Site Loader

atmega8

Стробоскопическая открытка с POV-эффектом на ATmega8

В этой статье я хочу представить проект открытки с механической разверткой (похоже на часы Боба Блика, но здесь нужно махать рукой). Такая открытка отлично подойдет в роли подарка кому-нибудь либо её можно носить с собой как брелок. Подобные схемы отлично подходят для тех, кто только начал изучать микроконтроллеры и осваивать smd-монтаж.

Автор: SaneX

9 0 [0]

Радиоуправление на ATmega8 и радиомодулях NRF24L01+PA+LNA. Передатчик

Данная система радиоуправления имеет 4 цифровых (дискретных) и 4 аналоговых каналов, что позволяет ее использовать для управления моделью любого типа: воздушной, наземной или водной. Кроме того, она имеет обратную связь, что особенно удобно при управлении воздушной или водной моделью (на дисплей пульта выводится информация о состоянии заряда батарей, уровне сигнала и температуре двигателя).

Автор: zeconir

4 0 [0]
Похожие статьи:

Радиоуправление на ATmega8 и радиомодулях NRF24L01+PA+LNA. Приемник

Данная система радиоуправления имеет 4 цифровых (дискретных) и 4 аналоговых каналов, что позволяет ее использовать для управления моделью любого типа: воздушной, наземной или водной. Кроме того, она имеет обратную связь, что особенно удобно при управлении воздушной или водной моделью (на дисплей пульта выводится информация о состоянии заряда батарей, уровне сигнала и температуре двигателя).

Автор: zeconir

7 0 [0]
Похожие статьи:

Паяльная станция на ATmega8 и дисплее LPH8731-3C

Паяльная станция с поддержкой нескольких профилей, LCD дисплеем, звуковой индикацией завершения нагрева и режимом ожидания (сна). Устройство выполнено на микроконтроллере ATmega8 и LCD LPH8137-3C.

Автор: zeconir

11 5 [1]
Похожие статьи:

Низкочастотный DDS генератор на ATmega8

Данный прибор предназначен для генерирования сигналов треугольной, прямоугольной, синусоидальной и произвольной формы с частотой до 1,6 кГц. Устройство может найти применение при настройке звуковой аппаратуры.

Автор: zeconir

5 0 [0]
Похожие статьи:

Универсальная основа для контроллера с графическим интерфейсом на ATmega8 c OLED дисплеем

Рассмотренное устройство представляет собой несложную, компактную и относительно универсальную основу для контроллеров с самым разнообразным назначением. При незначительной доработке представленное устройство может стать уникальной и высокопроизводительной не избыточной микроконтроллерной схемой. При этом несомненное достоинство состоит в доступности компонентной базы и соответственно невысокой стоимости конечного изделия.

Автор: BRVIT

9
4.5 [2] Весь список тегов

Зарядное устройство для автомобильных аккумуляторов на Atmega 8.

РадиоКот >Схемы >Питание >Зарядные устройства >

Зарядное устройство для автомобильных аккумуляторов на Atmega 8.

  Хочу представить вниманию зарядное устройство (ЗУ) для автомобильных аккумуляторов на Atmega 8. Данное устройство является моим вариантом ЗУ описание которого выложено в [1].  Очень рекомендую сначала прочитать описание оригинального ЗУ для снятия многих вопросов.  К достоинствам ЗУ можно отнести использование силового трансформатора от бесперебойников, защиту от короткого замыкания и переполюсовки. ЗУ можно собрать в корпусе бесперебойника что снимает проблему всех устройств радиолюбителя – корпус.

    После изготовления нескольких штук по оригинальному описанию я пришел к заключению что использование Atmega16 является избыточным, как по обьему памяти так и по количеству портов вводавывода. Поэтому было решено перевести проект на  Atmega 8, тем более что исходники Автором были любезно выложены.

    После тщательного курения даташита, а особенно замечательной книги [2] получилось переделать прошивку для Atmega 8. Также мною были внесены некоторые изменения в схему устройства для придания некоторой универсальности в части возможности использования различных компонентов. Схема того что получилось представлена ниже:

 

    Как видно устройство разделено на две части: микроконтроллера (МК) и силовую.

    Некоторые обьяснения по схеме контроллера. К разьему pow-in подключается маломощный внешний трансформатор с напряжением вторичной обмотки порядка 10-15 вольт, после выпрямления напряжение подается через развязывающий диод D9 на стабилизатор 78l12, который используется для питания операционного усилителя цепи измерения тока, и стабилизатора 7805 который питает микроконтроллер. Резисторы R32, R1 и стабилитрон D10 с напряжением стабилизации 5.1 вольт формируют сигнал прерывания МК для определения момента перехода сетевого напряжения через ноль.

    На операционном усилителе (ОУ) U5 типа LM358 собраны усилитель сигнала с шунта для измерения зарядного тока и усилитель сигнала с шунта для определения перегрузки. Питание ОУ осуществляется напряжением 12 вольт и напряжением -5 вольт, которое преобразуется при помощи ICL7660 из напряжения +5 вольт. Использование ICL7660 позволяет отказаться от применения трансформатора с двумя вторичными обмотками, как в оригинальном устройстве. Кроме того предусмотрен вариант использования Rail-to-Rail ОУ, что позволяет вообще отказаться от источника питания +12 вольт, преобразователя ICL7660, а также защитных диодных сборок D6, D7. Был испытан образец на ОУ MCP6002 который себя неплохо зарекомендовал. При использовании

Rail-to-Rail ОУ не устанавливается стабилизатор 78l12 и конденсатор C15. Впаивается нулевая перемычка R13 для питания ОУ от +5 вольт, а вместо конденсатора C13 впаивается нулевая перемычка на корпус. Таким образом организуется питание +5 вольт для ОУ. При сборке нужно внимательно следить какой вариант собираете дабы не повредить ОУ и МК при несоответствии типа применяемого ОУ напряжению питания.

    Диодные сборки D6, D7, D11 служат для защиты портов МК от перенапряжения и напряжения обратной полярности. В оригинальной схеме для этой цели используются стабилитроны на 5.1 вольт, но при сборке устройства выяснилось что они вносят погрешность при измерении тока и напряжения, т.к. начинают приоткрываться при напряжении порядка 4.8 вольта. В устройстве АЦП МК использует в качестве опорного напряжения напряжение питания +5 вольт, а следовательно АЦП охватывает весь диапазон от 0 до 5 вольт. Установка D11 обязательна.

    Разьем ISP1 служит для внутрисхемного программирования МК, распиновка его стандартна для варианта 6 контактов. Реле RL1 служит для включения силового трансформатора. Транзистор управления реле любой средней мощности типа npn, ставил КТ817. Реле выпаивается из платы бесперебойника, также в зависимости от типа платы можно выпаять кварцевый резонатор на 8 Мгц, стабилизатор 7805, стабилизатор 7812 для силового модуля. Переменным резистором RV1 устанавливаем контрастность дисплея. Дисплей используется типа 0802 с кирилицей. Типоразмер всех используемых SMD резисторов и конденсаторов 1206. Конденсатор C16 танталовый SMD 10мкф 16 вольт.

    В силовом модуле стабилизатор 7812 служит для питания вентилятора обдува радиатора на котором устанавливается силовой диодный мост типа KBPC5010 или аналогичный, а также тиристор 40TPS12. В данной версии прошивки обдув включается при токе зарядки 2А, выключается при 1А. В качестве радиатора идеально подходят так называемые «процессорные». Предохранитель FU1 автомобильный на 30А, впаивается прямо в плату. Такие попарно установлены на плате бесперебойника. Резисторы R1-R7, R12, R13, R16 типоразмера 1206 на 0.1 Ом впаяны параллельно и образуют шунт для измерения тока. Транзисторы ключей для управления вентилятором и тиристором использовал типа КТ816Б, можно использовать любые средней мощности типа pnp.

    К точкам BATT припаиваются провода с крокодилами для подключения к батарее, к точкам BRIDGE провода с наконечниками для подключения к диодному мосту. Провода с наконечниками также из бесперебойника. К разьему FAN подключают вентилятор охлаждения.

    Силовая плата и плата МК соединяются 2-мя шлейфами с 3-мя проводами: сигнал измерения напряжения – общий – сигнал измерения тока и сигнал управления тиристором – общий силовой – сигнал управления вентилятором. ВНИМАНИЕ: общий и общий силовой не долны соединятся в шлейфах они впаиваются в соответствующие места платы и никак между собой не связаны.

    После сборки и проверки монтажа подключается ЗУ к сети, если все правильно собрано после экранов приветствия появится надпись «Подключи батарею». Подключаем аккумулятор или внешний источник напряжением 12 вольт к крокодилам и подстроечным резистором RV6 выставляем напряжение на экране ЗУ соответствующее напряжению аккумулятора или источника питания по контрольному вольтметру. Далее подключаем ЗУ к аккумулятору через амперметр, вращаем энкодер по часовой стрелке выставляя зарядный ток 1А и нажимаем ручку энкодера, на экране появляется надпись «Заряд начат» и зарядный ток начинает плавно увеличиваться от нуля до утановленного значения. Подстроечным резистором RV3 выставляем правильные показания тока на экране ЗУ по контрольному амперметру. Выставлять следует при установившемся значении на экране. Подстроечным резистором RV4 выставляем напряжение на входе 24 МК равным 0.09в при зарядном токе 1А.

    Для справки: для входов измерения тока и напряжения АЦП МК максимальные значения в +5 вольт соответствуют 15 амперам и 15 вольтам. Для входа измерения перегрузки по току напряжение отключения тока зарядки – 1 вольт. 

    Подключаем ЗУ к сети, подключаем батарею, устанавливаем требуемый ток заряда в диапазоне 0-10А вращением энкодера, нажимаем энкодер. Ток заряда плавно растет до установленного значения. При достижении на батарее 14.4 вольта ток плавно падает при условии неизменности напряжения на батарее в 14.4 вольта. При падении тока зарядки ниже 0.5А и напряжении 14.4 вольта считается что батарея заряжена и зарядка прекращается — выводится надпись «Батарея заряжена». При невозможности достижения напряжения на батарее в 14.4 вольта при токе 0.5 А в течении 4 часов выводится надпись «Проверь батарею не берет заряд» и заряд отключается. Если при включении зарядки ток не растет появляется надпись «Плохой контакт с батареей» и заряд отключается. При пробое тиристора и неконтроллируемом увеличении напряжения выше 15 вольт заряд отключается и появляется надпись «ERROR VOLTAGE». При чрезмерном увеличении тока заряда или КЗ также заряд отключается и выводится надпись «Ошибка по току». Чтобы досрочно прервать заряд энкодером уменьшаем ток до нуля и нажимаем энкодер или просто снимаем клемму с батареи. Для изменения тока заряда в процессе зарядки вращаем энкодер и нажимаем, появляется надпись «Ток изменен».

Фьюзы для прошивки:

Плата МК односторонняя, 11 перемычек.

 

Плата силовая односторонняя, 1 перемычка:

Несколько фотографий готового ЗУ:

   Список литературы:

  1. https://we.easyelectronics.ru/power-electronics/zaryadnoe-ustroystvo-dlya-avtomobilnyh-akkumulyatorov-na-atmega-16.html
  2. Евстифеева А.В. «Микроконтроллеры AVR семейства Mega».

Ниже в архиве проект в Протеус 8 платы МК и силовой платы, а также прошивка.

 

 

 

Файлы:
Протеус, прошивка

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?


Эти статьи вам тоже могут пригодиться:

Таймер на микроконтроллере atmega8


Хочу предложить мастерам Самоделкина для рассмотрения и возможного повторения, очень простую схему, очень хорошего таймера. С удобной навигацией по меню, с жидкокристаллическом LCD дисплеем , с часами реального времени, с минимально возможным количеством деталей и при всем этом можно запрограммировать целых сто временных отрезков в течении суток.

Компактные размеры

Видео проверки таймера

Сердцем данного таймера является очень популярный и уже не дорогой микроконтроллер Atmega8. Вы можете сказать, что для прошивки нам потребуется программатор которого нет, но это не так, для прошивки Atmega достаточно всего пять коротких 10-15 см. проводков подключенных через резисторы 150-200 Ом. напрямую к LPT порту по этой схеме.

Таймер на микроконтроллере atmega8
Вот по этой причине, эти микроконтроллеры стали самыми популярными у радиолюбителей.

На этом рисунке Вы видите: Схему распиновки ножек МК для подключения и прошивки.

Таймер на микроконтроллере atmega8

Пункт 1. Подготовим все необходимое для изготовления таймера.

Самые обязательные радиодетали схемы, остальное обычно можно подобрать у себя дома, самая маленькая микросхема, это часы DS1307.

Таймер на микроконтроллере atmega8

Нам потребуются такие радиоэлементы:
• Микроконтроллер Atmega8
• Интегральные часы DS1307
• LCD жидкокристаллический индикатор
• Стабилизатор 7805
• Конденсатор 500-1000 Мф — 16 вольт.
• Реле или электронный ключ (в зависимости от нагрузки которая планируется подключаться).
• Резисторы сопротивлением 5,1ком — 3 шт., резистор переменный (по мануалу LCD дисплея).
• Кварц часовой 32768 Гц.
• Кнопки без фиксации — 4 шт.
• Батарейка таблетка на 3 вольта.
• Текстолит для платы.
• Небольшой трансформатор ~220в. -> ~6-12в.
• Коробка распаечная для корпуса.
+ Для программатора: резисторы 150-200 Ом. — 4 шт., разъем LPT порта (для удобства, не обязателен).

Обязательные инструменты каждого радиолюбителя:
• Паяльник для пайки микросхем, паяльник для пайки пассивных радиодеталей и проводов.
• Тестер для прозвонки дорожек и проверки радиодеталей.
• Олово, канифоль.
+ Принтер лазерный (для изготовления платы или другой способ).

Пункт 2. Приступим к изготовлению.

Таймер будем делать по этой главной схеме.

Таймер на микроконтроллере atmega8
Как видите на ней отсутствует схема блока питания и выходного исполнительного устройства, это потому, что возможно вы решите использовать выносной стабилизированный БП, а также не известно какую нагрузку вы планируете подключать, поэтому, каждый должен сам выбрать исполнительное устройство под свои технические требования.

Лично я своем таймере применил вот такую схему БП и исполнительное устройство на транзисторе и реле.

Таймер на микроконтроллере atmega8
Но вы можете захотеть в качестве исполнительного устройства применить триаки, тиристоры и симисторы, варианты таких схемных показаны ниже.
Таймер на микроконтроллере atmega8
Таймер на микроконтроллере atmega8
Они более компактные (без радиатора), но менее мощные, чем простое реле.

В соответствии с главной принципиальной схемой + БП + ИУ и анализом монтажных габаритов вашей коробки для корпуса, а также размеров подобранных радио элементов, проектируем форму, размер и рисунок дорожек на плате. Для этого удобно пользоваться программой Sprint Layout.

Для моего устройства получилась вот такая простая плата.

Таймер на микроконтроллере atmega8
Полученный рисунок переносим с помощью специального маркера или по технологией ЛУТ (с помощью лазерного принтера и утюга) на медный слой текстолита. Если у вас принтер лазерный Brother (как у меня), то идею с ЛУТ лучше сразу забросить, по причине используемого в нем тугоплавкого тонера ~400C вместо обычных~200С, я кстати когда-то по глупости купил этот принтер именно для ЛУТ :(., поэтому в результате моя плата рисована маркером.
Нанесенный на медь рисунок вытравливаем в ванночке с хлорным железом или любым другим специальным раствором.
Таймер на микроконтроллере atmega8
На готовую плату припаиваем детали согласно схеме, особое внимание обращаем при монтаже и пайке микросхемы часов и кварцевого элемента. Длина дорожек между ними должна быть минимальной, а лучше использовать микро кварц из наручных часов и припаять его непосредственно к ножкам МС часов. Все свободное пространство рядом с МС часов и кварца заполняем площадками корпуса (GND). Батарея необходима для поддержания часов в рабочем состоянии во время отключения от сети. Если по какой-то причине вы не стали устанавливать эту батарейку, то посадите плюсовой провод на корпус, иначе часы просто не пойдут.

Микроконтроллер прошиваем программатором или с помощью 5 проводков.

*Прошивка* multitimer100.rar [5.35 Kb] (скачиваний: 1474)

Автор прошивки специально для удобства (за что ему спасибо) и не стал изменять заводские фьюзы, что очень сильно облегчает, без заморочки, прошивку для начинающего радиолюбителя. Если МК еще не использовался, новый из магазина, то просто заливаете прошивку и все, но если уже есть изменения в фьюзах, то надо выставить их так CKSEL=0001. Все остальное просто и не нуждается в пояснении.

Пункт 3. Сборка.

Для корпуса очень удобно использовать распаечные коробки из пластмассы, они бывают разных размеров и форм.

Таймер на микроконтроллере atmega8
Таймер на микроконтроллере atmega8
В прорезанную ножом крышку, при помощи термоклея из пистолета, закрепляем LCD экран., прорезаем отверстия под кнопки управления и кнопку питания.
Таймер на микроконтроллере atmega8
Таймер на микроконтроллере atmega8
Подрезаем выступающий клей.
Таймер на микроконтроллере atmega8
Размещаем все узлы внутри корпуса, постоянно проверяя как закрывается крышка, при необходимости переносим или подгибаем мешающие. Все закрепляется на термоклее.

На собранную схему подаем питание, должно появиться такое изображение, часы стартуют с нулей.
Таймер на микроконтроллере atmega8
Управление меню осуществляется четырьмя кнопками.

Меню состоит из трех пунктов, СLOCK -установка часов, TIMЕ — установка таймеров и RESET -сброс всех установленных таймеров.

Сначала заходим (*) в меню часов и выставляем точное время.

Таймер на микроконтроллере atmega8
Подсказка по управляющим кнопкам в нижней строке дисплея, в каждом меню разное, поэтому описывать кнопки нет необходимости.

Теперь все готово чтобы корректно задавать временные записи таймера, после нажатия решетки, программа записывается в постоянную память МК.

Таймер на микроконтроллере atmega8
На видео в начале статьи можно посмотреть подробнее о меню.

Я применяю этот таймер для полива гидропоники.

Таймер на микроконтроллере atmega8 Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

atmega8 и новый atmega8a pu микроконтроллер datasheet схемы

Микроконтроллер atmega8 сочетает в себе функциональность, компактность и сравнительно не высокую цену.
Такие качества дали широчайшее распространение ATmega8 среди профессиональных и любительских конструкций. Микроконтроллер имеет широкий набор модулей, и может быть использован в большом количестве устройств, различного назначения, от таймеров, реостатов, систем автоматики до генератор специальных сигналов, видео сигналов и декодеров стандарта RC5.

Характеристики микроконтроллера ATMEGA8

EEPROM8 Кб
Аналоговые входы (АЦП)4
Входное напряжение (предельное)5,5 Вольт
Входное напряжение (рекомендуемое)4,5-5 Вольт
ОЗУ256 байт
Тактовая частота20 МГц
Flash-память8кБ

Микроконтроллер atmega8 имеет два полноценных портов с разрядностью 8 бит в отличии от ATtiny2313, младшего брата.
Наличие в atmega8 аналогово-цифрового преобразователя, дающего возможность измерять такие параметры как напряжение, ток, емкость что позволяет разработать полноценный мультиметр на базе этого микроконтроллера. Так же atmega8 имеет порт UART для приема и передачи данных TTL уровня.
Порт для работы по протоколу TWI(возможность реализовать программный I2C).
По I2C к ATmega8 можно подключить целый спектр устройств:
— внешнюю EEPROM память серии 24cXX,
— ЖКИ индикаторы и графические дисплеи,
— регуляторы громкости, сопротивления,
и многое другое.

Пример конфигурирования фьюз битов atmega8.

Схемы на atmega8

Примечание:
Если количество выводов микроконтроллера устраивает, но требуется больший объем памяти программ, рекомендую использовать микроконтроллеры ATmega16, ATmega32 или ATmega328.


Цоколевка микроконтроллера AtMega8.
atmega8 внешний вид
Внешний вид микроконтроллера в корпусе DIP 28

pdfATmega8 Datasheet скачать — заводская документация на микроконтроллер ATmega8 от фирмы Atmel

Arduino ATtmega8: плата, характеристики, распиновка

Микроконтроллеры – отличная основа для большого количества устройств. По сути своей они напоминают компьютер: постоянная память; оперативная память; вычислительное ядро; тактовая частота.

Среди многих семейств и видов МК новички часто выбирают контроллеры AVR Atmega. Однако язык программирования может показаться сложным, поэтому преподаватель из Италии решил разработать простую и удобную плату для обучения.

Родилась Arduino ATmega8, на основе которой можно собрать очень удобное и простое устройство.

Arduino NG - вариант платы Arduino на микроконтроллере ATmega8Arduino NG — вариант платы Arduino на микроконтроллере ATmega8

С этими платами от Ардуино вы получаете целый ряд преимуществ:

  • готовая разведенная печатная плата со всеми необходимыми компонентами и разъёмами;
  • микроконтроллеры Atmega;
  • возможность программировать без программаторов – через ЮСБ порт;
  • питание от любого источника 5-20 вольт;
  • простой язык программирования и возможность использования чистой C AVR без переделок платы и прошивки.

Характеристики чипа

  • Частота ATmega8: 0-16 МГц
  • Напряжение ATmega8: 5 В
  • Частота ATmega8L: 0-8 МГц
  • Частоат ATmega8A: 0-16 МГц

В реальности почти все микроконтроллеры при рабочем напряжении в 5 вольт работают с частотой 16 мегагерц, если участвует внешний кварцевый резонатор. Если брать внутренний генератор, то частоты составят: 8, 4, 2 и 1 МГц.

Распиновка Arduino ATmega8

Ниже приводим распиновку атмега8, которую можно также найти на официальном сайте производителя:

Arduino NG - вариант платы Arduino на микроконтроллере ATmega8

Добавление устройств АТмега

Есть один нюанс по работе с эти чипом — нам нужно внести некоторые изменений в один файл, чтобы дальше можно было бы программировать микроконтроллеры Arduino ATmega8.

Вносим следующие изменения в файл hardware/arduino/boards.txt:

atmega8o.name=ATmega8 (optiboot 16MHz ext)
atmega8o.upload.protocol=arduino
atmega8o.upload.maximum_size=7680
atmega8o.upload.speed=115200
atmega8o.bootloader.low_fuses=0xbf
atmega8o.bootloader.high_fuses=0xdc
atmega8o.bootloader.path=optiboot50
atmega8o.bootloader.file=optiboot_atmega8.hex
atmega8o.bootloader.unlock_bits=0x3F
atmega8o.bootloader.lock_bits=0x0F
atmega8o.build.mcu=atmega8
atmega8o.build.f_cpu=16000000L
atmega8o.build.core=arduino:arduino
atmega8o.build.variant=arduino:standard

##############################################################

a8_8MHz.name=ATmega8 (optiboot 8 MHz int)
a8_8MHz.upload.protocol=arduino
a8_8MHz.upload.maximum_size=7680
a8_8MHz.upload.speed=115200
a8_8MHz.bootloader.low_fuses=0xa4
a8_8MHz.bootloader.high_fuses=0xdc
a8_8MHz.bootloader.path=optiboot
a8_8MHz.bootloader.file=a8_8MHz_a4_dc.hex
a8_8MHz.build.mcu=atmega8
a8_8MHz.build.f_cpu=8000000L
a8_8MHz.build.core=arduino
a8_8MHz.build.variant=standard

##############################################################

a8_1MHz.name=ATmega8 (optiboot 1 MHz int) 
a8_1MHz.upload.protocol=arduino 
a8_1MHz.upload.maximum_size=7680 
a8_1MHz.upload.speed=9600 
a8_1MHz.bootloader.low_fuses=0xa1 
a8_1MHz.bootloader.high_fuses=0xdc 
a8_1MHz.bootloader.path=optiboot 
a8_1MHz.bootloader.file=a8_1MHz_a1_dc.hex 
a8_1MHz.build.mcu=atmega8
a8_1MHz.build.f_cpu=1000000L 
a8_1MHz.build.core=arduino 
a8_1MHz.build.variant=standard

##############################################################

a8noboot_8MHz.name=ATmega8 (no boot 8 MHz int)
a8noboot_8MHz.upload.maximum_size=8192
a8noboot_8MHz.bootloader.low_fuses=0xa4
a8noboot_8MHz.bootloader.high_fuses=0xdc
a8noboot_8MHz.build.mcu=atmega8
a8noboot_8MHz.build.f_cpu=8000000L
a8noboot_8MHz.build.core=arduino
a8noboot_8MHz.build.variant=standard

Таким образом, если мы перейдем в меню Сервис → Плата, то увидим устройства:

  • ATmega8 (optiboot 16MHz ext)
  • ATmega8 (optiboot 8 MHz int)
  • ATmega8 (optiboot 1 MHz int)
  • ATmega8 (no boot 8 MHz int)

Платы Arduino

Ардуино продаётся во множестве вариантов; главное, что объединяет платы, – это концепция готового изделия. Вам не нужно травить плату и паять все её компоненты, вы получаете готовое к работе изделие. Можно собирать любые устройства, не используя паяльник. Все соединения в базовом варианте выполняются с помощью макетной платы и перемычек.

Сердце платы – микроконтроллер семейства AVR. Изначально был применён микроконтроллер atmega8, но его возможности не безграничны, и плата подвергалась модернизации и изменениям. Стандартная плата, которая наиболее распространена у любителей – это плата версии UNO, существует много её вариаций, а её размеры сравнимы с кредитной карточкой.

Плата Arduino Nano –  полный аналог большего собрата, но в гораздо меньших размерах, версия arduino atmega168 была самой популярной и недорогой, но её сменила другая модель – arduino atmega328, стоимость которой аналогична, а возможности больше.

Следующей важной деталью является печатная плата. Разведена и запаяна на заводе, позволяет избежать проблем с её созданием, травлением и пайкой. Качество платы зависит от производителя конкретного экземпляра, но, в основном, оно на высоком уровне. Питание платы осуществляется с помощью пары линейных стабилизаторов, типа L7805, или других LDO стабилизаторов напряжения.

Клеммная колодка – отличный способ сделать надёжное разъёмное соединение и быстро выполнить изменения в схеме прототипов ваших устройств. Для тех, кому не хватает стандартных разъёмов, есть более крупные и мощные платы, например, на atmega2560, у которой доступно полсотни портов для работы с периферией.

На фото изображена плата Arduino Mega 2560. На её основе можно собрать довольно сложного робота, систему умного дома или 3d-принтер на ардуино.

Не стоит думать, что младшие версии слабы, например, микроконтроллер atmega328, на котором построены модели Uno, nano, mini и другие, имеет вдвое больше памяти по сравнению с 168 моделью – 2 кб ОЗУ и 32 кб Flash памяти. Это позволяет записывать более сложные программы в память микроконтроллера.

Проекты на основе Arduino ATmega

Микроконтроллер в современной электронике – основа для любого устройства, начиная от простой мигалки на светодиодах, до универсальных измерительных приборов и даже средств автоматизации производства.

Пример 1

Можно сделать тестер с 11 функциями на микроконтроллере atmega32.

Устройство имеет крайне простую схему, в которой использовано немногим более дюжины деталей. Однако вы получаете вполне функциональный прибор, которым можно производить измерения. Вот краткий перечень его возможностей:

  1. Прозвонка цепи с возможностью измерять падение напряжения на переходе диода.
  2. Омметр.
  3. Измеритель ёмкости.
  4. Измерение активного сопротивления конденсатора или ESR.
  5. Определение индуктивности.
  6. Возможность счёта импульсов.
  7. Измерение частоты – пригодится в диагностике, например, для проверки ШИМ источника питания.
  8. Генератор импульсов – тоже полезен в ремонте.
  9. Логический анализатор позволит просмотреть содержимое пачек цифровых сигналов.
  10. Тестер стабилитронов.

Пример 2

Для радиолюбителей будет полезно иметь качественное оборудование, но станция стоит дорого. Есть возможность собрать паяльную станцию своими руками, для этого нужна плата Arduino, имеющая в своем составе микроконтроллер atmega328.

Пример 3

Для продвинутых радиолюбителей есть возможность собрать более чем бюджетный осциллограф. Мы опубликуем данный урок в дальнейших статьях.

Для этого вам понадобится:

  1. Arduino uno или atmega
  2. Tft дисплей 5 дюйма.
  3. Небольшой набор обвязки.

Или его упрощенный аналог на плате Nano и дисплее от nokia 5110.

Такой осциллографический пробник станет полезным для автоэлектрика и мастера по ремонту радиоэлектронной аппаратуры.

Пример 4

Бывает, что управляемые модули удалены друг от друга или возможностей одной ардуино не хватает – тогда можно собрать целую микроконтроллерную систему. Чтобы обеспечить связь двух микроконтроллеров стоит использовать стандарт RS 485.

На фото приведен пример реализации такой системы и ввода данных с клавиатуры.

Цветомузыка на микроконтроллере Arduino ATmega8

Для школьной дискотеки можно собрать ЦМУ на 6 каналов.

Транзисторы VT1-VT6 нужно подобрать с учетом мощности ваших светодиодов. Это силовые компоненты – они нужны, потому что мощности микроконтроллера не хватит, чтобы запустить мощные лампы или светодиоды.

Если вы хотите коммутировать сетевое напряжение и собрать цветомузыку на лампах накаливания, вместо них нужно установить симисторы и драйвер. Дополнить каждый канал ЦМУ вот такой конструкцией:

Ардуино своими руками

Atmega2560 – хоть и мощный и продвинутый контроллер, но проще и быстрее собрать первую плату на atmega8 или 168.

Левая часть схемы – это модуль связи по USB, иначе говоря, USB-UART/TTL конвертер. Его, вместе с обвязкой, можно выбросить из схемы, для экономии места, собрать на отдельной плате и подключать только для прошивки. Он нужен для преобразования уровней сигнала.

DA1 – это стабилизатор напряжения L7805. В качестве основы можно использовать целый ряд avr микросхем, которые вы найдете, например, серии, arduino atmega32 или собрать arduino atmega16. Для этого нужно использовать разные загрузчики, но для каждого из МК нужно найти свой.

Можно поступить еще проще, и собрать всё на беспаечной макетной плате, как это показано здесь, на примере 328-й атмеги.

Микроконтроллеры – это просто и весело – вы можете сделать кучу приятный и интересных вещей или даже стать выдающимся изобретателем, не имея при этом ни образования, ни знаний о низкоуровневых языках. Ардуино – шаг в электронику с нуля, который позволяет перейти к серьезным проектам и изучению сложных языков, типа C avr и других.

Arduino на ATmega8, ATmega48, ATmega88, ATmega168

 Добрый день. С появлением arduino робототехника, автоматика и другие радио изделия стали нам более доступными. Раньше представить было трудно что с такой простотой можно писать прошивки для микроконтроллеров, с появлением arduino заниматься робототехникой могут даже детишки. Простота платформы arduino позволяет забыть о побитовых операциях и регистрах avr которые использовались повсеместно. Но так как платформа универсальная то и микроконтроллер тоже выбран универсальный. Например в arduino uno предусмотрен atmel atmega328p что даволи излишне для простой обработки нажатий на кнопки, а если делать сразу партию устройств то придется заплатить за незадействованную мощь.

 Но так как arduino ide свободно распространяемая, любой без труда может написать дополнения и библиотеки, зачастую они могут быть очень полезными. В данной статье пойдет речь о библиотеке плат на основе ATmega8, ATmega48, ATmega88, ATmega168 под названием Mini Core. Данная библиотека позволят писать скетчи arduino под более слабые микроконтроллеры чем atmega328p, а это позволяет удешевить стоимость устройства за счет рационального использования мощности. 

 Почему именно эти микроконтроллеры:

  1. Данные микроконтроллеры с теми же выводами и архитектурой и имеют минимальные отличия от atmega328p(заменяемые)
  2. Они дешевые и популярные(некоторые дешевле доллара)
  3. Они все имеют DIP и TQFP корпуса

Данная библиотека поддерживает все индексы микросхемы кроме PB (т.е. A, P, PA), например не стоит использовать ATMEGA168PB-AU.

 

Микросхемы по характеристикам:

 Atmeg328atmega168atmega88atmega48atmega8
Flash32 кб16 кб8 кб4 кб8 кб
ОЗУ2 кб1 кб1 кб512 б1 кб
ПЗУ1 кб512 б512 б256 б512 б
Каналы ШИМ66663
Пора от теории перейти к практике установим Mini Core, для установки понадобиться Arduino IDE версии 1.6.4 и выше. Если у вас нет Arduino или она старше качаем ее с оф. Сайта.

1. Для установки делаем следующее:

2. Запускаем Arduino IDE

3. Откройте меню « Файл» ⇒ «Настройки» .

В пункте «Дополнительные ссылки для Менеджера плат» нужно вставить следующее:

4. После вышеупомянутых операций закрываем настройки и переходим в меню Откройте меню « Инструменты» ⇒ «Плата:»………»» ⇒  « Менеджер плат…».

arduino IDE

5. В менеджере плат выбираем нашу библеотеку и нажимем установка:

менеджер плат arduino

Примечание . Если вы используете Arduino IDE 1.6.6, вам может потребоваться закрыть диспетчер плат, а затем снова открыть его.

 

  После установки в меню « Инструменты» ⇒ «Плата:»………»» появятся варианты плат с нашими микроконтроллерами. 

 

 Самый удобный вариант для использование  данных микроконтроллеров это взять arduino uno с микросхемой в корпусе dip и заменить на нужную. Также можно собрать плату с несложной обвязкой: 

 

 

схема подключение ATmega8, ATmega48, ATmega88, ATmega168

 Для тех кому нужна распиновка микросхем фото ниже:

выводы ATmega8, ATmega48, ATmega88, ATmega168 вывод ATmega8, ATmega48, ATmega88, ATmega168

Так же не маловажной особенностью является то что авторы добавили возможность выбора кварцевого резонатора по нескольким частотам и параметры контроля питания, что по умолчанию не доступно для стандартных плат. Все манипуляции с данными параметрами производятся в меню-инструменты.

 

Настройки тактовой частоты:

  • 16 МГц внешний генератор (по умолчанию)
  • 20 МГц внешний генератор
  • 18.432 Mhz внешний генератор *
  • 12 МГц внешний генератор
  • 8 МГц внешний генератор
  • 8 МГц внутренний генератор **
  • 1 МГц встроенный генератор

* — частота 18.432 не рекомендуется использовать в скетчах где нужно измерить точное время, но хорошо подойдет для работы с com-портом.

** — внутренний генератор 8МГц сам по себе не точный и частота может меняться от температуры окружающей среды и рабочего напряжения.

 

Параметры контроля питания:

Atmega 328Atmega 168Atmega 88Atmega 48Atmega 8
4.3 В4.3 В4.3 В4.3 В4.0 В
2.7 В2.7 В2.7 В2.7 В2.7 В
1.8 В1.8 В1.8 В1.8 В
ОтключеноОтключеноОтключеноОтключеноОтключено

 

 

Сайт проекта на github.

Схемы, устройства и проекты на микроконтроллерах AVR

В данной статье мы рассмотрим схему для измерения температуры, построенную на основе микроконтроллера ATmega32 (семейство AVR) и сенсора LM35. LM35 представляет собой сенсор линейного напряжения. Как известно, температура обычно измеряется в градусах Цельсия или фаренгейтах. Выходная шкала сенсора LM35 отградуирована … Читать далее →

В этой статье мы рассмотрим счетчик 0-99 на двух символьном семисегментном дисплее под управлением микроконтроллера ATmega32 (семейство AVR). Мы будем подсчитывать число событий основываясь на числе нажатий кнопки. Принцип работы семисегментного дисплея Но прежде чем идти дальше, кратко остановимся на … Читать далее →

Мы знаем, что сейчас в офисах, торговых центрах и многих других местах требуется авторизация людей, которые входят/выходят из этих мест. Часто для этих целей используется радиочастотная идентификация (RFID — Radio Frequency Identification). В частности, радиочастотная идентификация используется в торговых центрах … Читать далее →

Мы знаем, что сейчас в офисах, торговых центрах и многих других местах требуется авторизация людей, которые входят/выходят из этих мест. Часто для этих целей используется радиочастотная идентификация (RFID — Radio Frequency Identification). В частности, радиочастотная идентификация используется в торговых центрах … Читать далее →

Наверное, вы в своей жизни на различных выборах видели специальные машины для голосования. В этой статье мы постараемся собрать упрощенную модель подобной машины на микроконтроллере ATmega32A (семейство AVR). На данном микроконтроллере можно собрать машину для голосования 32 людей, однако в … Читать далее →

В этом проекте мы будем управлять яркостью свечения одноваттного светодиода с помощью микроконтроллера ATmega32 (семейство AVR). Мы будем делать это, используя ШИМ (широтно-импульсную модуляцию). Общий принцип управления яркостью свечения Управляя скоростью модуляции ШИМ (Pulse Width Modulation, PWM) можно регулировать силу … Читать далее →

Мигающий светодиод – это, пожалуй, самая простая схема, которую можно реализовать на микроконтроллере семейства AVR. Предназначена она для начинающих радиолюбителей – чтобы они на примере этой простейшей схемы смогли сделать свой первый шаг в направлении знакомства с микроконтроллерами AVR. В … Читать далее →

В данной статье представлена простая и надежная схема частотомера, реализованная на основе микроконтроллера ATtiny2313 (семейство AVR). С ее помощью можно измерять частоты до 65 кГц включительно. Программа для микроконтроллера написана на BascomAVR – нечасто уже используется, но может быть кто … Читать далее →

Данная схема светодиодной гирлянды на микроконтроллере ATtiny2313 (семейство AVR) содержит небольшое число элементов, отличается простотой сборки и поэтому хорошо подходит для начинающих радиолюбителей. С ее помощью можно управлять 13 светодиодами, подключенными к соответствующим портам микроконтроллера. Доступны такие эффекты как бегущий … Читать далее →

С помощью представленного в данной статье измерителя емкости можно измерять емкость конденсаторов с разрешением 1 пФ в нижнем конце диапазона. Максимальное значение емкости, которое можно им измерить, составляет 10000 мкФ. Ошибка измерения не превышает 0.5% в наихудших случаях, типовое же … Читать далее →

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *