Site Loader

Содержание

технические подробности. Никола Тесла. Повелитель Вселенной

Приложение 1 Передатчик усиления: технические подробности

На Международной конференции в честь Тесла, которая состоялась в 1990 году в Колорадо-Спрингс, доктор Александр Маринчич — куратор Музея Тесла в Белграде, Роберт Голка — единственный из современных электроинженеров, создавший крупномасштабный передатчик усиления, и я обсуждали жизнеспособность планов Тесла. И Маринчич, и Голка считали, что конечный план Тесла по передаче энергии вокруг земного шара в промышленных целях непрактичен.

Леланд Андерсон — электроинженер и эксперт по деятельности Тесла с почти сорокалетним стажем — соглашался. По мнению Андерсона, эксперименты Тесла в Колорадо-Спрингс давали результат из-за того, что башня была расположена рядом с грядой Пайкс-Пик у большой равнины. Когда Тесла обнаружил разряды молний и стоячие волны, он пришел к неверному выводу, будто эти волны опоясывают весь земной шар. На самом деле, писал Андерсон, это были, вероятно, «нераспознанные эффекты усиления», рикошетящие от Пайкс-Пик, и тем же свойством обладали искусственно созданные волны. Данный вывод был основан на измерениях, проведенных во время гроз ученым-электронщиком Ральфом Джолером около этой горной гряды.

Двумя профессорами, заключившими, что аппарат Тесла работоспособен, были Джеймс Корум и Эрик Доллард, которые сконструировали передающее оборудование на основе изысканий Тесла. Доллард пишет, что изобретение «Эрнстом Ф. Александерсоном, протеже Штейнмеца» (около 1920 года) «плоской антенны с множественным зарядом» базировалось на «изобретениях Тесла». Одна из таких станций в Болинасе, Калифорния, состоит из резонансного трансформатора между двумя отдельными «заземляющими пластинами» и «надземной пластины». Это дает возможность создать три самостоятельные радиочастоты: «атмосферную индукцию, антенную трансмиссию и земную индукцию». Действуя как потенциальное заземление, воздушная антенна, передающая энергию по земле, создает стоячие волны, которые «постоянно движутся между землей и отражающей емкостью со скоростью, совпадающей с естественным пульсом Земли».

Можно объяснить значение заземления посредством простого эксперимента с камертоном. Резонанс получается более мощным, когда камертон соединен с поверхностью, например со столом. Из-за хорошей проводимости земли индивидуализация передачи импульсов также упрощается. Электрическая энергия «не проходит через землю в обычном понимании этого слова, а лишь пронизывает ее на определенную глубину в зависимости от частоты».

Корум, защитивший докторскую диссертацию по физике, бывший профессор инженерных наук в Университете Западной Вирджинии, пишет: «В прошлом пророческие взгляды Тесла часто считались безосновательными. Я полагаю, что начало такому отношению положили критики, несведущие в истинных технических достижениях Тесла и физических наблюдениях». Проведя несколько экспериментов, Корум пришел к выводу, что математические результаты Тесла, упомянутые в патентной заявке от 16 мая 1900 года, «являются итогом измерений земного резонанса». Другими словами, совершенно справедливы утверждения Тесла о том, что он измерил пульс Земли, исходящий из противоположного полюса, и высчитал резонансную частоту планеты.

Рассматривая проект Тесла с технической точки зрения, можно сказать, что, скорее всего, Уорденклифф предназначался для передачи информации и небольших количеств электрической энергии, способной запустить часы и телеграфные аппараты для передачи биржевых новостей, но никак не заводы. Каждая башня могла играть роль принимающей и передающей станции. В письме к Кэтрин Джонсон Тесла объясняет необходимость строительства более тридцати таких башен.

Передатчик усиления был предназначен для передачи электричества различными способами. Тесла мог использовать волны-носители, движущиеся в Земле (т. е. резонатор Шумана и/или геомагнитный пульс), он также мог передавать частоты по воздуху или направлять волну-носитель в ионосферу и использовать ее для транспортировки.

«Признаюсь, я был разочарован, когда впервые провел испытания в этой области. Они не принесли практических результатов. Один раз я использовал от 8 000 000 до 12 000 000 вольт. В качестве источника ионизирующего излучения была взята мощная арка, направленная в небо. Я пытался связать ток высокого напряжения и верхний слой атмосферы, потому что моим излюбленным планом было освещение океана по ночам».

Центральные башни, действуя как современные беспроводные магистральные микроволновые передатчики телефонных компаний, могли быть связаны при помощи обычных проводов с домами, расположенными в огромном радиусе.

Всемирная радиовещательная система . Из всего сказанного я делаю вывод, что передатчик усиления Тесла в своем завершенном виде мог выполнять следующие функции: была бы построена башня, способная создавать электрические колебания в резонансном соотношении с размером, электронными и геофизическими свойствами Земли.

Вместо использования только поперечных электромагнитных волн Тесла задействовал и продольные волны (как, например, в импульсах при землетрясениях и передаче звука). Гигантская катушка Тесла также учитывала длину световой волны. Другими словами, длина обмотки трансформатора находилась в гармонии с расстоянием, которое за данный промежуток времени проходил свет. После создания стоячих волн, резонирующих с планетой, были определены и узловые точки на поверхности Земли.

Огромный заряд, превышающий 30 миллионов вольт, соотнесенный с гармонической частотой электрического и/или геофизического состояния Земли, передавался по башне в землю и по шестнадцати ступеням длиной 300 футов, расположенным спиралью по всей длине 120-футового колодца. Охватывая всю землю, этот пульс создавал электронные помехи в гармоничном соотношении с естественным геомагнитным пульсом, который достигал противоположной точки земного шара и возвращался к башне. Контролируя период частоты, этот пульс мог быть изменен и даже увеличен: так же хорошо сделанный колокол дает более сильный звук при быстром, сильном прикосновении к нему через точно заданные интервалы. Энергия могла храниться в верхней части башни и в специально построенных конденсаторах лаборатории. Стоячие волны в резонансе с известными земными волнами создавались именно таким образом.

Подобно вибрирующей пружине с подвешенным грузом, это устройство позволяло Тесла определять электростатическую емкость (гибкость пружины) и индуктивность (вес на пружине) колебаний носителя и манипулировать ими. Тесла также выяснил, что использование разжиженного воздуха (— 197 F) способствует созданию и/или приему очень высоких частот, одновременно снижая полное сопротивление, вызванное трением или теплом. Трансформируя энергию в высокие частоты в возвратном потоке, Тесла увеличивал эффективность своих башен. Каждая могла действовать как принимающее и предающее устройство. Одна башня, расположенная рядом с водопадом, могла «перебрасывать» энергию другой башне, находящейся в противоположной точке земного шара.

Так же как электричество можно получить от электрических проводов, опоясывающих нашу планету, его можно добыть и из электромагнитного пояса самой Земли. Электричества не будет, пока в розетку не вставлена вилка и не нажата кнопка выключателя, и в системе Тесла оно сначала должно быть подсоединено к беспроводному устройству, а устройство — включено. При такой системе электричество не расходуется зря, по крайней мере, не больше, чем в современных средствах, таких, как, например, беспроводные автомобильные телефоны или трансформаторы и высоковольтные провода, натянутые между электрическими столбами.

По-видимому, башня Тесла могла бы исполнять ряд функций. Например, в любую точку земного шара можно было бы передавать различимые сигналы (беспроводной телефон). Энергию, вероятно, можно получать с использованием того же механизма внутри узкого радиуса действия башни, передавая его тысячам особых машин, после того как они отправят закодированный запрос, или снабжать энергией другую башню, расположенную у другого источника энергии. Эта вторая башня в отдаленном районе может быть связана с бытовыми приборами и телефонами при помощи обычных проводов или без них. Если два передатчика разделены сотнями миль, векторные волны легче посылают импульсы в нужные точки.

Немного критики . Э. Корнхаузер — профессор инженерного дела из университета Брауна — сомневается, что такая форма передачи энергии может быть эффективно использована, поскольку земля не такой уж хороший проводник по сравнению с медным проводом. Что же касается возможности беспроводной коммуникации на всей планете, то Корнхаузер считает ее вполне осуществимой. Он заявил, что флот безуспешно пытался создать всемирную радиолокационную систему с использованием очень низких частот. Проект «Мореплаватель», по слухам, мог способствовать осуществлению связи даже с подводными лодками в любой точке земного шара. Однако план не удался в основном из-за того, что мог значительно повлиять на уже существующие радио- и телечастоты и оказаться опасным для окружающей среды.

Эффективность радиоламп Тесла также ставилась под сомнение Корнхаузером, который считал, что, прежде чем появятся действительно эффективные радиолампы, пройдет еще пятнадцать лет. Однако Корнхаузер заметил, что современные АМ-радиостанции используют землю в качестве первичного источника для передачи своих сигналов. FM и телевидение также используют землю, но для них атмосфера — более важный источник передачи импульсов.

1. Трансформатор состоит из:

А. Толстой катушки меньшей длины и с малым количеством витков. Катушка является первичной для передатчика и вторичной для принимающего устройства.

В. Тонкой катушки большей длины и с большим количеством витков, которая является вторичной для передатчика и первичной для принимающего устройства. Длина этой катушки может быть равна 50 милям или четверти длины световой волны (длина световой волны составляет 185 000 миль).

С. Магнитного сердечника, соединенного с землей и надземным терминалом.

2. Источника энергии (уголь или сила водопада).

3. Заземления.

4. Контейнера со сжиженным воздухом (— 197 F), который вызывает огромнейшее усиление колебаний в резонансной цепи.

5. Надземного терминала или крыши в форме луковицы для хранения заряда. Чтобы получить максимально высокую частоту, используется терминал меньшей емкости и большего давления (как туго натянутая пружина).

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

Секреты свободной энергии холодного электричества. Глава 3/2. Проверяя секреты Теслы. Продолжение — Мифы и легенды

Иллюстрация Усиливающего Передатчика Тесла.

Усиливающий Передатчик Тесла как он описан в патенте.

Диаграмма является увеличенной частью этой иллюстрации, показывающая основную структуру источника «В», питающего двухвитковую первичную обмотку, и спиральную катушку в его середине. Этот аппарат был спроектирован для передачи энергии на большие расстояния, так что он также включает соединения с землёй и небом. Элемент «Е*» соединялся с землёй, а элемент «Е» Тесла называл «поднятой ёмкостью», и он должен был располагаться на аэростате. Это и было сердцем усиливающей передающей системы, которую Тесла попытался построить в Ворденклиффе, штат НьюЙорк, для того, чтобы передавать энергию в любую точку планеты.

Особенно интересен в этой конструкции источник энергии «В». Если вы посмотрите на схему, то «В», расположенный слева, выглядит как символ простого генератора.

Тем не менее, следующая выдержка из патента расширяет наш взгляд на то, что из себя представляет «В»: «На иллюстрации 1, «А» обозначает первичную катушку трансформатора, и состоит в основном из нескольких витков толстого кабеля с неуловимым сопротивлением, концы которого присоединены к выводам мощного источника электрических колебаний, обозначенного на диаграмме как «В». Он обладает высоким потенциалом и разрядом в виде быстрых импульсов на первичную катушку, как в трансформаторе, изобретённом мной».

Правую часть рисунка 16 я назвал «Умножающий передатчик Теслы, так как он описан в тексте патента». На нём показаны конденсатор и прерыватель дуги (в данном случае — магнитный прерыватель) такой, чтобы он мог контролировать характеристики разрядных импульсов так как хочется.

Приведём ещё одну цитату из патента, где Тесла говорит: «Я обнаружил, что таким способом возможно на практике получать электрическое движение, в тысячи раз большее, чем начальное». И опять, он говорит о невероятном усилении электрического движения. Это не обычное увеличение напряжения, как в обычных трансформаторах, но увеличение мощности.

Чуть выше на той же странице Тесла указывает: «При точном выполнении всех настроек и соотношений, а также при строгом соблюдении других указанных конструктивных особенностей, электрическое движение произведённое во вторичной системе от наведённого действия первичной, «А», будет чрезвычайно увеличено…».

Тесла очевидно верил, и многократно повторял, что эта система способна производить большее количество энергии, чем к ней подводится. Сейчас эту концепцию называют «Свободной Энергией». Чтобы получить дальнейшие свидетельства правоты анализа Вассилатоса, я снова обращаюсь к книге «Лекции, патенты, статьи». 

Иллюстрация из лекции Тесла. Февраль 1893 год.

На странице L112 вы можете увидеть статью «Об аппарате и методе преобразования». Здесь изображён генератор, который производит переменный ток в цепях слева, и постоянный ток в цепях справа.

Крупный план «Метода преобразования»

На рисунке приведено увеличенное изображение цепей постоянного тока. На средней картинке изображено то, что Тесла называет постоянным током из главного генератора и пропускает его через другой аппарат, который, как нам сказано в тексте, ещё больше увеличивает напряжение постоянного тока. Затем цепь заряжает конденсатор и разряжает его через искровой разрядник с магнитным прерывателем для питания ламп и других аппаратов.

Это, опубликованное в работах Теслы, прямое свидетельство того, что он работал со всеми компонентами, описанными Вассилатосом. Сказать по правде, он скрыл их в тени других возможностей, но все необходимые элементы присутствуют, и чётко описаны.

В дополнение к этому, приведём следующее удивительное заявление Теслы, взятое из статьи «Проблемы увеличения энергии человека», опубликованной в июньском выпуске журнала «Century Magazine» 1900-го года (с. А145): «Чем бы ни было электричество, на самом деле оно ведёт себя подобно несжимаемой жидкости, и на Землю можно смотреть, как на огромный резервуар электричества…».

Учитывая, что Никола Тесла был изобретателем многофазной системы распределения электрической энергии, которая сейчас используется во всём мире, удивительно, что он говорит, будто не знает, что такое электричество, но что оно определённо ведёт себя как жидкость под давлением! Это понимание сути электричества, разумеется, полностью расходится с общепринятой точкой зрения.

Утверждение Тесла, что электричество ведёт себя как несжимаемая жидкость, только приводит к новому вопросу: о какой жидкости он говорит? Может ли это быть одной из зашифрованных ссылок Теслы на эфирный газ, как считает Вассилатос? Из текста в той же статье, на странице А148, есть следующие утверждения, относящиеся к этому вопросу: «В конце концов, однако, я с удовольствием решил задачу по применению нового принципа, достоинство которого основывается на изумительных свойствах электрического конденсатора.

Одно из них заключается в том, что он может разрядить или высвободить в виде взрыва заключённую в нём энергию за немыслимо короткое время. Другое из его свойств, также равноценное, в том, что его разряд может колебаться с любой желаемой частотой, вплоть до многих миллионов раз в секунду.

Я расположил подобный инструмент таким образом, чтобы он мог попеременно быстро заряжаться и разряжаться через катушку с несколькими витками толстого провода, сформированного в первичную обмотку трансформатора. Электрические эффекты любого требуемого характера и интенсивности, о которых раньше нельзя было и подумать, сейчас с лёгкостью могут быть получены в усовершенствованном аппарате подобного рода, на который я часто ссылался, и важнейшие части которого изображены на рисунке 6. Для одних целей требуется сильный наводящий эффект; для других — максимально высокая внезапность; для третих — невероятно высокая частота вибраций или экстремальное давление; для четвёртых же необходимо огромное электрическое движение».

Патент цепи Грея.

Итак, я верю, что теперь у нас есть более чем достаточные ссылки из работ самого Теслы в поддержку главной идеи Вассилатоса. Идеи о том, что Тесла активно работал с конденсаторами, заряжаемыми от высоковольтных источников постоянного тока. Он разряжал их через искровые разрядники с магнитным прерывателем; он проводил эту процедуру с экстремально высокой частотой вибраций, вплоть до многих миллионов раз в секунду, и, наконец, этот метод использовался для управления его «усиливающего передатчика», устройства, которое производило и улавливало то, что Тесла называл «Радиантной Энергией». Вопрос в том, имеем ли мы, кроме этих письменных свидетельств, какое-то прямое доказательство, что Усиливающий Передатчик Теслы действительно производит другую форму электричества? Для ответа на этот вопрос, я сошлюсь на ривунок:

Разряд Радиантной Энергии

на котором изображена чёрно-белая версия цветной фотографии разряда Усиливающего Передатчика Эрика Долларда, которая помещена на обложку этой книги.

Эта фотография была сделана Элисоном Девидсоном в 1986 году, и была предоставлена мне Томом Брауном в Новой Зеландии. Верхняя часть катушки имела примерно 8 дюймов в диаметре. Неизвестно, какое напряжение было у этого разряда, но, вероятно, оно достигало 400 000 В. Другой конец катушки давал в заземляющий провод ток силой 4 А, по результатам замера радиочастотным амперметром; вся система потребляла менее 2000 Вт энергии из обычной розетки. На этой фотографии можно увидеть не идеально чистый эфирный разряд, излучающий «голубые иглы», как и описывал Тесла.

Здесь я хотел бы добавить свидетельство ещё одного очевидца относительно природы радиантной энергии и холодного электричества Теслы. В тот же день, когда Элисон Девидсон сделал эту фотографию, мы с Томом Брауном провели удивительный эксперимент. Я взял обычную лампочку накаливания, и удерживал её за цоколь правой рукой. Затем я попросил Тома подойти и прикоснуться к центральному выводу лампочки своим пальцем. Как только он сделал это, нить лампочки в наших руках вспыхнула ярким светом. Я стоял примерно в шести футах от передатчика, а Том — в восьми футах. Я не чувствовал никаких неприятных ощущений, но был сильно поражён и удивлён. До того момента я и не подозревал, насколько безопасна эта форма энергии.

Обобщая всё вышесказанное, очевидно, что Тесла, пытаясь подтвердить открытие Герцем электромагнитных волн, открыл электростатический эффект «суперзаряда». После проведения сотен экспериментов, он научился контролировать и максимизировать это феномен. Это привело его к открытию того, что электричество состоит из множества различных компонентов, которые могут быть отделены друг от друга, и что эту чистую газообразную энергию эфира можно отделить от потока электронов в цепи, спроектированной для получения однонаправленных импульсов короткой длительности. При правильном соблюдении всех условий эта газообразная эфирная энергия проявляет себя в виде напряжения, распределённого в пространстве, и которое может излучаться из электрического контура как «светоподобный луч», который способен заряжать другие поверхности, помещённые в это поле.

С этого момента я буду называть описанное явление » Электрорадиантный эффект», и хочу обобщить его характеристики:

Обобщённые свойства Электрорадиантного эффекта:

  1. Электрорадиантный эффект производится, когда высоковольтный постоянный ток разряжается в искровом промежутке и быстро прерывается, пока не возникнет какой-либо реверсивный (обратный) ток.
  2. Этот эффект значительно увеличивается, когда источником постоянного тока служит заряженный конденсатор.
  3. Электрорадиантный эффект покидает провода и другие компоненты цепи перпендикулярно к течению тока.
  4. Электрорадиантный эффект порождает пространственно распределённое напряжение, которое может превышать начальное напряжение на искровом разряднике в тысячи раз.
  5. Оно распространяется в виде продольного электростатического «светоподобного луча», который ведёт себя подобно несжимаемому газу под давлением.
  6. Электрорадиантный эффект можно полностью охарактеризовать длительностью импульса и напряжением на искровом разряднике.
  7. Электрорадиантный эффект проникает через все материалы и создаёт «электронные отклики» в металлах, например, меди и серебре. В данном случае «электронные отклики» означает, что на медных поверхностях, подвергнутых Электрорадиантной эмиссии, будет расти электрический заряд.
  8. Электроизлучающие импульсы длительностью менее 100 микросекунд абсолютно безопасны для рук и не будут вызывать шоковый удар или другой вред.
  9. Электроизлучающие импульсы длительностью менее 100 наносекунд холодны и легко создают световые эффекты в вакуумных трубках.

«Электрорадиантный эффект», по существу, является «ключевым механизмом», который, как открыл Тесла, лежит в основе его Усиливающего Передатчика. Отсюда следовало его утверждение, что он мог произвести на выходе устройства гораздо больше энергии, чем подавалось на его вход. 

10 величайших изобретений Николы Теслы, без которых невозможно представить современность — Гаджеты. Технологии. Интернет

Никола Тесла был человеком с огромным количеством идей. Судите сами: с именем учёного связано более трёхсот патентов. Он далеко опережал время, поэтому многие его теории, к большому сожалению, не нашли физического воплощения. Несмотря на то, что Тесла так и не получил признания от главного соперника, Томаса Эдисона, его неоспоримый талант принёс человечеству действительно полезные изобретения. Мы собрали некоторые из наиболее впечатляющих творений Николы Теслы.

Катушка Тесла

Самое зрелищное изобретение Николы Теслы

Катушка Тесла была изобретена в 1891 году. Она состояла из первичной и вторичной катушек, у каждой из которых был собственный конденсатор для запаса энергии. Между катушками находился искровой промежуток, в котором генерировался разряд электричества, способного преобразовываться в дуги, проходить сквозь тело и создавать область заряженных электронов.

Тесла был одержим мечтой беспроводной городской электрификации, что и послужило толчком к изобретению этого механизма. В наши дни катушка Тесла чаще всего используется для развлечения и популяризации науки — её можно увидеть в экспозициях естественно-научных музеев по всему миру. Однако важность данного изобретения заключается в том, что был найден ключ к пониманию природы электричества и возможности его использования.

 

 

Усиливающий передатчик

Башня Варденклифф — один из символов гения Теслы

Развивая идею передачи электроэнергии без применения проводов, Тесла решил, что лучше всего это делать на больших высотах. Именно поэтому, пользуясь финансовой помощью меценатов, он создал лабораторию в горах Колорадо-Спрингс в 1899 году. Там он построил свою самую большую и мощную катушку Тесла, которую назвал «усиливающим передатчиком». Он состоял из трёх катушек и составлял почти 16 метров в диаметре. Передатчик генерировал миллионы вольт электричества и создавал пучки молний длиной до 40 метров. На тот момент это была самая мощная молния, созданная искусственно.

Проблема заключалась в том, что Тесла был слишком амбициозен для своей эпохи: идея беспроводной передачи энергии начала воплощаться в жизнь лишь во втором десятилетии XXI века, да и то в качестве концептов и образцов. Несмотря на то, что проект всё ещё лежит за пределами повседневного использования, дальновидность изобретателя поражает. Усиливающий передатчик был предшественником Башни Тесла, или башни Варденклифф, которая, по замыслу своего создателя, должна была обеспечить мир бесплатным электричеством и коммуникацией. Тесла начал работу над проектом в 1901 году, но после того, как финансирование прекратилось, он свернул свои изыскания, а в 1915 году участок был выставлен на торги. Провал выбил землю из-под ног изобретателя: его постиг нервный срыв, и Никола Тесла объявил о своём банкротстве.

Турбина Николы Тесла

Эффективность и рациональность всегда присутствовали в творениях Теслы

В начале XX века, на заре эры поршневых двигателей внутреннего сгорания, Тесла создал свою турбину, которая могла конкурировать с двигателем внутреннего сгорания (ДСВ). В турбине отсутствовали лопасти, а топливо сгорало вне камеры, вращая гладкие диски. Именно их вращение и давало работу двигателю.

В 1900 году, когда Тесла протестировал свой двигатель, эффективность потребления топлива составила 60% (к слову, с нынешними технологиями этот показатель не превышает 42% преобразования топлива в энергию). Несмотря на безусловный успех изобретения, оно не прижилось: бизнес был ориентирован именно на поршневые ДСВ, которые и сейчас, спустя более 100 лет, остаются основной движущей силой автомобилей.

Теневая фотография

Нога гения в ботинке стала достоянием истории

В 1895 году немецкий физик Вильгельм Конрад Рентген обнаружил таинственную энергию, которую он назвал «рентгеновскими лучами». Он обнаружил, что если поместить фотоплёнку между частью тела и свинцовым экраном, то получится снимок костей. Спустя несколько лет, именно снимок руки жены учёного, на котором видно костное строение конечности и обручальное кольцо, принёс Рентгену мировую известность.

При этом есть ряд доказательств того, что ещё до открытия рентгеновских лучей, Тесла знал об их существовании: его исследования были прекращены из-за пожара в лаборатории в 1895 году, который произошёл незадолго до публикации результата опытов Рентгена. Тем не менее, открытие новых лучей вдохновило Николу Теслу на создание собственной версии рентгена с использованием вакуумных трубок. Свою технологию он назвал «теневой фотографией».

Тесла считается первым человеком в США, сделавшим рентгеновский снимок собственного тела: «в кадре» оказались его ноги в ботинках. Этот снимок вместе с восторженным письмом, в котором Никола Тесла поздравлял своего коллегу с великим открытием, был отправлен Рентгену. Тот, в свою очередь, похвалил американского учёного за чёткость и хорошее качество его теневой фотографии. Эта особенность улучшенного метода внесла значительный вклад в развитие современных рентгеновских аппаратов, и её так и не удалось превзойти.

Радио

Тесла опередил Маркони, но всё же не стал отцом радио

Личность изобретателя радио по сей день является предметом ожесточённых споров. В 1895 году Тесла был готов передать радиосигнал на расстояние 50 км, но, как мы уже знаем, его лаборатория сгорела, что затормозило исследования в данной области. В то же время в Англии итальянец Гульельмо Маркони разработал и запатентовал технологию беспроволочной телеграфии в 1896 году. В системе Маркони использовались два контура, что снизило покрывающую площадь радиопередачи, а наработки Тесла могли значительно увеличить выходную мощность сигнала.

Никола Тесла представил своё изобретение перед Патентным бюро США в 1897 году и получил патент в 1900 году. В это же время Маркони попытался получить патент в США, но его изобретение было отвергнуто, так как оно слишком сильно походило на уже запатентованную технологию, принадлежащую Тесле. Испугавшись, Маркони открыл собственную компанию, находящуюся под серьёзной защитой Эндрю Карнеги и Томаса Эдисона.

В 1901 году, используя ряд патентов, принадлежащих Тесле, Маркони смог передавать радиоволны через Атлантику. В 1904 году, не имея внятного обоснования, Патентное бюро отменило своё решение и признало патент Маркони действительным, что и сделало его формальным изобретателем радио. В 1911 году итальянец получил Нобелевскую премию, а спустя 4 года, в 1915, Тесла подал в суд на компанию, принадлежащую Маркони, за незаконное использование чужой интеллектуальной собственности. К сожалению, на тот момент Никола Тесла был слишком беден, чтобы судиться с крупной корпорацией. Судебные тяжбы прекратились лишь в 1943 году, через несколько месяцев после смерти изобретателя. Тогда комиссия постановила законность его требований и оставила в силе патент Теслы.

Неоновые лампы

Ко всему прочему, Тесла изобрёл неоновые вывески

Несмотря на то, что флуоресцентный или неоновый свет не был открыт Николой Теслой, он внёс весомый вклад в улучшение технологии их получения: никто до сих пор не придумал альтернативы его катодному излучению, получаемому с помощью электродов, помещённых в вакуумные трубки.

Тесла увидел потенциал экспериментов с газовой средой, через которую проходили электрические частицы, а также разработал четыре различных типа освещения. Например, он конвертировал так называемый чёрный цвет в видимый спектр с помощью фосфоресцирующих веществ, созданных им же.Кроме того, Тесла нашёл практическое применение таким технологиям, как неоновые лампы и рекламные вывески.

На Всемирной выставке в Чикаго (также именуемой Колумбийской Экспозицией) в 1893 году, Тесла оборудовал своё выставочное место неоновыми вывесками, которые мгновенно произвели впечатление на посетителей. Идея настолько понравилась людям, что неоновые огни с тех пор стали символом мегаполисов по всему миру.

Трансформаторная подстанция гидроэлектростанции Адамса

Тесла построил первую подстанцию плотины, обуздавшей силу водопада

Комиссия по Ниагарскому водопаду находилась в поиске компании, которая в силах построить ГЭС, способную обуздать мощь водных ресурсов на долгие годы. Сначала фоворитом была фирма Томаса Эдисона, однако после того, как Тесла продемонстрировал эффективность переменного тока перед представителями компании «Уэстингхаус Электрик», выбор пал на него в 1983 году. Инженеры «Уэстингхаус» использовали наработки Николы Тесла, но большим препятствием было получение финансирования столь инновационного проекта, в жизнеспособности которого сомневались многие.

Тем не менее, 16 ноября 1896 года в машинном зале ГЭС Адамса был торжественно повернут рубильник, а станция начала обеспечивать электричеством город Буффало в штате Нью-Йорк. Позже были построены ещё десять генераторов, работающих для электрификации Нью-Йорка. Для того времени проект был поистине революционным и поставил планку для всех современных электростанций.

Асинхронный двигатель

Ещё одно изобретение Тесла, которое всё ещё используется в каждом доме

Асинхронный двигатель состоит из двух частей — статора и ротора и в работе используется переменный ток. Статор остаётся неподвижным, с помощью магнитов вращая ротор, находящийся в середине конструкции. Такой тип двигателя отличается долговечностью, простотой в использовании и сравнительно низкой стоимостью.

В 80-х годах XIX века над созданием асинхронного двигателя трудились два изобретателя: Никола Тесла и Галилео Феррари. Оба они представили свои наработки в 1888 году, однако Феррари опередил своего соперника на два месяца. При этом их исследования были независимы, а результаты идентичны, к тому же оба изобретателя использовали патенты Теслы. Асинхронный двигатель стал невероятно популярным и используется до сих пор в пылесосах, фенах и электроинструментах.

Телеавтомат

Так выглядел предок современных дронов

В 1898 году, на выставке электротехники в Мэдисон-Сквер-Гарден, Тесла продемонстрировал своё изобретение, которое он назвал «телеавтоматом». По сути, это была первая в мире радиоуправляемая модель судна. У изобретения не было патента, так как представители Патентного бюро не желали признавать существование того, что (по их мнению) не могло существовать. Никола Тесла показал несостоятельность их сомнений, продемонстрировав своё изобретение на выставке. Он дистанционно управлял рулевым винтом модели и освещением корпуса с помощью радиоволн.

Это изобретение стало первой ступенью в трёх совершенно разных сферах. Во-первых, Тесла разработал пульт дистанционного управления, который сейчас применяется в быту — от домашних телевизоров до гаражных ворот. Во-вторых, модель была первым роботом, который двигался без прямого воздействия человека. И наконец, в-третьих, сочетание робототехники и дистанционного управления позволяют назвать катер Николы Тесла прадедушкой современных дронов.

Изобретение переменного тока

Без этого изобретения Теслы современный мир выглядел бы иначе

Не подлежит сомнению тот факт, что наиболее важные изобретения Николы Теслы связаны с переменным током. Хоть изобретатель и не является пионером в этой области, его изыскания позволили провести электрификацию на мировом уровне.

Говоря о том, как переменный ток завоевал мир, нельзя не упомянуть имя Томаса Эдисона. На заре своей деятельности, Тесла трудился в компании своего будущего соперника. Именно фирма Эдисона первой стала работать с постоянным током. Переменный ток схож по характеристикам с батареями, так как посылает энергию на носители вне контура. Проблема в том, что сила тока постепенно ослабевает, а это делает невозможным перемещение электричества на большие расстояния. Эту задачу решил Тесла, работая с переменным током, который позволяет перемещать электричество от источника и обратно, а также покрывать огромные расстояния между объектами.

Томас Эдисон осуждал Николу Теслу за его исследования в области переменного тока, считая их бессмысленными и бесперспективными. Именно эта критика послужила поводом для того, чтобы пути двух изобретателей разошлись навсегда. Пока Тесла был безработным и перебивался на случайных заработках, он не мог собрать средства для создания собственной компании. Прошлые успехи привлекли к его работам внимание Джорджа Уэстингхауса, инженера и бизнесмена. Он выкупил все патенты Николы Теслы, связанные с переменным током.

Поворотным моментом в истории электричества можно назвать тендер на установку освещения Всемирной выставки в Чикаго в 1983 году, в котором участвовали фирмы Эдисона и Уэстингхауса. Первый предложил электрифицировать экспозицию за 554 тысячи долларов, а второй обещал сделать это за 399 тысяч долларов, что и дало ему победу и контракт, а затем и успешное воплощение обещанного в жизнь, тем самым обеспечив переменному току светлое будущее. И снова благодаря великому гению Николы Теслы.

Все эти изобретения ещё раз доказывают, что, в первую очередь, Тесла был мечтателем, который не боялся сойти с протоптанной тропы классической науки и мыслить шире установленных в то время рамок. Кто знает, в каком бы веке мы сейчас жили, не будь Тесла одержимым новыми идеями практиком?

 

Источник

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

10 июля 1856 в городе Смиляне (Австрийская империя, ныне Хорватия) на свет появился Никола Тесла — учёный-изобретатель, который во многом создал мир как мы его знаем.

Никола Тесла был человеком тысячи идей — он получил более 300 патентов!

Он далеко опережал своё время, поэтому многие его теории, к большому сожалению, не нашли физического воплощения. Несмотря на то, что Тесла так и не получил признания от главного соперника, Томаса Эдисона, его неоспоримый талант принёс человечеству действительно полезные изобретения.

Вот величайшие изобретения Николы Теслы:

1. Катушка Теслы

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

Катушка Теслы (она же — трансформатор Теслы) была изобретена в 1891 году. Она состояла из первичной и вторичной катушек, у каждой из которых был собственный конденсатор для запаса энергии. Между катушками находился искровой промежуток, в котором генерировался разряд электричества, способного преобразовываться в дуги, проходить сквозь тело и создавать область заряженных электронов.

Тесла был одержим мечтой беспроводной городской электрификации, что и послужило толчком к изобретению этого механизма. В наши дни катушка Теслы чаще всего используется для развлечения и популяризации науки — её можно увидеть в экспозициях естественно-научных музеев по всему миру. Однако важность данного изобретения заключается в том, что был найден ключ к пониманию природы электричества и возможности его использования.

2. Усиливающий передатчик

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

Развивая идею беспроводной передачи электроэнергии, Тесла решил, что лучше всего это делать на больших высотах. Именно поэтому, пользуясь финансовой помощью меценатов, он создал лабораторию в горах Колорадо-Спрингс в 1899 году. Там он построил свою самую большую и мощную катушку Теслы, которую назвал «усиливающим передатчиком».

Передатчик состоял из трёх катушек и составлял почти 16 метров в диаметре. Он генерировал миллионы вольт электричества и создавал пучки молний длиной до 40 метров. На тот момент это была самая мощная молния, созданная искусственно.

Усиливающий передатчик был прообразом башни Теслы, или башни Ворденклиф, которая, по замыслу своего создателя, должна была обеспечить мир бесплатным электричеством и коммуникацией. Тесла начал работу над проектом в 1901 году, но после того, как финансирование прекратилось, он свернул свои изыскания, а в 1915 году участок был выставлен на торги.

3. Турбина Тесла

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

В начале XX века, на заре эры поршневых двигателей внутреннего сгорания, Тесла создал свою турбину, которая могла конкурировать с двигателем внутреннего сгорания (ДСВ). В турбине отсутствовали лопасти, а топливо сгорало вне камеры, вращая гладкие диски. Именно их вращение и давало работу двигателю.

В 1900 году, когда Тесла протестировал свой двигатель, эффективность потребления топлива составила 60% (к слову, с нынешними технологиями этот показатель не превышает 42% преобразования топлива в энергию). Несмотря на безусловный успех изобретения, оно не прижилось: бизнес был ориентирован именно на поршневые ДСВ, которые и сейчас, спустя более 100 лет, остаются основной движущей силой автомобилей.

4. Теневая фотография

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

В 1895 году немецкий физик Вильгельм Конрад Рентген обнаружил таинственную энергию, которую он назвал «икс-лучами». Он обнаружил, что если поместить фотоплёнку между частью тела и свинцовым экраном, то получится снимок костей. Спустя несколько лет снимок руки жены учёного, на котором видно костное строение конечности и обручальное кольцо, принёс Рентгену мировую известность.

При этом есть ряд доказательств того, что ещё до открытия рентгеновских лучей, Тесла знал об их существовании: его исследования были прекращены из-за пожара в лаборатории в 1895 году, который произошёл незадолго до публикации результата опытов Рентгена. Тем не менее открытие новых лучей вдохновило Николу Теслу на создание собственной версии рентгена с использованием вакуумных трубок. Свою технологию он назвал «теневой фотографией».

Тесла считается первым человеком в США, сделавшим рентгеновский снимок собственного тела: он заснял свою ногу в ботинке.

5. Радио

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

Личность изобретателя радио по сей день является предметом ожесточённых споров. В 1895 году Тесла был готов передать радиосигнал на расстояние 50 км, но, как мы уже знаем, его лаборатория сгорела, что затормозило исследования в этой области.

В то же время в Англии итальянец Гульельмо Маркони разработал и запатентовал технологию беспроводной телеграфии в 1896 году. В системе Маркони использовались два контура, что снизило покрывающую площадь радиопередачи, а наработки Тесла могли значительно увеличить выходную мощность сигнала.

Никола Тесла представил своё изобретение перед Патентным бюро США в 1897 году и получил патент в 1900 году. В это же время Маркони попытался получить патент в США, но его изобретение было отвергнуто, так как оно слишком сильно походило на уже запатентованную технологию, принадлежащую Тесле. Испугавшись, Маркони открыл собственную компанию, находящуюся под серьёзной защитой Эндрю Карнеги и Томаса Эдисона.

В 1901 году, используя ряд патентов, принадлежащих Тесле, Маркони смог передавать радиоволны через Атлантику. В 1904 году, не имея внятного обоснования, Патентное бюро отменило своё решение и признало патент Маркони действительным, что и сделало его формальным изобретателем радио.

6. Неоновые лампы

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

Хотя неоновый свет был открыт не Николой Теслой, он внёс весомый вклад в улучшение технологии его получения: никто до сих пор не придумал альтернативы его катодному излучению, получаемому с помощью электродов, помещённых в вакуумные трубки.

Тесла увидел потенциал экспериментов с газовой средой, через которую проходили электрические частицы, а также разработал четыре различных типа освещения. Например, он конвертировал так называемый чёрный цвет в видимый спектр с помощью фосфоресцирующих веществ, созданных им же. Кроме того, Тесла нашёл практическое применение таким технологиям, как неоновые лампы и рекламные вывески.

7. Ниагарская ГЭС

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

Комиссия по Ниагарскому водопаду искала компанию, которая могла бы построить ГЭС, способную обуздать мощь водных ресурсов на долгие годы. Сначала фаворитом была фирма Томаса Эдисона, однако в 1893 году, после того, как Тесла продемонстрировал эффективность переменного тока перед представителями компании Westinghouse Electric, выбор пал на него.

16 ноября 1896 года в машинном зале ГЭС имени Адамса был торжественно повёрнут рубильник, а станция начала обеспечивать электричеством город Буффало, штат Нью-Йорк. Позже были построены ещё десять генераторов, работающих для электрификации Нью-Йорка.

8. Асинхронная машина

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

Асинхронная машина состоит из двух частей — статора и ротора, в работе которых используется переменный ток. Статор остаётся неподвижным, с помощью магнитов вращая ротор, находящийся в середине конструкции. Такой тип двигателя отличается долговечностью, простотой в использовании и сравнительно низкой стоимостью.

В 1880-х годах над созданием асинхронного двигателя трудились два изобретателя: Никола Тесла и Галилео Феррарис. Оба они представили свои наработки в 1888 году, однако Феррари опередил своего соперника на два месяца. При этом их исследования были независимы, а результаты идентичны, к тому же оба изобретателя использовали патенты Теслы.

Асинхронный двигатель до сих пор применяется в пылесосах, фенах и электроинструментах.

9. Телеавтомат

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

В 1898 году Тесла продемонстрировал изобретение, которое он назвал «телеавтоматом». По сути, это была первая в мире радиоуправляемая модель судна. У изобретения не было патента, так как представители Патентного бюро не желали признавать существование того, что (по их мнению) не могло существовать.

Никола Тесла показал несостоятельность их сомнений, продемонстрировав своё изобретение на выставке. Он дистанционно управлял рулевым винтом модели и освещением корпуса с помощью радиоволн.

Это изобретение стало первой ступенью в трёх совершенно разных сферах. Во-первых, Тесла разработал пульт дистанционного управления, который сейчас применяется в быту — от домашних телевизоров до гаражных ворот. Во-вторых, модель была первым роботом, который двигался без прямого воздействия человека. И наконец, в-третьих, сочетание робототехники и дистанционного управления позволяют назвать катер Николы Тесла прадедушкой современных дронов.

10. Переменный ток

10 июля родился Никола Тесла. Вот 10 его самых знаменитых изобретений (11 фото)

Говоря о том, как переменный ток завоевал мир, нельзя не упомянуть имя Томаса Эдисона. На заре своей деятельности Тесла трудился в компании своего будущего соперника. Именно фирма Эдисона первой стала работать с постоянным током.

Переменный ток схож по характеристикам с батареями, так как посылает энергию на носители вне контура. Проблема в том, что сила тока постепенно ослабевает, а это делает невозможным перемещение электричества на большие расстояния. Эту задачу решил Тесла, работая с переменным током, который позволяет перемещать электричество от источника и обратно, а также покрывать огромные расстояния между объектами.

Томас Эдисон осуждал Николу Теслу за его исследования в области переменного тока, считая их бессмысленными и бесперспективными. Именно эта критика послужила поводом для того, чтобы пути двух изобретателей разошлись навсегда.

А что вы знали о Николе Тесле?

Секреты свободной энергии холодного электричества. Глава 4/1. Расшифровывая патенты Грея. — Мифы и легенды

Глава 4. Расшифровывая патенты Грея.

В предыдущих главах я потратил столько времени, разъясняя нюансы работы Усиливающего Передатчика Теслы потому, что он непосредственно связан с контуром холодного электричества Эдвина Грея. Для лучшего понимания того, как он действует, на рисунке показаны слева — «схема» Грея, как она представлена в Патенте № 4595975, а справа — то, что я называю «Упрощённой «схемой» цепи Грея».

(Я поместил слово «схема» в кавычки, потому что, на самом деле, это не совсем рисунок схемы). Чтобы лучше понять эту схему в её наиболее общем виде, я временно исключил из неё некоторые компоненты, которые обеспечивают функции, не связанные непосредственно с её главной задачей, а именно следующие:

  • Компоненты №№ 64 и 66 (внутри пунктирной линии), показывающие альтернативный путь подачи энергии в цепь от источника переменного тока. Эти части могут быть исключены без существенного влияния на схему цепи, которая может работать и от аккумуляторной батареи.
  • Компоненты №№ 42, 44 и 46, играющие роль защиты от перегрузки, могут быть исключены потому что, как говорилось в тексте патента, приведённого в первой главе, они включены только для защиты цепи, на случай, если она будет производить слишком много энергии.
  • Компонент № 26, который Грей назвал «коммутатором», является частью задатчика времени. Однако только вакуумный триод № 28 важен для подачи импульсов, управляющих разрядом конденсатора, а потому устройство № 26 может быть исключено.

• Компонент № 48 — это переключающий механизм, который позволяет оператору выбирать, какая батарея будет разряжаться, а какая — заряжаться в цепи. Его можно исключить, если принять, что батарея 18 будет питать цепь, а батарея 40 при этом заряжается.

При исключении этих компонентов мы приходим к «Упрощённой «схеме» цепи Грея», приведённой на диаграмме справа.

Усиливающий Передатчик Теслы
рядом с Цепью холодного электричества Грея.

Я назвал эту иллюстрацию «Сходные черты Усиливающего Передатчика Теслы и Контура холодного электричества Грея». Сравнение выявляет много похожих элементов, наиболее важными из которых являются следующие:

  • Они оба работают от источника постоянного тока высокого напряжения. В случае Тесла, это высоковольтный генератор постоянного тока, источник «В». В случае Грея, это батарея № 18, выход которой прерывается мультивибратором № 20. Низковольтные импульсы от мультивибратора подаются на первичную обмотку трансформатора № 22. Вторичная высоковольтная обмотка трансформатора присоединена к выпрямительному мосту № 24. На выходе моста №24 появляется высокое напряжение постоянного тока. Другими словами, оба контура питаются постоянным током высокого напряжения.
  • Следующий общий компонент в обеих цепях — конденсатор. В схеме Теслы он обозначен «С», в цепи Грея — № 16. Обе цепи функционируют при повторяющемся заряде конденсатора от высоковольтного источника постоянного тока.
  • Ещё один общий компонент — это искровой разрядник. На схеме Теслы он представлен как «d-d», на схеме Грея он обозначен № 62. Для надлежащей работы обеих схем разрядник должен иметь два свойства: во-первых, должны присутствовать средства, гарантирующие, что искра пойдёт только в одном направлении, и, во-вторых, должны иметься средства контроля длительности искры. В случае цепи Теслы мы имеем непрерывное давление от высоковольтного генератора для обеспечения однонаправленного разряда конденсатора, и магнитное поле поперёк искрового промежутка для разрыва тока так быстро, как только он возникает. Длительность искры определяется как силой магнитного поля, так и ёмкостью конденсатора. В случае цепи Грея мы знаем, что он использовал очень большие конденсаторы, так что он определённо не мог разрядить конденсатор за один цикл. В его цепи было два особых функциональных элемента: резистор № 30, ограничивающий ток разряда, и электронная лампа № 28, которая не только гасила разряд любой желаемой длительности, но также обеспечивала защиту от обратных токов в этой части цепи. Так что опять видно, что в обеих схемах присутствуют все необходимые устройства.
  • Далее, в обеих цепях имелось то, что я называю «Предпочтительным местом возникновения Электрорадиантного Эффекта». В случае Теслы, это, как он называл «два витка толстого провода» («А»), которые являются первичной обмоткой его воздушного трансформатора. Но, как мы узнали от господина Вассилатоса, это не был трансформатор магнитно-индуктивного типа. Магнитная связь между первичной и вторичной обмотками была очень слабой. Фактически, в основе этого устройства лежат принципы, которые Тесла называл своими новыми «законами электростатической индукции». В случае же Грея, предпочтительным местом возникновения Электрорадиантного эффекта служит его «конверсионная элементная переключающая трубка» № 14. Этот компонент является чисто электростатическим прибором, как мы выяснили ранее. Он специально сконструирован для обеспечения взрывного электростатического эффекта, излучающегося во все стороны от центрального стержня, причём перпендикулярно последнему.
  • Следующим общим элементом является «Предпочтительный способ для перехвата Электрорадиантного эффекта». У Теслы это вторичная обмотка его трансформатора «F»; это коническая или спиральная катушка, которую упоминал Вассилатос, и которую мы видели в патентах Теслы. В случае Грея, это зарядоприёмные сетки № 34, которые собирают излучающееся напряжение. Важно отметить, что в обеих цепях нет прямых соединений между источником энергии и «приёмным элементом». Только на этих выходных компонентах появляется наведённый электрорадиантный заряд.
  • Следующий элемент — это «Предпочтительный путь выхода энергии». В случае Теслы, выходом являются заземление (Е’) и «поднятая уединённая ёмкость» (Е), которые образуют его Мировую Беспроводную Систему передачи энергии. В случае Грея выходные разряды с «зарядоприёмных сеток» направляются на индуктивную нагрузку № 36. Этот элемент может представлять из себя подпрыгивающие магниты или выход трансформатора, питающего его цепь холодного электричества, или отталкивающиеся магниты в его двигателе. И опять, в каждой цепи предусмотрены свои предпочтительные пути перехвата Электрорадиантного эффекта, и предпочтительные пути соединения его с нагрузкой.
  • И, наконец, Грей мог превращать некоторое количество избыточной энергии обратно в обычное электричество, и возвращать достаточное её количество для подзаряда батареи, как мы видели выше. Тесла не работал с этим процессом подзарядки, так как его система была спроектирована для использования в качестве источника энергии гидроэлектростанции.
  • (Хотя Линдеманн должен был знать о коробочке на автомобиле Тесла выпуска 1931 года -DED:).

Таким образом, из сравнения Усиливающего Передатчика Теслы и Контура холодного электричества Грея ясно, что по своим целям и назначению это были одни и те же цепи. Они работают одинаково, обладают одинаковым набором элементов, хоть и функционируют немного по-разному, оба они имеют своей целью получение большого выхода холодной формы «электростатической» энергии. Система Теслы, очевидно, была гораздо больше по размерам, так как он планировал с её помощью снабжать энергией весь мир. Грей же всего лишь хотел снабжать энергией ваш дом или вашу машину. Но по цели и назначению эти системы выполняют одинаковые функции и задействуют один и тот же «Электрорадиантный» механизм усиления.

Цепь Грея из патента №4 595 975

На рисунке опять представлена «схема» цепи Грея из его патента «Эффективный источник энергии, пригодный для индуктивных нагрузок». После изучения этой диаграммы в течение длительного времени, я выяснил, что в ней имеются несколько неясных мест. Во-первых, давайте взглянем на компонент № 42. Если верить тому, что нарисовано (напомню, что это устройство защиты от перенапряжения), то он оказывается полностью закороченным. Если бы здесь действительно имелось электрическое соединение, то оно образовывало бы короткое замыкание и не позволяло бы заряжаться конденсатору № 16. Очевидно, что с этой частью чертежа имеются некоторые проблемы.

А теперь взглянем на компоненты №№ 26 и 28, которые описаны в тексте патента следующим образом: «Контроль над конверсионной переключающей элементной трубкой осуществляется коммутатором 26. Он представляет собой набор контактов, размещённых радиально на оси устройства, или в качестве контрольного элемента может быть использован твердотельный переключатель чувствительный ко времени, или же другая разновидность подобного устройства. Переключающая элементная лампа 28, обеспечивающая однонаправленный путь для энергии, установлена между коммутирующим устройством и конверсионной переключающей элементной трубкой для предотвращения возникновения высоковольтной дуги при прерывании тока в коммутаторе».

Если бы коммутатор, № 26, был твердотельным устройством, то никакой «дуги» предотвращать бы не пришлось. То есть, назначение элемента № 28, описанное в тексте, является вводом в заблуждение. Тем не менее, компонент № 28 описан как «путь для энергии в одну сторону». Грей особо указал, что энергия в данной секции цепи должна двигаться только в одном направлении. Очень важно добиться такого состояния, так как оно находится в строгом соответствии с параметрами, которые Тесла описал как необходимые для возникновения «Электрорадиантного эффекта». Есть ещё один подозрительный пробел, который заключается в соединении компонента № 28. Контрольная сетка в этом триоде ни к чему не присоединена, а ведь она, разумеется, должна была контролировать длительность искрового разряда. В тексте патента нет упоминаний о работе компонента № 28, и о том, как управляется сетка. Понимание того, что компонент № 28 не имеет средств контроля, было для меня важным открытием.

Следующая проблема, с которой я столкнулся, была индуктивная нагрузка, компонент № 36. Во-первых, элемент № 36 описан как индуктор, но на изображении не было символа катушки, как у компонентов №№ 22 и 66. Во-вторых, около этого компонента были нарисованы две странные стрелки. В тексте патента указывалось, что это могли быть две катушки, которые отталкивают друг друга для производства механической работы. Учитывая это, стрелки могли представлять из себя два сердечника, расположенные друг напротив друга под небольшим углом. Из текста патента это непонятно. В-третьих, мы не видим пути протекания тока через этот компонент, так что не можем сказать, где проходит разрядный ток. И, наконец, в-четвёртых, цепь подключена ко второму конденсатору № 38. В тексте патента этот компонент описан как часть механизма перезарядки батареи. Тем не менее, ни один из этих компонентов не имеет смысла. Например, если импульсы приходят от индуктора № 36 и начинают заряжать конденсатор № 38, то в цепи нет ни единого соединения, которое позволяло бы ему разрядиться. Исходя из этих пробелов, я пришёл к точке зрения, что эта секция схемы является более блок-схемой, чем настоящей принципиальной схемой.

Я пришёл к выводу, что всё, что здесь действительно ясно, так это то, что зарядоприёмные сетки находятся в соединении с индуктивной нагрузкой, которая, в свою очередь, связана с приёмным конденсатором, который каким-то образом заряжает батарею. Отсюда следует, что эта секция блок-схемы всего лишь показывает, что эти компоненты находятся в связи друг с другом, но не указывает на то, как они соединены на самом деле.

В нашем движении к более полному пониманию того, как на самом деле должна была выглядеть схема цепи Грея, мы должны направить теперь наше внимание на его «конверсионную элементную переключающую трубку» 

Схема конверсионной трубки Грея

Она, в конечном счёте, является сердцем устройства, компонентом, о котором Грей всегда говорил как о «сверхсекретном средстве получения и смешения статического электричества». Это тот самый элемент, в котором производится и собирается свободная энергия.

Конверсионная элементная переключающая трубка на самом деле представляет три компонента в одном корпусе. Она состоит из резистора № 30, искрового разрядника (пространства между №№ 32 и 12), и пространства, окружённого зарядоприёмными сетками (№№ 34а и 34b). Хотя это и не указано в тексте патента, мы знаем, что искра в разряднике имеет напряжение около 3000В, основываясь на словах Грея в статьях первой главы книги. Длинная часть того, что Грей называет «высоковольтным анодом» (№ 12), является поверхностью, с которой излучается Электрорадиантный эффект. Эта вспышка свободной энергии излучается с компонента № 12 перпендикулярно направлению тока, двигающегося вниз по искровому разряду. По рисунку видно, что этот компонент обладает относительно большой толщиной. Это совсем не проволочка. Но каковы его характеристики? В патенте это не описано. Мы можем предположить, что он изготовлен из чистого металла без покрытия изоляцией. Возможно, он имеет зеркальную поверхность и сделан из нержавеющей стали или другого немагнитного материала. Здесь необходимо исследовать большое количество различных вариантов, но, вероятно, важным фактором является диаметр элемента, а также то, сплошной он или полый. Эти вопросы ещё дожидаются своего исследователя, и на сегодняшний день остаются неясными.

Концентрические приёмные сетки (№№ 34a и 34b) вокруг элемента № 12 предназначены для перехвата электрорадиантного эффекта. Как указано выше, в патенте говорится: «Этот элемент состоит из низковольтного анода, высоковольтного анода и одной или большего количества электростатических, или зарядоприёмных сеток». На этом рисунке определённо показаны две зарядоприёмные сетки. В той части патента Грея, которая касается этого компонента, сказано:

«Форма и расположение электростатических сеток также зависит от требований к устройству, то есть напряжения, тока и мощности. Изобретатель утверждает, что при разумном сопряжении элементов конверсионной элементной переключающей трубки и при правильном подборе компонентов, входящих в систему, могут быть получены требуемые теоретические результаты. По убеждению изобретателя, процессы этого сопряжения и подбора возможны при интенсивном использовании исследованных технологий «.

Я уверен, что у него был повод заявить, что: «Это всё, что я вам скажу, но вы сможете выяснить всё сами, если будете понимать, что делаете». Затем он говорит:

«Предпочтительное воплощение этого изобретения подразумевает не более чем оптимальное использование и получение оптимальной отдачи от этих портативных энергетических установок, сходных по принципу с аккумуляторами или сухими батареями. Это изобретение предполагает использование энергии, заключённой в генерируемом высоковольтном разряде, для обеспечения энергией индуктивной нагрузки, которая затем может быть преобразована в энергию для производства полезной электрической или механической работы».

Здесь мы видим чёткое утверждение, данное Греем, что конверсионная элементная переключающая трубка является источником полезной работы. Фактически, этот компонент был источником энергии для его эксперимента с прыгающими магнитами; он также питал телевизоры, радио, лампочки; и этот же компонент давал энергию для его мотора. Это тот самый элемент, в котором энергия усиливалась и преобразовывалась в «холодное электричество». И с этого момента я буду называть этот элемент «Электрорадиантным Приёмопередатчиком», потому что он как производит, так и принимает «Электрорадиантный эффект».

Даже поняв всё вышесказанное, всё равно остаётся ещё достаточное количество загадок, которые необходимо разгадать. Например, ни на чертежах, ни в тексте патента нет упоминаний, находится ли в трубке вакуум, или же она наполнена воздухом или другим газом. Из слов Грея, опубликованных в статье в NewsReal ясно, что он догадался, как получить этот эффект, при изучении молний. В статье также говорится о том, что он заметил, будто молния тем сильнее, чем ближе она подходит к земле, и он сделал вывод, что это как-то соотносится с «большим количеством воздуха». Так что, возможно, внутри трубки не было вакуума. Хотя мы знаем, что «холодное электричество» не введёт вас в шок, а разряд конденсатора может, так что корпус вокруг компонента № 50 мог быть введён из соображений безопасности. Из этих соображений следует: 1) № 50 должен был содержать механические приспособления для удержания компонентов вместе, и 2) внутри него мог быть воздух.

Мы также не знаем истинных размеров этого устройства, и мы не знаем физических размеров зарядоприёмных сеток, включая их длину и диаметр. Так оно и было до тех пор, пока мы не изучили фотографическое доказательство Тома Валентайна.

Грей на встрече с акционерами демонстрирует 6-ой прототип своего мотора, 

Эд Грей изображён на встрече со своими акционерами. На увеличенной фотографии с задней обложки можно чётко увидеть его «волшебный компонент». Из этой фотографии можно получить много информации об этом устройстве; в частности, размеры конверсионной элементной переключающей трубки, которую я сейчас называю Электрорадиантным Приёмопередатчиком. Ясно виден ряд из трёх конверсионных трубок, каждая из которых питается разрядом от своего конденсатора. Можно разглядеть три очень больших конденсатора. Я отсканировал эту фотографию, и когда посмотрел на маркировку конденсаторов под максимальным увеличением, то увидел надписи «2 микроФарада» и «4000 Вольт постоянного тока».

Так что, несмотря на то, что в патенте Грея на двигатель указана батарея из восемнадцати поочерёдно заряжающихся и разряжающихся конденсаторов, питающих его мотор, на самом деле он использовал другое их количество. Выдержка из патента на цепь и эта фотография чётко показывают, что обмотки мотора получали энергию с выходов конверсионных трубок, а не напрямую от разрядов конденсаторов. Фотография показывает только один провод, идущий от каждой трубки к коммутатору, и только один провод, идущий обратно. Более вероятно, что Грей разряжал зарядоприёмные сетки на землю через магнитные катушки (не сток ли это?). На увеличенной фотографии хорошо видны две зарядоприёмные сетки внутри трубки, на расстоянии примерно шести миллиметров друг от друга.

До сих пор неясно, как они в точности соединены между собой. В патенте указано, что каждая сетка присоединена к разъёму № 60, от которого имеется один выход к индуктору.

Продолжение…

Ламповая катушка Теслы / Хабр

Хомяки приветствуют вас, друзья.

Сегодняшний пост будет посвящен высокому напряжению. Ламповый трансформатор Тесла является самой тихой конструкцией из всех существующих вариантов. Тут, в качестве генератора высокочастотных колебаний используется мощный пентод ГК-71, благодаря которому можно получать красивые, достаточно длинные разряды в воздухе. В ходе данной работы рассмотрим основные элементы конструкции, узнаем секреты по настройки схемы и визуализируем сигнал с высоковольтной обмотки на экран советского осциллографа. Дальнейшая работа будет заключаться в компактном размещении всех элементов в одном корпусе. В общем всё как вы любите. Простота, надежность и небольшая стоимость делает данную катушку доступной каждому, кто захочет её собрать.

Прелесть ламповой катушки Тесла заключается в том, что одну часть деталей для неё можно достать из обычной микроволновки, а вторую из ближайшего магазина электрики. С пентодом может возникнуть проблема, вещь старая и давно не выпускается, но тот кто ищет — тот всегда найдет. В дальнейшем вы поймете, что его можно заменить на любую другую лампу похожей конструкции.

ГК-71 выбран из-за эстетической красоты и небольшой стоимости. Кто не обратил внимания, анод в этой вакуумированной пробирке полностью состоит из графита, хорошая реализация для рассеивания больших мощностей, по паспортным данным эта цифра составляет 250 Вт. Номинальное анодное напряжение составляет 1.5 киловольта. Максимальная частота 20 МГц.

Данный экземпляр был выпущен в 1981 году. Достался новым прямо из коробки. Непрерывное время работы по документам, составляет 1000 часов. Это примерно 42 дня. В год, на постоянно работающем устройстве, необходимо сменить 8 таких товарищей. По некоторым подсчётам, выпущенных в свое время Ламп ГК-71 хватит еще минимум лет на 200.

Накал — это та часть которая вдыхает жизнь в любую радиолампу. Напряжение для пентода ГК-71 составляет 20 вольт, но ток при этом должен быть не меньше 3.5 ампер.В общем накал жрет 70 Вт. На рынке за символическую сумму был приобретен отечественный трансформатор ТН54-220-50. При правильном подключении обмоток с него можно получить 85 Вт без каких-либо финансовых затрат.

Следующий элемент — это высоковольтный трансформатор от микроволновки, буржуи называют его МОТ. Напряжение на его выходе составляет 2 киловольта, ток порядка 1 ампера. Довольно мощная и опасная вещь, может отправить вас на встречу к создателю, потому не стоит увлекаться.

Дальше идёт краткий перечень элементов, необходимых для сборки конструкции:
2 масляных конденсатора от той же микроволновки, напряжение 2.1 кВ, емкость 0.95 мкФ. Диодная сборка HYR-1x, её максимально допустимое напряжение 12 кВ, ток 500 мА, по паспорту способен выдержать импульсный ток до 30 ампер. Настоящий зверь в своем роде. Резисторы типа ПЭВ-на 10-20 Вт, можно использовать любые другие аналоги буржуйского производства.

Резонансный высокочастотный конденсатор типа КВИ-3, напряжение может варьироваться от 5 до 20 кВ, для настройки было закуплено несколько таких товарищей с разным номиналом ёмкости на борту. Для намотки индуктора был приобретен многожильный медный провод типа ПВС, сечение 1.5 квадрата. Длина порядка 16 метров. Катушка связи имеет другой цвет и длину 10 метров. Все провода взяты по длине с запасом.

Рубильники коммутирующие силовые части, взяли с допустимым током до 15 ампер, не спрашивайте зачем так много, запас карман не жмёт.

Теперь вторичная высоковольтная обмотка, она же «резонатор». Намотка этой детали требует много времени и терпения. Тут использован медный лакированный провод толщиной 0.2 мм, мотается виток к витку на картонной основе от пищевой пленки. Диаметр трубы 55 мм. Высота намотки получилась 35 см. Витки при этом не должны пересекаться и накладываться друг на друга.

После намоточных процедур результат следует покрыть слоем диэлектрика во избежание пробоя обмотки. Эпоксид наносится в два слоя для надёжности. В результате выйдет глянцевая, переливающаяся на свету труба, которая отнимет часть вашей драгоценной жизни. Второй дубликат катушки был намотан на пластиковой канализационной трубе диаметром 50 мм. ПВХ более надежный диэлектрик, в этом скоро убедимся. Каркас для индуктора был взят из того же картона только большего диаметра, примерно 80 мм.

Для проведения дальнейших работ, необходимо как можно компактней разместить трансформаторы, конденсаторы и прочую ерунду на какой-то крепкой основе. Листы ДСП давно валяются без дела, потому следует разметить их, и пустить в ход электролобзик, работа и звуки которого благородно влияют на жизнь ваших соседей, особенно это актуально по выходным дням.

Конструкция будет двухэтажная. Снизу разместятся трансформаторы с конденсаторами, а сверху разместим Пентод и саму катушку Тесла. Долго думал как скрепить первый этаж со вторым, решил использовать деревянные чепки. Надёжность тут конечно покраснела и пошла выпивать вслед за совестью. Желе какое-то. Надеваем розовые очки и выпиливаем отверстие под радио лампу. Затем с обратной стороны делаем отверстия под провода.

Теперь про индуктор. Сейчас мы точно не знаем сколько нужно витков, мотаем 40, при настройке его всё равно придётся отматывать в меньшую сторону для поиска резонанса. Обмотка обратной связи мотается в одну сторону с индуктором. Количество витков в два раза меньше, то есть 20. Такое соотношение встречается во многих ламповых катушках Тесла.

Момент который не очень понял. В некоторых схемах обмотка связи располагается в нижней части трансформатора Тесла, где развиваются наибольшие токи, а в некоторых сверху над индуктором. Какой вариант расположения лучше мне не известно, но в данной схеме она размещается сверху.

Панельку для установки пентода нам найти не удалось, довольно редкая вещь, потому альтернатива крепления — клеммная колодка для провода с диаметром отверстий 4 мм. Зажимы в ней отлично фиксируют ножки пентода. В качестве декоративной подставки использована фанера, которая была магнитом на двери холодильника.

Теперь время подсоединить провода к накальному трансформатору, и посмотреть всё ли работает. Подаем питание и наблюдаем за показаниями амперметра. 3 ампера, как и паспорт предписывал. По мере прогрева, потребление тока незначительно падает. Камера увы не смогла передать всей красоты раскаленных ниточек внутри этого стеклянного баклажана. Здоровенное лампище… Вот же ж умели делать!

Вся схема устройства довольно простая и выглядит примерно так: переменное высокое напряжение с мота выпрямляется через диод и заряжает конденсаторы от микроволновки, соединены они последовательно для увеличения рабочего напряжения. В этом случае суммарная ёмкость выходит пол микрофарада. Колебательный контур индуктора подключён к аноду лампы через дроссель, состоящий из 10 витков. Все управляющие сетки лампы ГК71 соединены вместе, с этого момента пентод превращается в триод. Схема автогенератора начинает работать при очень малых напряжениях на входе мота. Конденсатор в 2.2 нФ на выходе накального трансформатора служит для фильтрации наводок и высокочастотных выбросов, хотя первое = второе, второе = первое, как-то так. Обращаем внимание на подключение обмоток в первичном контуре. Точка — это нижний вывод обмотки.

В принципе сборка получилась довольно компактной. Её работу запросто можно демонстрировать на уроках физики, вспоминая жизнь того чувака, благодаря которому у нас в розетках переменное напряжение.

Трансформатор Тесла требует хорошего заземления. Батарея не самое лучшее решение для этих дел, но за неимением ничего более подходящего и это сойдет. Контакт должен быть надежным, три метра провода должно хватить, чтобы дотянутся куда угодно в пределах одной комнаты.

В новых домах такой фокус может не пройти из-за металлопластиковых труб в системе отопления. Потому проверяем наличие напряжения между фазой и землей, должно быть 220 вольт. Некоторые пускают заземление через зануление, тоже годный вариант. Между нулем и землей существует потенциал в 3.7 вольта, Креосан недавно рассказывал как можно воровать электричество подобным способом, заряжать телефон и зажигать лампочки, вот только забыл упомянуть тот факт, что современные цифровые счетчики считают потребление энергии как по фазе, так и по нулю. Максимум что вы выиграете, так это визит инспектора к себе в гости.

Итак, включаем питание накальной цепи. Лампа выходит на режим достаточно быстро, секунд 5 хватает для этого дела. Второй рубильник подает питание на мот. Ни в коем случае нельзя подавать высокое напряжение на анод лампы, без включенного накала. Входное напряжения на моте, регулируется с помощью ЛАТР-а, он дает напряжение от нуля до 220 вольт. Незаменимая вещь в работе с подобными схемами. Повышаем напряжение и видим, что генератор заработал. С появлением высокочастотного электрического поля светодиодный светильник закрепленный под полкой начинает немного светится и мигать.

На кончике отвертки, что служит терминалом для выхода молний появился небольшой стример. По мере повышения напряжения размер его растет, но разряды какие-то тонкие и не внушительные. Изменим положение обмотки связи, сместим её чуть вниз. Смотрим что поменялось в работе. Постепенно повышаем напряжение… видим что разряды стали более уверенными, толще, длинней и ярче. Звук довольно внушительный, похож на глухой рёв спортивного автомобиля.

Поиск резонанса осуществлялся либо отматыванием витков, либо подбором резонансного конденсатора. Начал отматывать витки. Увеличение мощности разрядов говорит от том, что мы на правильном пути. Разряды мощней, толще, длинней, самое интересное произошло тогда, когда начал увеличивать емкость резонансного конденсатора. Разряд увеличился, и на глазах начал уменьшатся. Запахло горелой бумагой.

При детальном осмотре выявилось, что картон начал прогорать. А если появился маленький прогар, то он постепенно превращается в большой, так как углерод получившийся в результате сгорания чего-либо становится отличным проводником. В общем это гангрена, которую необходимо немедленно ампутировать. Избавляемся от проблемного участка с помощью ножовки по металлу. Пару минут, проблема решена, а рука подкачана.

Так как резонансный контур изменил свои характеристики путем уменьшения длины вторичной катушки, снова доматываем и отматываем витки первички. Мощность увеличивается. Настроение превосходное, пару секунд радости и конструкция начинает подводить. Вторичку пробивает на первичку. Слишком близко размещены обмотки друг к другу. Предположения были что такое может произойти, но не так быстро. Первый день настройки, и многочасовая работа отправляется на помойку. При желании, эту трубу можно разрезать надвое, и сделать к примеру качер Бровина на транзисторе.

Поначалу хотел изолировать вторичку с помощью пластиковой бутылки, но как показывает практика — этот колхоз ни к чему хорошему не приводит. Одеваем кроссовки и выдвигаемся в ближайший сантехнический магазин за сливной 10-сантиметровой трубой. Такой диаметр уменьшит коэффициент связи обмоток, что есть хорошо в данной конструкции. Диэлектрические способности у такого цилиндра куда лучше чем у обычного картона.

Поверх трубы намотаем слой бумаги, на нее укладываем витки индуктора и обмотки связи. Бумага позволяет спокойно передвигать обмотки по всей длине трубы. Устанавливать катушки удобно на заглушки, они родом из того же магазина сантехники и позволяют соблюдать центровку всего резонансного контура. Немного усилий и конструкция снова готова к работе. Повторяем процедуру включения. В начале подаем питание на накал, ждём пару секунд, а затем включаем анодное напряжение. Оно сейчас в нуле и регулируется лабораторным автотрансформатором. Включаем его и постепенно поднимаем напряжение.

Разряды с увеличением коэффициента связи стали больше и красивей. На этом моменте наверное стоило завершить пост, схема заработала, разряд мы увидели. Но по традициям на этом, всё только начинается.

Для окончательной и более правильной работы, автогенератор необходимо настроить на осциллографе. Настраивать систему будем по максимальной амплитуде сигнала. Щуп осциллографа подключать напрямую к схеме не будем, для настройки разместим его на уровне тора и будем смотреть эфирный сигнал. Вся наводка, форма, частота и амплитуда сигнала отобразится на экране осциллографа. В данной схеме, этой информации для настройки будет более чем достаточно. Включаем накал. Подаем анодное напряжение. Регулируем напряжение автотрансформатором… но почему-то ничего не происходит… разбираемся что не так!? Ага, забыли подключить заземление, бывает, прикручиваем его на свое место и повторяем процедуру включения. Крутим ручку и сигнал оживает. Это наш индикатор в мире настройки. Входное напряжение на моте всего 50 вольт, отлично, нам сейчас разряды в воздухе не нужны.

Альтернативой обнаружения высокочастотных полей может служить обыкновенная неоновая лампочка. Амплитуду сигнала ею определить не выйдет, но зато можно судить о работоспособности устройства в целом, правильной или нет — это уже другое дело.

Итак, в процессе настройки удалось выделить два интересных режима работы. Первый это плавно затухающий импульс с небольшой амплитудой в отличии от второго режима. Сейчас мы перекидываем провода на разные витки индуктора и наблюдаем как меняется сигнал. Внимание вопрос знатокам. Какой режим автогенератора дает наибольшие разряды: вариант «а»- с плавно затухающим сигналом, но малой амплитудой, или вариант «б»- с большой амплитудой, но коротким импульсом?

Настройка резонанса с помощью конденсаторов. У этих образцов разная емкость, как выбрать нужную? Всё просто, поочередно соединяем конденсаторы параллельно индуктору и смотрим на сигнал. Нужно быть при этом осторожным, тут развиваются большие токи, которые могут нанести фаталити вашей руке. Дохлые электронщики никому не нужны. Если емкость будет слишком большая, она попросту погасит всю амплитуду сигнала.

В начале выпуска я обещал рассказать зачем нужны такие массивные контакты на конденсаторах. Во время работы, особенно на резонансе, в индукторе развиваются огромные токи, порядка нескольких сотен ампер, если такой ток пойдет через тонкие ножки обычного конденсатора, они попросту перегорят как перемычка в предохранителе. В данной схеме хорошо прижился конденсатор КВИ3 на 1500 пФ 10 кВ. Год выпуска 1978, раритет в своем роде, старше меня лет на 10.

Схема автогенератора работает в принудительном режиме прерывания с частотой сети 50 Гц, если растянуть во времени затухающие колебания, можно высчитать частоту работы автогенератора. Синхронизируем эту старую рухлядь и приступаем к расчетам.

Сейчас, переключатель времени деления на осциллографе стоит в положении 0.5 мкс. Это означает, что одна клетка на шкале экрана равна 0.5 мкс. Один период синусоиды занимает 5 клеток, следовательно 5 умножаем на 0.5 равно 2.5 мкс. Частота находится по формуле: 1 деленная на период. Считаем. 1/2.5 мкс равняется 0.4 мГц, что равняется 400 кГц. Отсюда вывод, резонансная частота настроенной катушки Тесла, ровняется 400 кГц.

Расчеты могли быть более точными при наличии современного оборудования, но для данной схемы оно попросту не нужно. После настройки регулируем положения индуктора и обмотки связи так, чтобы амплитуда сигнала на осциллографе была максимальной. На этом этапе настройку ламповой катушки тесла, можно считай исчерпывающей. Потребление силовой части схемы без цепи накала, составляет 720 Вт.

В работе ламп есть что- то удивительное, когда берешь их в руки, возвращаешься в те далекие теплые времена. Транзисторы и прочая современная электроника со временем приедается, становится скучной. На лампу можно смотреть вечно, ну или 1000 часов пока не пропадет электронная эмиссия и катод не обеднеет. Теперь время посмотреть как это всё работает.

В процессе работы схемы, лампа не перегревается и может работать продолжительное время, скажем 10 минут без перерыва. Но находятся умельцы, которые ставят на выходе мота много-количественные сборки из микроволновочных конденсаторов, мощь схемы увеличивается, лампа начинает работать на пределе своих возможностей. Естественно графитовый анод лампы нагревается до красна, катод расходует свой ресурс. Такой режим работать будет, но не долго.

Для увеличения срока службы лампы на больших мощностях используют прерыватели. Это грубо говоря переключатель, который на короткое время запускает генератор на Тесле. Секунда работы, секунда отдыха, как-то так. Режимы естественно можно менять.

Свечение различных лампочек в высокочастотных электрических полях это вообще отдельная тема, некоторые образцы настолько красивы, что претендуют на отдельный пост.

Слыхали про то, что различными солями можно подкрашивать цвет огня, сейчас проверим это на практике. Для этого берем обыкновенную поваренную соль и разбавляем ее небольшим количеством воды. Получившуюся кашу наносим на электрод. Ионы натрия должны подкрасить молнию в оранжевый цвет, это сейчас и посмотрим.

Данная конструкция проста в повторении, и элементарна в настройке. В ней нет дорогих деталей, хотя цена — дело относительное, стоимость всех элементов составляет примерно 65 баксов не включая ЛАТР для регулировки входного напряжения в анодной цепи.

В одном из следующих постов мы рассмотрим полупроводниковую систему, там узнаем как рассчитывается резонанс, как управлять железом и прочую малоизвестную нормальному человеку ерунду.

Для справки. Съемка сегодняшнего выпуска вместе с пост обработкой, написанием текста и прочими процессами заняла 2 месяца. Это можно назвать быстрым выпуском. В комментариях вы часто пишете чтобы мы снимали материал в сфере физики и электроники, сейчас так и происходит, но тут есть обратная сторона медали, время. Теперь выпуски будут выходить реже чем обычно, надеюсь вы всё понимаете.

Как гласит народная мудрость: работа и труд — всё перетрут.



Полное видео проекта на YouTube
Наш Instagram

КАТУШКА ТЕСЛА SSTC

Представляем очередную мощную полупроводниковую катушку Тесла, которая как и предыдущий вариант была подсмотрена в буржунете. Катушки Тесла, как мы знаем, являются устройствами, используемыми для генерации высокого напряжения. В случае SSTC это напряжение около 80 — 100 кВ. 

Структура SSTC (электронная катушка Тесла) отличается от классических катушек (SGTC) использованием электронного инвертора вместо генератора на основе искрового промежутка. Это обеспечивает гораздо более компактную конструкцию и устраняет необходимость в высоком напряжении на первичной стороне (схема питается от прямого и отфильтрованного сетевого напряжения). В результате нет необходимости использовать дорогие и труднодоступные высоковольтные трансформаторы и конденсаторы.

Работа катушки основана на использовании явления электрического резонанса. Резонансный контур расположен на вторичной стороне, созданной индуктивностью многослойной однослойной воздушной катушки, и рассеянной емкостью, создаваемой как обмотками, так и емкостью тора, верхней клеммы катушки и даже самого коронного разряда. Чтобы катушка работала, вторичный резонансный контур должен быть «накачан» сильным сигналом с частотой, идеально синхронизированной с возникающим в нем резонансом. Здесь источником этого сигнала является электронный инвертор. 

Схема высоковольтного генератора SSTC

Что касается данной конструкции, это типичная схема, использующая мост с транзистором. Ниже приведены принципиальные схемы мощной Теслы SSTC (блок питания, контроллер и мост). Функции напряжений БП:

  • 15 В используется для питания драйверов. 
  • 5 В для 74HC14 — эта микросхема имеет ограниченное рабочее напряжение. 
  • 12 В предназначено для питания вентиляторов охлаждения и NE555.

Принцип работы довольно прост. Антенна принимает электрическое поле резонатора, получая сигнал с формой волны, всегда соответствующей резонансу на вторичной стороне. Этот сигнал сначала «обрезается» до соответствующего уровня с помощью диодного ограничителя, а затем формируется цепью 74HC14 в прямоугольную волну. Используя эту обратную связь, катушка невосприимчива к отстройке — обычно емкость во вторичной цепи зависит от окружающей среды, и даже приближение руки к резонатору может вызвать значительное изменение резонансной частоты. Если сигнал управления поступает на контур от генератора постоянной частоты, это приведет к потере разряда, а часто даже к сгоранию транзисторов в мосту. Данное схемное решение полностью устраняет такие проблемы. 

Сформированный сигнал управляет парой драйверов MOSFET, которые в свою очередь управляют мостовыми транзисторами через трансформатор. 

Участок схемы, использующий м/с NE555, является так называемым прерывателем. Он нужен для включения / выключения работы катушки регулируемыми интервалами. Это позволяет изменять поведение разрядов и разгружает электронику, давая ей время остыть, а в случае более продвинутого прерывателя даже модулировать разряды так, чтобы они воспроизводили звук. Другая функция прерывателя — генерировать импульс, который вызывает одиночное переключение моста при включении катушки. Этот импульс вызывает колебания в резонаторе, позволяя катушке начать работать. 

Сам мост является типичным H-мостом на МОП-транзисторах. Он питается от сетевого напряжения, которое фильтруется одним твердотельным конденсатором 2200 мкФ 400 В. В качестве устройства плавного пуска использован сильноточный термистор NTC.

Транзисторы в мосту защищены набором диодов. Стабилитроны на затворе также должны защищать полевые ключи. Диоды MBR2545 и 15ETX06 используются для блокировки и замены встроенных транзисторных диодов внешними сверхбыстрыми диодами. Поскольку внешние диоды работают в десятки раз быстрее, это уменьшает явление перекрестных замыканий и потерь на переключение. Наличие этих диодов имеет важное значение, так как они отвечают за защиту от скачков напряжения, возникающих при переключении. Эти импульсы замыкаются на шину питания, где поглощаются конденсаторами С1 и С2, затем накопленная в них энергия берется мостом и, таким образом, восстанавливается. 

Антипараллельный дискретный диод во много раз быстрее, чем ключевой диод, поэтому с ним таких проблем не возникает, диод Шоттки на стоке и блокирует протекание тока через диод MOSFET, предотвращая его включение. Это является необходимым дополнением, поскольку несмотря на то, что более быстрые и более медленные диоды различаются по времени отключения, они закрываются почти так же быстро — во время, ограниченное главным образом паразитными факторами, такими как индуктивность соединений.

В общем SSTC — это особый случай высоковольтного генератора, который не следует рассматривать как обычный инвертор, работающий на ферритовом стержне. Здесь у нас есть резонансная вторичная система, на которую динамически настраиваем часть мощности. 

Вторичная цепь LC активно налагает синусоидальную форму волны тока на первичной обмотке, которую пытаемся синхронизировать, чтобы минимизировать потери на переключение. Если ключи переключаются не синхронно с ходом резонатора, это заставляет ток течь через него, вызывая перенапряжения и повышенные потери. Поэтому крайне важно минимизировать время простоя — ключи должны переключаться как можно ближе к нулевому току, в то время как большое простойное время переключает их «жестко» и увеличивает время, в течение которого диоды должны проводить ток, индуцированный вторичной цепью. 

К сожалению, на практике (по крайней мере, на таком простом контроллере) всегда будут небольшие перенапряжения, приводящие к переключению диодов с антипараллельными ключами. Проблема в том, что диоды, встроенные в МОП-транзисторы, очень медленные, их отключение занимает много времени. Это приводит к перекрестным замыканиям, потому что диоды не могут выйти из проводимости, а тут уже включится противоположный ключ, что очевидно, очень вредное явление. В обычном инверторе это просто увеличивает время простоя — при блокировке ключа генерируется только короткое замыкание, после которого достаточно дождаться выключения диодов. Здесь же этого сделать нельзя, поскольку после закрытия ключей резонатор все же заставляет ток течь.

Установлены ключи попарно на старые процессорные кулеры, чтобы обеспечить надежное охлаждение. Когда вентиляторы включены, заметного увеличения температуры радиаторов не происходит. 

Конденсаторы, соединенные последовательно с первичной обмоткой, предотвращают прохождение постоянного тока, которое может повредить ключи. 

  1. Затворные резисторы R1..R4 вместе с параллельными диодами выполняют две важные функции. Первое — это предотвращение перекрестных коротких замыканий — резистор замедляет зарядку затвора, задерживая активность транзистора, а диод обеспечивает быструю разрядку затвора и закрытие ключа. Это исключает риск возникновения ситуации, когда верхнее и нижнее плечо одновременно открыты. 
  2. Вторая функция — подавление паразитных колебаний — индуктивность обмотки GDT и емкость затвора создают систему LC, которая может возбуждаться во время переключения. Такие колебания могут выводить транзистор из состояния насыщения, что приводит к большим потерям и создает риск его повреждения. 

Здесь следует упомянуть, что значение резисторов на затворах транзистора зависит от конкретной их модели. Некоторые типичные значения известны, но их следует определять индивидуально с помощью экспериментов и измерений с помощью осциллографа, чтобы установить наиболее оптимальное время простоя.

Резонатор был намотан на трубу из ПВХ диаметром 110 мм (канализационная) с помощью провода диаметром 0,18 мм; длина самой намотки 45 см. Эти значения довольно велики, так что при желании вы можете легко использовать гораздо меньший резонатор.

Тор изготовлен из алюминиевой гибкой трубки (также стандартная) 80 мм и имеет внешний диаметр 280 мм, что дает ёмкость около 12 пФ. Резонансная частота вторичного контура составляет около 100 кГц. 

Первичная обмотка была сделана на трубе из ПВХ диаметром 160 мм, с центром вокруг резонатора. Это обеспечивает хорошую механическую поддержку обмоток. Оригинальный вариант насчитывает 13 витков 2,5 мм2.

Антенна сделана из медного провода 0,8 мм, 4 катушки по 20 мм внизу и около 60 мм основания, она помещена под резонатор вместе со всей электроникой в открытом корпусе. Когда она торчала наверх результат был намного хуже. В схеме транзисторы IRFP 460, диоды Шотки SBL3060, S40D45 и MUR860, потому что были под рукой, все остальное по схеме. GDT на данный момент работает на сердечнике 3E5, но можно и 3E25 диаметром 25 мм. Резисторы 12R вместо 27R.

Как видите, мощное электрическое поле катушки Тесла способно эффективно зажигать газоразрядные лампы, на фото светится трубчатая люминесцентная лампа. Максимальное расстояние, с которого она может засветиться, почти в три раза больше, чем показано на фотографии.

И ещё несколько разрядов на фотографиях:

Разряды имеют около 20-25 сантиметров.

Внимание: человек практически не чувствует поражения таким электрическим током поскольку он не стимулирует нервные окончания, это также означает, что даже относительно сильный удар не влияет на частоту сердечных сокращений мышц, как это происходит при постоянном или переменном напряжении 50 Гц. Тем не менее, несмотря на это и учитывая тот факт, что имеется опасный ток (для SSTC это миллиамперы, но для DRRSTC или SGTC ток может достигать мгновенных значений, рассчитанных в амперах), высокая мощность (малый ток, хотя и умноженный на десятки кВ), которую излучает катушка накачки — ткани человека подвергаются воздействию и это может привести к обширному термическому повреждению. Причём первой страдает нервная система!

Кроме того, следует учитывать, что прерыватель добавляет к излучению низкочастотную форму волны (например 10 — 50 Гц), а вот она уже может быть опасной. Всё это приводит к дополнительному риску, так как человек, который не знает об этом, может сознательно продлить касание, ошибочно думая, что если не чувствуется ток электричества, он в безопасности. Конечно, часто люди, которые касались разрядов от небольших катушек, не чувствовали негативных последствий (или, скорее, они были слишком малы, чтобы быть очевидными), но также есть случаи, когда игры с DRSSTC заканчивались парастазами и другими заболеваниями. Так что будьте осторожны с ВВ всегда!

   Форум по высоковольтным генераторам

   Обсудить статью КАТУШКА ТЕСЛА SSTC


Увеличительный передатчик Тесла (усиление электричества)

Уведомление о конфиденциальности для «Бесплатная энергия | поиск бесплатной энергии и обсуждение бесплатной энергии»


В соответствии с законодательством Европейского Союза мы обязаны информировать пользователей, получающих доступ к сайту www.overunity.com изнутри ЕС о файлах cookie, которые использует этот сайт, и информации, которую они содержат, а также о предоставлении им средств для «согласия» — другими словами, разрешить сайту устанавливать файлы cookie. Файлы cookie — это небольшие файлы, которые хранятся в вашем браузере, и у всех браузеров есть опция, с помощью которой вы можете проверить содержимое этих файлов и при желании удалите их.

В следующей таблице подробно указано имя каждого файла cookie, его источник и то, что мы знаем об информации. эти файлы cookie:

Печенье

Происхождение

Стойкость

Информация и использование

ecl_auth www.overunity.com Истекает через 30 дней Этот файл cookie содержит текст «Закон ЕС о файлах cookie — файлы cookie LiPF разрешены».Без этого файла cookie программное обеспечение Форумов не может устанавливать другие файлы cookie.
SMFCookie648 www.overunity.com Истекает согласно выбранной пользователем продолжительности сеанса Если вы входите в систему как участник этого сайта, этот файл cookie содержит ваше имя пользователя, зашифрованный хэш ваш пароль и время входа в систему. Он используется программным обеспечением сайта для обеспечения таких функций, как указание Вам указываются новые сообщения форума и личные сообщения.Этот файл cookie необходим для правильной работы программного обеспечения сайта.
PHPSESSID www.overunity.com Только текущая сессия Этот файл cookie содержит уникальное значение идентификации сеанса. Он установлен как для участников, так и для не являющиеся участниками (гостями), и это важно для правильной работы программного обеспечения сайта. Этот файл cookie не является постоянным и должен автоматически удаляться при закрытии окна браузера.
pmx_upshr {ИМЯ} www.overunity.com Только текущая сессия Эти файлы cookie устанавливаются для записи ваших предпочтений отображения страницы портала сайта, если панель или отдельный блок свернут или развернут
pmx_pgidx_blk {ID} www.overunity.com Только текущая сессия Эти файлы cookie настроены для записи номера страницы для страницы портала сайта, если страница для индивидуальный блок изменен.
pmx_cbtstat {ID} www.overunity.com Только текущая сессия Эти файлы cookie настроены для записи состояния раскрытия / свертывания содержимого блока CBT Navigator.
pmx_poll {ID} www.overunity.com Только текущая сессия Эти файлы cookie настроены на запись идентификатора текущего опроса в блоке с несколькими опросами.
pmx_ {fadername} www.overunity.com Только текущая сессия Эти файлы cookie предназначены для записи состояния блока Opac-Fader.
pmx_LSBsub {ID} www.overunity.com Только текущая сессия Эти файлы cookie предназначены для записи текущей категории и состояния статического блока категории.
pmx_shout {ID} www.overunity.com Только текущая сессия Эти куки-файлы предназначены для записи текущего состояния блока Shout box.
pmx_php_ckeck www.overunity.com Время загрузки страницы Этот файл cookie, вероятно, никогда вас не увидит. Устанавливается, если инициирована проверка синтаксиса блока PHP. и будет удален при выполнении функции.
pmx_YOfs www.overunity.com Время загрузки страницы Этот файл cookie, вероятно, никогда вас не увидит. Он устанавливается на действия портала, такие как щелчок по номеру страницы.Файл cookie оценивается при загрузке нужной страницы и затем удаляется. Используется для восстановления вертикального положения экрана как до щелчка.

Примечания:
1 Нам известно, что Google использует дополнительные файлы cookie, которые он хранит на вашем компьютере, и когда вы просматриваете наш сайт и все другие места. Они используются для таргетинга рекламы, и в настоящее время Google делает это без вашего разрешения.Четыре из эти файлы cookie, о которых мы знаем, называются «Rememberme», «NID», «PREF» и «PP_TOS_ACK» и хранятся в кеше Google на вашем компьютере.
2 Если вы заходите на этот сайт с чужого компьютера, пожалуйста, спросите разрешения владельца, прежде чем прием файлов cookie.
3 Ваш браузер предоставляет вам возможность проверять все файлы cookie, хранящиеся на вашем компьютере. Кроме того, ваш браузер отвечает за удаление файлов cookie «только текущего сеанса» и тех, срок действия которых истек; если ваш браузер в противном случае вы должны сообщить об этом авторам вашего браузера.
4 Приносим извинения и приносим извинения за любые неудобства участникам и гостям, которые посещают наш веб-сайт. из-за пределов Европейского Союза. В настоящее время мы не можем опросить ваш браузер и получить информация о местоположении, чтобы решить, предлагать ли вам принимать файлы cookie.

Для получения более подробной информации о файлах cookie и их использовании посетите Все о файлах cookie
,

Увеличительный передатчик — Никола Тесла

Никола Тесла известен многими великими изобретениями. Почти все современные системы распределения и производства электроэнергии используют разработки Tesla, разработанные более 100 лет назад. В дополнение к этому мы должны благодарить Tesla за радиопередачу, дистанционное управление, флуоресцентное освещение, автомобильные пусковые катушки и даже за то, как мы кодируем несколько сигналов на одной частоте для трансляции и цифровой обработки.

Первым великим изобретением Теслы был многофазный генератор переменного тока.Используя вращающееся магнитное поле, Тесла смог преобразовать механическую энергию в электрическую более эффективно, чем любой существующий генератор.

Когда Тесла впервые предложил эту идею своему профессору электротехники, профессор засмеялся и сказал, что это вечный двигатель, который никогда не будет работать.

Многие из наиболее «экстремальных» изобретений Теслы были потеряны со временем и тем фактом, что он хранил некоторые важные детали каждого проекта в своей эйдетической памяти.Тесла был одержим идеей резонанса. Его изобретения становились все более сложными, пока он не начал экспериментировать с фундаментальным резонансом самой Земли.


Увеличительный преобразователь

Эксперименты Теслы с резонансом электрической энергии привели его к созданию катушки Тесла. Конструкция была основана на существующей схеме искрового разрядника, которая заряжала конденсатор от вторичной обмотки высоковольтного трансформатора и разряжала конденсатор через воздушный зазор.Tesla добавила в конструкцию второй трансформатор.

Magnifying transmitter - Nikola Tesla Magnifying transmitter - Nikola Tesla Увеличительный передатчик — Никола Тесла

Размер этого второго резонансного контура должен быть ровно длины волны желаемой частоты. Делая это, резонаторный контур создал вторую цепь, в которой будет накапливаться потенциал. Используя эту конструкцию, Тесла смог создать чрезвычайно высокие напряжения и на высоких частотах, подобные или даже превышающие те, которые создаются современными радиовышками.

Tesla Coil Schematic Tesla Coil Schematic Схема катушки Тесла

Катушка Тесла стала опорой в экспериментах Теслы.Проложив провод, подключенный к резонатору, вокруг своей лаборатории, он проник в свою лабораторию электромагнитной энергией
единиц. Эффект был настолько велик, что он мог зажечь люминесцентную лампочку в руке, потому что падение напряжения в воздухе было достаточно большим, чтобы вызвать достаточный ток.

Он также сообщил, что с помощью увеличительного передатчика смог зажечь поле лампочек на расстоянии 1 км.

Увеличительный передатчик был адаптацией катушки Тесла. Вместо того, чтобы быть спроектированным для разряда на землю, увеличительный передатчик настроен на естественный резонансный контур Земли для создания стоячих волн электрической энергии, которые могут использоваться настроенным приемным контуром.


Беспроводная глобальная передача энергии

Чтобы понять увеличительный передатчик Теслы, необходимо понимание электрической цепи земли. Tesla проделала большую работу по этой теме.

На поверхности Земли и в атмосфере действует множество сил. Теллурические токи — это электрические токи, которые проходят по поверхности Земли. Они являются результатом гроз и изменений магнитосферы Земли из-за солнечных ветров и других межгалактических явлений.

Они также являются результатом того, что люди используют электрические токи и изменяют магнитные поля. Эти теллурические токи очень непредсказуемы, движутся в основном к экватору или полюсам в зависимости от времени суток и обычно имеют слабый ток. При правильных частотах, около 7,3 Гц, сопротивление Земли резко падает.

Тесла сравнил Землю с блестящим полированным металлическим шаром. Ионосфера — это слой верхней атмосферы, который имеет большой отрицательный электрический потенциал
.Пространство между поверхностью Земли и ионосферой называется резонансной полостью Шумана .

Тесла вычислил, что резонансная частота этой полости равна 11,3 Гц. В 1963 году было подтверждено, что это пространство действительно имеет несколько резонансов
с основной частотой 7,86 Гц, хотя это меняется в зависимости от условий окружающей среды.

Тесла предлагал беспроводную энергию для создания большого электрического потенциала на резонансной частоте резонатора.Это создало бы стоячую волну электрического потенциала по всему миру, которую можно было бы использовать любой схемой, настроенной на ту же частоту. Тесла намеревался подключиться к теллурическому току Земли и создать электрический потенциал стоячей волны той же частоты, используя земной ток для питания своих цепей. Эта конструкция потребовала бы установки множества ретрансляционных станций по всему миру, так как сила сигнала обратно пропорциональна расстоянию
от передатчика.

Управление погодой и землетрясения

Земной резонанс

В современном мире резонансы Шумана используются для отслеживания глобальных схем молний, ​​а теллурические токи исследуются как метод предсказания землетрясений.

Эти связи резонанса Земли с Теслой заставили многих задуматься о природе некоторых экспериментов Теслы.

История о том, как Тесла почти разрушил здание с помощью небольшого механического осциллятора, вызывает интерес к экспериментам Теслы с резонансом Земли и теллурическими токами.

Могут ли искусственные теллурические токи резонансной частоты вызвать землетрясение? Мог ли Тесла быть первым человеком, способным уничтожить весь мир? Интригующие вопросы, но, к сожалению, потерянные временем.

Одним из способов использования земной цепи, которое Тесла действительно обсуждал, было управление погодой. Он предположил, что антенная решетка с высоким потенциалом и чрезвычайно низкой частотой могла бы притягивать и отталкивать ионосферу в попытке контролировать атмосферное давление под ней.Он никогда не утверждал, что пытался это сделать, но сегодня существует множество таких массивов, например, установка H.A.A.R.P на Аляске.

Они необходимы для изучения ионосферы, поскольку она изменяется в ответ на межгалактическое излучение.


Peace Beam

Самым интригующим из изобретений Теслы для большинства людей является его «Луч мира» или «Teleforce». Тесла утверждал, что его вдохновил пневматический пробковый пистолет, который у него был в детстве. Его конструкция использовала циркулирующий воздушный поток для создания большого статического заряда, подобного генератору Ван де Граафа, но в 10 раз большему потенциалу.

Этот статический заряд использовался для приведения в движение цепочки одиночных молекул вольфрама, которые были заряжены до высокого потенциала. Эта высокоэффективная отталкивающая сила ускоряет поток вольфрама, исходящий из вакуумной трубки с открытой трубкой, до 48-кратной скорости звука.

Поскольку поток частиц состоит из микроскопически тонкой материи, а не только из электромагнитного излучения, как в луче, его энергия не рассеивается на большом расстоянии. Тесла утверждал, что он расплавит все, кроме самых толстых металлов, и сказал, что испытал его.

Ссылка // Никола Тесла: резонанс и природа Автор: Д-р Джошуа И. Мадж

,

Увеличительный передатчик — Википедия

Лупа Тесла в июле 1899 г. Werbefoto der Экспериментальная станция в Колорадо-Спрингс с увеличительным передатчиком . Die Lichtbögen sind ungefähr 7 метров (22 футов) lang

Der увеличительный передатчик , а также Лупа Tesla bezeichnet, war um 1899 ein elektrotechnischer Aufbau von Nikola Tesla in seinem Работа в Колорадо-Спрингс цур Erzeugung von hochfrequenter Hochspannung mittels Resonanzüberh.

Der Лупа Тесла ist im Prinzip eine Form des Teslatransformators, wobei jedoch der Transformatorteil vom ausgangsseitigen Resonanzkreis getrennt ist. Isolationsprobleme werden dadurch besser beherrschbar und die Effizienz kann gesteigert werden.

Die Bezeichnung geht auf Aufzeichnungen в Teslas Tagebuch zu seinen Arbeiten в Colorado Spring zurück. [1]

Zu der Zeit um 1899 war Tesla zu der Überzeugung gekommen, ein funktionierendes «Welt-Energie-System» gefunden zu haben.Sein Ziel war, Hochfrequenzenergie, nach heutigem Verständnis также elektromagnetische Wellen, zur Energieverteilung zu nutzen, was zwar über kurze Entfernungen funktioniert, aber mit großen Verlusten verbunden ist.

Im Dezember 1899 Entstanden im Labor und in der Umgebung einige Aufnahmen seines Увеличительный передатчик für Werbezwecke, die von Chef-Fotografen des damals renommierten Century Magazines Dickemenson V. Aldenley g. Tesla zog am 7. января 1900 г. в Нью-Йорке и Лейбористской партии в войне.Tesla bezahlte weder die offenen Stromrechnungen и die lokale Elektrizitätsgesellschaft noch die ausständigen Löhne seiner Arbeiter, weshalb er fünf Jahre später wegen dieser Schulden angeklagt und die Einrichtungen und Material4. [2]

Um 1901 г. — основание Tesla mit finanzieller Unterstützung von J. P. Morgan den Wardenclyffe Tower на Лонг-Айленде цу бауен, eine noch größere Anlage mit identityischem Funktionsprinzip, die Allerdings nicht vollendet wurde.

  1. ↑ Никола Тесла: Colorado Springs Notes, 1899-1900 . Bnpublishing, 2007, ISBN 978-956-291-462-8.
  2. ↑ Майкл Краузе: Wie Nikola Tesla das 20. Jahrhundert erfand . 1. Auflage. Wiley, 2010, ISBN 978-3-527-50431-2.
,

ZNBSQ Прецизионный взвешивающий преобразователь Усиливающий преобразователь сигнала 0 5V 0 10V 4 20mA | |

тип 1: 12В 0-5В

тип 2: 24В 0-5В

тип 3: 24В 0-10В

тип 4: 12В 0- ± 5В

тип 5: 24 В 0- ± 5 В

тип 6: 12 В 1-5 В

тип 7: 24 В 1-5 В

тип 8: 24 В 4-20 мА

тип 9: 12 В 0-3.3V

Тип 10: многосигнальный выход

тип 11: RS485

тип 12: RS232

Тип 13: два входа

5 9000 Размеры

5 9000 следующие:


Усилитель сигнала датчика преобразует механические величины в стандартные, выходные значения тока и напряжения, 4-20 мА, 0-10 мА, 0-5 В, 1-5 В, 0-10 В и 0 -10V напрямую и автоматически.Интерфейс устройства связан с компьютером, а передатчик имеет стандартную функцию регулировки нуля и усиления сигнала.

Основные технические индикаторы

транспортный вход: сигнал напряжения 1,5 мВ / В или класс мВ

транспортный выход: 0 ~ 5 В, 0 ~ 3,3 В, 1 ~ 5 В, 0 ~ 10 В, 0 ~ 10 мА,

4 ~ 20мА и так далее.
Напряжение возбуждения: 10 В или 12 В, 15 В, 24 В (постоянного тока), которое может быть настроено в соответствии с требованиями заказчика.

Рабочая температура: -20 ~ 80 o C

Обычно не рекомендуется открывать корпус преобразователя.Если клиенту требуется калибровка, корпус передатчика можно отрегулировать следующим образом.

Инструкции по отладке:

1. Как правило, не нужно включать блок передатчика.

2. Если вам нужно отрегулировать и открыть верхнюю крышку коробки передатчика, вы можете увидеть два регулируемых потенциометра. Если вам нужно отрегулировать нулевую точку, то есть задействовать потенциометр R5K, при изменении усиления, то есть отрегулировать другой потенциометр R100.

3. Подключение: выходной штекер датчика вставляется непосредственно во входной конец коробки преобразователя, а три провода выходного конца преобразователя подключаются следующим образом:

Входной конец преобразователя:

1— — питание датчика + (красный)

2— — питание датчика (зеленый)

3— — сигнал датчика + (желтый)

4— — сигнал датчика — (белый)

5— — экранирующий слой

Выходная клемма преобразователя:

1 — — питание + (красный)

2 — — питание — (зеленый)

3 — — сигнал + (желтый)

Этот преобразователь подходит для различных спецификаций ,Датчики дальности.

.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *