит в обычных LED. Убрав поляризаторы и ЖК из панели, мы потенциально можем сделать её более тонкой, а самое главное – гибкой!
Какие сенсорные панели бывают?
Так как сенсоры на данный момент больше применяют с LCD и OLED дисплеями, то думаю, будет разумно сразу про них и рассказать.
Очень подробное описание танчскринов или сенсорных панелей дано тут (источник когда-то жил здесь, но почему-то исчез), поэтому я не буду описывать все типы сенсорных панелей, остановлюсь лишь на двух основных: резистивном и ёмкостном.
Начнём с резистивного сенсора. Состоит он из 4 основных компонент: стеклянной панели (1), как носителя всей сенсорной панели, двух прозрачных полимерных мембран с резистивным покрытием (2, 4), слоя микроизоляторов (3), разделяющих эти мембраны, и 4, 5 или 8 проводков, которые и отвечают за «считывание» касания.
Схема устройства резистивного сенсора
Когда мы нажимаем на такой сенсор с определённой силой, то происходит соприкосновение мембран, электрическая цепь замыкается, как показано на рисунке ниже, измеряется сопротивление, которое впоследствии пересчитывается в координаты:
Принцип расчёта координат для 4-х проводного резистивного дисплея (Источник)
Всё предельно просто.
Важно помнить две вещи: а) резистивные сенсоры на многих китайских телефонах не отличаются высоким качеством, это может быть связано как раз с неравномерностью расстояния между мембранами или некачественными микроизоляторами, то есть «мозг» телефона не может адекватно пересчитать измеренные сопротивления в координаты; б) такой сенсор требует именно нажатия, продавливания одной мембраны до другой.
Ёмкостные сенсоры несколько отличаются от резистивных. Стоит сразу оговориться, что речь будет идти лишь о проекционно-ёмкостных сенсорах, которые сейчас применяется в iPhone и прочих портативных устройствах.
Принцип работы такого тачскрина довольно прост. На внутренней стороне экрана наносится сетка электродов, а внешняя покрывается, например, ITO – сложным оксидом индия-олова. Когда мы касаемся стекла, наш палец образует с таким электродом маленький конденсатор, а обрабатывающая электроника измеряет ёмкость этого конденсатора (подаёт импульс тока и измеряет напряжение).
Соответственно, ёмкостной сенсор реагирует только на плотное прикосновение и только проводящими предметами, то есть от касания гвоздём такой экран работать будет через раз, равно как и от руки, вымоченной в ацетоне или обезвоженной. Пожалуй, основным преимуществом данного тачскрина перед резистивным является возможность сделать достаточно прочную основу – особо прочное стекло, как, например, Gorilla Glass.
Схема работы поверхностно-ёмкостного сенсора(Источник)
Как устроен E-Ink дисплей?
Пожалуй, E-Ink по сравнению с LCD устроен гораздо проще. Вновь мы имеем дело с активной матрицей, ответственной за формирование изображения, однако ЖК-кристаллов и ламп подсветки здесь нет и в помине, вместо них – колбочки с двумя типами частиц: отрицательно заряженными чёрными и положительно заряженными белыми. Изображение формируется подачей определённой разности потенциалов и перераспределения частиц внутри таких микроколбочек, на рисунке ниже это наглядно продемонстрировано:
Сверху схема работы E-Ink дисплея, снизу реальные микрофотографии такого работающего дисплея (Источник)
Если кому-то этого недостаточно, то принцип работы электронной бумаги продемонстрирован в этом видео:
Помимо технологии E-Ink существует технологи SiPix, в которой есть только один вид частиц, а сама «заливка» чёрная:
Схема работы SiPix дисплея (Источник)
Тем же, кто серьёзно хочет ознакомиться с «магнитной» электронной бумагой, прошу сюда, в Персте когда-то была отличная статья.
Часть практическая
Китаефон vs корейский смартфон (резистивный сенсор)
После «аккуратной» отвёрточной разборки оставшейся от китаефона платы и дисплея, я с превеликим удивлением обнаружил упоминание одного известного корейского производителя на материнской плате телефона:
Самсунг и китаефон едины!
Экран разбирал бережно и аккуратно – так, что все поляризаторы остались целыми, поэтому просто не мог не поиграться с ними и с работающим большим братом препарируемого объекта и вспомнить практикум по оптике:
Так работают 2 поляризационных фильтра: в одном положении световой поток практически не проходит через них, при повороте на 90 градусов – полностью проходит
Обратите внимание, что вся подсветка зиждется всего-навсего на четырёх крохотных светодиодах (я думаю, их суммарная мощность не более 1 Вт).
Затем долго искал сенсор, искренне полагая, что это будет довольно толстая панелька. Оказалось совершенно наоборот. Как в китайском, так и в корейском телефоне сенсор представляет из себя несколько листов пластика, которые очень качественно и плотно приклеены к стеклу внешней панели:
Слева сенсор китаефона, справа – корейского телефона
Резистивный сенсор китайского телефона выполнен по схеме «чем проще, тем лучше», в отличие от своего более дорогого собрата из Южной Кореи. Если я не прав, то поправьте меня в комментариях, но слева на картинке – типичный 4-х контактный, а справа – 8-ми контактный сенсор.
LCD-дисплей китаефона
Так как дисплей китайского телефона всё равно был разбит, а корейского – всего лишь незначительно повреждён, то на примере первого я и постараюсь рассказать о LCD. Но пока не будем его ломать окончательно, а посмотрим под оптическим микроскопом:
Оптическая микрофотография горизонтальных линий LCD-дисплея китайского телефона. Левой верхней фотографии присущ некоторый обман нашего зрения из-за «неправильных» цветов: белая тонкая полоска и есть контакт.
Один провод питает сразу две линии пикселов, а развязка между ними устроена с помощью совершенно необычного «электрического жука» (правая нижняя фотография). За всей это электрической схемой находятся дорожки-светофильтры, выкрашенные в соответствующие цвета: красный ( R), зелёный (G) и синий (B).
С противоположного конца матрицы по отношению к месту крепления шлейфа можно найти аналогичную цветовую разбивку, номера дорожек и всё те же переключатели (если бы кто-нибудь просветил в комментариях, как это работает, то было бы очень здорово!):
Номера-номера-номера…
Так вживую выглядит работающий LCD дисплей под микроскопом:
Вот и всё, теперь этой красоты мы уже не увидим, я раскрошил в буквальном смысле этого слова, а немножко помучавшись одну такую кроху «расщепил» на два отдельных кусочка стекла, из которых и состоит основная часть дисплея…
Теперь можно посмотреть на отдельные дорожки светофильтров. О тёмных «пятнах» на них я расскажу чуть позже:
Оптическая микрофотография светофильтров с загадочными пятнами…
А теперь небольшой методический аспект, касающийся электронной микроскопии. Те же самые цветные полосы, но уже под пучком электронного микроскопа: цвет исчез! Как я и говорил ранее (например, в самой первой статье) электронному пучку совершенно «чёрно-бело» взаимодействует ли он с цветным веществом или нет.
Вроде бы те же полоски, но уже без цвета…
Заглянем и на обратную сторону. На ней расположены транзисторы:
В оптический микроскоп – в цвете…
И электронный микроскоп – черно-белое изображение!
В оптический микроскоп это видно чуть хуже, но СЭМ позволяет разглядеть окантовку каждого субпикселя – это довольно важно для нижеследующего вывода.
Итак, что это за странные тёмные области?! Долго думал, ломал себе голову, прочитал много источников (пожалуй, самым доступным оказалась Wiki) и, кстати, по этой причине задержал выпуск статьи в четверг 23 февраля. И вот к какому выводу я пришёл (возможно, я не прав – поправьте!).
В VA- или MVA-технологии – одна из самых простых, и не думаю, что китайцы придумали что-то новое: каждый субпиксел должен быть чёрный. То есть через него не проходит свет (здесь приведён пример работающего и неработающего дисплея), принимая во внимание то, что в «обычном» состоянии (без приложения внешнего воздействия) жидкий кристалл разориентирован и не даёт «нужной» поляризации, то логично предположить, что каждый отдельный субпиксел имеет свою плёнку с ЖК.
Таким образом, вся панель собрана из единичных микро-ЖК-дисплеев. Сюда органично вписывается и замечание об окантовке каждого отдельного субпиксела. Для меня это стало, своего рода, неожиданным открытием прямо по ходу подготовки статьи!
Дисплей корейского телефона ломать я пожалел: надо ведь что-то показывать детям и тем, кто приходит к нам на факультет на экскурсию. Не думаю, что можно было бы увидеть ещё что-то интересное.
Далее, баловства ради приведу пример «организации» пикселов у двух ведущих производителей коммуникаторов: HTC и Apple. iPhone 3 был пожертвован на безболезненную операцию одним добрым человеком, а HTC Desire HD собственно мой:
Микрофотографии дисплея HTC Desire HD
Небольшое замечание по поводу дисплея HTC: специально не искал, но не может ли быть вот эта полоса посреди верхних двух микрофотографий тем частью того самого ёмкостного сенсора?!
Микрофотографии дисплея iPhone 3
Если мне не изменяет память, то у HTC дисплей – superLCD, а у iPhone 3 – обычный LCD. Так называемый Retina Display, то есть LCD, у которого оба контакта для переключения жидкого кристалла лежат в одной плоскости, In-Plane Switching – IPS, устанавливается уже в iPhone 4.
Надеюсь, что скоро на тему сравнения различных технологий дисплеев выйдет статья при поддержке 3DNews. А пока хочу просто отметить тот факт, что дисплей HTC действительно необычен: контакты на отдельные субпикселы заведены нестандартным образом – как-то сверху, в отличие от iPhone 3.
И напоследок в этом разделе добавлю, что размеры одного субпиксела у китаефона – 50 на 200 микрометров, HTC – 25 на 100 микрометров, а iPhone – 15-20 на 70 микрометров.
E-Ink известного украинского производителя
Начнём, пожалуй, с банальных вещей – «пикселов», а точнее ячеек, которые ответственны за формирование изображения:
Оптическая микрофотография активной матрицы E-Ink дисплея
Размер такой ячейки около 125 микрометров. Так как смотрим мы на матрицу через стекло, на которое она нанесена, то прошу обратить внимание на жёлтый слой на «заднем» плане – это золотое напыление, от которого нам впоследствии предстоит избавиться.
Далее токоподводящие контакты. Это фото меня особенно впечатлило:
Вперёд на амбразуру!
Сравнение горизонтальных (слева) и вертикальных (справа) «вводов»
Кроме всего прочего, на стеклянной подложке обнаружилось много интересных вещей. Например, позиционных меток и контактов, которые, по всей видимости, предназначены для тестирования дисплея на производстве:
Оптические микрофотографии меток и тестовых контактных площадок
Конечно, такое происходит не часто и обычно является несчастным случаем, но дисплеи иногда ломаются. Например, эта едва заметная трещина толщиной меньше человеческого волоса способна навсегда лишить радости читать любимую книгу о туманном Альбионе в душном московском метро:
Если дисплеи ломают, значит это кому-нибудь нужно… Мне, например!
Кстати, вот оно, то золото, о котором я упоминал – гладкая площадка «снизу» ячейки для качественного контакта с чернилами (о них чуть ниже). Золото удаляем механически и вот результат:
You’ve got a lot of guts. Let’s see what they look like! (с)
Под тонкой золотой плёнкой скрываются управляющие компоненты активной матрицы, если можно её так именовать.
Но самое интересно, конечно же, это сами «чернила»:
СЭМ-микрофотография чернил на поверхности активной матрицы.
Конечно, трудно найти хотя бы один разрушенную микрокапсулу, чтобы заглянуть внутрь и увидеть «белые» и «чёрные» пигментные частицы:
СЭМ-микрофотография поверхности электронных «чернил»
Оптическая микрофотография «чернил»
Или всё-таки внутри что-то есть?!
То ли разрушенная сфера, то ли выдранная из несущего полимера
Размер отдельных шариков, то есть некоторого аналога субпиксела в E-Ink, может составлять всего 20-30 мкм, что значительно ниже геометрических размеров субпикселов в LCD-дисплеях. При условии, что такая капсула может работать в половину своего размера, то и изображение получается на хороших, качественных E-Ink дисплеях гораздо более приятным, чем на LCD.
И на десерт – видео о том, как работают E-Ink дисплеи под микроскопом:
Заключение
В конце моего повествования, я хотел бы поблагодарить тех, кто помогал мне при написании этой статьи: Антона (разбитый китаефон его рук дела), Алексея (пострадавший E-Ink, вовремя вырванный из цепких лап сервиса), Василия (за корейский телефон, камера которого станет героем одной из следующих публикаций), Машу (не побоялась-таки дать мне свой iPhone), Катерину (за оправдание своей фамилии).
P.S. В конечно счёте удалось урвать небольшой кусочек ридера и изучить технологию гибкой электроники, продвигаемую РосНано.
Во-первых, полный список опубликованных статей на Хабре:
Вскрытие чипа Nvidia 8600M GT, более обстоятельная статья дана тут: Современные чипы – взгляд изнутри
Взгляд изнутри: CD и HDD
Взгляд изнутри: светодиодные лампочки
Взгляд изнутри: Светодиодная промышленность в России
Взгляд изнутри: Flash-память и RAM
Взгляд изнутри: мир вокруг нас
Взгляд изнутри: LCD и E-Ink дисплеи
Взгляд изнутри: матрицы цифровых камер
Взгляд изнутри: Plastic Logic
Взгляд изнутри: RFID и другие метки
Взгляд изнутри: аспирантура в EPFL. Часть 1
Взгляд изнутри: аспирантура в EPFL. Часть 2
Взгляд изнутри: мир вокруг нас — 2
Взгляд изнутри: мир вокруг нас — 3
Взгляд изнутри: мир вокруг нас — 4
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 1
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 2
Взгляд изнутри: 13 LED-ламп и бутылка рома. Часть 3
Взгляд изнутри: IKEA LED наносит ответный удар
Взгляд изнутри: а так ли хороши Filament-лампы?
и 3DNews:
Микровзгляд: сравнение дисплеев современных смартфонов
Во-вторых, помимо блога на HabraHabr, статьи и видеоматериалы можно читать и смотреть на Nanometer.ru, YouTube, а также Dirty.
В-третьих, если тебе, дорогой читатель, понравилась статья или ты хочешь простимулировать написание новых, то действуй согласно следующей максиме: «pay what you want»
Yandex.Money 41001234893231
WebMoney (R296920395341 или Z333281944680)
Иногда кратко, а иногда не очень о новостях науки и технологий можно почитать на моём Телеграм-канале — милости просим;)
принцип работы, устройство, особенности ухода, диагностика, ремонт, преимущества и недостатки
Жидкокристаллический дисплей (ЖКД) представляет собой тонкое плоское устройство отображения, составленное из некоторого числа цветных или монохромных пикселей, расположенных перед источником света или зеркалом.
В чем преимущество ЖК-монитора? Его высоко ценят инженеры, потому что он потребляет незначительное количество электроэнергии, что делает его пригодным для использования в электронных устройствах, питающихся от батареек. Кроме того, он может иметь практически любую форму и размеры, мало нагревается и не выделяет вредного электромагнитного излучения.
Также он является одной из причин успеха портативных компьютеров – иначе они бы не были такими компактными. Некоторые из ранних моделей переносных ПК включали небольшой ЭЛТ-монитор и были довольно громоздкими. Впоследствии ЖК-дисплеи стали использоваться не только в ноутбуках, но и в телевизорах высокой четкости. Поскольку со временем технология и производство становятся более дешевыми, стоимость мониторов с плоским экраном или HD-телевизоров продолжала снижаться. В конечном итоге ЖК-панели полностью заменили традиционные электронно-лучевые трубки, так же, как транзисторы сменили вакуумные лампы.
Принцип работы ЖК-монитора
Пиксели дисплея состоят из ЖК-молекул, выстроенных между прозрачными электродами, а также из пары поляризационных фильтров с перпендикулярными друг другу осями полярностей. В отсутствие жидкого кристалла свет, проходя через один поляризатор, блокируется другим.
Поверхность электродов, контактирующих с веществом, находящимся в ЖК-фазе, обработана так, чтобы молекулы выстраивались в определенном направлении. Как правило, они покрываются тонким слоем полимера, направленного в одну сторону методом протирания его тканью (жидкие кристаллы выстраиваются в том же направлении).
Принцип работы ЖК-монитора следующий. До наложения электрического поля ЖК-молекулы выстроены согласно направлению выравнивания поверхностей. В наиболее распространенном типе ЖК-экрана – крученном нематическом – направления выстраивания поверхностей электродов перпендикулярны, благодаря чему молекулы образуют спиралевидную структуру, т. е. скручиваются. Так как свойством жидких кристаллов является разная скорость движения света с разной поляризацией, луч, который проходит через один поляризационный фильтр, вращается ЖК-спиралью так, что может пройти сквозь второй. При этом половина света поглощается в первом поляризаторе, но в остальном вся сборка прозрачна.
Когда на электроды подается напряжение, начинает действовать крутящий момент, который выравнивает молекулы скрученного нематического кристалла вдоль электрического поля и выпрямляет спиралевидную структуру. Этому препятствуют упругие силы, так как молекулы на поверхностях не свободны. Вращение поляризации уменьшается, и пиксель выглядит серым. Но благодаря свойству жидких кристаллов выравниваться при достаточно высокой разности потенциалов, проходящий сквозь них свет не вращается. В результате направление поляризации становится перпендикулярным второму фильтру, он полностью блокируется, и пиксель выглядит черным. Изменение напряжения между электродами по обе стороны ЖК-слоя каждого элемента изображения регулирует количество проходящего света и, соответственно, его яркость.
Скрученные нематические жидкие кристаллы помещаются между скрещенными поляризационными фильтрами для того, чтобы свет был максимально ярким без расхода электроэнергии, а получаемое при подаче напряжения затемнение — являлось равномерным. Возможен случай использования параллельных поляризационных фильтров. При этом темные и яркие состояния изменяются на противоположные. Однако в такой конфигурации черный не будет равномерным.
Вещество жидкого кристалла и выравнивающий слой содержат ионные соединения. Если длительное время действует электрическое поле определенной полярности, ионный материал притягивается поверхностями, ухудшая характеристики ЖК-монитора. Избежать этого можно, применяя либо переменный ток, либо изменяя полярность электрического поля во время обращения к устройству (реакция ЖК-слоя не зависит от полярности).
Мультиплексорный экран
Когда дисплей составлен из большого числа пикселей, управлять каждым из них напрямую невозможно, поскольку всем им понадобятся независимые электроды. Вместо этого монитор мультиплексируется. При этом электроды группируются и соединяются (как правило, по столбцам), и каждая группа питается отдельно. С другой стороны ячейки электроды также сгруппированы (как правило, по рядам) и подключены отдельно. Группы создаются таким образом, чтобы каждый пиксель обладал уникальной комбинацией источника и приемника. Электроника или программное обеспечение, управляющее ею, последовательно включает группы и управляет ими.
Важными факторами, которые следует учитывать при оценке ЖКД, являются разрешение, видимый размер, время отклика (скорость синхронизации), тип матрицы (пассивный или активный), угол обзора, поддержка цвета, коэффициент яркости и контрастности монитора, соотношение сторон и входные порты (например, DVI или VGA).
Цветные экраны
В цветных ЖК-дисплеях каждый отдельный пиксель делится на три ячейки или субпикселя, которые с помощью дополнительных фильтров (пигментных и металл-оксидных) окрашены в красный, синий и зеленый цвета. Каждым субпикселем можно управлять независимо, чтобы получить тысячи или миллионы возможных цветов. В старых ЭЛТ используется аналогичный метод.
В зависимости от использования монитора, цветовые компоненты могут размещаться в различных пиксельных геометриях. Если программное обеспечение знает, какой тип геометрии используется на данном дисплее, это может быть использовано для увеличения видимого разрешения посредством субпиксельной визуализации. Этот метод особенно полезен для сглаживания текста.
Пассивная матрица
Устройство ЖК-мониторов с небольшим количеством сегментов, например, используемых в карманных калькуляторах и цифровых часах, предусматривает для каждого элемента один электрический контакт. Внешняя выделенная схема обеспечивает электрический заряд, необходимый для управления каждым сегментом. При большом количестве экранных элементов такая структура становится слишком громоздкой.
Малые монохромные дисплеи, используемые, например, в старых ноутбуках, имеют структуру пассивной матрицы, в которой используется технология суперскрученных нематических элементов (STN) или двухслойная STN (DSTN), которая корректирует проблему смещения цвета. Каждая строка или столбец имеют одну электрическую цепь. Адресация каждого пикселя производится поочередно по адресу строки и столбца. Такой тип дисплея называют пассивной матрицей, поскольку состояние каждой ячейки должно сохраняться без электрического заряда. С ростом числа элементов (а также строк и столбцов) отображение становится все более сложным. Дисплеи с пассивной матрицей характеризуются слишком медленным откликом и плохой контрастностью.
Активные матричные технологии
В цветных экранах высокого разрешения, которыми оборудуются современные телевизоры и мониторы, применяется активная матрица. В ней к цветным и поляризационным фильтрам добавлен слой тонкопленочных транзисторов (TFT). При этом каждый пиксель управляется своим собственным выделенным полупроводниковым элементом. Транзистор обеспечивает доступ в каждом столбце только к одному пикселю. При активации строки к ней подключаются все столбцы, и на них подается напряжение. Затем строка деактивируется, и активируется следующая. При обновлении дисплея последовательно активируются все строки. Активно-матричные экраны значительно четче и ярче пассивных того же размера, и обычно отличаются более быстрым откликом, который обеспечивает гораздо лучшее качество изображения.
Скрученный нематик (TN)
TN-экраны содержат ЖК-элементы, которые для регулирования количества пропускаемого света в разной степени скручиваются и раскручиваются. Если напряжение на электроды ЖК-ячейки TN-матрицы не подается, то луч поляризуется таким образом, что может пройти сквозь нее. Жидкие кристаллы скручиваются пропорционально приложенной разнице потенциалов до 90°, изменяют поляризацию и блокируют подсветку. При подаче напряжения определенного уровня можно добиться практически любого оттенка серого.
3LCD-технология
Представляет собой систему видеопроекции, в которой для создания изображения используются 3 микродисплейные панели. В 1995 г. благодаря компактности и высокому качеству технология начала применяться многими производителями фронтальных проекторов, а с 2002 г. – и в проекционных телевизорах. Активная матрица обеспечивает отличную цветопередачу, высокую яркость и четкое изображение, а использование высокотемпературного поликремния позволяет получить большую глубину черного.
IPS-технология
Аббревиатура IPS расшифровывается как «плоскостное переключение». Принцип работы ЖК-монитора данного типа основан на выравнивании жидкокристаллических ячеек в горизонтальной плоскости. Метод заключается в том, что электрическое поле проходит через оба конца кристалла, но требует двух транзисторов на каждый пиксель вместо одного, как в стандартном TFT-экране. Следствием этого является большая блокировка участка дисплея, что требует более яркой подсветки, которая расходует больше энергии. Это накладывает ограничения в использовании данного вида ЖК-монитора в ноутбуках.
Экраны нулевой мощности
Зенитальные элементы с двумя устойчивыми состояниями (ZBD), разработанные компанией QinetiQ, способны сохранять свою ориентацию без внешнего электрического поля. Принцип работы ЖК-монитора данного типа основан на том, что кристаллы могут находиться в одном из двух положений – «черном» или «белом». Питание требуется лишь для изменения состояния ЖК-элемента на противоположное. Созданные на основе данной технологии экраны производит компания ZBD Displays. Она предлагает как черно-белые, так и цветные ZBD-дисплеи.
Французская компания Nemoptic разработала еще одну технологию, не требующую питания для сохранения изображения. Похожие на бумагу ЖК-экраны производятся на Тайване с июля 2003 года. Данная технология ориентирована на такие маломощные мобильные устройства, как переносные компьютеры и электронные книги. ЖКД с нулевой мощностью потребления составляют конкуренцию электронной бумаге.
Компания Kent Displays тоже разработала экран с нулевым энергопотреблением, в котором используются стабилизированные полимерные жидкие кристаллы ChLCD. Основным недостатком этой технологии является невысокая частота обновления, которая еще больше замедляется при низких температурах.
Контроль качества
ЖК-экраны могут иметь дефектные транзисторы, результатом чего являются постоянно открытые или закрытые участки, на которых пиксели остаются либо ярко освещенными, либо черными. Если в случае интегральных схем это бы означало брак, то дисплеи с несколькими неработающими точками, как правило, используются. Это невозможно запретить по экономическим соображениям, поскольку ЖК-панели значительно больше микросхем. Для определения максимально допустимого числа дефектных пикселей производители используют разные стандарты. Например, в ноутбуках ThinkPad для панели разрешением 2048 х 1536 оно равно 16. Из них яркими могут быть 15 пикселей, а темными – 16.
Дефект ЖК-экрана более вероятен, чем для большинства микросхем. Например, 12” SVGA-дисплей может иметь 8 дефектов, а 6” пластина – только 3. Вместе с тем из 137 штампов приемлемыми будут 134 при практически нулевом браке ЖКД. Стандарты качества сегодня намного выше, чем раньше, благодаря жесткой конкуренции между производителями и улучшенному контролю. SVGA-экран с 4 дефектными пикселями теперь считается дефектным, и клиенты имеют возможность обменять его на новый.
100% гарантия
Ряд производителей, особенно южнокорейских, поскольку там находятся одни из крупнейших фабрик по производству ЖК-панелей (например, LG), сегодня гарантируют отсутствие неисправных пикселей и производят замену экрана даже с единственным дефектом. Даже если такая гарантия не предоставляется, важно расположение дефектных участков. Экраны с несколькими неисправными ячейками могут быть непригодны, если они расположены рядом друг c другом. Кроме того, производители могут произвести замену панели в том случае, если дефект расположен в центре дисплея.
Диагностика и ремонт мониторов
Ниже приведены наиболее часто встречающиеся неисправности и методы их устранения.
Индикатор питания горит постоянно, но изображение отсутствует. Вероятна поломка подсветки или ее инвертора. Простейший способ диагностики ЖК-монитора – включить воспроизведение видео и направить яркий луч либо почти параллельно экрану, либо перпендикулярно. Это позволит увидеть изображение даже без подсветки. Ремонт монитора заключается в замене лампы подсветки или, скорее всего, ее инвертора.
Индикатор питания мигает. В этом случае необходимо проверить, поступает ли в дисплей сигнал – вероятно повреждение кабеля либо разъема. Если все в порядке, то основную причину неисправности для конкретной марки монитора следует поискать в интернете. Например, для Dell 1702FP – это выход из строя некоторых конденсаторов. Простейший выход в этом случае – заменить все емкости. Также можно шунтировать неисправный конденсатор заведомо исправным.
Индикатор питания не загорается. Вероятная причина – поломка блока питания монитора. Можно попробовать его заменить, купив новый или воспользовавшись запчастями от старого дисплея. Другая возможная причина – КЗ конденсатора (его легко найти визуально) и перегорание предохранителя. В этом случае их следует заменить.
Вертикальные или горизонтальные линии. Если монитор работает, но имеет линии, простирающиеся на всю ширину или высоту экрана или раздваивание изображения по вертикали или горизонтали, то вероятным виновником является транзистор или соединение дисплея. Если один из сотен разъемов неисправен или закорочен, то это сказывается на всем ряду пикселей. Для ноутбуков иногда достаточно сжать проблемный участок и проблема уйдет на годы. Для дисплея ПК потребуется снять заднюю панель, чтобы добраться до неисправного соединения и приложить к нему давление.
Особенности ухода
Иногда качество изображения можно восстановить с помощью простой салфетки для ЖК-мониторов. Она устранит пыль, пятна от еды, отпечатки пальцев, следы насекомых, грязь и разводы.
Лучше использовать профессиональные средства, такие как чистящие спреи и пены-аэрозоли, но их можно заменить разведенным в равных пропорциях изопропиловым спиртом или уксусом.
Не следует использовать средства на основе спирта, аммиака или ацетона, поскольку они способны нанести вред экрану, особенно антибликовому покрытию.
Чистящее средство следует наносить на салфетку, а не на загрязнение.
Протирая дисплей, нельзя применять силу.
Нельзя включать монитор до полного его высыхания.
Недостатки
ЖК-технология по-прежнему отличается некоторыми недостатками в сравнении с другими подходами:
- Если электро-лучевые трубки могут работать с разным разрешением, не привнося искажений, ЖКД обеспечивают четкость только в случае их «родного разрешения». При попытке установить неподдерживаемые параметры экрана, изображение масштабируется, становится размытым или «блочным».
- ЖК-панели обеспечивают более низкую контрастность, чем плазменные или светодиодные. Причиной этого является то, что свет часто проникает через поляризационный фильтр и вместо черного цвета отображается серый. Однако при ярком внешнем освещении контрастность ЖКД может превышать данный показатель некоторых других дисплеев по причине большей максимальной яркости.
- ЖК-экраны отличаются большим временем отклика, чем плазменные аналоги, создавая видимые ореолы при быстром движении изображения, хотя этот показатель по мере развития технологии постоянно улучшается и в современных ЖК-панелях практически незаметен. Большинство TN- и IPS-дисплеев имеют время отклика 5–8 мс.
- Овердрайв, применяемый в некоторых панелях, приводит к тому, что на участках изменяющегося изображения возникают артефакты в виде повышенного шума или ореолов. Причиной этого побочного эффекта является стремление пикселей достичь предполагаемой яркости (или напряжения, которое требуется для прохождения нужного количества света), после чего они возвращаются к целевому уровню, обеспечивая лучшее время отклика.
- ЖК-дисплеи отличаются ограниченными углами обзора, из-за чего одновременно смотреть на экран может меньшее число зрителей. При достижении предельного угла контрастность и цветопередача ухудшаются. Но некоторые производители используют этот эффект, предлагая намеренно ограниченный обзор ЖК-монитора с целью обеспечения большей конфиденциальности, например, при пользовании ноутбуком в общественных местах. Кроме того, это позволяет создать для одного наблюдателя 2 различных изображения, создавая стереоскопический эффект.
- Некоторые старые ЖК-мониторы могут вызвать мигрени и проблемами со зрением по причине мерцания ламп подсветки, работающих с частотой сети 50 Гц. В современных экранах это устранено с переходом на питание высокочастотным током.
- ЖК-дисплеи иногда страдают от выгорания. По мере развития технологии данная проблема снижается, поскольку появляются новые методы ее устранения. Иногда экран можно восстановить путем длительного отображения белого изображения.
- Некоторые ЖКД не способны работать в режиме низкого разрешения (например, 320 х 200). Но это связано со схемой управления, а не особенностями ЖК-монитора.
- Плоские дисплеи очень уязвимы. Но их легкий вес снижает вероятность повреждения, а некоторые модели защищены стеклом.
Устройство и принцип работы ЖК монитора
В наше время технологии не стоят на месте, они стремительно развиваются, благодаря чему в мир выходят все новые, удивительные и высокотехнологичные устройства. Это касается и технологий изготовления LCD мониторов, которые на сегодняшний день пользуются наибольшим распространением и имеют самые большие перспективы. Но каково же устройство ЖК монитора и в чем его преимущества? Именно об этом и пойдет речь в данной публикации.
1. Что такое ЖК монитор
1.1. Принцип работы ЖК монитора
Для начала стоит разобраться, что же такое ЖК монитор. Для этого нужно понять, что такое LCD-дисплей. Как вы, наверное, уже догадались LCD это некое сокращение, полностью название имеет следующий вид – Liquid Crystal Display. В переводе на русский язык это означает жидкокристаллический дисплей. Таким образом, становится понятно, что ЖК и LCD – это одно и то же.
Данная технология построена на использовании специальных молекул жидких кристаллов, которые имеют уникальные свойства. Такие мониторы отличаются рядом неоспоримых преимуществ. Для того чтобы их понять стоит более детально разобрать принцип работы ЖК мониторов.
2. Устройство LCD монитора и принцип его работы
Как уже говорилось выше, для изготовления ЖК-дисплея используются специальные вещества, которые называются цианофенилами. Они находятся в жидком состоянии, однако при этом они имеют уникальные свойства, которые присущи кристаллическим телам. По сути – это такая жидкость, которая имеет анизотропию свойств, в частности оптических. Эти свойства связаны с упорядоченностью в ориентации молекул.
Принцип работы жидкокристаллических мониторов основывается на поляризационных свойствах молекул кристаллов. Эти молекулы способны пропускать исключительно ту составляющую света, вектор электромагнитной индукции которой располагается в параллельной оптической плоскости поляроида (молекулы кристалла). Другие световые спектры кристаллы не пропускают. Другими словами, цианофенилы являются световыми фильтрами, пропускающими только определенный световой спектр – один из основных цветов. Такой эффект и называется поляризацией света.
Благодаря тому, что длинные молекулы жидких кристаллов меняют свое расположение в зависимости от электромагнитного поля, появилась возможность управления поляризацией. То есть в зависимости от силы воздействующего электромагнитного поля на циенофенилы они меняют свое расположение и форму, тем самым меняя углы преломления света и меняя свою поляризацию. Именно благодаря сочетанию электрооптических свойств кристаллов и способности принимать форму сосуда такие молекулы получили название – жидкие кристаллы.
Именно на таких свойствах и основывается принцип работы LCD монитора. Благодаря изменению силы электромагнитного поля молекулы жидких кристаллов меняют свое положение. Таким образом, формируется изображение.
2.1. Матрица ЖК-дисплея
Матрица ЖК мониторы – это массив, состоящий из множества мельчайших сегментов, которые имеют название – пиксели. Каждым из этих пикселей можно управлять в отдельности, благодаря чему и возникает определенная картинка. Матрица LCD монитора состоит из нескольких слоев. Ключевая роль принадлежит двум панелям, которые изготовлены из свободного от натрия, а также абсолютно чистого стеклянного материала. Этот материал имеет название субстрат (или в народе – подложка). Именно между этими двумя слоями и располагается тончайший слой жидких кристаллов.
Помимо этого на панелях имеются специальные бороздки, которые контролируют кристаллы, задавая им нужную ориентацию (положение). Эти бороздки расположены параллельно друг другу на панели и перпендикулярны расположению бороздок на другой панели. То есть, на одной панели они горизонтальны, а на другой вертикальны. Если посмотреть на экран через увеличительное стекло, то можно будет увидеть тончайшие полоски (вертикально и горизонтально). Они образуют маленькие квадратики – это и есть пиксели. Они бывают и круглой формы, но в подавляющем большинстве – квадратные.
Освещение жидкокристаллических панелей может реализовываться двумя способами:
- Отражение света;
- Прохождение света.
При этом плоскость поляризации световых потоков может поворачиваться на 90˚ в момент прохождения через одну панель.
В случае возникновения электрического поля, молекулы кристаллов частично выстраиваются вертикально вдоль этого поля. При этом угол поворота плоскости поляризации световых потоков меняется, и становится отличным от 90˚. Благодаря этому свет беспрепятственно проходит сквозь молекулы.
Такой поворот плоскости абсолютно невозможно заметить невооруженным глазом. Из-за этого появилась потребность в добавлении к стеклянным панелям еще двух других слоев, которые играют роль поляризационных фильтров. Они пропускают исключительно такие спектры световых лучей, ось поляризации которых соответствует установленному значению. Другими словами, благодаря дополнительным панелям в момент прохождения света через поляризатор он будет ослаблен. Интенсивность света зависит от угла между плоскостью поляризации (дополнительных панелей) и осью поляризатора (основные стеклянные панели).
Если напряжение отсутствует, то ячейка будет абсолютно прозрачной, так как первый поляризатор исключительно тот свет, который имеет соответствующее направление поляризации. Направление поляризации задается молекулами жидких кристаллов, и к тому времени, как свет поступит ко второму поляризатору, он уже будет повернут, чтобы пройти через него без затруднений.
В случае воздействия электрического поля поворот вектора поляризации осуществляется на меньший угол. Это в свою очередь делает второй поляризатор частично прозрачным для потоков света. Если сделать так, что поворот плоскости поляризации в молекулах жидких кристаллов вовсе будет отсутствовать, то свет будет полностью поглощаться вторым поляризатором. Другими словами при освещении задней части дисплея передняя часть будет качаться абсолютно черной.
2.2. Управление поляризацией в ЖК мониторах при помощи электродов
Учитывая это, разработчики оснастили дисплеи достаточным количеством электродов, которые создают разные электромагнитные поля в отдельных частях экрана (в каждом пикселе). Благодаря такому решению они достигли возможности, в условиях правильного управления потенциалами этих электродов, воспроизводить на экране дисплея буквы, и даже сложные разноцветные картинки. Эти электроды могут обладать любой формой и располагаются в прозрачном пластике.
Благодаря современным новшествам в технологии, электроды имеют весьма небольшие размеры – их практически не видно не вооруженным глазом. Благодаря этому на относительно небольшой площади дисплея можно разместить достаточно большое количество электродов, что позволяет увеличить разрешение ЖК-дисплея. Это в свою очередь позволяет улучшить качество отображаемой картинки и воспроизводить даже самые сложные картинки.
2.3. Получение цветного изображения
Принцип работы жидкокристаллических мониторов заключается в довольно сложных процессах. Однако благодаря этому пользователь получает высокое качество изображения на своем мониторе. Для того чтобы отображать цветную картинку, дисплею LCD необходима задняя подсветка, благодаря которой свет будет исходить из задней части экрана. Это позволяет пользователям наблюдать максимально высокое качество изображения, даже в условиях затемненной окружающей среды.
Принцип работы ЖК мониторов для вывода цветной картинки основывается на применении все тех же трех основных цветов:
- Синий;
- Зеленый;
- Красный.
Для получения этих спектров используется три фильтра, отсеивающие остальные спектры видимого излучения. При помощи комбинирования этих цветов для каждого пикселя (ячейки) достигается возможность вывода полноценной цветной картинки.
На сегодняшний день существует два способа для получения цветной картинки:
- Использование нескольких фильтров, расположенных друг за другом. Это приводит к малой доле пропускаемого света.
- Использование свойств молекул жидких кристаллов. Для отражения (или поглощения) излучения нужной длины можно изменять силу напряжения электромагнитного поля, которое влияет на расположение молекул жидких кристаллов, тем самым фильтруя излучение.
Каждый производитель выбирает свой вариант получения цветного изображения. Стоит отметить, что первый способ более простой, однако второй – более эффективный. Также стоит отметить, что для повышения качества изображения в современных ЖК-дисплеях, которые обладают высоким разрешением экрана, используется технология STN, позволяющая поворачивать плоскости поляризации света в кристаллах на 270˚. Также были разработаны такие типы матриц как TFT и IPS.
Именно TFT и IPS матрицы пользуются наибольшим распространением в наше время.
TFT – это Thin Film Transistor. Другими словами – это тонкопленочный транзистор, который управляет пикселем. Толщина такого транзистора составляет 0,1-0,01 микрон. Благодаря этой технологии появилась возможность достичь еще более высокого качества изображения путем управления каждым пикселем.
Технология IPS – это самая новая разработка, позволяющая достичь наивысшего качества изображения. Она предоставляет максимальные углы обзора, однако имеет большее время отклика. То есть медленнее реагирует на изменения напряжения. Однако разница во времени между 5 мс и 14 мс абсолютно не видна.
Теперь вы знаете, как работает ЖК монитор. Однако это еще не все. Существует такое понятие как частота обновления экрана.
3. Частота обновления экрана ЖК монитора
Частота обновления экрана – это характеристика, которая обозначает количество возможных изменений изображения в секунду – количество кадров в секунду. Измеряется этот показатель в Гц. Частота обновления экрана влияет на качество изображение, в частности на плавность движений. Максимальный видимый предел частоты составляет 120 Гц. Частоту выше этого предела мы увидеть не сможем, поэтому увеличивать ее нет смысла. Однако для того, чтобы монитор смог работать на такой частоте необходима мощная видеокарта, которая сможет выдавать те же 120 Гц с запасом.
Помимо этого, частота обновления экрана влияет на органы зрения и даже на психику. Выражается такое воздействие в первую очередь на усталости глаз. При низкой частоте мерцания глаза быстро устают и начинают болеть. Кроме этого, у людей со склонностью к эпилепсии могут вызываться припадки. Однако в современных LCD мониторах используются специальные лампы для подсветки матрицы, которые имеют частоту свыше 150 Гц, а указываемая частота обновления больше влияет на скорость смены картинки, но не на мерцание дисплея. Поэтому LCD мониторы меньше всего влияют на органы зрения и организм человека.
4. Как работает LCD-дисплей: Видео
4.1. Требуемая частота монитора для просмотра 3D
Для использования активных и поляризационных 3D очков используются LCD матрицы, имеющие частоту обновления экрана 120 Гц. Это необходимо для того, чтобы разделить изображения для каждого глаза, при этом частота для каждого глаза должна составлять не менее 60 Гц. Мониторы с частотой 120 Гц можно использовать и для обычных 2D фильмов или для игр. При этом плавность движений заметно лучше, нежели в мониторах с частотой 60 Гц.
Помимо этого, в таких мониторах используются специальные лампы или LED (светодиоды) подсветка, имеющая еще более высокую частоту мерцания, которая составляет около 480 Гц. Это в свою очередь существенно уменьшает нагрузку на органы зрения.
В современных мониторах можно встретить два метода реализации подсветки матрицы:
- LED – светодиодная подсветка;
- Люминесцентные лампы.
Все крупные производители переходят на использование LED подсветки, так как она имеет значительные преимущества перед люминесцентными лампами. Они ярче, компактнее, экономичнее и позволяют достичь более равномерного распределения света.
Благодаря использованию новейших технологий ЖК-мониторы абсолютно не уступают своим прямым конкурентам – плазменным панелям, а в некоторых случаях даже превосходят их.
Жидкокристаллический монитор — это… Что такое Жидкокристаллический монитор?
Жидкокристаллический монитор (также Жидкокристаллический дисплей, ЖКД, ЖК-монитор, англ. liquid crystal display, LCD, плоский индикатор) — плоский монитор на основе жидких кристаллов.
LCD TFT (англ. TFT — thin film transistor — тонкоплёночный транзистор) — одно из названий жидкокристаллического дисплея, в котором используется активная матрица, управляемая тонкоплёночными транзисторами. Усилитель TFT для каждого субпиксела применяется для повышения быстродействия, контрастности и чёткости изображения дисплея.
Назначение ЖК-монитора
Жидкокристаллический монитор предназначен для отображения графической информации с компьютера, TV-приёмника, цифрового фотоаппарата, электронного переводчика, калькулятора и пр.
Изображение формируется с помощью отдельных элементов, как правило, через систему развёртки. Простые приборы (электронные часы, телефоны, плееры, термометры и пр.) могут иметь монохромный или 2-5 цветный дисплей. Многоцветное изображение формируется с помощью 2008) в большинстве настольных мониторов на основе TN- (и некоторых *VA) матриц, а также во всех дисплеях ноутбуков используются матрицы с 18-битным цветом(6 бит на канал), 24-битность эмулируется мерцанием с дизерингом.
Устройство ЖК-монитора
Субпиксел цветного ЖК-дисплея
Каждый пиксел ЖК-дисплея состоит из слоя молекул между двумя прозрачными электродами, и двух поляризационных фильтров, плоскости поляризации которых (как правило) перпендикулярны. В отсутствие жидких кристаллов свет, пропускаемый первым фильтром, практически полностью блокируется вторым.
Поверхность электродов, контактирующая с жидкими кристаллами, специально обработана для изначальной ориентации молекул в одном направлении. В TN-матрице эти направления взаимно перпендикулярны, поэтому молекулы в отсутствие напряжения выстраиваются в винтовую структуру. Эта структура преломляет свет таким образом, что до второго фильтра плоскость его поляризации поворачивается, и через него свет проходит уже без потерь. Если не считать поглощения первым фильтром половины неполяризованного света — ячейку можно считать прозрачной. Если же к электродам приложено напряжение — молекулы стремятся выстроиться в направлении поля, что искажает винтовую структуру. При этом силы упругости противодействуют этому, и при отключении напряжения молекулы возвращаются в исходное положение. При достаточной величине поля практически все молекулы становятся параллельны, что приводит к непрозрачности структуры. Варьируя напряжение, можно управлять степенью прозрачности. Если постоянное напряжение приложено в течении долгого времени — жидкокристаллическая структура может деградировать из-за миграции ионов. Для решения этой проблемы применяется переменный ток, или изменение полярности поля при каждой адресации ячейки (непрозрачность структуры не зависит от полярности поля). Во всей матрице можно управлять каждой из ячеек индивидуально, но при увеличении их количества это становится трудновыполнимо, так как растёт число требуемых электродов. Поэтому практически везде применяется адресация по строкам и столбцам. Проходящий через ячейки свет может быть естественным — отражённым от подложки(в ЖК-дисплеях без подсветки). Но чаще применяют искусственный источник света, кроме независимости от внешнего освещения это также стабилизирует свойства полученного изображения. Таким образом полноценный ЖК-монитор состоит из электроники, обрабатывающей входной видеосигнал, ЖК-матрицы, модуля подсветки, блока питания и корпуса. Именно совокупность этих составляющих определяет свойства монитора в целом, хотя некоторые характеристики важнее других.
Технические характеристики ЖК-монитора
Важнейшие характеристики ЖК-мониторов:
- Разрешение: Горизонтальный и вертикальный размеры, выраженные в пикселах. В отличие от ЭЛТ-мониторов, ЖК имеют одно, «родное», физическое разрешение, остальные достигаются интерполяцией.
Фрагмент матрицы ЖК монитора (0,78х0,78 мм), увеличеный в 46 раз.
- Размер точки: расстояние между центрами соседних пикселов. Непосредственно связан с физическим разрешением.
- Видимая диагональ: размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
- Контрастность: отношение яркостей самой светлой и самой тёмной точек. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведенная для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
- Яркость: количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
- Время отклика: минимальное время, необходимое пикселу для изменения своей яркости. Методы измерения неоднозначны.
- Угол обзора: угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению.
- Тип матрицы: технология, по которой изготовлен ЖК-дисплей.
- Входы: (напр, DVI, HDMI и пр.).
Технологии
Часы с ЖКИ-дисплеем
Жидкокристаллические мониторы были разработаны в 1963 году в исследовательском центре Давида Сарнова (David Sarnoff) компании RCA, Принстон, штат Нью-Джерси.
Основные технологии при изготовлении ЖК дисплеев: TN+film, IPS и MVA. Различаются эти технологии геометрией поверхностей, полимера, управляющей пластины и фронтального электрода. Большое значение имеют чистота и тип полимера со свойствами жидких кристаллов, примененный в конкретных разработках.
Время отклика ЖК мониторов, сконструированных по технологии SXRD (англ. Silicon X-tal Reflective Display — кремниевая отражающая жидкокристаллическая матрица), уменьшено до 5 мс. Компании Sony, Sharp и Philips совместно разработали технологию PALC (англ. Plasma Addressed Liquid Crystal — плазменное управление жидкими кристаллами), которая соединила в себе преимущества LCD (яркость и сочность цветов, контрастность) и плазменных панелей (большие углы видимости по горизонту, H, и вертикали, V, высокую скорость обновления). В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения.
TN+film (Twisted Nematic + film)
Макрофотография TN+film матрицы монитора NEC LCD1770NX. На белом фоне — стандартный курсор Windows
Часть «film» в названии технологии означает дополнительный слой, применяемый для увеличения угла обзора (ориентировочно — от 90° до 150°). В настоящее время приставку «film» часто опускают, называя такие матрицы просто TN. К сожалению, способа улучшения контрастности и времени отклика для панелей TN пока не нашли, причём время отклика у данного типа матриц является на настоящий момент одним из лучших, а вот уровень контрастности — нет.
TN + film — самая простая технология.
Матрица TN + film работает следующим образом: если к субпикселам не прилагается напряжение, жидкие кристаллы (и поляризованный свет, который они пропускают) поворачиваются друг относительно друга на 90° в горизонтальной плоскости в пространстве между двумя пластинами. И так как направление поляризации фильтра на второй пластине составляет угол в 90° с направлением поляризации фильтра на первой пластине, свет проходит через него. Если красные, зеленые и синие субпиксели полностью освещены, на экране образуется белая точка.
К достоинствам технологии можно отнести самое маленькое время отклика среди современных матриц, а также невысокую себестоимость.
IPS (In-Plane Switching)
Технология In-Plane Switching была разработана компаниями Hitachi и NEC и предназначалась для избавления от недостатков TN + film. Однако, хотя с помощью IPS удалось добиться увеличения угла обзора до 170°, а также высокой контрастности и цветопередачи, время отклика осталось на низком уровне.
На настоящий момент матрицы, изготовленные по технологии IPS единственные из ЖК-мониторов, всегда передающие полную глубину цвета RGB — 24 бита, по 8 бит на канал. TN-матрицы почти всегда имеют 6-бит, как и часть MVA.
Если к матрице IPS не приложено напряжение, молекулы жидких кристаллов не поворачиваются. Второй фильтр всегда повернут перпендикулярно первому, и свет через него не проходит. Поэтому отображение черного цвета близко к идеалу. При выходе из строя транзистора «битый» пиксель для панели IPS будет не белым, как для матрицы TN, а черным.
При приложении напряжения молекулы жидких кристаллов поворачиваются перпендикулярно своему начальному положению и пропускают свет.
IPS в настоящее время вытеснено технологией S-IPS (Super-IPS, Hitachi 1998 год), которая наследует все преимущества технологии IPS с одновременным уменьшением времени отклика. Но, несмотря на то, что цветность S-IPS панелей приблизилась к обычным мониторам CRT, контрастность все равно остаётся слабым местом. S-IPS активно используется в панелях размером от 20″, LG.Philips, NEC остаются единственными производителями панелей по данной технологии.
Макрофотография S-IPS матрицы монитора NEC 20 WGX2 Pro. Стандартный курсор Windows на оранжевом фоне
AS-IPS — технология Advanced Super IPS (Расширенная Супер-IPS), также была разработана корпорацией Hitachi в 2002 году. В основном улучшения касались уровня контрастности обычных панелей S-IPS, приблизив его к контрастности S-PVA панелей. AS-IPS также используется в качестве названия для мониторов корпорации LG.Philips.
A-TW-IPS — Advanced True White IPS (Расширенная IPS с настоящим белым), разработано LG.Philips для корпорации
AFFS — Advanced Fringe Field Switching (неофициальное название S-IPS Pro). Технология является дальнейшим улучшением IPS, разработана компанией BOE Hydis в 2003 году. Усиленная мощность электрического поля позволила добиться ещё больших углов обзора и яркости, а также уменьшить межпиксельное расстояние. Дисплеи на основе AFFS в основном применяются в планшетных ПК, на матрицах производства Hitachi Displays.
*VA (Vertical Alignment)
MVA — Multi-domain Vertical Alignment. Эта технология разработана компанией Fujitsu как компромисс между TN и IPS технологиями. Горизонтальные и вертикальные углы обзора для матриц MVA составляют 160°(на современных моделях мониторов до 176—178 градусов), при этом благодаря использованию технологий ускорения (RTC) эти матрицы не сильно отстают от TN+Film по времени отклика, но значительно превышают характеристики последних по глубине цветов и точности их воспроизведения.
MVA стала наследницей технологии VA, представленной в 1996 году компанией Fujitsu. Жидкие кристаллы матрицы VA при выключенном напряжении выровнены перпендикулярно по отношению ко второму фильтру, то есть не пропускают свет. При приложении напряжения кристаллы поворачиваются на 90°, и на экране появляется светлая точка. Как и в IPS-матрицах, пиксели при отсутствии напряжения не пропускают свет, поэтому при выходе из строя видны как чёрные точки.
Достоинствами технологии MVA являются глубокий черный цвет и отсутствие, как винтовой структуры кристаллов, так и двойного магнитного поля.
Недостатки MVA в сравнении с S-IPS: пропадание деталей в тенях при перпендикулярном взгляде, зависимость цветового баланса изображения от угла зрения, большее время отклика.
Аналогами MVA являются технологии:
- PVA (Patterned Vertical Alignment) от Samsung.
- Super PVA от Samsung.
- Super MVA от CMO.
Матрицы MVA/PVA считаются компромиссом между TN и IPS, как по стоимости, так и по потребительским качествам.
Преимущества и недостатки
Искажение изображения на ЖК-мониторе при большом угле обзора
Макрофотография типичной жк-матрицы. В центре можно увидеть два дефектных субпикселя (зелёный и синий).
В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малый размер и вес в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки и сведения лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью. Энергопотребление ЖК-мониторов в 2-4 раза меньше, чем у ЭЛТ и плазменных экранов сравнимых размеров. Энергопотребление ЖК мониторов на 95 % определяется мощностью ламп подсветки или светодиодной матрицы подсветки (англ. backlight — задний свет) ЖК-матрицы. Во многих современных (2007) мониторах для настройки пользователем яркости свечения экрана используется широтно-импульсная модуляция ламп подсветки частотой от 150 до 400 и более Герц. Светодиодная подсветка в основном используется в небольших дисплеях, хотя в последние годы она все шире применяется в ноутбуках и даже в настольных мониторах. Несмотря на технические трудности её реализации, она имеет и очевидные преимущества перед флуоресцентными лампами, например более широкий спектр излучения, а значит, и цветовой охват.
С другой стороны, ЖК-мониторы имеют и некоторые недостатки, часто принципиально трудноустранимые, например:
- В отличие от ЭЛТ, могут отображать чёткое изображение лишь в одном («штатном») разрешении. Остальные достигаются интерполяцией с потерей чёткости. Причем слишком низкие разрешения (например 320×200) вообще не могут быть отображены на многих мониторах.
- Цветовой охват и точность цветопередачи ниже, чем у плазменных панелей и ЭЛТ соответственно. На многих мониторах есть неустранимая неравномерность передачи яркости (полосы в градиентах).
- Многие из ЖК-мониторов имеют сравнительно малый контраст и глубину чёрного цвета. Повышение фактического контраста часто связано с простым усилением яркости подсветки, вплоть до некомфортных значений. Широко применяемое глянцевое покрытие матрицы влияет лишь на субъективную контрастность в условиях внешнего освещения.
- Из-за жёстких требований к постоянной толщине матриц существует проблема неравномерности однородного цвета (неравномерность подсветки).
- Фактическая скорость смены изображения также остаётся ниже, чем у ЭЛТ и плазменных дисплеев. Технология overdrive решает проблему скорости лишь частично.
- Зависимость контраста от угла обзора до сих пор остаётся существенным минусом технологии.
- Массово производимые ЖК-мониторы более уязвимы, чем ЭЛТ. Особенно чувствительна матрица, незащищённая стеклом. При сильном нажатии возможна необратимая деградация. Также существует проблема дефектных пикселей.
- Вопреки расхожему мнению пикселы ЖК-мониторов деградируют, хотя скорость деградации наименьшая из всех технологий отображения.
Перспективной технологией, которая может заменить ЖК-мониторы, часто считают OLED-дисплеи. С другой стороны, эта технология встретила сложности в массовом производстве, особенно для матриц с большой диагональю.
См. также
Ссылки
Литература
- Артамонов О. Параметры современных ЖК-мониторов
- С. П. Мирошниченко, П. В. Серба. Устройство ЖКИ. Лекция 1
- Мухин И. А. Как выбрать ЖК-монитор?. «Компьютер-бизнес-маркет», № 4 (292), январь 2005, стр. 284—291.
- Мухин И. А. Развитие жидкокристаллических мониторов. «BROADCASTING Телевидение и радиовещение»: 1 часть — № 2(46) март 2005, с.55-56; 2 часть — № 4(48) июнь-июль 2005, с.71-73.
- Мухин И. А. Современные плоскопанельные отображающие устройства.»BROADCASTING Телевидение и радиовещение»: № 1(37), январь-февраль 2004, с.43-47.
- Мухин И. А., Украинский О. В. Способы улучшения качества телевизионного изображения, воспроизводимого жидкокристаллическими панелями. Материалы доклада на научно-технической конференции «Современное телевидение», Москва, март 2006.
Wikimedia Foundation. 2010.
Из чего состоит монитор?
Опубликовано 16.01.2019 автор Андрей Андреев — 1 комментарий
Приветствую, друзья! Единственное устройство вывода информации, с которым удобно работать пользователю – монитор, которым комплектуется любой компьютер. Принципиальное отличие этого девайса от телевизора, несмотря на подобие конструкции, в том, что компьютерный монитор никогда не оснащается тюнером.
А если вы хотите смотреть телепередачи на компьютере, то придется установить тюнер как отдельный модуль, но уже в сам системный блок.
За длительную историю своего развития, монитор претерпел множественные конструкционные изменения, «мутировав» от примитивной электронно-лучевой трубки, гибрида радара и осциллографа, в высокотехнологичный жидкокристаллический экран, который в том числе удобно вешать на стену.
В сегодняшнем посте я расскажу из чего состоит монитор и какие функции выполняют его внутренности. Речь пойдет о современных ЖК-дисплеях. Как устроен ЭЛТ-монитор, мы рассматривать не будем: технология морально устарела, а у меня все-таки передовой и прогрессивный блог.
Не забудьте оформить подписку на новостную рассылку, чтобы вовремя получать уведомления о новых публикациях. А почитать об истории развития мониторов вы можете тут.
Матрица
«Сердцевина» любого монитора – жидкокристаллическая матрица. Представляет она собой несколько слоев стеклянных пластин, между слоями которых расположены жидкие кристаллы – особая смесь, которая может изменять угол преломления света, в зависимости от подаваемого напряжения.
Какой именно цвет будет отображаться, зависит от направленности поля, индуцируемого электрическим током.
Большинство мониторов использует аддитивную схему цветопередачи RGB, при которой любой из миллионов цветов в палитре, генерируется сочетанием в различных пропорциях трех основных цветов – красного, синего и зеленого.
Высокотехнологичная матрица – самая дорогостоящая деталь в мониторе или экране ноутбука. При повреждении, отремонтировать ее невозможно – только полная замена, поэтому не стоит подвергать экран физическим воздействиям.
Подсветка
Сами по себе кристаллы не излучают свет, а только преломляют его. Для того, чтобы пользователь мог видеть кристалл, его нужно подсветить с обратной стороны. Существуют «экзотические» экраны без всякой подсветки, где матрица ничем нигде не прикрыта, а изображение видно, благодаря естественному освещению в помещении.
В мониторе же, для компа, используется другой подход: матрица прочно крепится в корпусе и подсвечивается изнутри лампой. Существует несколько типов подсветки. Самыми распространенными являются LCD – газоразрядная лампа накаливания с холодным катодом, и LED – подсвечивание с помощью светодиодов.Небольшая рекомендация: если ищите для себя новый тип монитора, можете заглянуть в этот популярный интернет-магазинчик, там их целая куча). Также читайте детальнее про виды мониторов для компьютера.
Блок питания
Естественно, ни одно электронное устройство не будет работать без подачи электрического тока. Блок питания преобразует переменный ток, напряжением 220 В из сети и преобразует его в постоянный.
Этот модуль обычно расположен внутри корпуса монитора, но может и быть внешним. В последнем случае ремонт более удобен: не нужно лишний раз разбирать монитор, для доступа к электрической схеме блока питания.
Модуль управления
Назначение этого компонента – преобразование сигнала, подаваемого с видеоадаптера, в последовательность сигналов для покадровой развертки.
Обычно в работу этого модуля может вмешаться пользователь, отрегулировав параметры картинки: яркость, контрастность, режим просмотра, положение изображения на экране и многое другое.
Этот же модуль отвечает за активацию режима 3D, начиная попеременно демонстрировать кадры для левого и правого глаза.
Однако учитывайте, что, если вы даже приобрели монитор с такой «фичей», для просмотра объемных фильмов, потребуются специальные поляризационные очки, которые могут не поставляться в комплекте с монитором.Кроме того, такой режим работы дисплея требует наличия мощной видеокарты на ПК: кадры в этом режиме обновляются с частотой 120 в секунду, при этом быстро чередуются кадры для левого и правого глаза, создавая объемную картинку.
Корпус
Логично, что всю электронную начинку необходимо впихнуть в прочный корпус для ее сохранности. Тут уже прикладывают руку дизайнеры, назначение которых – создать привлекательный для потребителей девайс.
Именно внешний вид может стать решающим фактором при покупке монитора, ведь в большинстве случаев, в одном ценовом сегменте, дисплеи имеют одинаковые технические характеристики.
Вариантов реализации несколько: в «классическом» виде монитор покоится на подставке, которая должна обеспечивать необходимый угол наклона. Некоторые модели ставятся на рабочий стол прямо нижней кромкой, а сзади выдвигается специальный упор, не дающий устройству упасть.Кроме того, существует ряд моделей, с уже готовыми кронштейнами для крепления монитора на стене. На корпусе же крепятся слоты для подключения видеокарты и кабеля питания.
Послесловие
Как видите, несмотря на сложность реализации, современный монитор имеет простое и логичное строение. Однако, чтобы прийти к этой простоте, инженерам потребовалось не одно десятилетие.
Возможно, со временем изобретут еще более совершенную конструкцию. Как устроен будет монитор будущего, можно только строить догадки.
А на сегодня все. Советую также почитать статью «Как выбрать правильно монитор». Не забывайте поделиться этой публикацией в социальных сетях. До завтра!
С уважением, автор блога Андрей Андреев