Site Loader

Содержание

Основной курс электротехники и электромеханики для чайников, видеоуроки

Электричество применяется во многих областях, оно окружает нас практически повсюду. Электроэнергия позволяет получать безопасное освещение дома и на работе, кипятить воду, готовить пищу, работать на компьютере и станках. Вместе с тем, обращаться с электричеством необходимо уметь, иначе можно не только получить травмы, но и нанести вред имуществу. Как правильно прокладывать проводку, организовывать снабжение объектов электричеством, изучает такая наука, как электротехника.

Зачем нужно знать электротехнику

Зачем нужно знать электротехнику

Понятие электричества

Все вещества состоят из молекул, которые, в свою очередь, состоят из атомов. У атома есть ядро и движущиеся вокруг него положительно и отрицательно заряженные частицы (протоны и электроны). При нахождении двух материалов рядом друг с другом между ними возникает разность потенциалов (у атомов одного вещества электронов всегда меньше, чем у другого), что приводит к появлению электрического заряда – электроны начинают перемещаться от одного материала к другому. Так возникает электричество. Другими словами, электричество – это энергия, возникающая в результате перемещения отрицательно заряженных частиц из одного вещества в другое.

Что такое электричество

Что такое электричество

Скорость перемещения может быть разной. Чтобы движение было в нужном направлении и с нужной скоростью, используются проводники. Если движение электронов по проводнику осуществляется только в одном направлении, такой ток называется постоянным. Если же направление перемещения с определенной частотой меняется, то ток будет переменным. Самым известным и простым источником постоянного тока является батарейка или автомобильный аккумулятор. Переменный ток активно используется в бытовом хозяйстве и в промышленности. На нем работают практически все устройства и оборудование.

К сведению. Движением электрической энергии можно управлять. Способы такого управления изучает курс «Основы электротехники», который необходим всем электрикам, чтобы правильно проложить проводку в доме, не допустить пожара или травм в период работ.

Что изучает электротехника

Данная наука знает практически все об электричестве. Изучить ее необходимо всем, кто хочет получить диплом или квалификацию электрика. В большинстве учебных заведений курс, на котором изучают все, что связано с электроэнергией, называется «Теоретические основы электротехники» или, сокращенно ТОЭ.

Данная наука получила развитие в XIX веке, когда был изобретен источник постоянного тока, и появилась возможность строить электрические цепи. Дальнейшее развитие электротехника получила в процессе новых открытий в области физики электромагнитных излучений. Чтобы без проблем осваивать науку в настоящее время, необходимо иметь знания не только в области физики, но также химии и математики.

В первую очередь, на курсе ТОЭ изучаются основы электричества, дается определение тока, исследуются его свойства, характеристики и направления применения. Далее изучаются электромагнитные поля и возможности их практического использования. Завершается курс, как правило, изучением устройств, в которых используется электрическая энергия.

Предмет изучения электротехники

Предмет изучения электротехники

Чтобы разобраться с электричеством, не обязательно поступать в высшее или среднее учебное заведение, достаточно воспользоваться самоучителем или пройти видеоуроки «для чайников». Полученных знаний вполне хватит, чтобы разобраться с проводкой, заменить лампочку или повесить люстру дома. Но, если планируется профессионально работать с электричеством (например, в должности электромонтера или энергетика), то соответствующее образование будет обязательным. Оно позволяет получить специальный допуск на работу с приборами и устройствами, работающими от источника тока.

Основные понятия электротехники

Изучая электричество для начинающих, главное разобраться с тремя основными терминами:

  • Сила тока;
  • Напряжение;
  • Сопротивление.

Под силой тока понимается количество электрического заряда, протекающего через проводник с определенным сечением за единицу времени. Другими словами, количество электронов, которые переместились из одного конца проводника в другой за некоторое время. Сила тока является самой опасной для жизни и здоровья человека. Если взяться за оголенный провод (а человек – это тоже проводник), то электроны пройдут через него. Чем больше их пройдет, тем больше будут повреждения, поскольку в процессе своего движения они выделяют тепло и запускают различные химические реакции.

Однако чтобы ток шел по проводникам, между одним и другим концом проводника должно быть напряжение или разность потенциалов. Причем она должна быть постоянной, чтобы движение электронов не прекращалось. Для этого электрическую цепь обязательно замыкают, а на одном конце цепи обязательно ставят источник тока, который обеспечивает в цепи постоянное движение электронов.

Электрическая цепь

Электрическая цепь

Сопротивление – это физическая характеристика проводника, его способность к проведению электронов. Чем ниже сопротивление проводника, тем большее количество электронов по нему пройдет за единицу времени, тем выше сила тока. Высокое сопротивление, наоборот, уменьшает силу тока, но влечет за собой нагревание проводника (если напряжение достаточно высоко), что может привести к возгоранию.

Подбор оптимальных соотношений между напряжением, сопротивлением и силой тока в электрической цепи является одной из основных задач электротехники.

Электротехника и электромеханика

Электромеханика является разделом электротехники. Она изучает принципы функционирования устройств и оборудования, которые работают от источника электрического тока. Изучив основы электромеханики, можно научиться ремонтировать различное оборудование или даже проектировать его.

В рамках уроков по электромеханике, как правило, изучаются правила преобразования электрической энергии в механическую (каким образом функционирует электродвигатель, принципы работы любого станка и так далее). Также исследуются и обратные процессы, в частности, принципы действия трансформаторов и генераторов тока.

Предмет изучения электромеханики

Предмет изучения электромеханики

Таким образом, без понимания того, как составляются электрические цепи, принципов их функционирования и других вопросов, которые изучает электротехника, осваивать электромеханику невозможно. С другой стороны, электромеханика является более сложной дисциплиной и носит прикладной характер, поскольку результаты ее изучения применяются непосредственно при конструировании и ремонте машин, оборудования и различных электрических устройств.

Безопасность и практика

Осваивая курс электротехники для начинающих, необходимо уделить особое внимание вопросам безопасности, поскольку несоблюдение определенных правил может привести к трагическим последствиям.

Первое правило, которому необходимо следовать, – обязательно знакомиться с инструкцией. У всех электроприборов в руководстве по эксплуатации всегда имеется раздел, который посвящен вопросам безопасности.

Важно! Выполнение рекомендаций позволит избежать травм и нанесения вреда имуществу.

Второе правило заключается в контроле состояния изоляции проводников. Все провода обязательно должны покрываться специальными материалами, не проводящими электричество (диэлектриками). Если изоляционный слой нарушен, в первую очередь, следует его восстановить, иначе возможно нанесение вреда здоровью. Кроме того, работу в целях безопасности с проводами и электрооборудованием следует производить только в специальной одежде, которая не проводит электричество (резиновые перчатки и диэлектрические боты).

Третье правило состоит в использовании для диагностики параметров электросети только специальных приборов. Ни в коем случае не стоит делать этого голыми руками или пробовать «на язык».

Обратите внимание! Пренебрежение данными элементарными правилами является основной причиной травм и несчастных случаев в работе электриков и электромонтеров.

Правила безопасности при работе с электричеством

Правила безопасности при работе с электричеством

Советы начинающим

Чтобы получить начальное представление об электричестве и принципах работы устройств с его применением, рекомендуется пройти специальный курс или изучить пособие «Электротехника для начинающих». Подобные материалы разработаны специально для тех, кто пытается с нуля освоить данную науку и получить необходимые навыки для работы с электрооборудованием в быту.

Советы начинающим электрикам

Советы начинающим электрикам

В пособии и видеоуроках подробно рассказывается, как устроена электрическая цепь, что такое фаза, а что такое ноль, чем отличается сопротивление от напряжения и силы тока и так далее. Отдельное внимание уделяется технике безопасности, чтобы избежать травм при работе с электроприборами.

Конечно, изучение курсов или чтение пособий не позволит стать профессиональным электриком или электромонтером, но решить большинство бытовых вопросов по итогам освоения материала будет вполне по силам. Для профессиональной работы требуется уже получение специального допуска и наличие профильного образования. Без этого выполнять должностные обязанности запрещается различными инструкциями. Если же предприятие допустит человека без необходимого образования к работе с электрооборудованием, и он получит травму, руководитель понесет серьезное наказание, вплоть до уголовного.

Видео

Оцените статью:

Урок-4. ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

ОСНОВЫ ЭЛЕКТРОТЕХНИКИ

Все что будет дано в этом уроке, необходимо не только прочитать и запомнить некоторые ключевые моменты, а и зазубрить некоторые определения и формулировки. Именно с этого урока начнутся элементарные физические и электрические расчеты. Возможно, будет не все понятно, но не надо отчаиваться, все со временем станет на свои места, главное не спеша усваивать и запоминать материал. Даже если по началу не все будет понятно, постарайтесь хотя бы запомнить основные правила и те элементарные формулы, которые здесь будут рассматриваться. Хорошенько освоив этот урок, вы потом сможете выполнять более сложные радиотехнические расчеты и решать необходимые задачи. Без этого в радиоэлектронике не обойтись. Дабы подчеркнуть значимость данного урока, все формулировки и определения, которые необходимо заучить я буду выделять красным курсивом.
ЭЛЕКТРИЧЕСКИЙ ТОК И ЕГО ОЦЕНКА

До сих пор, характеризуя количественное значение электрического тока, я иногда пользовался такой терминологией, как, например, малый ток, большой ток. На первых порах такая оценка тока как — то нас устраивала, но она совершенно непригодна для характеристики тока с точки зрения работы которую он может выполнять. Когда мы говорим о работе тока, под — этим подразумеваем, что его энергия преобразуется в какой-либо иной вид энергии: тепло, свет, химическую или механическую энергию. Чем больше поток электронов, тем значительнее ток и его работа. Иногда говорят, сила тока или просто ток. Таким образом слово ток имеет два значения. Оно обозначает само явление движения электрических зарядов в проводнике, а так же служит оценкой количества электричества, проходящего по проводнику.

Ток (или силу тока) оценивают количеством электронов, проходящих по проводнику в течение 1 с. Число его огромно. Через нить накала горящей лампочки электрического карманного фонарика, например, ежесекундно проходит около 2000000000000000000 электронов. Вполне понятно, что характеризовать ток количеством электронов неудобно, так как пришлось бы иметь дело с очень большими числами. За единицу электрического тока принят Ампер (сокращенно пишут А). Так ее назвали в честь французского физика и математика А. Ампера (1775 — 1836 гг.), изучившего законы механического взаимодействия проводников с током и другие электрические явления. Ток 1 А — это ток такого значения, при котором через поперечное сечение проводника за 1 с проходит 6250000000000000000 электронов. В математических выражениях ток обозначают латинской буквой I или i (читается и). Например, пишут: I 2 А или 0,5 А. Наряду с ампером применяют более мелкие единицы силы тока: миллиампер (пишут мА), равный 0,001 А, и микроампер (пишут мкА), равный 0,000001 А, или 0,001 мА. Следовательно, 1 А = 1000 мА или 1000000 мкА. Приборы, служащие для измерения токов, называют соответственно амперметрами, миллиамперметрами, микроамперметрами. Их включают в элетрическую цепь последовательно с потребителем тока, т.е. в разрыв внешней цепи. На схемах эти приборы изображают кружками с присвоенным им буквами внутри: А (амперметр), (миллиамперметр) и мА (микроампер) мкА., а рядом пишут РА, что означает измеритель тока. Измерительный прибор рассчитан на ток не больше некоторого предельного для данного прибора. Прибор нельзя включать в цепь, в которой течет ток, превышающий это значение, иначе он может испортиться.

Амперметр (миллиамперметр, кроамперметр) включают в электрическую цепь последовательно с потребителем тока.

У вас может возникнуть вопрос: как оценить переменный ток, направление и величина которого непрерывно изменяются? Переменный ток обычно оценивают по его действующему значению. Это такое значение тока, которое соответствует постоянному току, производящему такую же работу. Действующее значение переменного тока составляет примерно 0,7 амплитудного, т. е. максимального значения.

ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ

Говоря о проводниках, мы имеем в виду вещества, материалы и прежде всего металлы, относительно хорошо проводящие ток. Однако не все вещества, называемые проводниками, одинаково хорошо проводят электрический ток, т. е. они, как говорят, обладают неодинаковой проводимостью тока. Объясняется это тем, что при своем движении свободные электроны сталкиваются с атомами и молекулами вещества, причем в одних веществах атомы и молекулы сильнее мешают движению электронов, а в других — меньше. Говоря иными словами, одни вещества оказывают электрическому току большее сопротивление, а другие — меньшее. Из всех материалов, широко применяемых в электротехнике и радиотехнике, наименьшее сопротивление электрическому току оказывает медь. Поэтому — то электрические провода и делают чаще всего из меди. Еще меньшее сопротивление имеет серебро, но это довольно дорогой металл. Железо, алюминий и разные металлические сплавы обладают большим сопротивлением, т. е. худшей электропроводимостью. Сопротивление проводника зависит не только от свойств его материала, но и от размера самого проводника. Толстый проводник обладает меньшим сопротивлением, чем тонкий из такого же материала; короткий проводник имеет меньшее сопротивление, длинный — большее, так же как широкая и короткая труба оказывает меньшее препятствие движению воды, чем тонкая и длинная. Кроме того, сопротивление металлического проводника зависит от его температуры: чем ниже температура проводника, тем меньше его сопротивление. За единицу электрического сопротивления принят ом (пишут Ом) — по имени немецкого физика Г. Ома. Сопротивление 1 Ом — сравнительно небольшая электрическая величина. Такое сопротивление току оказывает, например, отрезок медного провода диаметром 0,15 мм и длиной 1 м. Сопротивление нити накала лампочки карманного электрического фонаря около 10 Ом, нагревательного элемента электроплитки — несколько десятков ом. В радиотехнике чаще приходится иметь дело с большими, чем ом или несколько десятков ом, сопротивлениями. Сопротивление высокоомного телефона, например, больше 2000 Ом; сопротивление полупроводникового диода, включенного в не пропускающем ток направлении, несколько сотен тысяч ом. Знаете, какое сопротивление электрическому току оказывает ваше тело? От 1000 до 20000 Ом. А сопротивленце резисторов — специальных деталей, о которых я буду еще говорить в этой беседе, могут быть до нескольких миллионов ом и больше. Эти детали, как вы уже знаете, на схемах обозначают в виде прямоугольников. В математических формулах сопротивление обозначают латинской буквой (R). Такую же букву ставят и возле графических обозначений резисторов на схемах. Для выражения больших сопротивлений резисторов используют более крупные единицы: килоом (сокращенно пишут кОм), равный 1000 Ом, и мегаом (сокращенно пишут МОм), равный 1000000 Ом, или 1000 кОм. Сопротивления проводников, электрических цепей, резисторов или других деталей измеряют специальными приборами, именуемыми омметрами. На схемах омметр обозначают кружком с греческой буквой ? (омега) внутри.

ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ

За единицу электрического напряжения, электродвижущей силы (ЭДС) принят вольт (в честь итальянского физика А. Вольта). В формулах напряжение обозначают латинской буквой U (читается «у»), а саму единицу напряжения — вольт — буквой В. Например, пишут: U = 4,5 В; U = 220 В. Единица вольт характеризует напряжение на концах проводника, участке электрической цепи или полюсах источника тока. Напряжение 1 В — это такая электрическая величина, которая в проводнике сопротивлением 1 Ом создает ток, равный 1 А. Батарея 3336Л, предназначенная для плоского карманного электрического фонаря, как вы уже знаете, состоит из трех элементов, соединенных последовательно. На этикетке батареи можно прочитать, что ее напряжение 4,5 В. Значит, напряжение каждого из элементов батареи 1,5 В. Напряжение батареи «Крона» 9 В, а напряжение электроосветительной сети может быть 127 или 220 В. Напряжение измеряют (вольтметром), подключая прибор одноименными зажимами к полюсам источника тока или параллельно участку цепи, резистору или другой нагрузке, на которой необходимо измерить действующее на ней напряжение На схемах вольтметр обозначают латинской буквой V.

Вольтметр подключают параллельно нагрузке или источнику тока, питающего электрическую цепь.

в кружке, а рядом — PU. Для оценки напряжения применяют и более крупную единицу — киловольт (пишут кВ), соответствующую 1000 В, а также более мелкие единицы — милливольт (пишут мВ), равный 0,001 В, и микровольт (пишут мкВ), равный 0,001 мВ. Эти напряжения измеряют соответственно кило — вольтметрами, милливольтметрами и микровольтметрами. Такие приборы, как и вольтметры, подключают параллельно источникам тока или участкам цепей, на которых надо измерить напряжение. Выясним теперь, в чем разница понятий «напряжение» и «электродвижущая сила». Электродвижущей силой называют напряжение, действующее между полюсами источника тока, пока к нему не подключена внешняя цепь-нагрузка, например лампочка накаливания или резистор. Как только будет подключена внешняя цепь и в ней возникнет ток, напряжение между полюсами источника тока станет меньше. Так, например, новый не бывший еще в употреблении гальванический элемент имеет ЭДС не менее 1,5 В. При подключении к нему нагрузки напряжение на его полюсах становится равным примерно 1,3-1,4 в. По мере расходования энергии элемента на питание внешней цепи его напряжение постепенно уменьшается. Элемент считается разрядившимся и, следовательно, негодным для дальнейшего применения, когда напряжение снижается до 0,7 В, хотя, если отключить внешнюю цепь, его ЭДС будет больше этого напряжения. А как оценивают переменное напряжение? Когда говорят о переменном напряжении, например о напряжении электроосветительной сети, то имеют в виду его действующее значение, составляющее примерно, как и действующее значение переменного тока, 0,7 амплитудного значения напряжения.

ЗАКОН ОМА

На рис. показана схема знакомой вам простейшей электрической цепи. Эта замкнутая цепь состоит из трех элементов: источника напряжения — батареи GB, потребителя тока — нагрузки R, которой может быть, например, нить накала электрической лампы или резистор, и проводников, соединяющих источник напряжения с нагрузкой. Между прочим, если эту цепь дополнить выключателем, то получится полная схема карманного электрического фонаря.

Простейшая электрическая цепь постоянного тока.

Нагрузка R, обладающая определенным сопротивлением, является участком цепи. Значение тока на этом участке цепи зависит от действующего на нем напряжения и его сопротивления: чем больше напряжение и меньше сопротивление, тем большим ток будет идти по участку цепи. Эта зависимость тока от напряжения и сопротивления выражается следующей формулой:
I = U/R,
где I — ток, выраженный в амперах, А; U — напряжение в вольтах, В; R — сопротивление в омах, Ом. Читается это математическое выражение так: ток на участке цепи прямо пропорционален напряжению на нем и обратно пропорционален его сопротивлению. Это основной закон электротехники, именуемый законом Ома (по фамилии Г. Ома), для участка электрической цепи
. Используя закон Ома, можно по двум известным электрическим величинам узнать неизвестную третью. Вот несколько примеров практического применения закона Ома.

Первый пример: На участке цепи, обладающем сопротивлением 5 Ом, действует напряжение 25 В. Надо узнать значение тока на этом участке цепи.
Решение: I = U/R = 25 / 5 = 5 А.
Второй пример: На участке цепи действует напряжение 12 В, создавая в нем ток, равный 20 мА. Каково сопротивление этого участка цепи? Прежде всего ток 20 мА нужно выразить в амперах. Это будет 0,02 А. Тогда R = 12 / 0,02 = 600 Ом.

Третий пример: Через участок цепи сопротивлением 10 кОм течет ток 20 мА. Каково напряжение, действующее на этом участке цепи? Здесь, как и в предыдущем примере, ток должен быть выражен в амперах (20 мА = 0,02 А), сопротивление в омах (10кОм = 10000Ом). Следовательно, U = IR = 0,02 х 10000 = 200 В. На цоколе лампы накаливания плоского карманного фонаря выштамповано: 0,28 А и 3,5 В. О чем говорят эти сведения? О том, что лампочка будет нормально светиться при токе 0,28 А, который обусловливается напряжением 3,5 В, Пользуясь законом Ома, нетрудно подсчитать, что накаленная нить лампочки имеет сопротивление R = 3,5 / 0,28 = 12,5 Ом. Это, подчеркиваю, сопротивление накаленной нити лампочки. А сопротивление остывшей нити значительно меньше. Закон Ома справедлив не только для участка, но и для всей электрической цепи. В этом случае в значение R подставляется суммарное сопротивление всех элементов цепи, в том числе и внутреннее сопротивление источника тока. Однако при простейших расчетах цепей обычно пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.

В связи с этим приведу еще один пример: Напряжение электроосветительной сети 220 В. Какой ток потечет в цепи, если сопротивление нагрузки равно 1000Ом? Решение: I = U/R = 220 / 1000 = 0,22 А. Примерно такой ток потребляет электрический паяльник.

Всеми этими формулами, вытекающими из закона Ома, можно пользоваться и для расчета цепей переменного тока, но при условии, если в цепях нет катушек индуктивности и конденсаторов.

Закон Ома и производные от него расчетные формулы, достаточно легко запомнить, если пользоваться вот этой графической схемой, т. н. треугольник закона Ома:

Пользоваться этим треугольником легко, достаточно четко запомнить, что горизонтальная линия в треугольнике означает знак деления (по аналогии дробной черты), а вертикальная линия в треугольнике означает знак умножения.

Теперь рассмотрим такой вопрос: как влияет на ток резистор, включаемый в цепь последовательно с нагрузкой или параллельно ей? Разберем такой пример. У нас имеется лампочка от круглого электрического, фонаря, рассчитанная на напряжение 2,5 В и ток 0,075 А. Можно ли питать эту лампочку от батареи 3336Л, начальное напряжение которой 4,5 В? Нетрудно подсчитать, что накаленная нить этой лампочки имеет сопротивление немногим больше 30 Ом. Если же питать ее от свежей батареи 3336Л, то через нить накала лампочки, по закону Ома, пойдет ток, почти вдвое превышающий тот ток, на который она рассчитана. Такой перегрузки нить не выдержит, она перекалится и разрушится. Но эту лампочку все же можно питать от батареи 336Л, если последовательно в цепь включить добавочный резистор сопротивлением 25 Ом, как это показано на рис..

Добавочный резистор, включенный в цепь, ограничивает ток в этой цепи.

В этом случае общее сопротивление внешней цепи будет равно примерно 55 Ом, т.е. 30 Ом — сопротивление нити лампочки Н плюс 25 Ом — сопротивление добавочного резистора R. В цепи, следовательно, потечет ток, равный примерно 0,08 А, т.е. почти такой же, на который рассчитана нить накала лампочки. Эту лампочку можно питать от батареи и с более высоким напряжением и даже от электроосветительной сети, если подобрать резистор соответствующего сопротивления. В этом примере добавочный резистор ограничивает ток в цепи до нужного нам значения. Чем больше будет его сопротивление, тем меньше будет и ток в цепи. В данном случае в цепь было включено последовательно два сопротивления: сопротивление нити лампочки и сопротивление резистора. А при последовательном соединении сопротивлений ток одинаков во всех точках цепи. Можно включать амперметр в любую точку цепи, и всюду он будет показывать одно значение. Это явление можно сравнить с потоком воды в реке. Русло реки на различных участках может быть широким или узким, глубоким или мелким. Однако за определенный промежуток времени через поперечное сечение любого участка русла реки всегда проходит одинаковое количество воды.

Добавочный резистор, включаемый в цепь последовательно с нагрузкой (как, например, на рис. выше), можно рассматривать как резистор, «гасящий» часть напряжения, действующего в цепи. Напряжение, которое гасится добавочным резистором или, как говорят, падает на нем, будет тем большим, чем больше сопротивление этого резистора. Зная ток и сопротивление добавочного резистора, падение напряжения на нем легко подсчитать все по той же знакомой вам формуле U = IR, Здесь U — падение напряжения, В; I — ток в цепи, A; R — сопротивление добавочного резистора, Ом. Применительно к нашему примеру резистор R ( на рис.) погасил избыток напряжения: U = IR = 0,08 х 25 = 2 В. Остальное напряжение батареи, равное приблизительно 2,5 В, упало на нити лампочки. Необходимое сопротивление резистора можно найти по другой знакомой вам формуле R = U/I, где R — искомое сопротивление добавочного резистора, Ом; U-напряжение, которое необходимо погасить, В; I — ток в цепи, А. Для нашего примера сопротивление добавочного резистора равно: R = U/I = 2/0,075, 27 Ом. Изменяя сопротивление, можно уменьшать или увеличивать напряжение, которое падает на добавочном резисторе, и таким образом регулировать ток в цепи. Но добавочный резистор R в такой цепи может быть переменным, т.е. резистором, сопротивление которого можно изменять (см. рис. ниже).

Регулирование тока в цепи с помощью переменного резистора.

В этом случае с помощью движка резистора можно плавно изменять напряжение, подводимое к нагрузке Н, а значит, плавно регулировать ток, протекающий через эту нагрузку. Включенный таким образом переменный резистор называют реостатом, С помощью реостатов регулируют токи в цепях приемников, телевизоров и усилителей. Во многих кинотеатрах реостаты использовали для плавного гашения света в зрительном зале. Есть, однако, и другой способ подключения нагрузки к источнику тока с избыточным напряжением — тоже с помощью переменного резистора, но включенного потенциометром, т.е. делителем напряжения, как показано на рис..

Регулирование напряжения на нагрузке R2 с помощью переменного резистора включенного в электрическую цепь потенциометром.

Здесь R1 — резистор, включенный потенциометром, a R2 — нагрузка, которой может быть та же лампочка накаливания или какой — то другой прибор. На резисторе R1 происходит падение напряжения источника тока, которое частично или полностью может быть подано к нагрузке R2. Когда движок резистора находится в крайнем нижнем положении, к нагрузке напряжение вообще не подается (если это лампочка, она гореть не будет). По мере перемещения движка резистора вверх мы будем подавать все большее напряжение к нагрузке R2 (если это лампочка, ее нить будет накаливаться). Когда же движок резистора R1 окажется в крайнем верхнем положении, к нагрузке R2 будет подано все напряжение источника тока (если R2 — лампочка карманного фонаря, а напряжение источника тока большое, нить лампочки перегорит). Можно опытным путем найти такое положение движка переменного резистора, при котором к нагрузке будет подано необходимое ей напряжение. Переменные резисторы, включаемые потенциометрами, широко используют для регулирования громкости в приемниках и усилителях. Резистор может быть непосредственно подключен параллельно нагрузке. В таком случае ток на этом участке цепи разветвляется и идет двумя параллельными путями: через добавочный резистор и основную нагрузку. Наибольший ток будет в ветви с наименьшим сопротивлением. Сумма же токов обеих ветвей будет равна току, расходуемому на питание внешней цепи. К параллельному соединению прибегают в тех Случаях, когда надо ограничить ток не во всей цепи, как при последовательном включении добавочного резистора, а только на каком — то участке. Добавочные резисторы подключают, например, параллельно миллиамперметрам, чтобы ими можно было измерять большие токи. Такие резисторы называют шунтирующими или шунтами. Слово шунт означает ответвление.

ИНДУКТИВНОЕ СОПРОТИВЛЕНИЕ

В цепи переменного тока на значение тока влияет не только сопротивление проводника, включенного в цепь, но и его индуктивность. Поэтому в цепях переменного тока различают так называемое омическое или активное сопротивление, определяемое свойствами материала проводника, и индуктивное сопротивление, определяемое индуктивностью проводника. Прямой проводник обладает сравнительно небольшой индуктивностью. Но если этот проводник свернуть в катушку, его индуктивность увеличится. При этом увеличится и сопротивление, оказываемое им переменному току, — ток в цепи уменьшится. С увеличением частоты тока индуктивное сопротивление катушки тоже увеличивается. Запомни: сопротивление катушки индуктивности переменному току возрастает с увеличением ее индуктивности и частоты проходящего по ней тока. Это свойство катушки используют в различных цепях приемников, когда требуется ограничить ток высокой частоты или выделить колебания высокой частоты, в выпрямителях переменного тока и во многих других случаях, с которыми вам придется постоянно сталкиваться на практике. Единицей индуктивности является генри (Гн). Индуктивностью 1Гн обладает такая катушка, у которой при изменении тока в ней на 1 А в течение 1 с развивается ЭДС самоиндукции, рав;ная 1 В. Этой единицей пользуются для определения индуктивности катушек, которые включают в цепи токов звуковой частоты. Индуктивность катушек, используемых в колебательных контурах, измеряют в тысячных долях генри, называемых миллигенри (мГн), или еще в тысячу раз меньшей единицей — микрогенри (мкГн).

МОЩНОСТЬ И РАБОТА ТОКА

На нагрев нити накала электрической или электронной лампы, электропаяльника, электроплитки или иного прибора затрачивается некоторое количество электроэнергии. Эту энергию, отдаваемую источником тока (или получаемую от него нагрузкой) в течение 1 с, называют мощностью тока. За единицу мощности тока принят ватт (Вт). Ватт — это мощность, которую развивает постоянный ток 1А при напряжении 1В. В формулах мощность тока обозначают латинской буквой Р (читается «пэ»). Электрическую мощность в ваттах получают умножением напряжения в вольтах на ток в амперах, т.е. P = UI. Если, например, источник постоянного тока напряжением 4,5 В создает в цепи ток 0,1 А, то мощность тока будет: р = 4,5 х 0,1 = 0,45 Вт. Пользуясь этой формулой, можно, например, подсчитать мощность, потребляемую лампочкой карманного фонаря, если 3,5 В умножить на 0,28 А. Получим около 1 Вт. Изменив эту формулу так: I = P/U, можно узнать ток, протекающий через электрический прибор, если известны потребляемая им мощность и подводимое к нему напряжение. Каков, например, ток, идущий через электрический паяльник, если известно, что при напряжении 220 В он потребляет мощность 40 Вт? I = P/I = 40/220 = 0,18 А. Если известны ток и сопротивление цепи, но неизвестно напряжение, мощность можно подсчитать по такой формуле: P = I2R. Когда же известны напряжение, действующее в цепи, и сопротивление этой цепи, то для подсчета мощности используют такую формулу: Р = U2/R. Но ватт — сравнительно небольшая единица мощности. Когда приходится иметь дело с электрическими устройствами, приборами или машинами, потребляющими токи в десятки, сотни ампер, используют единицу мощности киловатт (пишут кВт), равную 1000 Вт. Мощности электродвигателей заводских станков, например, могут составлять от нескольких единиц до десятков киловатт. Количественный расход электроэнергии оценивают ватт — секундой, характеризующей единицу энергии — джоуль. Расход электроэнергии определяют умножением мощности, потребляемой прибором, на время его работы в секундах. Если, например, лампочка электрического фонарика (ее мощность, как мы уже знаем, около 1 Вт) горела 25 с, значит, расход энергии составил 25 ватт — секунд. Однако ватт — секунда величина очень малая. Поэтому на практике используют более крупные единицы расхода электроэнергии: ватт — час, гектоватт — час и киловатт — час. Чтобы расход энергии был выражен в ватт — часах или киловатт — часах, нужно соответственно мощность в ваттах или киловаттах умножить на время в часах. Если, например, прибор потребляет мощность 0,5 кВт в течение 2 ч, то расход энергии составит 0,5 Х 2 = 1 кВт ч; 1 кВт ч энергии будет также израсходован, если цепь будет потреблять (или расходовать) мощность 2 кВт в течение получаса, 4 кВт в течение четверти часа и т.д. Электрический счетчик, установленный в доме или квартире, где вы живете, учитывает расход электроэнергии в киловатт — часах. Умножив показания счетчика на стоимость 1 кВт-ч (сумма в коп.), вы узнаете, на какую сумму израсходовано энергии за неделю, месяц. При работе с гальваническими элементами или батареями говорят об их электрической емкости в ампер — часах, которая выражается произведением значения разрядного тока на длительность работы в часах. Начальная емкость батареи 3336Л, например 0,5 Ач. Подсчитай: сколько времени будет батарея непрерывно работать, если разряжать ее током 0,28 А (ток лампочки фонаря)? Примерно один и три четверти часа. Если же эту батарею разряжать более интенсивно, например, током 0,5 А, она будет работать меньше 1 ч. Таким образом, зная емкость гальванического элемента или батареи и токи, потребляемые их нагрузками, можно подсчитать примерное время, в течение которого будут работать эти химические источники тока. Начальная емкость, а также рекомендуемый разрядный ток или сопротивление внешней цепи, определяющее разрядный ток элемента или батареи, указывают иногда на их этикетках или в справочной литературе.

В этом уроке я попытался систематизировать и выложить максимум необходимой для начинающего радиолюбителя информации по основам электротехники, без которых дальше нет смысла, что то, продолжать изучать. Урок, получился пожалуй самый продолжительный, но и самый важный. Советую отнестись к этому уроку более серьезно, обязательно заучить выделенные определения, если что то, непонятно, перечитывайте несколько раз, что бы вникнуть в суть сказанного. В качестве практической работы, можете поэксперементировать со схемами изображенными на рисунках, т. е. с батарейками лампочками и переменным резистором. Это пойдет вам на пользу. А вообще, в этом уроке, конечно же, весь упор нужно сделать не на практику, а на усвоение теории.

 

Переходим к следующему уроку !

с чего начать изучение электротехники? Основные понятия, советы.

С чего начать изучение электротехники?
с чего начать изучение электротехники

Современную жизнь практически невозможно представить без электричества. Оно используется повсеместно и помогает людям создавать комфортные условия, решать различные задачи самого разного направления. Человека электричество окружает повсеместно, начиная с обычной лампочки в квартире или подъезде жилого дома, уличного фонаря и заканчивая всевозможной электронной аппаратурой, в том числе – мобильными телефонами и персональными компьютерами.

Работа таких устройств зачастую описывается сложными терминами, вычисляется по непонятным формулам, а принцип действия основывается на законах, которые нам далеко не всегда понятны. Тем не менее, если правильно поставить цель и грамотно организовать работу, то вполне можно самостоятельно изучить основы электротехники.

Выбираем лучший способ

Конечно, изучение науки лучше всего проводить в специальных учебных заведениях или на специальных курсах. Обучаемый при этом имеет возможность общаться с преподавателем, задавать вопросы, уточнять те или иные непонятные, трудноусваиваемые моменты и материалы. В учебных заведениях к услугам пользователей предоставляется учебно-материальная база: всевозможные тренажеры, стенды и т.п. Наконец, посте окончания учебного заведения обучаемому, успешно усвоившему программу и сдавшему соответствующей зачеты, выдается свидетельство об окончании, диплом или удостоверение, которое в дальнейшем поможет трудоустроиться по специальности.

с чего начать изучение электротехники

Основные материалы и источники

При самостоятельном изучении электротехники потребуется использовать дополнительные материалы, и важно знать, где их можно найти.

Высокую популярность обретает именно такой способ получения информации. Сейчас в интернете есть множество полезных источников видеоинформации, в которых содержатся сведения, помогающие овладеть основами электротехники. Такие видеоролики можно изучать в режиме Онлайн, или же скачать с помощью специальных программ и заархивировать.

В первую очередь обратите внимание на видео уроки электрика. В Сети есть огромное количество видеоматериалов, в которых подробно и наглядно рассказывается о всевозможных практических вопросах, с которыми в процессе выполнения повседневных задач может столкнуться начинающий электрик.

с чего начать изучение электротехники

Важный раздел, обязательный к изучению – видеоуроки по основам теории электротехники. Не понимая основных законов физики обучаемому будет достаточно сложно усвоить программу непосредственно по специальности. Просмотреть и изучить необходимо следующие разделы:

– основы электротехники;

– понятие «ноль» и «фаза»;

– схемы подключения основных электроприборов, лампочек, выключателей, розеток;

– инструменты, используемые для электромонтажных работ, их виды и особенности применения;

– разновидности материалов, которые применяются в процессе монтажа или ремонта электрооборудования и приборов;

– порядок и правила сборки электрической цепи;

– различные модели электроснабжения помещения;

– основы техники безопасности.

Книги, учебники, справочники, иная литература по электротехнике

Книга всегда считалась лучшим средством для глубокого усвоения информации. Пусть она не так наглядна, как видеоматериал, но именно с правильно подобранной книгой (а для изучения электротехники, скорее всего, потребуется целая подборка таких книг) можно рассчитывать на получение твердых профессиональных знаний.

с чего начать изучение электротехники

Не так давно книги были в категории дефицита. Зачастую из можно было взять только в библиотеке или же купить в магазине. В настоящее время информация стала более доступной. Практически любую книгу можно скачать в интернете, а затем распечатать ее на принтере, скрепить и изучать. При желании можно также использовать любые гаджеты – смартфоны, планшеты, ноутбуки и продолжать чтение, изучение основ электротехники с помощью таких мобильных устройств.

В книге, конечно же, можно найти намного больше важной и полезной информации по сравнению с видео уроком. У обучаемого всегда под рукой будет иметься справочная информация, иные материалы, позволяющие интенсифицировать процесс учебы, усвоения новых знаний, навыков и умений. Книги в интернете найти достаточно легко. Лучшее решение – воспользоваться информацией на специализированных сайтах.

Оптимальное решение

Чтобы самостоятельно изучить электротехнику, потребуется время, терпение, а также правильный подбор источников информации. Несомненно, лучшее решение – использовать различные методы обучения: видео, книги и журналы. Если есть возможность – запишитесь на специализированные курсы, там за счет обучающей организации будет предоставлена возможность попрактиковаться.

с чего начать изучение электротехники

Подведем итог

Начать изучение электротехники необходимо с четкой постановки задачи, целей. Затем – подбор источников информации, построение плана последовательного усвоения материалов. А далее – кропотливый и упорный труд.

Желаем успеха!

Начинающий электрик видео уроки

  • Мария Крупнова к записи От потребителей сайтов к их создателям
  • Мария Крупнова к записи На каком движке делать сайт?
  • Мария Крупнова к записи Видеокурс «Ремонт квартиры своими руками» Бонусы Скидка!
  • Александр к записи Что такое инфобизнес?
  • Любовь к записи Видео урок своими руками

Курс молодого электрика скачать

Те, кто может самостоятельно справиться с проведением электропроводки в квартире, куда легче справятся с ремонтом. Во-первых — это существенно экономит деньги, а во-вторых вы всегда можете починить проводку без посторонней помощи. А уж во время капитального ремонта это умение бесценно.

В самом начале необходимо продумать удобное для вашей квартиры расположение розеток и их количество, так что решите заранее, где у вас будут находиться те или иные электроприборы. Также надо решить, где будут располагаться выключатели и коробки разветвления. В том случае, если квартира старая, может понадобиться полная замена проводки, так как она может не выдержать напряжения от современных приборов.

Приступая к самостоятельному монтажу проводки, обзаведетесь схемой электропроводки дома, с которой можно будет сверяться в процессе работы. Имея дело с электричеством, будьте предельно внимательны, не упустите ни одной мелочи, иначе потом все придется переделывать, а это проблематично.

Ремонт электропроводки — дело очень ответственное, так что не поленитесь ознакомиться с технической информацией и соблюдайте правила безопасности. Напряжение свыше 110 Вольт и переменное напряжение свыше 42 Вольт считается очень опасным для здоровья. Причем переменное напряжение опаснее. От тока человек может получить как удары, так и ожоги, а также электрометки.

Перед тем, как приступить к работе, надо подготовить рабочее место согласно правилам техники безопасности. Надо помнить, что у проводки в квартире есть нескольких уровней обеспечения безопасности, в новостройках они предполагают заземление, также должны быть автоматические предохранители.

Перед началом работ надо проверить соблюдение правил соединения проводов и соответствие электротехнического потенциала сети возможным нагрузкам. Электричество необходимо отключить и принять меры для того, чтобы напряжение не могло подаваться на рабочее место, если оно вдруг включится.

Полезной вещью может быть цифровой тестер, который определит, есть напряжение или нет. Подойдет и обычный указатель напряжения в виде отвертки с индикатором напряжения. Обязательно нужно использовать электрозащитные средства: переносные заземления, диэлектрические перчатки, указатели напряжения и исправный ручной изолирующий инструмент. Лучше все работы проводить не в одиночку, а под наблюдением другого человека, чтобы было кому оказать вам первую помощь в случае непредвиденных обстоятельств.

Видео по теме:
Как сделать простую электропроводку своими руками


Когда ремонт электропроводки для вас станет неизбежен в помощь вам предлагаю скачать бесплатно видеокурс «Молодого электрика» , автор Владимир Козин,
который состоит из десяти последовательных наглядных видеоуроков:

  1. Основы электротехники.
  2. Инструменты электромонтажника.
  3. Материалы для электромонтажа.
  4. Простая электрическая цепь.
  5. Электрическая цепь с выключателем.
  6. Параллельное соединение.
  7. Электрическая цепь с двухклавишным выключателем.
  8. Модель электроснабжения помещения.
  9. Модель электроснабжения помещения с автоматическим выключателем..
  10. Безопасность при работе с электричеством.

Скачать бесплатно видеокурс «Молодого электрика»

Сейчас без электричества невозможно представить жизнь. Это не только свет и обогреватели, но и вся электронная аппаратура начиная с самых первых электронных ламп и заканчивая мобильными телефонами и компьютерами. Их работа описывается самыми разными, иногда очень сложными формулами. Но даже самые сложные законы электротехники и электроники в основе своей имеют законы электротехники, которые в институтах, техникумах и училищах изучает предмет «Теоретические основы электротехники» (ТОЭ).

Основные законы электротехники

Закон Ома — с этого закона начинается изучение ТОЭ и без него не может обойтись ни один электрик. Он гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению Это значит, что чем выше напряжение, поданное на сопротивление, электродвигатель, конденсатор или катушку (при соблюдении других условий неизменными), тем выше ток, протекающий по цепи. И наоборот, чем выше сопротивление, тем ниже ток.

Закон Джоуля — Ленца. С помощью этого закона можно определить количество тепла, выделившегося на нагревателе, кабеле, мощность электродвигателя или другие виды работ, выполненных электрическим током. Этот закон гласит, что количество тепла, выделяемого при протекании электрического тока по проводнику, прямо пропорциональна квадрату силы тока, сопротивлению этого проводника и времени протекания тока. С помощью этого закона определяется фактическая мощность электродвигателей, а также на основе этого закона работает электросчётчик, по которому мы платим за потреблённую электроэнергию.

Первый закон Кирхгофа. С его помощью рассчитываются кабеля и автоматы защиты при расчёте схем электроснабжения. Он гласит, что сумма токов, приходящих в любой узел равна сумме токов, уходящих из этого узла. На практике приходит один кабель из источника питания, а уходит один или несколько.

Второй закон Кирхгофа. Применяется при подключении нескольких нагрузок последовательно или нагрузки и длинного кобеля. Он также применим при подключении не от стационарного источника питания, а от аккумулятора. Он гласит, что в замкнутой цепи сумма всех падений напряжений и всех ЭДС равна 0.

С чего начать изучение электротехники

Лучше всего изучать электротехнику на специальных курсах или в учебных заведениях. Кроме возможности общаться с преподавателями, вы можете воспользоваться материальной базой учебного заведения для практических занятий. Учебное заведение также выдаёт документ, который будет необходим при устройстве на работу.

Если вы решили изучать электротехнику самостоятельно или вам необходим дополнительный материал для занятий, то есть много сайтов, на которых можно изучить и скачать на компьютер или телефон необходимые материалы.

Видеоуроки

В интернете есть много видеоматериалов, помогающих овладеть основами электротехники. Все видеоролики можно как смотреть онлайн, так и скачать с помощью специальных программ.

Видеоуроки электрика — очень много материалов, рассказывающих о разных практических вопросах, с которыми может столкнуться начинающий электрик, о программах, с которыми приходится работать и об аппаратуре, устанавливаемой в жилых помещениях.

Основы теории электротехники — здесь находятся видеоуроки, наглядно объясняющие основные законы электротехники Общая длительность всех уроков около 3 часов.

  1. Основы электротехники, ноль и фаза, схемы подключения лампочек, выключателей, розеток. Виды инструмента для электромонтажа;
  2. Виды материалов для электромонтажа, сборка электрической цепи;
  3. Подключение выключателя и параллельное соединение;
  4. Монтаж электрической цепи с двухклавишным выключателем. Модель электроснабжения помещения;
  5. Модель электроснабжения помещения с выключателем. Основы техники безопасности.

Книги

Самым лучшим советчиком всегда являлась книга. Раньше необходимо было брать книгу в библиотеке, у знакомых или покупать. Сейчас в интернете можно найти и скачать самые разные книги, необходимые начинающему или опытному электромонтёру. В отличие от видеоуроков, где можно посмотреть, как выполняется то или иное действие, в книге можно держать рядом во время выполнения работы. В книге могут быть справочные материалы, которые не поместятся в видеоурок (как в школе — учитель рассказывает урок, описанный в учебнике, и эти формы обучения дополняют друг друга).

Есть сайты с большим количеством электротехнической литературы по самым разным вопросам — от теории до справочных материалов. На всех этих сайтах нужную книгу можно скачать на компьютер, а позже читать с любого устройства.

Например,

mexalib — разного рода литература, в том числе и по электротехнике

книги для электрика — на этом сайте много советов для начинающего электротехника

электроспец — сайт для начинающих электриков и профессионалов

Библиотека электрика — много разных книг в основном для профессионалов

Онлайн-учебники

Кроме этого, в интернете ест онлайн-учебники по электротехнике и электронике с интерактивным оглавлением.

Это такие, как:

Начальный курс электрика — учебное пособие по электротехнике

Основы электротехники — базовые понятия

Электроника для начинающих — начальный курс и основы электроники

Техника безопасности

Главное при выполнении электротехнических работ, это соблюдение техники безопасности. Если неправильная работа может привести к выходу из строя оборудования, то несоблюдение техники безопасности — к травмам, инвалидности или летальному исходу.

Главные правила — это не прикасаться к проводам, находящимся под напряжением, голыми руками, работать инструментом с изолированными ручками и при отключении питания вывешивать плакат «не включать, работают люди». Для более подробного изучения этого вопроса нужно взять книгу «Правила техники безопасности при электромонтажных и наладочных работах».

Как читать электрические схемы – графические, буквенные и цифровые обозначения

Новички, которые пытаются самостоятельно собрать какие-то электронные схемы и приборы, сталкиваются с самым первым в своей новой деятельности вопросе, как читать электрические схемы? Вопрос, на самом деле серьезный, ведь прежде, чем собрать схему, ее необходимо как-то обозначить на бумаге. Или найти готовый вариант для воплощения в жизнь. То есть, чтение электрических схем – основная задача любого радиолюбителя или электрика.

Что такое электрическая схема

Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек – это залог правильно собранного электронного прибора. А, значит, основная задача сборщика – это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями.

Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО.

Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:

Как видите, очень похоже на оригинал. А вот так обозначается динамик:

То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме. К примеру, конденсатор на рисунке снизу.

Тот, кто давно разбирается в электротехнике, то знает, что конденсатор – это две пластинки, между которыми размещен диэлектрик. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента.

Самые сложные значки у полупроводниковых элементов. Давайте рассмотрим транзистор. Необходимо отметить, что у этого прибора три выхода: эмиттер, база и коллектор. Но и это еще не все. У биполярных транзисторов встречаются две структуры: «n – p – n» и «p – n – p». Поэтому и на схеме они обозначаются по-разному:

Как видите, транзистор по своему изображению на него-то и не похож. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.

Простые схемы для начинающих, зная несколько значков, можно читать без проблем. Но практика показывает, что простыми электросхемами в современных электронных приборах практически не обходятся. Так что придется учить все, что касается принципиальных схем. А, значит, необходимо разобраться не только со значками, но и с буквенными и цифровыми обозначениями.

Что обозначают буквы и цифры

Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? Начнем с букв. Рядом с каждым УЗО всегда проставляется латинская буква. По сути, это буквенное обозначение элемента. Это сделано специально, чтобы при описании схемы или устройства электронного прибора, можно было бы обозначать его детали. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение. Это и проще, и удобнее.

Теперь цифровое обозначение. Понятно, что в любой электронной схеме всегда найдутся элементы одного значения, то есть, однотипных. Поэтому каждую такую деталь пронумеровывают. И вся эта цифровая нумерация идет от верхнего левого угла схемы, затем вниз, далее вверх и опять вниз.

Внимание! Специалисты называют такую нумерацию правилом «И». Если обратите внимание, то движение по схеме так и происходит.

И последнее. Все электронные элементы имеют определенные свои параметры. Их обычно также прописывают рядом со значком или выносят в отдельную таблицу. К примеру, рядом с конденсатором может быть указана его номинальная емкость в микро- или пикофарадах, а также номинальное его напряжение (если такая необходимость возникает). Вообще, все, что связано с полупроводниковыми деталями должно обязательно дополняться информацией. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.

Иногда цифровые обозначения на электросхемах отсутствуют. Что это значит? К примеру, взять резистор. Это говорит о том, что в данной электрической схеме показатель его мощности не имеет значения. То есть, можно установить даже самый маломощный вариант, который выдержит нагрузки схемы, потому что в ней течет ток малой силы.

И еще несколько обозначений. Проводники графически обозначаются прямой непрерывной линией, места пайки точкой. Но учтите, что точка ставиться только в том месте, где соединяются три или более проводников.

Заключение по теме

Итак, вопрос, как научится читать схемы электрические, не самый простой. Вам потребуется не только знание УЗО, но и знание, касающиеся параметров каждого элемента, его структуры и конструкции, а также принципа работы, и для чего он необходим. То есть, придется учить все азы радио- и электротехники. Сложно? Не без этого. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали.

Условные обозначения на электрических схемах

Обозначение розетки на электрической схеме по ГОСТам

Как определить полярность электролитического конденсатора

Самоучитель электрика. Обучиться, научиться электромонтажу. Осветительная бытовая электрическая сеть, электричество своими руками. Схема электропроводки, проводки.

Наверняка я что-то упустил. Могут быть разные частные вопросы по электрике, которые я не осветил. Обязательно пишите вопросы в обсуждение статьи. Я, если смогу, на них отвечу.

Техника безопасности

Если Вы самостоятельно никогда не выполняли электромонтажные работы, то не следует думать, что прочитав этот материал, Вы сможете все сделать правильно, безопасно для себя и будущих пользователей. Статья позволит понять, как устроена бытовая осветительная сеть, уяснить основные принципы ее монтажа. Первый раз электромонтажные работы нужно проводить под наблюдением опытного специалиста. В любом случае, вне зависимости от того, имеете ли Вы официальный допуск, Вы берете на себя ответственность за жизнь, здоровье и безопасность себя и окружающих.

Никогда не работайте с высоким напряжением в одиночку. Всегда должен рядом быть человек, который в критической ситуации сможет обесточить систему, вызвать экстренные службы и оказать первую помощь.

Не следует выполнять работы под напряжением. Это развлечение для опытных профессионалов. Обесточьте сеть, с которой будете работать, убедитесь, что никто не сможет случайно включить электричество, когда Вы будете заниматься монтажом.

Не надейтесь на то, что до Вас проводка была выполнена правильно. Обзаведитесь датчиком (индикатором) фазы. Это такое устройство, похожее на отвертку или шило. У него есть щуп. Если щуп прикасается к проводу, находящемуся под напряжением, то загорается индикатор. Убедитесь, что Вы умеете правильно пользоваться этим датчиком. Есть тонкости. Некоторые датчики правильно работают только если пальцем прижимать специальный контакт на ручке. Перед тем, как начинать работу, с помощью индикатора фазы убедитесь, что проводка обесточена. Я не раз встречал ошибочно выполненные варианты проводки, когда автомат на входе разрывает только один провод, не обеспечивая полное обесточивание сети. Такая ошибка очень опасна, так как, отключив автомат, Вы предполагаете, что сеть обесточена, а это не так. Датчик фазы сразу предупредит Вас об опасности.

Главные неисправности электротехники

Мастера говорят, что в электротехнике есть всего два вида неисправностей. Нет нужного надежного контакта и есть ненужный. Действительно, в электромонтажном деле не бывает случаев, когда две точки сети должны быть связаны определенным сопротивлением. Они либо должны быть соединены, либо не соединены.

Схемы электрических соединений

На схеме приведена типовая двухконтурная проводка. На объект через автомат (A2 ), УЗО (A3 ) и электрический счетчик (A4 ) заведено сетевое напряжение осветительной сети (O1 ). Далее это напряжение разводится на два контура – осветительный и силовой. Оба контура имеют отдельные автоматы (A4 – осветительный контур, A5 – силовой) для их защиты от перегрузок и раздельного отключения при ремонтных работах. Автомат осветительного контура обычно выбирается на меньшую силу тока, чем автомат силового контура. К осветительному контуру подключены лампы (L1LN ) и две розетки (S1. S2 ) для подключения маломощных нагрузок, например, компьютера или телевизора. Эти розетки используются при ремонтных работах на силовом контуре для подключения электроинструмента. Силовой контур разведен на силовые розетки (S3SN ).

На схемах место соединения проводников обозначается точкой. Если проводники пересекают друг друга, но точки нет, то это означает, что проводники не соединены, они пересекаются без соединения.

Параллельное и последовательное соединения

Электрические цепи могут быть соединены параллельно и последовательно.

При последовательном соединении электрический ток, выходящий из одной цепи, попадает в другую. Таким образом, через все цепи, соединенные последовательно, протекает одинаковый ток.

При параллельном соединении электрический ток разветвляется на все цепи, соединенные параллельно. Таким образом, суммарный ток равен сумме токов в каждой цепи. Зато на цепи, соединенные параллельно, подается одинаковое напряжение.

На приведенной схеме входной автомат, УЗО, счетчик и вся остальная схема соединены последовательно. В результате автомат может ограничивать силу тока во всей цепи, а счетчик – измерять потребляемую энергию. Оба контура и нагрузки в них соединены параллельно, что позволяет подвести к каждой нагрузке сетевое напряжение, на которое она рассчитана, независимо от других нагрузок.

Здесь приведена принципиальная электрическая схема. Бывают еще монтажные схемы. На них указывается на плане объекта, где должна пройти проводка, где установить щит, где поставить розетки, выключатели и осветительные приборы. Там совсем другие обозначения. Я – не специалист в этих схемах. Информацию о них поищите в других источниках.

Основы электротехники для начинающих

  1. Понятия и свойства электрического тока
  2. Основные токовые величины
  3. Закон Ома
  4. Энергия и мощность в электротехнике
  5. Видео: Основы электротехники. Курс для начинающего электрика

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

Понятия и свойства электрического тока

Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеств ом. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит. Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

  • Нагревание проводника, по которому протекает ток.
  • Изменение химического состава проводника под действием тока.
  • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором – периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника. Величина заряда, перенесенная за определенную единицу времени, называется силой тока. измеряемой в амперах .

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление. измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность. связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P=IxU. единицей измерения служит ватт. Он означает перемещение одного ампера одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *