Бесколлекторные двигатели постоянного тока. Устройство бесколлекторного двигателя. — Avislab
Общее устройство (Inrunner, Outrunner)
Бесколлекторный двигатель постоянного тока состоит из ротора с постоянными магнитами и статора с обмотками. Различают два типа двигателей: Inrunner, у которых магниты ротора находятся внутри статора с обмотками, и Outrunner, у которых магниты расположены снаружи и вращаются вокруг неподвижного статора с обмотками.Схему Inrunner обычно применяют для высокооборотистых двигателей с небольшим количеством полюсов. Outrunner при необходимости получить высокомоментный двигатель со сравнительно небольшими оборотами. Конструктивно Inrunners проще из за того, что неподвижный статор может служить корпусом. К нему могут быть смонтированы крепежные приспособления. В случае Outrunners вращается вся внешняя часть. Крепеж двигателя осуществляется за неподвижную ось либо детали статора. В случае мотор-колеса крепление осуществляется за неподвижную ось статора, провода заводятся к статору через полую ось.
Магниты и полюса
Количество полюсов на роторе четное. Форма применяемых магнитов обычно прямоугольная. Цилиндрические магниты применяются реже. Устанавливаются они с чередованием полюсов.Количество магнитов не всегда соответствует количеству полюсов. Несколько магнитов могут формировать один полюс:
В этом случае 8 магнитов формируют 4 полюса. Размер магнитов зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу.
Магниты на роторе закрепляются с помощью специального клея. Реже встречаются конструкции с держателем магнитов. Материал ротора может быть магнитопроводящим (стальным), немагнитопроводящим (алюминиевые сплавы, пластики и т.п.), комбинированным.
Обмотки и зубья
Обмотка трехфазного бесколлекторного двигателя выполняется медным проводом. Провод может быть одножильным или состоять из нескольких изолированных жил. Статор выполняется из нескольких сложенных вместе листов магнитопроводящей стали.Количество зубьев статора должно делиться на количество фаз. т.е. для трехфазного бесколлекторного двигателя количество зубьев статора должно делиться на 3. Количество зубьев статора может быть как больше так и меньше количества полюсов на роторе. Например существуют моторы со схемами: 9 зубьев/12 магнитов; 51 зуб/46 магнитов.
Двигателя с 3-х зубым статором применяют крайне редко. Поскольку в каждый момент времени работает только две фазы (при включении звездой), магнитные силы воздействуют на ротор не равномерно по всей окружности (см. рис.).
Силы, воздействующие на ротор, стараются его перекосить, что приводит к увеличению вибраций. Для устранения этого эффекта статор делают с большим количеством зубьев, а обмотку распределяют по зубьям всей окружности статора как можно равномернее.
В этом случае магнитные силы, воздействующие на ротор, компенсируют друг друга. Дисбаланса не возникает.
Варианты распределения обмоток фаз по зубьям статора
Вариант обмотки на 9 зубов
Вариант обмотки на 12 зубов
В приведенных схемах число зубов выбрано таким образом, чтобы оно делилось не только на 3. Например, при 36 зубьях приходится 12 зубьев на одну фазу. 12 зубьев можно распределить так:
6 групп по 2 зуба
4 группы по 3 зуба
3 группы по 4 зуба
2 группы по 6 зубьев
Наиболее предпочтительна схема 6 групп по 2 зуба.
Существует двигатель с 51 зубом на статоре! 17 зубов на одну фазу. 17 — это простое число, оно нацело делится только на 1 и на само себя. Как же распределить обмотку по зубьям? Увы, но я не смог найти в литературе примеров и методик, которые помогли бы решить эту задачу. Оказалось, что обмотка распределялась следующим образом:
Рассмотрим реальную схему обмотки.
Обратите внимание, что обмотка имеет разные направления намотки на разных зубьях. Разные направления намотки обозначаются прописными и заглавными буквами. Детально о проектировании обмоток можно прочитать в литературе, предложенной в конце статьи.
Классическая обмотка выполняется одним проводом для одной фазы. Т.е. все обмотки на зубьях одной фазы соединены последовательно.
Обмотки зубьев могут соединяться и параллельно.
Так же могут быть комбинированные включения
Параллельное и комбинированное включение позволяет уменьшить индуктивность обмотки, что приводит к увеличению тока статора (следовательно и мощности) и скорости вращения двигателя.
Обороты электрические и реальные
Если ротор двигателя имеет два полюса, то при одном полном обороте магнитного поля на статоре, ротор совершает один полный оборот. При 4 полюсах, чтобы повернуть вал двигателя на один полный оборот потребуется два оборота магнитного поля на статоре. Чем больше количество полюсов ротора, тем больше потребуется электрических оборотов для вращения вала двигателя на один оборот. Например, имеем 42 магнита на роторе. Для того чтобы провернуть ротор на один оборот, потребуется 42/2=21 электрический оборот. Это свойство можно использовать как своеобразный редуктор. Подобрав необходимое количество полюсов, можно получить двигатель с желаемыми скоростными характеристиками. Кроме того, понимание этого процесса будет нам необходимо в будущем, при выборе параметров регулятора.Датчики положения
Устройство двигателей без датчиков отличается от двигателей с датчиками только отсутствием последних. Других принципиальных отличий нет. Наиболее распространены датчики положения, работающие на основе эффекта Холла. Датчики реагируют на магнитное поле, их располагают, как правило, на статоре таким образом, чтобы на них воздействовали магниты ротора. Угол между датчиками должен быть 120 градусов.Имеется в виду «электрических» градусов. Т.е. для многополюсного двигателя физическое расположение датчиков может быть таким:
Иногда датчики располагают снаружи двигателя. Вот один из примеров расположения датчиков. На самом деле это был двигатель без датчиков. Таким простым способом его оснастили датчиками холла.
На некоторых двигателях датчики устанавливают на специальном устройстве, которое позволяет перемещать датчики в определенных пределах. С помощью такого устройства устанавливается угол опережения (timing). Однако, если двигатель требует реверса (вращения в обратную сторону) потребуется второй комплект датчиков, настроенных на обратный ход. Поскольку timing не имеет решающего значения при старте и низких оборотах, можно установить датчики в нулевую точку, а угол опережения корректировать программно, когда двигатель начнет вращаться.
Основные характеристики двигателя
Каждый двигатель рассчитывается под определенные требования и имеет следующие основные характеристики:- Режим работы на который рассчитан двигатель: длительный или кратковременный. Длительный режим работы подразумевает, что двигатель может работать часами. Такие двигатели рассчитываются таким образом, чтобы теплоотдача в окружающую среду была выше тепловыделения самого двигателя. В этом случае он не будет разогреваться. Пример: вентиляция, привод эскалатора или конвейера. Кратковременный — подразумевает, что двигатель будет включаться на короткий период, за который не успеет разогреться до максимальной температуры, после чего следует длительный период, за время которого двигатель успевает остыть. Пример: привод лифта, электробритвы, фены.
- Сопротивление обмотки двигателя. Сопротивление обмотки двигателя влияет на КПД двигателя. Чем меньше сопротивление, тем выше КПД. Измерив сопротивление, можно выяснить наличие межвиткового замыкания в обмотке. Сопротивление обмотки двигателя составляет тысячные доли Ома. Для его измерения требуется специальный прибор или специальная методика измерения.
- Максимальное рабочее напряжение. Максимальное напряжение, которое способна выдержать обмотка статора. Максимальное напряжение взаимосвязано со следующим параметром.
- Максимальные обороты. Иногда указывают не максимальные обороты, а Kv — количество оборотов двигателя на один вольт без нагрузки на валу. Умножив этот показатель на максимальное напряжение, получим максимальные обороты двигателя без нагрузки на валу.
- Максимальный ток. Максимально допустимый ток обмотки. Как правило, указывается и время, в течение которого двигатель может выдержать указанный ток. Ограничение максимального тока связано с возможным перегревом обмотки. Поэтому при низких температурах окружающей среды реальное время работы с максимальным током будет больше, а в жару двигатель сгорит раньше.
Максимальная мощность двигателя. Напрямую связана с предыдущим параметром. Это пиковая мощность, которую двигатель может развить на небольшой период времени, обычно — несколько секунд. При длительной работе на максимальной мощности неизбежен перегрев двигателя и выход его из строя.- Номинальная мощность. Мощность, которую двигатель может развивать на протяжении всего времени включения.
- Угол опережения фазы (timing). Обмотка статора имеет некоторую индуктивность, которая затормаживает рост тока в обмотке. Ток достигнет максимума через некоторое время. Для того, чтобы компенсировать эту задержку переключение фаз выполняют с некоторым опережением. Аналогично зажиганию в двигателе внутреннего сгорания, где выставляется угол опережения зажигания с учетом времени воспламенения топлива.
Звезда и Треугольник
Обмотки бесколлекторного двигателя соединяют по схеме звезда или треугольник (дельта).При включении звездой ток протекает через две обмотки. Результирующее сопротивление равно сумме сопротивлений двух обмоток R=R1+R2. Соответственно максимально возможный ток, протекаемый через обмотки I=U/(R1+R2). Потребляемая мощность P=U*I Предположим, что напряжение 10 В, а сопротивление обмотки 1 ОМ. Тогда ток I=10/(1+1)=5А. Потребляемая мощность P=10*5=50 Вт.
При включении треугольником ток протекает через все обмотки. Результирующее сопротивление обмоток R=(R1*(R2+R3))/(R1+R2+R3). Соответственно, максимально возможный ток, протекаемый через обмотки I=U/((R1*(R2+R3))/(R1+R2+R3)
При таком же напряжении и сопротивлении обмоток получаем ток I=10/((1*(1+1))/(1+1+1))=15А. Потребляемая мощность P=10*15=150 Вт.
При включении треугольником вырастают и обороты двигателя. Обмотки двигателя соединенные треугольником греются больше, чем при включении звездой.
Очевидно, что простым переключением обмотки с звезды в треугольник можно получить двигатель с совершенно другими характеристиками.
В высокомоментных двигателях с длительным режимом включения целесообразно применять звезду. В двигателях, работающих в кратковременном режиме, требующих более высоких оборотов, целесообразно применять треугольник.
Иногда в электротранспорте старт и разгон выполняется при включении обмоток звездой (так как это включение обеспечивает высокий момент на валу, но меньшие обороты), после разгона выполняется переключение в треугольник (обороты выше, момент меньше). Это позволяет увеличить диапазон оборотов двигателя, сохранив стартовые характеристики.
В следующей статье будет рассмотрен алгоритм управления бесколлекторными двигателями.
Литература
Design and Prototyping Methods for Brushless Motors and Motor Control by Shane W. ColtonВентильные электрические двигатели и приводы на их основе Овчинников И.Е.
Статьи по бесколлекторным моторам:
Бесколлекторные двигатели постоянного тока. Устройство бесколлекторного двигателя. Бесколлекторный электродвигатель
Как только я начал заниматся авиамоделизмом, мне сразу стало интересно почему у двигателя три провода, почему он такой маленький и в то же время такой мощный и зачем ему нужен регулятор скорости… Прошло время, и я во всем разобрался. И дальше поставил перед собой задачу сделать своими руками бесколлекторный двигатель.
Принцип работы электрического двигателя:
В основу работы любой электрической машины положено явление электромагнитной индукции. Поэтому если в магнитное поле поместить рамку с током, то на неё подействует сила Ампера , которая создаст вращательный момент. Рамка начнет поворачиваться и остановится в положении отсутствия момента, создаваемого силой Ампера.
Устройство электрического двигателя:
Любой электрический двигатель состоит из неподвижной части — Статора и подвижной части — Ротора . Для того чтобы началось вращение, нужно по очереди менять направление тока. Эту функцию и выполняет Коллектор (щетки).
Бесколлекторный двигатель — это двигатель ПОСТОЯННОГО ТОКА без коллектора, в котором функции коллектора выполняет электроника. (Если у двигателя три провода, это не значит что он работает от трехфазного переменного тока! А работает он от «порций» коротких импульсов постоянного тока, и не хочу вас шокировать, но те же двигатели которые используются в кулерах, тоже бесколлекторные, хоть они и имеют всего два провода питания постоянного тока)
Устройство бесколлекторного двигателя:
Inrunner (произносится как «инраннер»). Двигатель имеет расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор.
Outrunner (произносится как «аутраннер»). Двигатель имеет неподвижные обмотки (внутри) вокруг которых вращается корпус с помещенным на его внутреннюю стенку постоянными магнитами.
Принцип работы:
Для того чтобы бесколлекторный двигатель начал вращаться, напряжение на обмотки двигателя надо подавать синхронно. Синхронизация может быть организованна с использованием внешних датчиков (оптические или датчики холла), так и на основе противоЭДС (бездатчиковый), которая возникает в двигателе при его вращении.
Бездатчиковое управление:
Существуют бесколлекторные двигатели без каких либо датчиков положения. В таких двигателях определение положения ротора выполняется путем измерения ЭДС на свободной фазе. Мы помним, что в каждый момент времени к одной из фаз (А) подключен «+» к другой (В) «-» питания, одна из фаз остается свободной. Вращаясь, двигатель наводит ЭДС (т.е. в следствии закона электромагнитной индукции в катушке образуется индукционный ток) в свободной обмотке. По мере вращения напряжение на свободной фазе (С) изменяется. Измеряя напряжение на свободной фазе, можно определить момент переключения к следующему положению ротора.
Что бы измерить это напряжение изпользуется метод «виртуальной точки». Суть заключается в том, что, зная сопротивление всех обмоток и начальное напряжение, можно виртуально «переложить провод» в место соединения всех обмоток:
Регулятор скорости бесколлекторного двигателя:
Бесколлекторный двигатель без электроники — просто железка, т.к. при отсутствии регулятора, мы не можем просто подключить напряжение на него, чтоб он просто начал нормальное вращение. Регулятор скорости — это довольно сложная система радиокомпонентов, т.к. она должна:
1) Определять начальное положение ротора для запуска электродвигателя
2) Управлять электродвигателем на низких скоростях
3) Разгонять электродвигатель до номинальной (заданной) скорости вращения
4) Поддерживать максимальный момент вращения
Принципиальная схема регулятора скорости (вентильная):
Бесколлекторные двигатели были придуманы на заре появления электричества, однако систему управления к ним никто не мог сделать. И только с развитием электроники: с появлением мощных полупроводниковых транзисторов и микроконтроллеров, бесколлекторные двигатели стали применятся в быту (первое промышленное использование в 60-х годах).
Достоинства и недостатки бесколлекторных двигателей:
Достоинства:
-Частота вращения изменяется в широком диапазоне
-Возможность использования во взрывоопасной и агрессивной среде
-Большая перегрузочная способность по моменту
-Высокие энергетические показатели (КПД более 90 %)
-Большой срок службы, высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов
Недостатки:
-Относительно сложная система управления двигателем
-Высокая стоимость двигателя, обусловленная использованием дорогостоящих материалов в конструкции ротора (магниты, подшипники, валы)
Разобравшись с теорией, перейдем к практике: спроектируем и сделаем двигатель для пилотажной модели МХ-2.
Список материалов и оборудования:
1) Проволока (взятая из старых трансформаторов)
2) Магниты (купленные в интернете)
3) Статор (барашек)
4) Вал
5) Подшипники
6) Дюралюминий
7) Термоусадка
8) Доспуп к неограниченному техническому хламу
9) Доступ к инструментам
10) Прямые руки:)
Ход работы:
1) С самого начала решаем:
Для чего делаем двигатель?
На что он должен быть рассчитан?
В чем мы ограничены?
В моем случае: я делаю двигатель для самолета, значит пускай он будет внешнего вращения; рассчитан он должен на то, что он должен выдать 1400 грамм тяги при трех-баночном аккумуляторе; ограничен я в весе и в размере. Однако с чего же начать? Ответ на этот вопрос прост: с самой трудной детали, т.е. с такой детали, которую легче просто найти, а все остальное подгонять под неё. Я так и поступил. После многих неудачных попыток сделать статор из листовой мягкой стали, мне стало понятно, что лучше найти её. Нашел я её в старой видеоголовке от видеорекоудора.
2) Обмотка трехфазного бесколлекторного двигателя выполняется изолированным медным проводом, от сечения которого зависит значение силы тока, а значит и мощность двигателя. Незабываем что, чем толще проволока, тем больше оборотов, но слабее крутящий момент. Подбор сечения:
1А — 0.05мм; 15А — 0.33мм; 40А — 0.7мм
3А — 0.11мм; 20А — 0.4мм; 50А — 0.8мм
10А — 0.25мм; 30А — 0.55мм; 60А — 0.95мм
3) Начинаем наматывать на полюса проволоку. Чем больше витков (13) намотано на зуб, тем большее магнитное поле. Чем сильнее поле, тем больший крутящий момент и меньшее количество оборотов. Для получения высоких оборотов, необходимо мотать меньшее количество витков. Но вместе с этим падает и крутящий момент. Для компенсации момента, обычно на мотор подают более высокое напряжение.
4) Дальше выбираем способ соединения обмотки: звездой или треугольником. Соединение звездой дает больший крутящий момент, но меньшее количество оборотов, чем соединение треугольником в 1.73 раз. (впоследствии было выбрано соединение треугольник)
5) Выбираем магниты. Количество полюсов на роторе должно быть четным (14). Форма применяемых магнитов обычно прямоугольная. Размер магнитов зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу. Также чем больше количество полюсов, тем больше момент, но меньше оборотов. Магниты на роторе закрепляются с помощью специального термоклея.
Испытания данного двигателя я проводил на созданной мной витномоторной установке, которая позволяет измерить тягу, мощность и обороты двигателя.
Чтобы увидеть отличия соединений «звезда» и «треугольник» я соединял по разному обмотки:
В итоге получился двигатель соответствующий характеристикам самолета, масса которого 1400 грамм.
Одна из причин, по которой конструкторы проявляют интерес именно к бесколлекторным электродвигателям — это необходимость в высокооборотных моторах с небольшими размерами. Причём у этих двигателей очень точное позиционирование. В конструкции имеется подвижный ротор и неподвижный статор. На роторе находится один постоянный магнит или несколько, расположенных в определённой последовательности. На статоре же находятся катушки, которые создают магнитное поле.
Нужно отметить еще одну особенность — бесколлекторные электродвигатели могут иметь якорь, расположенный как внутри, так и на внешней стороне. Следовательно, два типа конструкции могут иметь определенное применение в различных сферах. При расположении якоря внутри получается добиться очень высокой скорости вращения, поэтому такие моторы очень хорошо работают в конструкциях систем охлаждения. В том случае, если устанавливается привод с внешним расположением ротора, можно добиться очень точного позиционирования, а также высокой устойчивости к перегрузкам. Очень часто такие моторы используются в робототехнике, медицинском оборудовании, в станках с частотным программным управлением.
Как работают моторы
Для того чтобы привести в движение ротор бесколлекторного электродвигателя постоянного тока необходимо использовать специальный микроконтроллер. Его не получится запустить таким же образом, как синхронную или асинхронную машину. При помощи микроконтроллера получается включить обмотки двигателя так, чтобы направление векторов магнитных полей на статоре и якоре были ортогональны.
Другими словами, при помощи драйвера получается регулировать который действует на ротор бесколлекторного двигателя. Чтобы переместить якорь необходимо осуществить правильную коммутацию в обмотках статора. К сожалению, обеспечить плавное управление вращением не получается. Зато можно очень быстро увеличить ротора электродвигателя.
Отличия коллекторных и бесколлекторных двигателей
Основное отличие заключается в том, что на бесколлекторных электродвигателях для моделей отсутствует обмотка на роторе. В случае с коллекторными электромоторами, на их роторах имеются обмотки. А вот постоянные магниты устанавливаются на неподвижной части двигателя. Кроме того, на роторе устанавливается специальной конструкции коллектор, к которому производится подключение графитовых щёток. С их помощью подается напряжение на обмотку ротора. Принцип работы бесколлекторного электродвигателя тоже существенно отличается.
Как работает коллекторная машина
Чтобы произвести запуск коллекторного двигателя, потребуется подать напряжение на обмотку возбуждения, которая расположена непосредственно на якоре. При этом образуется постоянное магнитное поле, которое взаимодействует с магнитами на статоре, в результате чего проворачиваются якорь и коллектор, закрепленный на нём. При этом подается питание на следующую обмотку, происходит повтор цикла.
Скорость вращения ротора зависит напрямую от того, насколько интенсивно магнитное поле, а последняя характеристика зависит напрямую от величины напряжения. Следовательно, чтобы увеличить или уменьшить частоту вращения, необходимо изменить напряжение питания.
Для реализации реверса потребуется только лишь изменить полярность подключения мотора. Для такого управления не нужно использовать специальные микроконтроллеры, изменять частоту вращения можно при помощи обычного переменного резистора.
Особенности бесколлекторных машин
Но вот управление бесколлекторным электродвигателем невозможно без использования специальных контроллеров. Исходя из этого, можно сделать вывод, что в качестве генератора моторы такого типа применяться не могут. Для эффективности управления можно отслеживать положение ротора с помощью нескольких датчиков Холла. При помощи таких несложных устройств получается значительно улучшить характеристики, но стоимость электродвигателя увеличится в несколько раз.
Запуск бесколлекторных моторов
Изготавливать микроконтроллеры самостоятельно нет смысла, намного лучшим вариантом окажется покупка готового, пусть и китайского. Но необходимо придерживаться следующих рекомендаций при выборе:
- Учитывайте максимально допустимую силу тока. Этот параметр обязательно пригодится для различных видов работы привода. Характеристика часто указывается производителями непосредственно в названии модели. Очень редко указываются значения, характерные для пиковых режимов, в которых микроконтроллер не может работать продолжительное время.
- Для продолжительной работы необходимо учитывать и максимальную величину напряжения питания.
- Обязательно учитывайте сопротивление всех внутренних цепей микроконтроллера.
- Обязательно нужно учитывать максимальное число оборотов, которое характерно для работы этого микроконтроллера. Обратите внимание на то, что он не сможет увеличить максимальную частоту вращения, так как ограничение сделано на уровне программного обеспечения.
- Дешёвые модели микроконтроллерных устройств имеют импульсов в интервале 7…8 кГц. Дорогие экземпляры можно перепрограммировать, и этот параметр увеличивается в 2-4 раза.
Старайтесь подбирать микроконтроллеры по всем параметрам, так как они влияют на мощность, которую может развить электродвигатель.
Как осуществляется управление
Электронный блок управления позволяет провести коммутацию обмоток привода. Для определения момента переключения при помощи драйвера отслеживается положение ротора по датчику Холла, установленном на приводе.
В том случае, если нет таких устройств, необходимо считывать обратное напряжение. Оно генерируется в катушках статора, не подключенных на данный момент времени. Контроллер — это аппаратно-программный комплекс, он позволяет отслеживать все изменения и максимально точно задавать порядок коммутации.
Трехфазные бесколлекторные электродвигатели
Очень много бесколлекторных электродвигателей для авиамоделей выполняется под питание постоянным током. Но существуют и трехфазные экземпляры, в которых устанавливаются преобразователи. Они позволяют из постоянного напряжения сделать трехфазные импульсы.
Работа происходит следующим образом:
- На катушку «А» поступают импульсы с положительным значением. На катушку «В» — с отрицательным значением. В результате этого якорь начнет двигаться. Датчики фиксируют смещение и подаётся сигнал на контроллер для осуществления следующей коммутации.
- Происходит отключение катушки «А», при этом импульс положительного значения поступает на обмотку «С». Коммутация обмотки «В» не претерпевает изменений.
- На катушку «С» попадается положительный импульс, а отрицательный поступает на «А».
- Затем вступает в работу пара «А» и «В». На них и подаются положительные отрицательные значения импульсов соответственно.
- Затем положительный импульс опять поступает на катушку «В», а отрицательный на «С».
- На последнем этапе происходит включение катушки «А», на которую поступает положительный импульс, и отрицательный идет к С.
И после этого происходит повтор всего цикла.
Преимущества использования
Изготовить своими руками бесколлекторный электродвигатель сложно, а реализовать микроконтроллерное управление практически невозможно. Поэтому лучше всего использовать готовые промышленные образцы. Но обязательно учитывайте достоинства, которые получает привод при использовании бесколлекторных электродвигателей:
- Существенно больший ресурс, нежели у коллекторных машин.
- Высокий уровень КПД.
- Мощность выше, нежели у коллекторных моторов.
- Скорость вращения набирается намного быстрее.
- Во время работы не образуются искры, поэтому их можно использовать в условиях с высокой пожарной опасностью.
- Очень простая эксплуатация привода.
- При работе не нужно использовать дополнительные компоненты для охлаждения.
Среди недостатков можно выделить очень высокую стоимость, если учитывать еще и цену контроллера. Даже кратковременно включить для проверки работоспособности такой электродвигатель не получится. Кроме того, ремонтировать такие моторы намного сложнее из-за их особенностей конструкции.
Наверняка задавался вопросом, чем же отличается такой двигатель от других двигателей, например от тех, что стоят в сверлильных станках. Двигатели, установленные в не очень мощных станках, обычно не искрят, и работают они не так шумно, как та же дрель, обладающая меньшей чем станок мощностью.
В чем же дело? Дело в том, что двигатель с щетками — это коллекторный двигатель, а двигатель без щеток — бесколлекторный . Для решения разных задач подойдет свой тип двигателя — где-то лучше подойдет коллекторный, а где-то можно установить только бесколлекторный.
Коллекторный двигатель
Двигатель коллекторный имеет, как правило, всего два провода питания, он прост в управлении, достаточно регулировать постоянное или переменное напряжение питания и обороты станут соответственно меняться. Управлять коллекторным двигателем можно даже при помощи нехитрого диммера. Главное достоинство коллекторного двигателя — высокие обороты (десятки тысяч в минуту) при высоком крутящем моменте.
Принцип работы коллекторного двигателя очень прост. По сути, ротор его представляет собой набор медных рамок в магнитопроводе, которые поочередно коммутируются к источнику питания на коллекторно-щеточном узле. Статор может быть как из постоянных магнитов, так и с обмоткой, питаемой от того же источника, что и ротор, или от отдельного источника, а иногда статор и ротор включены в единую последовательную цепь (как например двигатели стиральных машинок-автоматов).
На каждую из секций обмотки ротора, через коллекторно-щеточный узел, поочередно, в процессе вращения ротора, подается электрический ток, в результате ротор перемагничивается, приобретая четко выраженные северный и южный магнитные полюсы, благодаря которым и происходит вращение ротора внутри статора (полюсы ротора выталкиваются полюсами статора, затем ротор дальше перемагничивается и вновь выталкивается). Поскольку ротор каждый раз коммутируется к источнику питания очередной секцией, вращение не останавливается, пока на коллектор подается питание.
Основной недостаток коллекторного двигателя
Обороты коллекторного двигателя очень удобно регулировать, но когда они достаточно высоки, щетки дают о себе знать. Поскольку щетки все время плотно прилегают к коллектору, на высоких оборотах они быстро изнашиваются, со временем так или иначе засоряются, и в конце концов начинают искрить.
Износ щеток, и вообще коллекторно-щеточного узла, ведет к снижению эффективности коллекторного двигателя. Таким образом, сам коллекторно-щеточный узел — это и есть главный недостаток коллекторных двигателей . Сегодня от коллекторных двигателей стараются отказываться в пользу бесщеточных шаговых.
У бесколлекторного двигателя нет ни коллектора, ни щеток. Простейший пример бесколлекторного двигателя — асинхронный трехфазный двигатель с ротором типа «беличья клетка». Еще один пример бесколлекторного двигателя — более современный — шаговый двигатель с магнитным ротором . Обмотки статора бесколлекторного двигателя сами перемагничиваются так, чтобы ротор все время разворачивался и непрерывно таким образом вращался.
Чаще всего современные бесколлекторные двигатели оснащаются датчиком положения ротора, по сигналам с которого работает регулятор скорости вращения двигателя. Сигнал с датчика положения ротора передается на процессор более 100 раз в секунду, в результате получается точное позиционирование ротора и высокий крутящий момент. Бывают, конечно, бесколлекторные двигатели и без датчика положения ротора, яркий пример — тот же асинхронный трехфазный мотор. Моторы без датчика положения стоят дешевле чем с датчиком.
Достоинства бесколлекторных двигателей
Поскольку ресурс подшипников ротора крайне велик, можно сказать, что в бесколлекторном двигателе практически отсутствуют изнашиваемые со временем детали, и он вообще не требует обслуживания в процессе эксплуатации. Здесь сведено к минимуму трение, отсутствует проблема перегрева коллектора, в целом надежность и эффективность бесколлекторных двигателей очень высоки.
Нет искрящих щеток, датчик положения ротора поможет сделать управление точным, — недостатков практически нет, одни достоинства. Разве что цена качественных шаговых двигателей выше чем у коллекторных (плюс драйвер), но это ничто по сравнению с регулярной заменой пружин, щеток и коллекторов у коллекторных двигателей.
Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.
Общие сведения, устройство, сфера применения
Одна из причин проявления интереса к БД – это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.
Рис. 2. Устройство бесколлекторного двигателяКак видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.
Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).
Рис. 3. Конструкция с внешним якорем (outrunner)
Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).
Принцип работы
В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.
Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.
Отличия коллекторного и бесколлекторного двигателя
Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.
Рис. 5. А – коллекторный двигатель, В – бесколлекторный
Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.
Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.
Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.
Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.
Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.
Как запустить бесколлекторный двигатель?
Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.
Рис. 6. Контроллеры бесколлекторных двигателей для моделизма
Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:
- Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
- Максимальная величина штатного напряжения для продолжительной работы.
- Сопротивление внутренних цепей контроллера.
- Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
- Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.
Обратим внимание, что первые три характеристики определяют мощность БД.
Управление бесколлекторным двигателем
Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.
Трёхфазный бесколлекторный электродвигатель постоянного тока
Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).
Рисунок 7. Диаграммы напряжений БД
Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:
- На катушки «А» подается положительный импульс, в то время как на «В» – отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
- Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
- На «С» – положительный, «А» – отрицательный.
- Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
- Положительный импульс повторно подается на «В», и отрицательный на «С».
- Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.
В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.
Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем
Преимущества и недостатки
Электрический бесколлекторный двигатель имеет много достоинств, а именно:
- Срок службы значительно дольше, чем у обычных коллекторных аналогов.
- Высокий КПД.
- Быстрый набор максимальной скорости вращения.
- Он более мощный, чем КД.
- Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
- Не требуется дополнительное охлаждение.
- Простая эксплуатация.
Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.
Немного из истории:
Главная проблема всех двигателей — это перегревание. Ротор вращался внутри какого-нибудь статора, и поэтому тепло от перегрева никуда не уходило. Людям пришла в голову гениальная идея: вращать не ротор, а статор, который при вращении охлаждался бы воздухом. Когда создали такой двигатель, он стал широко использоваться в авиации и судостроении, и поэтому его прозвали Вентильным двигателем.
Вскоре был создан электрический аналог вентильного двигателя. Назвали его бесколлекторным мотором, потому что у него не было коллекторов (щеток).
Бесколлекторные (brushless англ.) электродвигатели пришли к нам сравнительно недавно, в последние 10-15 лет . В отличие от коллекторных моторов они питаются трехфазным переменным током. Бесколлекторные двигатели эффективно работают в более широком диапазоне оборотов и имеют более высокий КПД . Конструкция двигателя при этом относительно проще, в ней нет щеточного узла, который постоянно трется с ротором и создает искры. Можно сказать, что бесколлекторные моторы практически не изнашиваются. Стоимость бесколлекторных двигателей несколько выше, чем коллекторных. Это вызвано тем, что все бесколлекторные моторы снабжены подшипникам и, как правило, изготовлены более качественно.
Испытания показали:
Тяга с винтом 8х6 = 754 грамма ,
Частота вращения = 11550 об/мин ,
Потребляемая мощность = 9 ватт (без винта), 101 ватт (с винтом),
Мощность и КПД
Мощность можно вычислить вот таким способом:
1) Мощность в механике вычисляется по такой формуле: N= F*v , где F — сила, а v — скорость. Но так как, винт находится в статическом состояние, то движения нет, кроме вращательного. Если этот мотор установить на авиамодель, то можно было бы замерить скорость (она равна 12 м/с) и посчитать полезную мощность:
N полез= 7.54*12= 90.48 ватт
2) КПД электрического двигателя находится по такой формуле: КПД= N полезной/N затраченной *100% , где N затрат= 101 ватт
КПД= 90.48/101 *100%= 90%
В среднем КПД бесколлекторных двигателей реально и колеблется около 90% (самый большой КПД достигнутый данным видом моторов равен 99.68% )
Характеристики двигателя:
Напряжение: 11.1 вольт
Обороты: 11550 об/мин
Максимальная сила тока: 15А
Мощность: 200 ватт
Тяга: 754 грамм (винт 8х6)
Заключение:
Цена любой вещи зависит от масштабов ее производства. Производители бесколлекторных моторов множатся, как грибы после дождя. Поэтому хочется верить, что в скором будущем цена на контроллеры и бесколлекторные двигатели упадет, как упала она на аппаратуру радиоуправления… Возможности микроэлектроники с каждым днем все расширяются, размеры и вес контроллеров постепенно уменьшаются. Можно предположить, что в скором будущем контроллеры начнут встраивать прямо в двигатели! Может, мы доживем до этого дня…
Синхронные бесколлекторные двигатели постоянного тока
Современные бесколлекторные двигатели постоянного тока
Благодаря существенному прогрессу в области полупроводниковой электроники и в технологии создания мощных неодимовых магнитов, широкое распространение получили сегодня бесколлекторные двигатели постоянного тока. Они применяются в стиральных машинах, пылесосах, вентиляторах, дронах и т. д.
И хотя идея касательно принципа работы бесколлекторного двигателя высказывалась еще в начале 19 века, она ждала своего часа до начала полупроводниковой эры, когда технологии стали готовы к практической реализации этой интересной и эффективной концепции, позволившей бесколлекторным двигателям постоянного тока шагать так широко, как это происходит сегодня.
В англоязычной версии двигатели данного типа именуются BLDC motor – Brushless Direct Current Motor — бесщеточный мотор постоянного тока. Ротор двигателя содержит постоянные магниты, а рабочие обмотки располагаются на статоре, то есть устройство BLDC мотора полностью противоположно тому, как это имеет место в классическом коллекторном двигателе. Управляется BLDC мотор электронным регулятором, который называют ESC — Electronic speed controller — электронный регулятор хода.
Электронный регулятор хода и высокий КПД
Электронный регулятор хода позволяет плавно варьировать электрическую мощность, подаваемую на бесколлекторный электродвигатель. В отличие от ранних, более простых версий резистивных регуляторов хода, которые просто ограничивали мощность путем включения в цепь последовательно с мотором активной нагрузки, превращающей избыточную мощность в тепло, электронный регулятор хода позволяет получить значительно более высокий КПД, не расходуя подводимую электрическую энергию на бесполезный нагрев.
Бесколлекторный двигатель постоянного тока можно классифицировать как самосинхронизируемый синхронный двигатель, в котором полностью исключен искрящий узел, требующий регулярного обслуживания — коллектор. Функцию коллектора несет на себе электроника, благодаря чему вся конструкция изделия сильно упрощается и становится компактнее.
Щетки заменены, по сути, на электронные ключи, потери в которых сильно меньше чем были бы при механической коммутации. Мощные неодимовые магниты на роторе позволяют добиться большего момента на валу. И греется такой двигатель меньше нежели его коллекторный предшественник.
В итоге КПД двигателя получается наилучшим, а показатели мощности на килограмм веса — выше, плюс достаточно широкий диапазон регулировки скорости вращения ротора и практически полное отсутствие генерируемых радиопомех. Конструктивно двигатели данного типа легко адаптируются для эксплуатации в воде и в агрессивных средах.
Электронный блок управления — очень важная и дорогостоящая часть бесколлекторного двигателя постоянного тока, без которой, однако, никак не обойтись. От данного блока двигатель получает питание, параметры которого одновременно влияют и на скорость, и на мощность, которую двигатель будет в состоянии развить под нагрузкой.
Даже если скорость вращения регулировать не нужно, все равно электронный блок управления необходим, ведь он несет на себе не только функцию управления, но также имеет силовую составляющую. Можно сказать, что ESC – это аналог частотного регулятора для асинхронных двигателей переменного тока, специально предназначенный для питания и управления бесколлекторным мотором постоянного тока.
Управление двигателем BLDC
Чтобы понять как происходит управление BLDC двигателем, сначала вспомним как работает коллекторный двигатель. В его основе принцип вращения рамки с током в магнитном поле.
Каждый раз, когда рамка с током повернулась и нашла положение равновесия, коммутатор (щетки прижатые к коллектору) изменяет направление тока через рамку, и рамка движется дальше. Этот процесс повторяется при движении рамки от полюса к полюсу. Только вот в коллекторном двигателе таких рамок много и магнитных полюсов несколько пар, поэтому коллекторно-щеточный узел содержит не два контакта, а много.
Электронный блок управления бесколлекторным двигателем делает то же самое. Он изменяет полярность магнитного поля как только ротор необходимо провернуть дальше из положения равновесия. Только управляющее напряжение подается не на ротор, а на обмотки статора, и делается это при помощи полупроводниковых ключей в нужные моменты времени (фазы ротора).
Очевидно, что ток на обмотки статора бесколлекторного двигателя необходимо подавать в правильные моменты времени, то есть тогда, когда ротор находится в определенном известном положении. Для этого применяется один из следующих методов. Первый — на основе датчика положения ротора, второй — путем измерения ЭДС на одной из обмоток, которая в данный момент не получает питание.
Датчики бывают разными, магнитными и оптическими, наиболее популярны магнитные датчики на основе эффекта Холла. Второй способ (на основе измерения ЭДС) хотя и эффективен, однако он не позволяет осуществлять точное управление на низких скоростях и при старте. А вот датчики Холла обеспечивают возможность более точного управления во всех режимах. В трехфазных BLDC двигателях таких датчиков три штуки.
Двигатели без датчиков положения ротора применимы в тех случаях, когда старт мотора происходит без нагрузки на валу (вентилятор, пропеллер и т. п.). Если же старт происходит под нагрузкой, необходим мотор с датчиками положения ротора. В том и в другом варианте есть свои плюсы и минусы.
Решение с датчиком оборачивается более удобным управлением, но при выходе из строя хотя бы одного из датчиков, мотор придется разбирать, к тому же датчики требуют отдельных проводов. В варианте без датчика нет надобности в специальных проводах, но во время старта ротор будет раскачиваться туда-сюда. Если это недопустимо, необходимо ставить в систему датчики.
Ротор и статор, количество фаз
Ротор BLDC двигателя может быть наружным или внутренним, а статор, соответственно, внутренним или наружным. Статор изготавливают из магнитопроводящего материала, с количеством зубцов, которое нацело делится на количество фаз. Ротор может быть изготовлен необязательно из магнитопроводящего материала, но обязательно с жестко зафиксированными на нем магнитами.
Чем сильнее магниты — тем выше доступный вращающий момент. Количество зубцов статора не обязательно должно быть равно количеству магнитов на роторе. Минимальное количество зубцов равно количеству фаз управления.
Большинство современных бесколлекторных двигателей постоянного тока — трехфазные, просто в силу простоты такой конструкции и способа управления ею. Как и в асинхронных двигателях переменного тока, обмотки трех фаз соединяются здесь на статор «треугольником» либо «звездой».
Такие двигатели без датчиков положения ротора имеют 3 питающих провода, а двигатели с датчиками — 8 проводов: дополнительные два провода — для питания датчиков и три — сигнальные выводы датчиков.
Обмотка статора выполняется изолированным медным проводом так, чтобы сформировать магнитные полюса необходимого количества фаз, равномерно распределенные по окружности ротора. Количество отдельно стоящих полюсов на статоре для каждой фазы выбирается исходя из требуемой скорости вращения двигателя (и вращающего момента).Низкооборотные двигатели с наружным ротором делают с большим количеством полюсов (и соответственно зубцов) на каждую фазу, чтобы получить вращение с угловой частотой значительно меньше частоты управляющего тока. Но даже в высокооборотных трехфазных моторах обычно не применяют количество зубцов меньше 9.
Источник
Что такое бесколлекторный двигатель постоянного тока и его принцип работы
Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.
Общие сведения, устройство, сфера применения
Одна из причин проявления интереса к БД — это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.
Рис. 2. Устройство бесколлекторного двигателя
Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.
Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).
Рис. 3. Конструкция с внешним якорем (outrunner)
Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).
Бесколлекторный двигатель в компьютерном дисководе
Принцип работы
В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.
Фазы работы бесколлекторного привода
Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.
Отличия коллекторного и бесколлекторного двигателя
Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.
Рис. 5. А – коллекторный двигатель, В – бесколлекторный
Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.
Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.
Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.
Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.
Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.
Как запустить бесколлекторный двигатель?
Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.
Рис. 6. Контроллеры бесколлекторных двигателей для моделизма
Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:
- Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
- Максимальная величина штатного напряжения для продолжительной работы.
- Сопротивление внутренних цепей контроллера.
- Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
- Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.
Обратим внимание, что первые три характеристики определяют мощность БД.
Управление бесколлекторным двигателем
Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.
Трёхфазный бесколлекторный электродвигатель постоянного тока
Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).
Рисунок 7. Диаграммы напряжений БД
Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:
- На катушки «А» подается положительный импульс, в то время как на «В» — отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
- Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
- На «С» — положительный, «А» — отрицательный.
- Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
- Положительный импульс повторно подается на «В», и отрицательный на «С».
- Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.
В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.
Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем
Преимущества и недостатки
Электрический бесколлекторный двигатель имеет много достоинств, а именно:
- Срок службы значительно дольше, чем у обычных коллекторных аналогов.
- Высокий КПД.
- Быстрый набор максимальной скорости вращения.
- Он более мощный, чем КД.
- Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
- Не требуется дополнительное охлаждение.
- Простая эксплуатация.
Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.
Источник
Что такое бесколлекторный двигатель постоянного тока, как он устроен и работает
Определение
Бесколлекторным называют электродвигатель постоянного тока, ток в обмотках которого переключает специальное устройство-коммутатор — он носит название «драйвер» или «инвертор» и эти обмотки всегда расположены на статоре. Коммутатор состоит из 6 транзисторов, они и подают ток в ту или иную обмотку, в зависимости от положения ротора.
В отечественной литературе такие двигатели называют «вентильными» (потому что полупроводниковые ключи называют «вентилями»), и есть разделение таких электромашин на два вида по форме противо—ЭДС. В зарубежной литературе такое различие сохраняется, один из них называют аналогично русскому «BLDC» (brushless direct current drive или motor), что в дословном переводе звучит как «бесщёточный двигатель постоянного тока» в их обмотках возникает трапецеидальная ЭДС. Вентильные же электродвигатели с синусоидальной ЭДС называют PMSM (Permanent magnet synchronous machine), что переводится как «синхронный электродвигатель с возбуждением постоянными магнитами».
Устройство и принцип действия
Коллектор в КДПТ служит узлом переключения тока в обмотках якоря. В бесколлекторном электродвигателе постоянного тока (БДПТ) эту роль выполняют не щетки с ламелями, а коммутатор она полупроводниковых ключах — транзисторах. Транзисторы переключают обмотки статора, создавая вращающееся магнитное поле, которое взаимодействует с полем магнитов ротора. А при протекании тока через проводник, который находится в магнитном поле, на него действует сила Ампера, за счет действия этой силы и образуется крутящий момент на валу электрических машин. На этом и основан принцип работы любого электродвигателя.
Теперь же разберемся в том, как устроен бесколлекторный двигатель. На статоре БДПТ обычно расположены 3 обмотки, по аналогии с электродвигателями переменного тока их часто называют трехфазными. Отчасти это верно: бесколлекторные двигатели работают от источника постоянного тока (чаще от аккумуляторов), но контроллер включает ток обмотках поочерёдно. Однако при этом не совсем верно говорить, что по обмоткам протекает переменный ток. Конечная форма питающего обмотки напряжения формируется прямоугольными импульсами управления транзисторами.
Трёхфазный бесколлекторный двигатель может быть трёхпроводными или четырёхпроводным, где четвертый провод — отвод от средней точки (если обмотки соединены по схеме звезды).
Обмотки или, говоря простым словами, катушки медного провода укладываются в зубы сердечника статора. В зависимости от конструкции и назначения привода на статоре может быть разное количество зубцов. Встречаются разные варианты распределения обмоток фаз по зубцам ротора, что иллюстрирует следующий рисунок.
Обмотки каждого из зубов в пределах одной фазы могут соединяться последовательно или параллельно, в зависимости от поставленных конструктору задач по мощности и моменту проектируемого привода, а сами же обмотки фаз соединяются между собой по схеме звезды или треугольника, подобно асинхронным или синхронным трёхфазными электродвигателям переменного тока.
В статоре могут устанавливаться датчики положения ротора. Часто используются датчики холла, они дают сигнал контроллеру, когда на них воздействует магнитное поле магнитов ротора. Это нужно для того чтобы контроллер “знал”, в каком положении находится ротор и подавал питание на соответствующие обмотки. Это нужно для повышения эффективности и стабильности работы, а если кратко, — чтобы выжать из двигателя всю возможную мощность. Датчиков обычно устанавливается 3 штуки. Но наличие датчиков усложняет устройство бесколлекторного электродвигателя, к ним нужно проводить дополнительные провода для питания и линии данных.
В БДПТ для возбуждения используются постоянные магниты, установленные на роторе, а статор — это якорь. Напомним, что в коллекторных машинах наоборот (ротор — это якорь), а для возбуждения в КД используются как постоянные магниты, так и электромагниты (обмотки).
Магниты устанавливаются с чередованием полюсов, и соответственно их количество определяет количество пар полюсов. Но это не значит, что сколько магнитов, то столько же и пар полюсов. Несколько магнитов могут формировать один полюс. От числа полюсов, как в случае и с асинхронным двигателем (и другими) зависит число оборотов в минуту. То есть от одного контроллера на одинаковых настройках бесколлекторные двигатели с разным числом пар полюсов будут вращаться с разной скоростью.
Виды БДПТ
Теперь давайте разберемся, какими бывают бесколлекторные двигатели на постоянных магнитах. Их классифицируют по форме противо-ЭДС, конструкции, а также по наличию датчиков положения ротора. Итак, два основных типа отличающихся формой противо-ЭДС, которая наводится в обмотках при вращении ротора:
- BLDC — в них трапецеидальная противо-ЭДС;
- PMSM — противо-ЭДС синусоидальная.
В идеальном случае для них нужны разные источники питания (контроллеры), но на практике они взаимозаменяемы. Но если использовать контроллер с прямоугольными или трапецеидальным выходным напряжением с PMSM-двигателем, то будут слышны характерные звуки, похожие на стук во время вращения.
А по конструкции бесколлекторные двигатели постоянного тока бывают:
- С внутренним ротором. Это более привычное представление электродвигателя, когда статор — это корпус, а вращается вал, расположенный в нём. Часто их называют английским словом «Inrunner». Такой вариант обычно применяют для высокооборотистых электродвигателей
- С внешним ротором. Здесь вращается внешняя часть двигателя с закреплённым на ней валом, в англоязычных источниках его называют «outrunner». Эту схему устройства используют, когда нужен высокий момент.
Выбирают конструкцию в зависимости от того для чего нужен бесколлекторный двигатель в конкретном применении.
Современная промышленность выпускает бесколлекторные двигатели как с датчиками положения ротора, так и без них. Дело в том, что существует множество способов управления БДПТ, для некоторых из них нужны датчики положения, другие определяют положения по ЭДС в обмотках, третьи и вовсе просто подают питание на нужные фазы и электродвигатель самостоятельно синхронизируется с таким питанием и входит в рабочий режим.
Основные характеристики бесколлекторных двигателей постоянного тока:
- Режим работы — длительный или кратковременный.
- Максимальное рабочее напряжение.
- Максимальный рабочий ток.
- Максимальная мощность.
- Максимальные обороты, часто указывают не обороты, а KV — об/в, то есть количество оборотов на 1 вольт приложенного напряжения (без нагрузки на валу). Чтобы получить максимальные обороты — умножьте это число на максимальное напряжение.
- Сопротивление обмотки (чем оно меньше, тем выше КПД), обычно составляет сотые и тысячные доли Ома.
- Угол опережения фазы (timing) — время, через которое ток в обмотке достигнет своего максимума, это связано с её индуктивностью и законами коммутации (ток в индуктивности не может измениться мгновенно.
Схема подключения
Как было сказано выше, для работы бесколлекторного двигателя нужен специальный контроллер. На алиэкспресс можно найти как комплекты из двигателя и контроллера, так и по отдельности. Контроллер также называют ESC Motor или Electric Speed Controller. Выбирают их по силе тока, отдаваемого в нагрузку.
Обычно подключение электродвигателя к контроллеру не вызывает затруднений и понятно даже для чайников. Главное, что нужно знать — для смены направления вращения нужно изменить подключение любых двух фаз, собственно также, как и в трёхфазных асинхронных или синхронных электродвигателях.
В сети есть и ряд технических решений и схем как сложных, так и для чайников, которые вы можете увидеть ниже.
В этом видеоролике автор рассказывает, как подружить БК моторчик с «ардуиной».
А в этом ролике вы узнаете о различных способах подключения к разным регуляторам и как его можно сделать своими руками. Автор демонстрирует это на примере моторчика от HDD, и пары мощных экземпляров — inrunner и outrunner.
Кстати схему из видео для повторения также прикладываем:
Где применяются бесколлекторные двигатели
Сфера применения таких электродвигателей досрочно широка. Они используются как для привода мелких механизмов: в дисководах CD, DVD-приводах, жёстких дисках, так и в мощных устройствах: аккумуляторе и сетевом электроинструменте (с питанием порядка 12В), радиоуправляемых моделях (например, квадрокоптерах), станках ЧПУ для привода рабочего органа (обычно моторчики с номинальным напряжением 24В или 48В).
Широкое применение БДПТ нашли в электротранспорте, почти все современные мотор-колеса электросамокатов, велосипедов, мотоциклов и автомобилей — это бесколлекторные двигатели. К слову, номинальное напряжение электродвигателей для транспорта лежит в широком пределе, например, мотор-колесо для велосипеда зачастую работает от 36В или от 48В, за редким исключением и больше, а в автомобилях, например, на Toyota Prius порядка 120В, а на Nissan Leaf – доходит до 400, при том что заряжается от сети 220В (это реализуется с помощью встроенного преобразователя).
На самом деле область применения бесколлекторных электродвигателей очень обширна, отсутствие коллекторного узла позволяет его применять опасных местах, а также в местах с повышенной влажностью, без опасений замыканий, искрения или возгорания из-за дефектов в щеточном узле. Благодаря высокому КПД и хорошим массогабаритным показателям они нашли применение и в космической промышленности.
Преимущества и недостатки
Бесколлекторным двигателям постоянного тока, как и другим видам электромашин, присущи определенные достоинства и недостатки.
Преимущества у БДПТ заключаются в следующем:
- Благодаря возбуждению мощными постоянными магнитами (неодимовыми, например) превосходят по моменту и мощности и имеют меньшие габариты, чем асинхронные двигатели. Чем пользуется большинство производителей электротранспорта — от самокатов до автомобилей.
- Нет искрящего щеточно-коллекторного узла, который требует регулярного обслуживания.
- При использовании качественного контроллера в отличие от того же КД не выдают помехи в питающую сеть, что особенно важно в радиоуправляемых устройствах и транспорте с развитым электронным оборудованием в бортовой сети.
- КПД более 80, чаще и 90%.
- Высокая скорость вращения, в отдельных случаях до 100000 об/мин.
Но есть и существенный минус: бесколлекторный двигатель без контроллера — просто кусок железа с медной обмоткой. Он никак не сможет работать. Контроллеры стоят недешево и чаще всего их приходится заказывать в интернет-магазинах или с алиэкспресс. Из-за этого использовать БК-моторы в моделях и устройствах домашнего производства не всегда возможно.
Теперь вы знаете, что такое бесколлекторный двигатель постоянного тока, как он работает и где применяется. Надеемся, наша статья помогла вам разобраться во всех вопросах!
Источник
Бесколлекторный двигатель постоянного тока
Бесколлкторные двигатели постоянного тока (бдпт) являются разновидностью синхронных двигателей с постоянными магнитами, которые питаются от цепи постоянного тока через инвертор, управляемый контроллером с обратной связью. Контроллер подаёт на фазы двигателя напряжения и токи, необходимые для создания требуемого момента и работы с нужной скоростью. Такой контроллер заменяет щёточно-коллекторный узел, используемый в коллекторных двигателях постоянного тока. Бесколлекторные двигатели могут работать как с напряжениями на обмотках в форме чистой синусоиды, так и кусочно-ступенчатой формы (например, при блочной коммутации).
Появились бесколлекторные двигатели постоянного тока как попытка избавить коллекторные двигатели постоянного тока с постоянными магнитами от их слабого места – щёточно-коллекторного узла. Этот узел, представляющий собой вращающийся электрический контакт, является слабым местом у коллекторных двигателей с точки зрения надёжности и в ряде случаев ограничивает их параметры.
Принцип работы и устройство бесколлекторного двигателя
Как и остальные двигатели, бесколлекторный двигатель состоит из двух основных частей – ротора (подвижная часть) и статора (неподвижная часть). На статоре располагается трёхфазная обмотка. Ротор несёт на себе постоянный магнит, который может иметь одну или несколько пар полюсов. Когда к обмотке статора приложена трёхфазная система напряжений, то обмотка создаёт вращающееся магнитное поле. Оно взаимодействует с постоянным магнитом на роторе и приводит его в движение. По мере того как ротор поворачивается, вектор его магнитного поля проворачивается по направлению к магнитному полю статора. Управляющая электроника отслеживает направление, которое имеет магнитное поле ротора и изменяет напряжения, приложенные к обмотке статора, таким образом чтобы магнитное поле, создаваемое обмотками статора, повернулось, опережая магнитное поле ротора. Для определения направления магнитного поля ротора используется датчик положения ротора, поскольку магнит, создающий это поле жёстко закреплён на роторе. Напряжения на обмотках бесколлекторного двигателя можно формировать различными способами: простое переключение обмоток через каждые 60° поворота ротора или формирование напряжений синусоидальной формы при помощи широтно-импульсной модуляции.
Варианты конструкции двигателя
Обмотка двигателя может иметь различную конструкцию. Обмотка классической конструкции наматывается на стальной сердечник. Другой вариант конструкции обмотки – это обмотка без стального сердечника. Проводники этой обмотки равномерно распределяются вдоль окружности статора. Характеристики обмотки получаются различными, что отражается и на характеристиках двигателя. Кроме того, обмотки могут быть выполнены на различное число фаз и с различным количеством пар полюсов.
Бесколлекторные двигатели также могут иметь конструкции, различающиеся по взаимному расположению ротора и статора. Наиболее распространена конструкция, когда ротор охватывается статором снаружи – двигатели с внутренним ротором. Но также возможна, и встречается на практике конструкция в которой ротор расположен снаружи статора – двигатели с внешним ротором. Третий вариант – статор расположен параллельно ротору и оба располагаются перпендикулярно оси вращения двигателя. Такие двигатели называют двигателями аксиальной конструкции.
Датчик положения, который измеряет угловое положение ротора двигателя — это важная часть приводной системы, построенной на бесколлекторном двигателе. Этот датчик может быть самым разным как по типу, так и по принципу действия. Традиционно используемый для этой цели тип датчиков – датчики Холла с логическим выходом, устанавливаемые на каждую фазу двигателя. Выходные сигналы этих датчиков позволяют определить положение ротора с точностью до 60° — достаточной реализации самых простых способов управления обмотками. Для реализации способов управления двигателем, предполагающих формирование на обмотках двигателя системы синусоидальных напряжений при помощи ШИМ необходим более точный датчик, например, энкодер. Инкрементные энкодеры, очень широко используемые в современном электроприводе, могут обеспечить достаточно информации о положении ротора только при использовании их вместе с датчиками Холла. Если бесколлекторный двигатель оснащён абсолютным датчиком положения – абсолютным энкодером или резольвером (СКВТ), то датчики Холла становятся не нужны, так как любой из этих датчиков обеспечивает полную информацию о положении ротора.
Можно управлять бесколлекторным двигателем, и не используя датчика положения ротора – бездатчиковая коммутация. В этом случае информация о положении ротора восстанавливается на основании показаний других датчиков, например, датчиков фазных токов двигателя или датчиков напряжения. Такой способ управления часто влечёт за собой ряд недостатков (ограниченный диапазон скоростей, высокая чувствительность к параметрам двигателя, специальная процедура старта), что ограничивает его распространение.
Преимущества и недостатки
Высокая надёжность вследствие отсутствия коллектора. Это основное отличие бесколлекторных двигателей от коллекторных. Щёточно-коллекторный узел, является подвижным электрическим контактом и сам по себе имеет невысокую надёжность и устойчивость к влиянию различных воздействий со стороны окружающей среды.
Отсутствие необходимости обслуживания коллекторного узла . Является особенно актуальным для двигателей среднего и крупного габарита. Для микроэлектродвигателей, проведение ремонта экономически оправдано далеко не во всех случаях, поэтому для них этот пункт не является актуальным.
Сложная схема управления. Прямое следствие переноса функции переключения токов обмотки во внешний коммутатор. Если в простейшем случае для управления коллекторным двигателем необходимо иметь только источник питания, то для бесколлекторного двигателя такой подход не работает – контроллер нужен даже для решения самых простых задач управления движением. Однако, когда речь идёт о решении для сложных случаев (например, задачи позиционирования), то контроллер становится необходим для всех типов двигателей.
Высокая скорость вращения. В коллекторных двигателях скорость перемещения щётки по коллектору ограничена, хотя и различна для различных конструкций этих двух деталей и различных используемых материалов. Предельная скорость перемещения щёток по коллектору сильно ограничивает скорость вращения коллекторных двигателей. Бесколлекторные двигатели не имеют такого ограничения, что позволяет выполнять их для работы на скоростях до нескольких сотен тысяч оборотов в минуту – цифра недостижимая для коллекторных двигателей.
Большая удельная мощность. Возможность достичь большой удельной мощности является следствием высокой скорости вращения, доступной для бесколлекторного двигателя.
Хороший отвод тепла от обмотки. Обмотка бесколлекторных двигателей неподвижно закреплена на статоре и есть возможность обеспечить хороший тепловой контакт её с корпусом, который передаёт тепло, выделяемое в двигателе, в окружающую среду. У коллекторного двигателя обмотка установлена на роторе, и её тепловой контакт с корпусом гораздо хуже, чем у бесколлекторного двигателя.
Больше проводов для подключения. Когда двигатель расположен близко от контроллера, то это конечно не повод для огорчения. Однако если условия окружающей среды, в которых работает двигатель очень сложны, то вынесение управляющей электроники на значительное расстояние (десятки и сотни метров) от двигателя является подчас единственным доступным вариантом для разработчиков системы. В таких условиях каждая дополнительная цепь для подключения двигателя, будет требовать дополнительных жил в кабеле, увеличивая его размеры и массу.
Уменьшение электромагнитных помех, исходящих от двигателя . Щёточно-коллекторный контакт создаёт при работе достаточно сильные помехи. Частота этих помех зависит от частоты вращения двигателя, что осложняет борьбу с ними. У бесколлекторного двигателя единственным источником помех является ШИМ силовых ключей, частота которого обычно постоянна.
Присутствие сложных электронных компонентов. Электронные компоненты (датчики Холла, например) более остальных составных частей двигателя уязвимы для действия жёстких условий со стороны внешней среды, будь то высокая температура, низкая температура или ионизирующие излучения. Коллекторные двигатели не содержат электроники и у них подобная уязвимость отсутствует.
Где применяются бесколлекторные двигатели
К настоящему времени бесколлекторные двигатели получили широкое распространение, как благодаря своей высокой надёжности, высокой удельной мощности и возможности работать на высокой скорости, так и из-за быстрого развития полупроводниковой техники, сделавшей доступными мощные и компактные контроллеры для управления этими двигателями.
Бесколлекторные двигатели широко применяются в тех системах где их характеристики дают им преимущество перед двигателями других типов. Например, там, где требуется скорость вращения несколько десятков тысяч оборотов в минуту. Если от изделия требуется большой срок службы, а ремонт невозможен или ограничен из-за особенностей эксплуатации изделия, то и тогда бесколлекторный двигатель будет хорошим выбором.
Источник
Бесколлекторный электродвигатель — что это такое? | Полезные статьи
Что такое бесколлекторный электродвигатель, понять, на первый взгляд, очень сложно. Этот двигатель отличает довольно большая цена, а также необычный способ работы. В традиционном двигателе обыкновенный ротор с обмоткой вращается внутри статора, на котором расположены постоянные магниты. При этом обмотки коммутируются специальным коллектором — в зависимости от постоянного положения ротора. Настоящий бесколлекторный электродвигатель представляет собою механизм, в котором ротор-коллектор, напротив, вращается по оси вокруг статора.
3-фазный двигатель переменного тока выглядит именно таким образом. При этом необходимо питать двигатель только постоянным током, а обороты двигателя непременно должны меняться параллельно тому, как поступает ток в механизм. Обмотки мотора нужно переключать в прямой зависимости от того, как меняется его положение. Датчики Холла в этом механизме выполняют функцию датчиков положения магнита — ротора. Именно они выступают в роли подающих сигнал и переключают положение обмотки.
Крепление данных датчиков выполнено следующим образом: благодаря удобному креплению датчики можно поворачивать вокруг оси самого двигателя, чтобы настроить наиболее удобную фазу переключения. Таким образом, бесколлекторный электродвигатель представляет собою устройство, состоящее из 3-фазного двигателя и 2-фазного мотора.
Виды устройств
Бесколлекторные двигатели бывают постоянного и переменного тока. Бесколлекторный двигатель постоянного тока очень похож на механизм с переменным током, при этом его устройство дает распределение иначе. Магнитный ротор вращается в специальном статоре с магнитными обмотками. В том случае, если двигатель создан без датчиков Холла, сам двигатель представляет собою механизм с фиксаторами в виде обмотки статора. Трехфазный бесколлекторный двигатель постоянного тока — это механизм, в котором контроль тока выполняется при помощи механизма аналогового компаратора.
Традиционно управление бесколлекторным двигателем осуществляется при помощи специального электронного блока управления. В этом блоке расположены все электронные схемы, подающие сигналы в двигатель. Схема управления бесколлекторным двигателем — очень сложный механизм. Для двигателей с маленькой мощностью используется микросхема, состоящая из 6 транзисторов, подающих электрический ток, в двигателях с большой мощностью используются сложные микросхемы.
Обыкновенный регулятор скорости бесколлекторного двигателя — это устройство, которое подключается для управления механизмом. Бесколлекторные двигатели широко используются для авиамоделей, и чтобы управлять ими, необходимо подключить регулятор скорости. Регулятор представляет собою электронное устройство, дающее возможность контролировать скорость работы любого изделия.
Отличительные особенности бесколлекторных двигателей — это их высокая мощность, большая скорость работы устройств, все чаще в связи с высокой производительностью. Такие типы двигателей применяют на производстве при внедрении новых технологий. Двигатель без коллектора отличается большой мощностью, высокой надежностью, низкой степенью износа. На производстве и в промышленности этот тип мотора незаменим. Радиоуправляемые самолеты и машинки также оснащены небольшими бесколлекторными двигателями.
Очень удобно применять такие типы двигателей в радиоуправляемых моделях вертолета. Их небольшой вес и отсутствие лишних приспособлений дает возможность разместить двигатель даже в самом тесном пространстве.
Для оформления заказа позвоните менеджерам компании Кабель.РФ® по телефону +7 (495) 646-08-58 или пришлите заявку на электронную почту [email protected] с указанием требуемой модели электродвигателя, целей и условий эксплуатации. Менеджер поможет Вам подобрать нужную марку с учетом Ваших пожеланий и потребностей.
Бесщеточный мотор постоянного тока
Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.
Общие сведения, устройство, сфера применения
Одна из причин проявления интереса к БД — это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.
Рис. 2. Устройство бесколлекторного двигателя
Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.
Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).
Рис. 3. Конструкция с внешним якорем (outrunner)
Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).
Бесколлекторный двигатель в компьютерном дисководе
Принцип работы
В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.
Фазы работы бесколлекторного привода
Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.
Отличия коллекторного и бесколлекторного двигателя
Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.
Рис. 5. А – коллекторный двигатель, В – бесколлекторный
Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.
Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.
Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.
Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.
Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.
Как запустить бесколлекторный двигатель?
Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.
Рис. 6. Контроллеры бесколлекторных двигателей для моделизма
Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:
- Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
- Максимальная величина штатного напряжения для продолжительной работы.
- Сопротивление внутренних цепей контроллера.
- Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
- Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.
Обратим внимание, что первые три характеристики определяют мощность БД.
Управление бесколлекторным двигателем
Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.
Трёхфазный бесколлекторный электродвигатель постоянного тока
Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).
Рисунок 7. Диаграммы напряжений БД
Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:
- На катушки «А» подается положительный импульс, в то время как на «В» — отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
- Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
- На «С» — положительный, «А» — отрицательный.
- Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
- Положительный импульс повторно подается на «В», и отрицательный на «С».
- Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.
В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.
Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем
Преимущества и недостатки
Электрический бесколлекторный двигатель имеет много достоинств, а именно:
- Срок службы значительно дольше, чем у обычных коллекторных аналогов.
- Высокий КПД.
- Быстрый набор максимальной скорости вращения.
- Он более мощный, чем КД.
- Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
- Не требуется дополнительное охлаждение.
- Простая эксплуатация.
Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.
BLDC (Brushless Direct Current) – Бесщёточные электродвигатели постоянного тока , либо по другому, бесколлекторные электродвигатели постоянного тока.
Мотор относится к классу вентильных двигателей: бесконтактный двигатель постоянного тока с возбуждением от постоянных магнитов (неодим-железо-бор). Определение положения ротора в любой момент времени обеспечивают 3 датчика Холла (для сенсорных контроллеров управления).
Применяются моторы в приводах электротранспорта: электромотоциклах, электроавтомобилях и т.п.
Питаются от источников постоянного тока 48В, 60В, 72В, 96В, 120В. Для работы требуется контроллер, соответствующей мощности.
Этой статьёй я начинаю цикл публикаций о бесколлекторных двигателях постоянного тока. Доступным языком опишу общие сведения, устройство, алгоритмы управления бесколлекторным двигателем. Будут рассмотрены разные типы двигателей, приведены примеры подбора параметров регуляторов. Опишу устройство и алгоритм работы регулятора, методику выбора силовых ключей и основных параметров регулятора. Логическим завершением публикаций будет схема регулятора.
Бесколлекторные двигатели получили широкое распространение благодаря развитию электроники и, в том числе, благодаря появлению недорогих силовых транзисторных ключей. Также немаловажную роль сыграло появление мощных неодимовых магнитов.
Однако не стоит считать бесколлекторный двигатель новинкой. Идея бесколлекторного двигателя появилась на заре электричества. Но, в силу неготовности технологий, ждала своего времени до 1962 года, когда появился первый коммерческий бесколлекторный двигатель постоянного тока. Т.е. уже более полувека существуют различные серийные реализации этого типа электропривода!
Немного терминологии
Конструктивно бесколлекторный двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Обращаю Ваше внимание на то, что в коллекторном двигателе наоборот, обмотки находятся на роторе. Поэтому, далее в тексте ротор – магниты, статор – обмотки.
Для управления двигателем применяется электронный регулятор. В зарубежной литературе Speed Controller или ESC (Electronic speed control).
Что такое бесколлекторный двигатель?
Попробуем разобраться, что собой представляет бесколлекторный двигатель постоянного тока (Brushles Direct Current Motor). В самой этой фразе уже кроется ответ – это двигатель постоянного тока без коллектора. Функции коллектора выполняет электроника.
Преимущества и недостатки
Единственным недостатком считают сложный дорогостоящий электронный блок управления (регулятор или ESC). Однако, если вы хотите управлять оборотами двигателя, без электроники никак не обойтись. Если вам не надо управлять оборотами бесколлекторного двигателя, без электронного блока управления все равно не обойтись. Бесколлекторный двигатель без электроники – просто железка. Нет возможности подать на него напряжение и добиться нормального вращения как у других двигателей.
Что происходит в регуляторе бесколлекторного двигателя?
То же самое делает и электроника, управляющая бесколлекторным двигателем – в нужные моменты подключает постоянное напряжение на нужные обмотки статора.
Датчики положения, двигатели без датчиков
Существуют бесколлекторные двигатели, которые не имеют датчиков. В таких двигателях положение ротора определяется путем измерения напряжения на незадействованной в данный момент времени обмотке. Эти методы также будут рассмотрены позднее. Следует обратить внимание на существенный момент: этот способ актуален только при вращении двигателя. Когда двигатель не вращается или вращается очень медленно, такой метод не работает.
В каких случаях применяют бесколлекорные двигатели с датчиками, а в каких – без датчиков? В чем их отличие?
В тех случаях, когда конструктивно невозможно разместить датчики в корпусе двигателя, используют двигатели без датчиков. Конструктивно такие двигатели практически не отличаются от двигателей с датчиками. А вот электронный блок должен уметь управлять двигателем без датчиков. При этом блок управления должен соответствовать характеристикам конкретной модели двигателя.
Если двигатель должен стартовать с существенной нагрузкой на валу двигателя (электротранспорт, подъёмные механизмы и т.п.) – применяют двигатели с датчиками. Если двигатель стартует без нагрузки на валу (вентиляция, воздушный винт, применяется центробежная муфта сцепления и т.п.), можно применять двигатели без датчиков. Запомните: двигатель без датчиков положения должен стартовать без нагрузки на валу. Если это условие не соблюдается, следует использовать двигатель с датчиками. Кроме того, в момент старта двигателя без датчиков возможны вращательные колебания оси двигателя в разные стороны. Если это критично для Вашей системы, применяйте двигатель с датчиками.
Три фазы
Трехфазные бесколлекторные двигатели приобрели наибольшее распространение. Но они могут быть и одно, двух, трех и более фазными. Чем больше фаз, тем более плавное вращение магнитного поля, но и сложнее система управления двигателем. 3-х фазная система наиболее оптимальна по соотношению эффективность/сложность, поэтому и получила столь широкое распространение. Далее будет рассматриваться только трехфазная схема, как наиболее распространенная. Фактически фазы – это обмотки двигателя. Поэтому если сказать «трехобмоточный», думаю, это тоже будет правильно. Три обмотки соединяются по схеме «звезда» или «треугольник». Трехфазный бесколлекторный двигатель имеет три провода – выводы обмоток, см. рисунок.
Двигатели с датчиками имеют дополнительных 5 проводов (2-питание датчиков положения, и 3 сигналы от датчиков).
В трехфазной системе в каждый момент времени напряжение подается на две из трех обмоток. Таким образом, есть 6 вариантов подачи постоянного напряжения на обмотки двигателя, как показано на рисунке ниже.
Это позволяет создать вращающееся магнитное поле, которое будет проворачиваться «шагами» на 60 градусов при каждом переключении. Но не будем забегать наперед. В следующей статье будут рассмотрены устройство бесколлекторного двигателя, варианты расположения магнитов, обмоток, датчиков и т.д., а позже будут рассмотрены алгоритмы управления бесколлекторными двигателями.
Бесколлекторные моторы «на пальцах» Что такое бесколлекторные моторы и как управлять бесколлекторными моторами:
Бесколлекторные двигатели | Поставки бесколлекторных двигателей по России
Главная / Каталог / Бесколлекторные двигатели
Бесколлекторный электродвигатель (вентильный электродвигатель) — это синхронный двигатель, основанный на принципе частотного регулирования с самосинхронизацией, суть которого заключается в управлении вектором магнитного поля статора в зависимости от положения ротора. Данный тип двигателей был создан с целью улучшения свойств коллекторных электродвигателей постоянного тока.
Бесколлекторный двигатель объединяет в себе лучшие качества бесконтактных двигателей и двигателей постоянного тока.
Устройство, принцип работы бесколлекторного двигателя
Бесколлекторные двигатели (BLDC — brushless DC motors) или, как их еще называют, вентильные двигатели или шпиндельные двигатели, обладают высокой динамикой и точностью позиционирования, большой перегрузочной способностью двигателя к моменту, а также высоким КПД двигателя – более 90%. Благодаря отсутствию трущихся частей в бесколлекторном двигателе возможно его применения во взрывоопасной и агрессивной среде.
Бесколлекторные двигатели состоят из статора традиционной обмотки, в зависимости от способа укладки витков он бывает BLDC – для двигателей имеющих обратную электродвижущую силу и PMSM – для двигателей питающихся синусоидальным током, ротора в котором используются магниты постоянного тока и датчика положения ротора.
Датчик положения ротора, встроенный в корпус двигателя, вырабатывает сигналы управления моментами времени и последовательностью коммутации токов в обмотках статора. Все поставляемые нами бесколлекторные электродвигатели имеют по три встроенных датчика Хола (Honeywell), расположенных под углом 120 градусов друг к другу.
Все бесколлекторные двигатели мы поставляем вместе с блоками управления, производимыми на том же заводе, что и сами двигатели (Fulling Motor, Китай), что гарантирует идеальную «совместимость» блоков управления и двигателей. Некоторые наши клиенты (как правило, использующие бесколлекторные двигатели в массовой серийной продукции с большими объемами выпуска) предпочитают разрабатывать устройства управления бесколлекторным двигателем самостоятельно. При этом они имеют возможность наиболее полно учесть нюансы рабочих режимов двигателей, и максимально снизить цену (себестоимость) блока управления бесколлекторным двигателем.
Бесколлекторные двигатели не имеют недостатков, присущих асинхронным двигателям (потребление реактивной мощности, потери в роторе) и синхронным двигателям (пульсация частоты вращения, выпадение из синхронизма).
Как и у коллекторных двигателей момент бесколлекторных двигателей прямо пропорционален току, а скорость зависит от напряжения питания и нагружающего момента.
Но бесколлекторные двигатели имеют преимущество по сравнению с коллекторными — это отсутствие трущихся и истираемых частей, переключающихся контактов и т.п. и, как следствие, высокий ресурс.
Основные достоинства бесколлекторных (вентильных) двигателей:
- высокое быстродействие и динамика, точность позиционирования
- линейность нагрузочных характеристик
- широкий диапазон изменения частоты вращения
- большая перегрузочная способность по моменту
- высокий срок службы (ресурс электродвигателя ограничен, по большому счету, только сроком службы подшипников)
- высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов
- низкий перегрев электродвигателя, при работе в режимах с возможными перегрузками
- существенно более низкий уровень электромагнитных шумов по сравнению с коллекторными моторами
Области применения бесколлекторных двигателей
С силу своих достоинств бесколлекторные двигатели получили широкое распространение во многих отраслях промышленности. Незаменимыми оказываются они в медицинской технике — низкий уровень электромагнитных излучений, низкий уровень шума и высокий ресурс определили лидирующую роль бесколлекторного привода во многих узлах медицинской аппаратуры. Также бесколлекторные электродвигатели традиционно используются для работы в опасных средах. Отсутствие трущихся частей, способных вызвать искру, позволяет применять бесколлекторные двигатели в нефтегазовой промышленности, например, в качестве трубозапорных приводов для нефте- и газопроводов.
Бесколлекторные двигатели: преимущества и недостатки
Бесколлекторные двигатели — это вид синхронных устройств с постоянными магнитами, питаемыми от цепи постоянного тока через инвертор, управление которым осуществляется при помощи коллектора с обратной связью.
Преимущества и недостатки устройств
Бесколлекторный двигатель имеет следующие плюсы и минусы:
1. Наличие сложных электронных компонентов (к примеру, датчиков Холла). Они отличаются уязвимостью для действия жестких условий со стороны окружающей среды (высокой и низкой температуры, ионизирующих излучений и так далее). Если рассматривать коллекторные двигатели, то они вовсе не имеют электроники, из-за чего у них отсутствует данная уязвимость.
2. Сведение к минимуму электромагнитных помех, которые исходят от устройства. Во время работы щеточно-коллекторный контакт создает сильные помехи. Их частота зависит от частоты вращения мотора. А вот у бесколлекторной модели устройств основным источником помех можно назвать ШИМ силовых ключей, частота которого постоянна.
3. Требуется больше проводов для подключения. Если устройство работает в сложных условиях, то рекомендуется вынести управляющую электронику на большое расстояние. В таком случае каждая дополнительная цепь для подсоединения устройства требует наличия дополнительных жил в кабеле, что увеличивает его массу и габариты.
4. Отличный отвод тепла от обмотки. Последняя надежно закреплена на статоре и поэтому возможно обеспечить ее хороший тепловой контакт вместе с корпусом (корпус передает тепло, появляющееся в устройстве, в окружающую среду). У бесколлекторного мотора тепловой контакт с корпусом значительно лучше, чем у коллекторного электродвигателя.
5. Повышенная мощность. Это следствие высокой скорости вращения.
6. Большая скорость вращения. Коллекторные двигатели отличаются тем, что они имеют ограниченную скорость перемещения щетки по коллектору. Предельная скорость существенно ограничена. Бесколлекторные электродвигатели не имеют такого ограничения. Благодаря этому они могут работать на скоростях до нескольких сотен тысяч оборотов в минуту.
7. Сложная схема управления. Для управления коллекторным мотором нужен источник питания, а для бесколлекторного такой подход не подойдет (ему требуется контроллер).
8. Нет нужды в обслуживании коллекторного узла. Это актуально для моторов крупных и средних габаритов.
9. Надежность (по причине отсутствия коллектора). Это и есть главное отличие бесколлекторных двигателей.
Бесколлекторные модели устройств получили широкое применение в областях, где их технические характеристики дают им преимущество перед устройствами других типов (к примеру, там, где требуется скорость до нескольких десятков тысяч оборотов в минуту).
ПохожееКак приводить в действие бесщеточные двигатели постоянного тока и управлять ими
Растущая популярность бесщеточного двигателя постоянного тока (BLDC) обусловлена использованием электронной коммутации. Это заменяет традиционную механику, состоящую из щеток, трущихся о коммутатор для подачи питания на обмотки якоря двигателя постоянного тока.
Электронная коммутация обеспечивает больший КПД по сравнению с обычными двигателями постоянного тока с улучшением на 20–30% для двигателей, работающих с той же скоростью и нагрузкой. Поскольку Международное энергетическое агентство сообщает, что 40% всей электроэнергии в мире используется для питания электродвигателей, такое повышение эффективности становится очевидным.
Кроме того, двигатель BLDC более долговечен. Он сохраняет свою высокую производительность, в то время как эффективность и мощность эквивалентного обычного двигателя снижаются из-за износа, вызывая плохой контакт щеток, искрение между щетками и коммутатором, рассеивающее энергию, и грязь, снижающую электрическую проводимость.
Повышенный КПД позволяет делать двигатели BLDC меньше, легче и тише при заданной выходной мощности, что еще больше увеличивает их популярность в таких секторах, как автомобилестроение; бытовая техника; и отопление, вентиляция и кондиционирование (HVAC).Другие преимущества двигателей BLDC включают превосходные характеристики скорости по сравнению с крутящим моментом (за исключением крутящего момента при запуске), более динамичный отклик, бесшумную работу и более высокие диапазоны скоростей.
Обратной стороной двигателей BLDC является их сложность и связанное с этим увеличение стоимости. Электронная коммутация требует контролирующих схем для обеспечения точного времени включения катушки для точного управления скоростью и крутящим моментом, а также для обеспечения работы двигателя с максимальной эффективностью.
К счастью, этот сектор быстро развивается, и поставщики микросхем теперь предлагают широкий спектр высокоинтегрированных микросхем MOSFET для драйверов двигателей BLDC с внешними или встроенными микроконтроллерами, чтобы упростить процесс проектирования, а также снизить стоимость компонентов.В этой статье объясняется, как разработчик может воспользоваться преимуществами этих новейших микросхем, чтобы упростить процесс проектирования
.Основы двигателя BLDC
Все электродвигатели с механической или электронной коммутацией используют один и тот же основной метод преобразования электрической энергии в механическую. Ток через обмотку создает магнитное поле, которое в присутствии второго магнитного поля (обычно создаваемого постоянными магнитами) создает силу в этой обмотке, которая достигает максимума, когда ее проводники находятся под углом 90 ° ко второму полю.Увеличение количества катушек увеличивает мощность двигателя и сглаживает подачу мощности. (Компания Monolithic Power Systems (MPS) подготовила заметку по применению (см. Ссылку 1), в которой хорошо резюмируются основные концепции двигателя.)
Двигатель BLDC преодолевает потребность в механическом коммутаторе, изменяя настройку двигателя в обратном направлении; обмотки становятся статором, а постоянные магниты — частью ротора. Статор обычно состоит из стальных пластин с прорезями в осевом направлении для размещения четного числа обмоток по его внутренней периферии.Ротор состоит из вала и ступицы с постоянными магнитами, образующими от двух до восьми пар полюсов, чередующихся между «N» и «S». На рис. 1 показан один пример обычного магнитного устройства, в данном случае две пары магнитов, прикрепленных непосредственно к ступице ротора.
Рисунок 1: В двигателе BLDC постоянные магниты прикреплены к ротору. Типичные конфигурации включают от двух до восьми пар, чередующихся между «N» и «S» полюсами. (предоставлено MPS)
Поскольку обмотки неподвижны, для их подачи можно установить постоянные соединения.Чтобы неподвижные обмотки перемещали постоянный магнит, обмотки должны быть запитаны (или коммутированы) в управляемой последовательности для создания вращающегося магнитного поля.
Поскольку вращающееся магнитное поле, создаваемое статором, заставляет ротор вращаться с той же частотой, двигатель BLDC известен как «синхронный» тип. Двигатели BLDC могут быть одно-, двух- или трехфазными. Трехфазные двигатели BLDC являются наиболее распространенными и будут предметом остальной части этой статьи.
Блок управления двигателем BLDC
Безусловно, наиболее распространенной конфигурацией для последовательного приложения тока к трехфазному двигателю BLDC является использование трех пар силовых полевых МОП-транзисторов, расположенных в виде моста, как показано на рисунке 2. Каждая пара управляет переключением одной фазы двигателя. В типичной компоновке полевые МОП-транзисторы верхнего плеча управляются с помощью широтно-импульсной модуляции (ШИМ), которая преобразует входное напряжение постоянного тока в модулированное управляющее напряжение. Использование ШИМ позволяет ограничить пусковой ток и обеспечивает точное управление скоростью и крутящим моментом.Частота ШИМ — это компромисс между коммутационными потерями, возникающими на высоких частотах, и токами пульсаций, которые возникают на низких частотах и которые в крайних случаях могут повредить двигатель. Обычно конструкторы используют частоту ШИМ как минимум на порядок выше максимальной скорости вращения двигателя.
Рис. 2. Трехфазный двигатель BLDC обычно питается от трех пар полевых МОП-транзисторов, расположенных в виде моста и управляемых ШИМ. ШИМ обеспечивает точное управление скоростью и крутящим моментом двигателя.(Схема нарисована с использованием Digi-Key Scheme-it®)
Существует три схемы управления электронной коммутацией: трапецеидальная, синусоидальная и управление по полю. Техника трапеции (описанная в примере ниже) — самая простая. На каждом этапе две обмотки находятся под напряжением (одна «высокая» и одна «низкая»), в то время как другая обмотка плавает. Обратной стороной трапециевидного метода является то, что эта «ступенчатая» коммутация вызывает «колебания» крутящего момента, особенно на низких скоростях.
Синусоидальное управление более сложное, но оно снижает пульсации крутящего момента.Во время этого режима управления все три катушки остаются под напряжением, и ток возбуждения в каждой из них изменяется синусоидально под углом 120 ° друг от друга. Результат — более плавная подача мощности по сравнению с трапециевидной техникой.
Управление, ориентированное на поле, основано на измерении и регулировке токов статора таким образом, чтобы угол между магнитным потоком ротора и статора всегда составлял 90 °. Этот метод более эффективен на высоких скоростях, чем синусоидальный метод, и дает лучшие характеристики при динамических изменениях нагрузки по сравнению со всеми другими методами.Пульсации крутящего момента практически отсутствуют, а более плавное и точное управление двигателем может быть достигнуто как на низких, так и на высоких скоростях.
В этой статье мы ограничим остальную часть технического обсуждения трапециевидной техникой.
В двигателе, использующем трапециевидную схему управления, переключение моста MOSFET должно происходить в точно определенной последовательности, чтобы двигатель BLDC работал эффективно. Последовательность переключения определяется взаимным расположением пар магнитов ротора и обмоток статора.Трехфазный двигатель BLDC требует шестиэтапной последовательности коммутации для завершения одного электрического цикла. Количество механических оборотов за электрический цикл определяется количеством пар магнитов на роторе. Например, два электрических цикла потребуются для механического вращения ротора, состоящего из двух пар магнитов, за один оборот.
Сравнение с сенсором и без сенсора
Две технологии предлагают решение для позиционной обратной связи. В первом и наиболее распространенном варианте используются три датчика Холла, встроенные в статор и расположенные с равными интервалами, обычно 60 ° или 120 °.Вторая, «бессенсорная» технология управления применяется для двигателей с BLDC, которые требуют минимальных электрических подключений.
В двигателе BLDC, оборудованном датчиками, каждый датчик на эффекте Холла объединен с переключателем, который генерирует логический «высокий» (для одного магнитного полюса) или «низкий» (для противоположного полюса) сигнал. Последовательность коммутации определяется путем объединения логических сигналов от датчиков Холла и соответствующих переключателей. В любой момент по крайней мере один из датчиков срабатывает одним из магнитных полюсов ротора и генерирует импульс напряжения.
На рисунке 3 показана последовательность коммутации трехфазного двигателя BLDC, управляемого против часовой стрелки. Датчики на эффекте Холла устанавливаются в положениях «a», «b» и «c». Для каждого шага в последовательности коммутации одна обмотка («U», «V» или «W») приводится в высокое состояние мостом MOSFET, в то время как одна переводится в низкий уровень, а третья остается плавающей. Например, в верхнем левом углу рисунка U высокий (образуя полюс N), V низкий (S) и W плавающий. Возникающее магнитное поле перемещает ротор против часовой стрелки, поскольку его постоянные магниты отталкиваются одной обмоткой и притягиваются другой.Вторая ступень (ниже) показывает, что обмотка U остается на высоком уровне, в то время как V переключается на плавающий, а W переключается на низкий уровень, таким образом поддерживая «вращение» магнитного поля и перемещая ротор вместе с ним. Остальные этапы коммутации, один электрический цикл, составляют половину механического оборота ротора.
Рисунок 3: Электронная последовательность коммутации для трехфазного двигателя BLDC с использованием моста MOSFET и датчиков Холла. В этом случае ротор вращается против часовой стрелки, а датчики Холла («a», «b» и «c») устанавливаются с интервалами 60 °.(Предоставлено: MPS)
На рис. 4 показано состояние фазных обмоток по отношению к сигналам датчика Холла для двигателя, вращающегося против часовой стрелки, показанного на рис. 3 выше.
Рис. 4. Временная диаграмма выхода логического переключателя датчика Холла и состояния обмотки для трехфазного двигателя BLDC, управляемого против часовой стрелки. Обратите внимание, как минимум один логический переключатель и обмотка меняют состояние каждые 60 °. (Предоставлено: MPS)
Бессенсорный двигатель BLDC использует электродвижущую силу (ЭДС), которая вызывает ток в обмотках любого двигателя постоянного тока с магнитным полем, которое противодействует первоначальному изменению магнитного потока, как описано в Законе Ленца.ЭДС имеет тенденцию сопротивляться вращению двигателя и поэтому называется «обратной» ЭДС. Для данного двигателя с фиксированным магнитным потоком и количеством обмоток ЭДС пропорциональна угловой скорости ротора.
Контролируя обратную ЭДС, соответствующим образом запрограммированный микроконтроллер может определять относительные положения статора и ротора без необходимости использования датчиков Холла. Это упрощает конструкцию двигателя, снижает его стоимость, а также устраняет дополнительную проводку и соединения с двигателем, которые в противном случае потребовались бы для поддержки датчиков, тем самым повышая надежность.
Однако, поскольку стационарный двигатель не генерирует противо-ЭДС, контроллер не может определить положение двигателя при запуске. Решение состоит в том, чтобы запустить двигатель в конфигурации с разомкнутым контуром до тех пор, пока ЭДС не будет генерироваться контроллером, достаточным для определения положения ротора и статора, а затем взять на себя контроль. Более сложный режим управления используется, если двигатель используется в приложении, где обратное вращение запрещено.
Обратная ЭДС, генерируемая каждой обмоткой описанного выше двигателя BLDC, показана в нижней половине рисунка 5.Это сравнивается с выходом логического переключателя датчика Холла для сопоставимого двигателя BLDC, оснащенного датчиками. Из рисунка видно, что точки пересечения нуля для ЭДС, генерируемой в обмотке, совпадают с изменениями состояния переключения для логических переключателей. Именно эту информацию о переходе через ноль микроконтроллер использует для запуска каждого этапа цикла коммутации в бессенсорном двигателе BLDC. (См. Статью в библиотеке «Управление бездатчиковыми двигателями BLDC через обратную ЭДС».)
Рисунок 5: Выход логического переключателя датчика Холла в сравнении с обратной ЭДС намотки для двигателя BLDC, вращаемого против часовой стрелки.Обратите внимание, как точки пересечения нуля для информации об обратной ЭДС, используемой для управления бездатчиковым двигателем BLDC, совпадают с изменением состояния логических переключателей в двигателе BLDC, оборудованном датчиками. (Предоставлено: MPS)
Разработка двигателя BLDC
Несмотря на то, что принципы коммутации двигателей BLDC задействованы, мощность двигателя BLDC и схема управления не обязательны. На рынке имеется множество проверенных интегрированных продуктов, которые можно использовать в качестве строительных блоков для схем.В основе схемы лежат силовые модули BLDC, содержащие либо драйверы затвора, либо интегрированные полевые МОП-транзисторы.
Трехфазный драйвер MOSFET A4915 компанииAllegro Microsystems работает как предварительный драйвер для моста MOSFET с шестью мощностями для двигателя BLDC. Это устройство предназначено для продуктов с батарейным питанием. Одной из примечательных функций для экономии энергии является спящий режим с низким энергопотреблением, который гарантирует, что устройство потребляет минимальный ток, когда двигатель не вращается. Устройство также оснащено синхронным выпрямлением — методом, заимствованным у импульсных регуляторов напряжения для снижения энергопотребления и устранения необходимости во внешних диодах Шоттки.
Microchip также предлагает предварительный драйвер для моста MOSFET на шесть мощностей для двигателя BLDC, но на этот раз для небольших бессенсорных блоков, используемых в автомобилях, бытовой технике и товарах для хобби. Устройство MCP8025 включает понижающий импульсный стабилизатор для питания внешнего контроллера, а также два линейных регулятора с малым падением напряжения (LDO) и насос заряда для питания моста MOSFET.
Эта микросхема упрощает работу, измеряя обратную ЭДС плавающей обмотки, которая затем сравнивается с нейтральной точкой двигателя.Когда обратная ЭДС пересекает нулевую точку, детектор пересечения нуля отправляет сигнал на главный контроллер, чтобы указать контрольную точку коммутации.
DRV8313 компанииTexas Instruments делает шаг вперед, интегрируя три индивидуально управляемых полумостовых драйвера. Преимущество такой схемы состоит в том, что микросхему можно использовать не только для управления трехфазным двигателем BLDC, но и для управления двигателем с механической коммутацией (с использованием двух полумостовых мостов) или трех независимых соленоидов.Микросхема может подавать до 3,5 А от источника питания от 8 до 60 В.
DRV8313 не имеет входов датчиков. TI предлагает использовать как сенсорную, так и бессенсорную работу, чип должен быть объединен с микроконтроллером, таким как популярный MSP430. Такая компоновка, как показано на рисунке 6, обеспечивает полную систему управления с обратной связью для сенсорного трехфазного двигателя BLDC.
Рис. 6. Полная система управления с обратной связью для трехфазного электродвигателя постоянного тока с датчиком.Схема включает аналоговый вход скорости, микроконтроллер MSP430, контролирующий выходы ШИМ для силовых полевых МОП-транзисторов, драйвер моста из шести полевых МОП-транзисторов, мост полевого МОП-транзистора и двигатель BLDC. Положение статора и ротора двигателя определяется тремя датчиками Холла, которые подают сигналы на микроконтроллер. (Предоставлено: Texas Instruments)
TI предлагает альтернативную часть, DRV8308, которая не интегрирует полевые МОП-транзисторы. Однако он может напрямую принимать входные сигналы от трех датчиков Холла и, следовательно, при желании может использоваться без дополнительного микроконтроллера.
В то время как датчики на эффекте Холла являются проверенным решением для позиционной обратной связи, разработки в технологии датчиков положения обеспечивают большую точность и обещают более эффективную последовательность коммутации. Например, ADA4571 компании Analog Devices представляет собой датчик угла и формирователь сигнала, который может заменить три датчика Холла в типичном трехфазном двигателе постоянного тока с BLDC одним устройством. Преимущества — экономия места и необходимость работать только с одним сигналом.
В ADA4571 используется анизотропная магниторезистивная технология (AMR).Типичная реализация заключается в установке диаметрально намагниченного диска на конце вала двигателя BLDC (см. Рисунок 7). Магнитное поле диска проходит через плоскость датчика, и угол ротора определяется без контакта между механическими и электрическими компонентами.
Рис. 7. Один анизотропный магниторезистивный датчик может быть размещен рядом с дисковым магнитом, установленным на конце вала двигателя BLDC, заменяя три датчика Холла для определения угла двигателя BLDC, экономя место и упрощая обработку сигналов.
ADA4571 выдает усиленные косинусоидальные и синусоидальные выходные сигналы, относящиеся к углу вращающегося магнитного поля. Диапазон выходного напряжения пропорционален напряжению питания. Analog Devices предлагает объединить датчик с 12-разрядным АЦП AD7866 для преобразования аналоговых сигналов ADA4571 в цифровой сигнал, необходимый для контроллера привода двигателя BLDC или внешнего микроконтроллера.
Analog Devices утверждает, что использование одного углового датчика не ставит под угрозу точность коммутации, поскольку ADA4571 может ограничивать воспринимаемую угловую погрешность максимумом +/- 0.25 ° для двигателя BLDC со скоростью до 25000 об / мин.
Заключение
Электронная коммутация двигателей BLDC требует точного управления, что увеличивает сложность и стоимость схемы двигателя. Однако эффективность, такая как снижение мощности, надежности и пространства, а также снижение веса конечного продукта, более чем компенсирует эти недостатки. Кроме того, широкий спектр проверенных интегрированных драйверов двигателей BLDC значительно упрощает процесс проектирования, добавляя разработчикам гибкости в настройке конструкции для конкретного приложения.
Артикул:
- «Основы бесщеточного двигателя постоянного тока », Цзянь Чжао и Янвэй Ю, инструкция по применению MPS (AN047), июль 2011 г.
Заявление об ограничении ответственности: мнения, убеждения и точки зрения, выраженные различными авторами и / или участниками форума на этом веб-сайте, не обязательно отражают мнения, убеждения и точки зрения Digi-Key Electronics или официальную политику Digi-Key Electronics.
Знакомство с бесщеточными двигателями постоянного тока
Бесщеточные двигатели постоянного тока широко используются в промышленности по всему миру.На самом базовом уровне существуют щеточные и бесщеточные двигатели, а также двигатели постоянного и переменного тока. Бесщеточные двигатели постоянного тока, как вы понимаете, не содержат щеток и используют постоянный ток.
Эти двигатели обладают многими конкретными преимуществами по сравнению с другими типами электродвигателей, но, выходя за рамки основ, что именно представляет собой бесщеточный двигатель постоянного тока? Как это работает и для чего используется?
Как работает бесщеточный двигатель постоянного тока
Часто помогает сначала объяснить, как работает щеточный двигатель постоянного тока, поскольку он использовался некоторое время до того, как стали доступны бесщеточные двигатели постоянного тока.Почищенный щеткой двигатель постоянного тока имеет постоянные магниты снаружи своей конструкции и вращающийся якорь внутри. Постоянные магниты, которые неподвижны снаружи, называются статором. Якорь, который вращается и содержит электромагнит, называется ротором.
В щеточном двигателе постоянного тока ротор вращается на 180 градусов, когда электрический ток проходит через якорь. Чтобы продолжить, полюса электромагнита должны перевернуться. Щетки, когда ротор вращается, контактируют со статором, меняя магнитное поле и позволяя ротору вращаться на полные 360 градусов.
Бесщеточный двигатель постоянного тока по существу перевернут наизнанку, что устраняет необходимость в щетках для изменения электромагнитного поля. В бесщеточных двигателях постоянного тока постоянные магниты находятся на роторе, а электромагниты — на статоре. Затем компьютер заряжает электромагниты в статоре, чтобы вращать ротор на полные 360 градусов.
Для чего используются бесщеточные двигатели постоянного тока?
Бесщеточные двигатели постоянного тока обычно имеют КПД 85-90%, в то время как щеточные двигатели обычно имеют КПД только 75-80%.Щетки со временем изнашиваются, иногда вызывая опасное искрение, ограничивая срок службы двигателя с щеткой. Бесщеточные двигатели постоянного тока тихие, легкие и имеют гораздо более длительный срок службы. Поскольку компьютеры управляют электрическим током, бесщеточные двигатели постоянного тока могут обеспечить гораздо более точное управление движением.
Благодаря всем этим преимуществам, бесщеточные двигатели постоянного тока часто используются в современных устройствах, где требуется низкий уровень шума и тепла, особенно в устройствах, которые работают в непрерывном режиме. Это могут быть стиральные машины, кондиционеры и другая бытовая электроника.Они могут даже быть основным источником энергии для сервисных роботов, что потребует очень тщательного контроля силы из соображений безопасности.
Бесщеточные двигатели постоянного тока обладают рядом явных преимуществ по сравнению с другими типами электродвигателей, поэтому они нашли применение во многих предметах домашнего обихода и могут стать основным фактором роста сервисных роботов внутри и за пределами промышленного сектора.
Если вы считаете, что ваше приложение может извлечь выгоду из этой технологии, просмотрите список поставщиков и интеграторов бесщеточных двигателей постоянного тока.
Бесщеточные двигатели постоянного тока: примеры, демонстрирующие их особенности
Двигатели постоянного тока, с щетками или без них, используются в широком спектре приложений, отличаются высоким уровнем пускового момента и способностью вращаться с высокой скоростью. Бесщеточные двигатели постоянного тока тише, чем щеточные, с более длительным сроком службы и меньшими требованиями к техническому обслуживанию.
На этой странице показано, где используются бесщеточные двигатели постоянного тока, и описано их применение в различных областях.
Особенности и преимущества бесщеточных двигателей постоянного тока
Давайте начнем с простого объяснения того, что такое двигатели постоянного тока. Двигатели постоянного тока — это электродвигатели, работающие от постоянного тока. Особенности включают вращение на высокой скорости и способность обеспечивать высокий пусковой крутящий момент. Скорость и крутящий момент двигателя регулируются напряжением привода.
Двигатели постоянного токаможно разделить на щеточные двигатели постоянного тока и бесщеточные двигатели постоянного тока, в зависимости от того, используют ли они щетку в качестве электрода.Меньший срок службы щеточных двигателей постоянного тока объясняется тем, что они оснащены щетками и коммутатором, которые являются расходными частями. С другой стороны, бесщеточные двигатели постоянного тока, как следует из их названия, не имеют щеток. Вместо этого они управляются включением и выключением транзистора в цепи управления на основе сигнала от магнитного датчика внутри двигателя.
Поскольку в бесщеточных двигателях постоянного тока не используются расходные щетки и происходит электронное переключение потока тока, они отличаются низкими эксплуатационными расходами и длительным сроком службы.Еще одна привлекательность в том, что они работают тише, чем щеточные двигатели.
Такой низкий уровень шума двигателя означает, что они часто используются для того, чтобы бытовые электронные устройства и другое подобное оборудование работали более тихо.
Применяется в бытовых приборах и коммерческих электротехнических изделиях
В то время как повседневная жизнь дает мало возможностей увидеть в действии бесщеточные двигатели постоянного тока, они часто встречаются внутри широко используемых бытовых приборов. Кондиционеры и холодильники — два примера.В таких устройствах используются вентиляторы для подачи холодного или теплого воздуха, а для привода этих вентиляторов используются бесщеточные двигатели постоянного тока.
Точно так же двигатели все чаще используются в электрических вентиляторах. Лопасти бытовых вентиляторов вращаются с очень высокой скоростью и имеют свойство издавать шум двигателя. Поэтому бесщеточные двигатели постоянного тока широко используются в моделях с бесшумной работой и точной регулировкой мощности вентилятора.
Еще одно применение двигателей — в коммерческих электротехнических изделиях. Примеры включают подачу бумаги в лазерные принтеры, управление пропеллерами и подвесом в дронах, а также вращение отверток или пил в электроинструментах.Другими словами, бесщеточные двигатели постоянного тока чрезвычайно универсальны.
Примеры использования бесщеточных двигателей постоянного тока
Больше, чем просто замена двигателя. Чтобы добиться дальнейшего уменьшения размеров, необходимо преодолеть другие проблемы.
Кухонное оборудование
Proposal дает старт разработке нового продукта, преодолевая скрытые препятствия. Снижение затрат на разработку вместе с повышенной энергоэффективностью продукта.
Витрины холодильные
Применения в точных устройствах
Бесщеточные двигатели постоянного тока широко используются в точных устройствах.Основные примеры включают жесткие диски, используемые в ПК и DVD-плеерах, другие приводы ПК и рекордеры Blu-Ray. Вращение диска — жизненно важная функция для этих устройств. В шпинделях, вращающих диски, используются бесщеточные двигатели постоянного тока.
Для большинства повседневных применений этого типа требуется долгий срок службы. Благодаря долгому сроку службы и низким требованиям к обслуживанию бесщеточные двигатели постоянного тока заняли для себя важную нишу в секторе высокоточных устройств.
Применение в автомобильной промышленности
Как уже отмечалось, использование бесщеточных двигателей постоянного тока в последние годы растет.Более того, именно в автомобильной промышленности этот рост был наиболее заметным. В управлении автомобилем задействован широкий спектр электронных устройств. Среди основных приложений:
- Электродвигатели рулевого управления с усилителем
- Электродвигатели для распределения масла
- Электродвигатели регулировки положения фар
- Электродвигатели стояночного тормоза
- Электродвигатели активного стабилизатора
- Электродвигатели автоматического открывания и закрывания люков
- Электродвигатели дверных замков
- Электродвигатели открывания и закрывания дверей
- Электродвигатели вентилятора охлаждения сиденья
Транспортные средства представляют опасность не только для их водителя и пассажиров, но также для пешеходов и других участников дорожного движения.Бесщеточные двигатели постоянного тока с их длительным сроком службы и низкими требованиями к техническому обслуживанию широко используются в приложениях, нацеленных на сведение этого риска к абсолютному минимуму. Между тем, бесшумная работа этих двигателей также способствует более комфортному вождению.
Определение областей применения, в которых бесщеточные двигатели постоянного тока могут быть эффективно использованы
Бесщеточные двигатели постоянного тока без использования щеток отличаются долгим сроком службы, простотой обслуживания и бесшумной работой.Воспользовавшись этими функциями, они используются во многих различных аспектах нашей жизни.
Они варьируются от электронных устройств, обычно используемых в качестве бытовых, до электрических изделий для промышленного применения. Их использование в этих продуктах разнообразно. В последние годы они все чаще используются в автомобильной промышленности, где требуется комфорт и безопасность. Возможно, вам стоит по-новому взглянуть на то, как бесщеточные двигатели постоянного тока могут быть использованы в вашей собственной области.
Преодоление проблем с бесщеточными двигателями постоянного тока
ASPINA поставляет не только автономные бесщеточные двигатели постоянного тока, но и системные продукты, которые включают системы привода и управления, а также механическую конструкцию. Они подкреплены всесторонней поддержкой, которая простирается от прототипа до коммерческого производства и послепродажного обслуживания.
ASPINA может предложить решения, адаптированные к функциям и характеристикам, требуемым для различных отраслей промышленности, приложений и продуктов клиентов, а также для конкретных производственных условий.
ASPINA поддерживает не только клиентов, которые уже знают свои требования или спецификации, но и тех, кто сталкивается с проблемами на ранних этапах разработки. Вы боретесь со следующими проблемами?
Выбор двигателя
- У вас еще нет подробных спецификаций или чертежей, но нужна консультация по двигателям?
- У вас нет сотрудников, имеющих опыт работы с двигателями, и вы не можете определить, какой двигатель лучше всего подойдет для вашего нового продукта?
Разработка двигателей и связанных компонентов
- Хотите сосредоточить свои ресурсы на основных технологиях и передать на аутсорсинг приводные системы и разработку двигателей?
- Хотите сэкономить время и силы, связанные с изменением конструкции существующих механических компонентов при замене двигателя?
Уникальное требование
- Нужен нестандартный двигатель для вашего продукта, но ваш обычный поставщик отказался от него?
- Не можете найти двигатель, который дает вам необходимый контроль, и вот-вот теряете надежду?
Ищете ответы на эти проблемы? Свяжитесь с ASPINA, мы здесь, чтобы помочь.
Ссылки на глоссарий и страницы часто задаваемых вопросов
Трехфазные бесщеточные серводвигателиИстория
Бесщеточные двигатели постоянного тока появились в начале цифровой революции в 60-х годах, когда мы перешли от механической и аналоговой электронной техники к цифровой электронике. Щеточные двигатели постоянного тока оказались недостаточными для того, чтобы выдерживать более интенсивные условия эксплуатации, поскольку щетки и коммутаторы изнашивались так быстро, что и родился бесщеточный двигатель постоянного тока. Доступность твердотельных силовых полупроводников, таких как MOSFET, сделала возможным бесщеточный двигатель постоянного тока как первую машину постоянного тока с твердотельной коммутацией.Обратной стороной ранних бесщеточных двигателей постоянного тока было то, что они не могли генерировать большую мощность. Когда в 1980-х годах стали доступны более прочные материалы с постоянными магнитами, бесщеточные двигатели смогли генерировать столько же или даже больше энергии, чем их щеточные аналоги.
Инновации будущего
Современные бесщеточные двигатели преодолевают многие ограничения щеточных двигателей, поскольку они имеют более высокую выходную мощность, меньший размер, лучшую эффективность, большую долговечность и очень низкий электрический шум.Эти преимущества также имеют недостатки, поскольку бесщеточные двигатели требуют устройств обратной связи и контроллера привода двигателя для электронной коммутации, они, как правило, более дороги, чем щеточные двигатели. Однако новые достижения в технологии бесщеточных двигателей постоянного тока позволили использовать бессенсорные двигатели, что сделает эти двигатели более доступными. В технологии бессенсорного управления положение ротора определяется путем измерения обратной ЭДС (электродвижущей силы) от одного из напряжений на клеммах двигателя, что устраняет необходимость в датчиках Холла и энкодерах.Бессенсорное управление также позволит бесщеточным двигателям постоянного тока быть меньше, надежнее и долговечнее из-за меньшего количества компонентов.
Еще одно нововведение, которое вскоре станет обычным в конструкции бесщеточных двигателей постоянного тока, — это интеграция бесщеточных двигателей постоянного тока и приводной электроники в единый пакет для создания более простой системы. По мере роста эффективности электронных компонентов силовая электроника становится все меньше и меньше, что дает интегрированным бесщеточным двигателям постоянного тока ключевую роль в технологических инновациях
TI для добавления машинного обучения к бескодовым бесщеточным драйверам двигателей
Texas Instruments планирует добавить машинное обучение в последнее семейство бесщеточных драйверов двигателя постоянного тока.
Драйвер двигателя BLDC мощностью 70 Вт объединяет аналоговые и цифровые микросхемы в одном корпусе для обеспечения бескодового, бессенсорного трапециевидного и полевого управления (FOC) для более тихих потребительских приложений.
«Существует очень большая потребность в более тихих приборах и двигателях в целом», — сказал Каннан Саундарапарран, вице-президент и генеральный директор подразделения Motor Drive Business компании Texas Instruments. «Есть проблемы при переходе от старых технологий к новым с постоянными магнитами. Переход на BLDC увеличивает размер платы и стоимость, и у нас уже есть драйверы двигателей BLDC, но мы очень рады новой технологии, поскольку драйверы двигателей BLDC без кода исключают разработку программного обеспечения, но их трудно оптимизировать », — сказал он.
Драйверы двигателей BLDC MCF8316A и MCT8316A включают в себя набор алгоритмов управления коммутацией, которые устраняют необходимость в разработке, обслуживании и проверке программного обеспечения для управления двигателями, что сокращает месяцы времени разработки. Алгоритмы, наряду с высоким уровнем интеграции, позволяют этим драйверам двигателей управлять критически важными функциями, такими как обнаружение неисправностей двигателя, при одновременном внедрении механизмов защиты для повышения надежности системы. Поскольку в этих драйверах двигателей используется бессенсорная технология для определения положения ротора, они устраняют необходимость во внешних датчиках Холла, что снижает стоимость системы и повышает надежность.
«70 Вт — идеальное место для бытовой техники, и мы думаем, что это будет иметь широкую область применения», — сказал Саундарапарран.
Бессенсорный драйвер двигателя FOC MCF8316A интеллектуально извлекает параметры двигателя, позволяя разработчикам быстро настраивать двигатель, обеспечивая при этом стабильную производительность системы независимо от изменений в производстве двигателя. Это дает возможность изменять эти параметры с течением времени для оптимизации производительности во время работы.
«Это можно сделать, но я не знаю, включили ли мы это.Такая возможность действительно существует. Это вещи, которые мы выясним, взаимодействуя с клиентами », — сказал Саундарапарран.
Далее: Запатентованная компенсация мертвого времени BLDC
Произошла ошибка
Повторите попытку позже или попробуйте нашу домашнюю страницу еще раз.
Bitte versuchen Sie es später oder schauen Sie ob die Homepage funktioniert.
Ошибка: E1020
Австралия Электронная почта
Максон Мотор Австралия Пти Лтд
Unit 1, 12-14 Beaumont Road
Гора Куринг-Гай Новый Южный Уэльс 2080
Австралия
Benelux Электронная почта
maxon motor benelux B.V.
Йосинк Колквег 38
7545 PR Enschede
Нидерланды
Китай Электронная почта
Максон Мотор (Сучжоу) Ко., Лтд
江兴东 路 1128 号 1 号楼 5 楼
215200 江苏 吴江
中
Германия Электронная почта
Максон Мотор ГмбХ
Truderinger Str. 210
81825 München
Deutschland
Индия Электронная почта
maxon Precision Motor India Pvt.ООО
Niran Arcade, № 563/564
Новая Бел Роад,
RMV 2-я ступень
Бангалор — 560 094
Индия
Италия Электронная почта
maxon motor italia S.r.l.
Società Unipersonale
Via Sirtori 35
20017 Rho MI
Италия
Япония Электронная почта
マ ク ソ ン ジ ャ パ ン 株式会社
東京 都 新宿 区 新宿 5-1-15
〒 160-0022
日本
Корея Электронная почта
㈜ 맥슨 모터 코리아
서울시 서초구
반포 대로 14 길 27, 한국 137-876
Португалия Электронная почта
maxon motor ibérica s.а
C / Polo Norte № 9
28850 Торрехон-де-Ардос
Испания
Швейцария Электронная почта
максон мотор аг
Брюнигштрассе 220
Постфах 263
6072 Sachseln
Schweiz
Испания Электронная почта
maxon motor ibérica s.a. Испания (Барселона)
C / Polo Norte № 9
28850 Торрехон-де-Ардос
Испания
Тайвань Электронная почта
maxon motor Тайвань
8F.-8 №16, переулок 609 сек. 5
П. 5, Chongxin Rd.
Sanchong Dist.
Нью-Тайбэй 241
臺灣
Великобритания, Ирландия Электронная почта
максон мотор великобритания, ооо
Maxon House, Хогвуд-лейн,
Finchampstead
Беркшир, RG40 4QW
Соединенное Королевство
США (Восточное побережье) Электронная почта
Прецизионные двигатели maxon, inc.
125 Девер Драйв
Тонтон, Массачусетс 02780
США
США (Западное побережье) Электронная почта
Прецизионные двигатели maxon, inc.
1065 East Hillsdale Blvd,
Люкс 210
Фостер-Сити, Калифорния 94404
США
Франция Электронная почта
максон Франция
201 — 715 rue du Chat Botté
ZAC des Malettes
01700 Beynost
Франция
Важность определения бесщеточных двигателей постоянного тока — CMI — Двигатели • Контроллеры • Модули
При проектировании системы вы хотите гарантировать, что двигатель будет обеспечивать заданную производительность .Условия и технические характеристики в конечном итоге определяют, какой тип двигателя лучше всего соответствует вашим потребностям, когда речь идет о двигателях постоянного тока.
Но у вас есть два варианта:
- матовый
- Бесщеточный
Прежде чем рассматривать разницу между щеточным и бесщеточным, давайте рассмотрим, что такое двигатель постоянного тока. Двигатели постоянного тока — это двигатели постоянного тока , которые считаются электрическими машинами, которые преобразуют электрическую энергию в механическую.
Бесщеточные двигатели постоянного тока отказались от механической коммутации вместо электрической, устраняя обычный износ механических двигателей .
Распознавание бесщеточных двигателей постоянного тока (двигателей BLDC) будет иметь важное значение для производительности и гарантии того, что вы выбрали правильное решение.
Для начала давайте рассмотрим характеристики, которые определяют двигатели BLDC, а также примеры, в которых они являются более подходящим вариантом.
Во-первых, популярность двигателей BLDC растет благодаря их превосходству в таких областях, как способность работать на высоких скоростях, их более высокая эффективность и лучший отвод тепла.
Кроме того, они обеспечивают более высокий уровень производительности в таких областях, как технология управления двигателями.
Почему бесщеточный DC?
Для дизайнера, не знакомого с двигателями, разница между щеточным и бесщеточным (BLDC) может показаться несущественной, но вот несколько причин, по которым бесщеточный — лучший способ.
- КПД : Бесщеточные двигатели очень эффективны благодаря своим синхронным двигателям (их роторы и статоры вращаются с одинаковой частотой).Ротор полностью отвечает за магнитную функцию, поскольку не требует питания .
- Низкое (er) обслуживание: По сравнению с щеточными двигателями, BLDC требует гораздо меньше обслуживания . Кисти необходимо часто чистить, исключая их использование во многих областях, например, в медицине.
- Больше крутящего момента : Еще одна желательная особенность бесщеточных двигателей — их способность достигать более высоких крутящих моментов . Если щетки вызывают трение, таким образом замедляя двигатель, BLDC свободен от этой проблемы.
Помимо этих трех преимуществ бесщеточного двигателя постоянного тока, вы можете ожидать:
- A более длительный срок службы .
- Меньше электромагнитных помех.
- Меньше шума при работе .
Когда использовать бесщеточный DC?
Вы понимаете преимущества, но не совсем уверены, когда использовать эти двигатели BLDC. Вот простое руководство, которое следует учитывать при выборе двигателей постоянного тока.
Что касается пускателей, то бесщеточные двигатели постоянного тока могут удовлетворять различным требованиям, таким как переменные нагрузки, постоянные нагрузки и приложения для позиционирования.Они идеально подходят для суровых условий, таких как:
- Медицинское оборудование
- Роботы промышленные
- Электромобили, гибридные автомобили и электрические велосипеды
- В оборонной и авиакосмической промышленности
- Аппараты ветеринарные
Определение бесщеточного двигателя
В следующих статьях блога мы представим процедуру определения двигателя с постоянными магнитами.