Резонанс напряжений — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 ноября 2016; проверки требуют 15 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 ноября 2016; проверки требуют 15 правок.Резонанс напряжений — резонанс, происходящий в последовательном колебательном контуре при его подключении к источнику напряжения, частота которого совпадает с собственной частотой контура.
Резонанс напряжений, основанный на трансформаторе.Явление резонанса напряжений возникает на частоте ω0{\displaystyle \omega _{0}}, при которой индуктивное сопротивление катушки XL=ω0L{\displaystyle X_{L}=\omega _{0}L} и ёмкостное сопротивление конденсатора XC=1ω0C{\displaystyle X_{C}={\frac {1}{\omega _{0}C}}} равны между собой. При этом Электрический импеданс (полное сопротивление) цепи
- z^(jω0)=R+1jω0C+jω0L{\displaystyle {\hat {z}}(j\omega _{0})\;=R+{\frac {1}{j\omega _{0}C}}+j\omega _{0}L}
уменьшается, становится чисто активным и равным R{\displaystyle R} (сумма активного сопротивления катушки и соединительных проводов). В результате, согласно закону Ома: I=UR{\displaystyle I={\frac {U}{R}}}, ток в цепи достигает своего максимального значения.
Следовательно, напряжения как на катушке UL=IXL{\displaystyle U_{L}=IX_{L}}, так и на конденсаторе UC=IXC{\displaystyle U_{C}=IX_{C}} окажутся равными и будут максимально большой величины[1]. При малом активном сопротивлении цепи R{\displaystyle R} эти напряжения могут во много раз превысить общее напряжение U{\displaystyle U} на зажимах цепи, которое создаёт генератор. Это явление и называется в электротехнике резонансом напряжений.
Колебательный контур, работающий в режиме резонанса напряжений, сам по себе не является усилителем мощности. Повышенные напряжения на его элементах возникают за счёт увеличения тока в цепи и следовательно потребляемой мощности от источника переменного напряжения.
Явление резонанса напряжений необходимо учитывать при разработке аппаратуры. Повышенное напряжение может повредить не рассчитанные на него элементы.
Если нужно повысить напряжение до безопасного уровня путем резонанса, то следует использовать комбинированный или параллельно-последовательный резонанс (описание в статье Резонанс токов).
При совпадении частоты генератора и собственных колебаний контура на катушке появляется напряжение, более высокое, чем на клеммах генератора. Это можно использовать для питания высокоомной нагрузки повышенным напряжением, или в полосовых фильтрах.
Если напряжение источника питания слишком маленькое, то можно его повысить если устроить последовательный резонанс на основе трансформатора. Если при этом полученное напряжение окажется больше расчетного для трансформатора, то первичная и вторичная обмотки соединяются последовательно чтобы трансформатор не вышел из строя.
- Власов В. Ф. Курс радиотехники. М.: Госэнергоиздат, 1962. С. 52.
- Изюмов Н. М., Линде Д. П. Основы радиотехники. М.: Госэнергоиздат, 1959. С. 512.
- ↑ Однако, точное решение задачи о максимуме напряжения на катушке и конденсаторе с учётом величины добротности Q{\displaystyle Q}, даёт несколько другой результат. Часто́ты ωC{\displaystyle \omega _{C}} и ωL{\displaystyle \omega _{L}}, на которых напряжение на катушке и конденсаторе достигает максимума, не равны между собой, и не совпадают с частотой резонанса ω0{\displaystyle \omega _{0}}: ωC=ω02Q2−12Q2{\displaystyle \omega _{C}=\omega _{0}{\sqrt {\frac {2Q^{2}-1}{2Q^{2}}}}}
ωL=ω0{\displaystyle \omega _{L}=\omega _{0}}2Q22Q2−1{\displaystyle {\sqrt {\frac {2Q^{2}}{2Q^{2}-1}}}}
Видно, что с увеличением добротности контура, часто́ты ωC{\displaystyle \omega _{C}} и ωL{\displaystyle \omega _{L}} сближаются с резонансной частотой ω0{\displaystyle \omega _{0}}.
Источник: Бакалов В. П., Дмитриков В. Ф., Крук Б. И. Основы теории цепей: Учебник для вузов; Под ред. В.П. Бакалова. – 3-е изд., перераб. и доп. – М.: Горячая линия – Телеком, 2007. – с.: ил. (недоступная ссылка) ISBN 5-256-01472-2, с.118
20. (?????)Резонанс напряжений. Условия резонанса. Добротность контура. Основные частотные характеристики.
Резонанс напряжений – явление, при котором цепь содержащая активные и реактивные сопротивления, будет только активное сопротивление (XL — XC = 0). При этом ток в цепи совпадает по фазе с напряжением. Условие возникновение резонанса напряжений – равенство нулю реактивного сопротивления.
Обычно наблюдается в цепях, содержащих катушку и конденсатор, включенные последовательно.
Таким образом:
–резонансная частота
При резонансе напряжений ток максимален, так как сопротивление минимально, а
и таким образом
Часто для оценки цепи в режиме резонанса применяют такие характеристики как характеристическое сопротивление и добротность контура.
— характеристическое сопротивление контура. В простейшем случае это сопротивление на одном из реактивных элементов.
Добротностью контура называется отношение модуля реактивной составляющей напряжения в цепи к модулю входного напряжения в момент резонанса.
Зависимость от частоты параметров цепи называют частотными характеристиками
21. Резонанс напряжений. Основные частотные характеристики. Векторные диаграммы.
Частотными характеристиками называются зависимости от частоты параметров, характеризующих свойства цепи. Зависимости тока и напряжения в цепи от частоты принято называть резонансными кривыми.
резонансная частота —
абсолютная настройка по частоте —
относительная настройка —
обобщенная настройка (кси) –
(при этом все настройки положительны, при ff0, отрицательны при f f0, при очень малых настройках (
Теперь можно построить характеристики I, Z, в зависимости от .
При этом можно видеть, что зависимости от относительной настройки различаются по величине добротности
Q, а зависимости от обобщенной настройки одинаковы для всех контуров.
Полосу частот вблизи резонанса, на границах которой ток снижается до величины отпринято называтьполосой пропускания резонансного тока.
Чем больше добротность, тем острее кривая и уже полоса пропускания
Векторные диаграммы при
Если источник не идеален и имеет своё внутреннее сопротивление, то это сопротивление фактически добавляется к активному сопротивлению цепи и влияет на добротность и полосу пропускания контура. Чем больше внутреннее сопротивление источника, тем меньше добротность и шире полоса пропускания. Поэтому, с точки зрения сокращения полосы пропускания контура, выгоден источник с малым внутренним сопротивлением.
Если колебательный контур идеален и в нём нет активного сопротивления, то общее сопротивление контура приравнивается к 0, а ток в цепи и добротность возрастают до бесконечности. Однако в реальной цепи такого быть не может.
22.Условие резонанса токов
Резонанс токов наблюдается в цепях с параллельным включением L и C. Условием резонанса токов является равенство 0 реактивной проводимости цепи.
Это уравнения для более общего случая. Резонанс в таком контуре не всегда возможен. В идеализированном случае, когда активными свойствами катушки и конденсатора пренебрегают. Резонансная частота контура определяется формулой:
, ,.
В момент резонанса ток достигает своего минимального значения и совпадает по фазе с напряжением.
Добротность – отношение модуля тока в реактивном элементе к модулю тока в неразветвлённой части схемы.
,
В
отличие от последовательного колебательного
контура с точки зрения сокращения полосы
пропускания и колебательного контура
выгоден источник тока с большим
R
Анализируя полученную нами формулу для резонансной частоты резонанса тока, можно выделить 3 основных случая:
Есть резонанс если иодного знака
Безразличный резонанс
Нет резонанса если иразличного знака
Диаграмма:
Резонанс напряжений: формулировка, условие наступления, применение
Резонансные явления наблюдаются в колебательных системах, когда частота собственных колебаний элементов системы совпадает с частотой внешних (вынужденных) колебательных процессов. Данное утверждение справедливо и для цепей с циркулирующим переменным током. В таких электрических цепях при наличии определённых условий возникает резонанс напряжений, что влияет на параметры тока. Явление резонанса в электротехнике может быть полезным или вредным, в зависимости от ситуации, в которой происходит процесс.
Описание явления
Если в некой электрической цепи (см. рис. 1) имеются ёмкостные и индуктивные элементы, которые обладают собственными резонансными частотами, то при совпадении этих частот амплитуда колебаний резко возрастёт. То есть происходит резкий всплеск напряжений на этих элементах. Это может вызвать разрушение элементов электрической цепи.
Рис. 1. Резонанс в электрической цепиДавайте рассмотрим на этом примере, какие явления будут происходить при подключении генератора переменного тока к контактам схемы. Заметим, что катушки и конденсаторы обладают свойствами, которые можно сравнить с аналогом реактивного резистора. В частности, дроссель в электрической цепи создаёт индуктивное сопротивление. Конденсатор является причиной ёмкостного сопротивления.
Индуктивный элемент вызывает сдвиг фаз, характеризующийся отставанием тока от напряжения на ¼ периода. Под действием конденсатора ток, наоборот, на ¼ периода опережает напряжение.
Другими словами, действие индуктивности противоположно действию на сдвиг фаз ёмкостного сопротивления. То есть катушки индуктивности и ёмкостные элементы по-разному воздействуют на генератор и по-своему корректируют фазовые соотношения между электрическим током и напряжением.
Формула
Общее реактивное сопротивление рассматриваемых нами элементов равно сумме сопротивлений каждого из них. С учётом противоположности действий можно записать: Xобщ = XL — Xc , где XL = ωL — индуктивное реактивное сопротивление, выражение Xc = 1/ωC — это ёмкостное реактивное сопротивление.
На рисунке 2 изображены графики зависимости полного сопротивления цепи и связанной с ним силы тока, от реактивного сопротивления индуктивного элемента. Обратите внимание на то, как падает полное сопротивление при уменьшении реактивной сопротивляемости RL (график б) и как при этом возрастает ток (график в).
Рис. 2. Графики зависимости параметров тока от падения реактивного сопротивленияЭлектрические цепи, состоящие из последовательно соединённых конденсаторов, пассивный резисторов и катушек индуктивности называют последовательными резонансными (колебательными) контурами (см. рис. 2). Существуют также параллельные контуры, в которых R, L, C элементы подключены параллельно (рис. 3).
Рис. 3. Последовательный колебательный контурРис. 4. Параллельный колебательный контурВ режиме резонанса мощность источника питания будет рассеиваться только на активных сопротивлениях (в том числе на активном сопротивлении катушки). Для резонансных контуров характерны потери только активной мощности, которая израсходуется на поддержание колебательного процесса. Реактивная мощность на L C — элементах при этом не расходуется. Ток в резонансном режиме принимает максимальное значение:
Величину Q принято называть термином «Добротность контура». Данный параметр показывает, во сколько раз напряжение, возникшее на контактах реактивных элементов, превышает входное напряжение U электрической сети. Для описания соотношения выходного и входного напряжений часто применяют коэффициент K. При резонансе:
K = Uвых / Uвх = UC0 / U = Q
Формулировка
На основании вышеописанных явлений, сформулируем определение резонансного напряжения: «Если общее падение напряжения на ёмкостно-индуктивных элементах равно нулю, а амплитуда тока – максимальна, то такое особое состояние системы называется резонансом напряжений». Для лучшего понимания явления, немного перефразируем определение: резонансом напряжений является состояние, когда напряжение на CL — цепочке больше чем на входе электрической цепи.
Описанное явление довольно распространено в электротехнике. Иногда с ним борются, а иногда специально создают условия для образования резонанса. Основными характеристиками всякого резонансного контура являются параметры добротности и частоты [ 1 ].
В случае, если XL = Xc – справедливо равенство: ωL = 1/ωC , отсюда получаем:
Если ω = ω0 – возникает резонанс напряжений. Частоты совпадают в том случае, когда индуктивное сопротивление сравняется с ёмкостным сопротивлением конденсатора. В таких случаях в цепи будет действовать только активное сопротивление R. Наличие реактивных элементов в схеме приводит к увеличению полного сопротивления цепи (Z):
где R – общее активное сопротивление.
Учитывая, что по закону Ома U = I/Z, можно утверждать, что общее напряжение в цепи зависит, в том числе, и от слагаемых индуктивного и ёмкостного сопротивлений.
Если бы в рассматриваемой схеме (рис. 1) отсутствовало активное сопротивление R, то значение полного сопротивления Z стремилось бы к 0. Следовательно, напряжение на реактивных элементах при этом возрастает до критического уровня.
Поскольку XL и Xc зависят от частоты входного напряжения, то для возникновения резонанса следует подобрать соответствующую частоту сети, или изменять параметры катушки, либо конденсатора до тех пор, пока резонансные частоты не совпадут. Любое нарушение условий резонанса немедленно приводит к выходу системы из резонансного режима с последующим падением напряжения.
Условия наступления
Резонансные явления наступают только при наличии следующих условий:
- Наличие минимального активного сопротивления на участке электрической цепи.
- Равенство реактивных сопротивлений, возникших на цепочке LC.
- Совпадение входной частоты источника питания с резонансной частотой колебательного контура.
При резонансе в контуре напряжения на его элементах могут повышаться на порядок и больше.
Примеры применения на практике
Классическим примером применения резонанса колебательных контуров является настройка радиоприёмника на частоту соответствующей радиостанции. В качестве рабочего элемента настроечного узла используется конденсатор с регулируемой ёмкостью. Вращение ручки настройки изменяет ёмкость конденсатора, а значит и резонансную частоту контура.
В момент совпадения резонансной частоты с рабочей частотой какой-либо радиостанции возникает резонанс напряжений, в результате которого резко возрастает амплитуда колебаний принятой радиоприёмником частоты. Специальные фильтры отделяют эти колебания от несущих радиочастот, а усилители усиливают полученные сигналы. В динамике появляются звуки, генерируемые передатчиком радиостанции.
Колебательные контуры, построенные на принципе последовательного соединения LC-элементов, применяются в цепях питания высокоомных нагрузок, потребляющих токи повышенного напряжения. Такие же устройства применяют в полосовых фильтрах.
Последовательный резонанс применяют при пониженных напряжениях сети. В этом случае используют реактивную энергию обмоток трансформатора, соединённых последовательно.
Конденсаторы и различные катушки индуктивности (рис. 5) входят в конструкцию практически всех аналоговых устройств. Они используются для настройки фильтров или для управления токами в отдельных узлах.
Катушки индуктивностиВажно знать, что резонансные контуры не увеличивают количество электрической энергии в цепях. Они лишь могут повышать напряжения, иногда до опасных значений. Постоянный ток не причиной резонансных явлений.
Наряду с полезными свойствами резонансных явлений, в практической электротехнике часто возникают ситуации, когда резонанс напряжений приносит вред. В основном это связано с нежелательным повышением параметров тока на участках цепей. Примером могут служить опасное резонансные явления в кабельных линиях без нагрузки, что может привести к пробоям изоляции. Чтобы этого не случилось, на концевых участках таких линий устанавливают балластные нагрузочные элементы.
Резонанс напряжений, условие возникновения — Ремонт220
Автор Фома Бахтин На чтение 3 мин. Просмотров 3.8k. Опубликовано
Явление резонанса электрических напряжений наблюдается в цепи последовательного колебательного контура, состоящего из емкости (конденсатора), индуктивности и резистора (сопротивления). Для обеспечения энергетической подпитки колебательного контура в последовательную цепь включается также источник электродвижущей силы Е. Источник вырабатывает переменное напряжение с частотой W. При резонансе ток, циркулирующий в последовательной цепи, должен совпадать по фазе с э.д.с. Е. Это обеспечивается, если общее сопротивление схемы Z = R+J(WL – 1/WС) будет лишь активным, т.е. Z=R. Равенство:
(L – 1/WС) = 0 (1),
является математическим условием резонанса в колебательном контуре. При этом величина тока в цепи составит I = E/R. Если преобразовать равенство (1), то получим:
WL = 1/WС.
В этом выражении W – является резонансной частотой контура.
Важно то, что в процессе резонанса напряжение на индуктивности равно напряжению на конденсаторе и составляет:
UL = U = WL * I = WLE/R
Общая сумма энергий в индуктивности и емкости (магнитного и электрического полей) постоянна. Это объясняется тем, что между этими полями происходит колебательный обмен энергиями. Суммарное ее количество в любой момент неизменно. При этом обмена энергией между ее источником Е и цепью не происходит. Вместо этого имеет место непрерывное преобразование одного вида энергии в другой.
Для колебательных контуров применятся термин добротность, которая показывает, как соотносятся напряжение на реактивном элемента (емкость или индуктивность) и входное напряжение контура. Добротность вычисляется по формуле:
Q = WL/R
Для идеальной последовательной цепи с нулевым активным сопротивлением возникновение резонанса сопровождается незатухающими колебаниями. На практике затухание колебаний компенсируется подпиткой контура от генератора колебаний с частотой резонанса.
Применение резонанса напряжений
Явление колебательного резонанса широко используется в радиоэлектронике. В частности, входная цепь любого радиоприемника представляет собой регулируемый колебательный контур. Его резонансная частота, изменяемая с помощью регулировки емкости конденсатора, совпадает с частотой сигнала радиостанции, которую необходимо принять.
В электроэнергетике возникновение резонанса напряжений вследствие сопутствующих ему перенапряжений чревато нежелательными последствиями. Например, в случае подключения к генератору или промежуточному трансформатору длинной кабельной линии (являющейся колебательным контуром с распределенной емкостью и индуктивностью), не соединенной на приемном конце с нагрузкой (это называется режимом холостого хода), весь контур может оказаться в резонансом состоянии. В такой ситуации напряжения, возникающие на некоторых участках цепи, могут оказаться выше расчетных. Это может грозить пробоем изоляции кабеля и выходом его из строя. Такая ситуация предотвращается применением вспомогательной нагрузки.
Механизм возникновения электрического тока
Схема удивительного генератора СВЧ полей на разряднике Вина уникальное, в своём роде устройство
83046 Нагревание проводников электрическим током
Резонанс напряжений
Явление совпадения по фазе напряжения и тока в R,L,C-цепи называется электрическим резонансом.
В цепях переменного тока с последовательным соединением R,L,C- элементов при равенствевозникает резонанс напряжений.
При
т.е. резонанс напряжений наступает при равенстве реактивных сопротивлений.
Условием резонанса напряжений является равенство
(6-43)
или
(6-44)
Поэтому в цепи переменного тока резонанс напряжений может наступить:
если при постоянных LиCчастота сигнала, подаваемого в цепь, изменяясь, становится равной ν ==; ()
если при постоянной частоте входного сигнала и постоянной индуктивности емкость конденсатора меняется и становится равной: С = ;
если при постоянной частоте входного сигнала и постоянной емкости меняется индуктивность и становится равной: L=;
если при постоянной частоте входного сигнала изменение обеих величин LиCприводит к равенству:.
Таким образом, чтобы в цепи наступил резонанс напряжений, необходимо обеспечить определенное соотношение между величинами ν, L,C, т.е. резонанса в цепи можно добиться путем регулирования (подбора) параметров индуктивного и емкостного элементов, а также с помощью изменения частоты питающего тока. При резонансе частота тока (напряжения) равна частоте собственных колебаний цепи (контура).
Рис. 77 Графики и векторная диаграмма для резонанса напряжений.
При резонансе напряжений выражение
U==(6-45)
так как .
Полное сопротивление цепи
Z==R, (6-46)
так как =.
Полная мощность цепи
S==P, (6-47)
так как .
Фазовый сдвиг между током и напряжением
(6-48)
так как =следовательно.
Коэффициент мощности
= 1, (6-49)
так как Z=R
Таким образом, электрическая цепь переменного тока в режиме резонанса представляет собой чисто активную нагрузку.
Зависимость параметров цепи от частоты. Практический интерес представляют соотношения между параметрами цепи и их зависимость от частоты тока. На рис.78 а показаны
а б
Рис.78
кривые R=R(v). Т.к. активное сопротивление практически от частоты не зависит то графикR=R(v) представляет прямую параллельную оси абсцисс. Индуктивное сопротивлениепрямо пропорционально, а емкостное сопротивлениеобратно пропорционально частоте тока.
До резонанса , при резонансе, после резонанса. При резонансе полное реактивное сопротивление
=
Полное сопротивление цепи Z, также зависит от частоты. До и после резонанса оно растет за счет увеличенияили. При резонансеZ=R.
По закону Ома ток в последовательной R,L,C– цепи
. (6-50)
При резонансе (XL=XC) и ток равен максимальному значению, в то время как до (XL<XC) и после (XL>XC) резонанса он уменьшается. Приv=0,XC= ∞,I= 0. Аналогично приv=∞,XL=∞,I= 0. На рис. б показаны графикиI(v).
Кривая зависимости тока от частоты называется резонансной кривой. По характеру изменения тока в R,L,C– цепи легко установить состояние резонанса в ней – максимальное значение тока в цепи указывает на момент резонанса.
Рис. 79 Рис.80
Напряжение на резистивном элементе изменяется пропорционально току: При резонансе, когда ток максимален, напряжениеUaтакже максимально и равно напряжению источника питанияUист (рис. ). Приω= 0; ∞ токI= 0;Ua= 0. На рис.79а изображена зависимость
Напряжение на индуктивном элементе пропорционально токуIи частоте..
При увеличении частоты напряжение на индуктивном элементе растет и при частоте, близкой к резонансной, достигает максимального значения; по мере дальнейшего увеличения частоты ток, а следовательно, и индуктивное напряжение уменьшаются. При поэтому индуктивное напряжение равно напряжению источника питания. Криваяизображена на рис. 79а .
Напряжение на емкостном элементеследовательно, оно пропорционально токуIи обратно пропорционально частоте. ПриПоэтому емкостное напряжение компенсирует приложенное напряжение к цепи, т.е.При увеличении частоты напряжениерастет и при частоте, близкой к резонансной, достигает максимального значения; по мере дальнейшего увеличения частоты ток и емкостное напряжение уменьшаются. ПриКриваяизображена на рис. .
Сдвиг фаз определяется из выражения
При т.е., что соответствует.
При что соответствует
При т.е.График зависимостиизображен на рис. 80 .
Резонанс токов и напряжений: условия возникновения и применение
Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике.
Реактивные сопротивления индуктивности и емкости
Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.
Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.
Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.
Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.
Емкость и индуктивность в цепи переменного тока
Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.
Реактивное сопротивление катушки индуктивности определяется по формуле:
Векторная диаграмма:
Реактивное сопротивление конденсатора:
Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.
Векторная диаграмма:
Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:
Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):
От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.
Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.
Резонанс напряжений
Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.
Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.
При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.
Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:
U=I/X
Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.
Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:
Период колебаний определяется по формуле Томпсона:
Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:
Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:
K=Q
А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.
Uк=Uвх*Q
При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:
Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.
Коэффициент мощности будет равен:
cosФ=1
Эта формула показывает, что потери происходят за счет активной мощности:
S=P/Cosф
Резонанс токов
Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.
Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:
В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:
- Частота питания аналогична резонансной у контура.
- Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.
Применение на практике
Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.
Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.
Заключение
Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях. В цепях с большим активным сопротивлениям он не может возникнуть. Подведем итоги, кратко ответив на основные вопросы по этой теме:
- Где и в каких цепях наблюдается явление резонанса?
В индуктивно-емкостных цепях.
- Какие условия возникновения резонанса токов и напряжений?
Возникает при условии равенства реактивных сопротивлений. В цепи должно быть минимальное активное сопротивление, а частота источника питания совпадать с резонансной частотой контура.
- Как найти резонансную частоту?
В обоих случаях по формуле: w=(1/LC)^(1/2)
- Как устранить явление?
Увеличив активное сопротивление в цепи или изменив частоту.
Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео по теме:
Материалы по теме:
Резонанс напряжений и резонанс токов
В физике резонансом называется явление, при котором в колебательном контуре частота свободных колебаний совпадает с частотой вынужденных колебаний. В электричестве аналогом колебательного контура служит цепь, состоящая из сопротивления, ёмкости и индуктивности. В зависимости от того как они соединены различают резонанс напряжений и резонанс токов.
Резонанс напряжений
Резонанс напряжений возникает в последовательной RLC-цепи.
Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.
При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.
С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.
Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту
Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.
Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.
Резонанс токов
Резонанс токов возникает в цепи с параллельно соединёнными катушкой резистором и конденсатором.
Условием возникновения резонанса токов является равенство частоты источника резонансной частоте w=wр, следовательно проводимости BL=BC. То есть при резонансе токов, ёмкостная и индуктивная проводимости равны.
Для наглядности графика, на время отвлечёмся от проводимости и перейдём к сопротивлению. При увеличении частоты полное сопротивление цепи растёт, а ток уменьшается. В момент, когда частота равна резонансной, сопротивление Z максимально, следовательно, ток в цепи принимает наименьшее значение и равен активной составляющей.
Выразим резонансную частоту
Как видно из выражения, резонансная частота определяется, как и в случае с резонансом напряжений.
Явление резонанса может носить как положительный, так и отрицательный характер. Например, любой радиоприемник имеет в своей основе колебательный контур, который с помощью изменения индуктивности или емкости настраивают на нужную радиоволну. С другой стороны, явление резонанса может привести к скачкам напряжения или тока в цепи, что в свою очередь приводит к аварии.