Site Loader

Содержание

Управление бесколлекторным двигателем постоянного тока, принцип работы

Содержание

  1. Преимущества бесколлекторного двигателя
  2. Как работает бесколлекторный двигатель постоянного тока
  3. Управление бесколлекторным двигателем постоянного тока

Бесколлекторные двигатели применяются в самых разных областях, так как это надежные, долговечные и стойкие к поломкам агрегаты. В быту чаще всего используется двигатель постоянного тока на 12 вольт, но бывают модели с большей мощностью.

Преимущества бесколлекторного двигателя

По сравнению со своими коллекторными «собратьями» бесколлекторные механизмы обладают некоторыми преимуществами:

  • Компактность и небольшой вес. Двигатели можно установить на маленькие устройства.
  • Очень высокий КПД. Их использование выгодно.
  • Отсутствие контактов переключения и крутящего момента. Поскольку функции постоянных магнитов выполняют транзисторы МОП, источники потерь отсутствуют.
  • Отсутствие стирающихся и ломающихся элементов.
  • Широкий диапазон изменения скорости вращения.
  • Способность переносить большую нагрузку по моменту.

Бесколлекторный двигатель оснащается электронным блоком управления, который стоит достаточно дорого – это, пожалуй, единственный его недостаток.

Как работает бесколлекторный двигатель постоянного тока

Принцип работы бесколлекторного двигателя постоянного тока тот же, что и у агрегатов других моделей. Но, как видно из названия, основная особенность механизма – отсутствие коллектора (этот узел сложен, тяжел, требует обслуживания и может искрить). Роль ротора выполняет шпиндель, вокруг которого установлены проволочные обмотки с разными магнитными полями. Количество прямоугольных магнитов, установленных у ротора, может быть разным, но обязательно четным (как и число полюсов). В случае если несколько магнитов составляют один полюс, число полюсов меньше числа магнитов.

Вращение достигается благодаря смене направления магнитного поля в определенной последовательности. Взаимодействуя с магнитными полями ротора, постоянные магниты приводят статор в движение. От их мощности зависит момент силы.

Управление бесколлекторным двигателем постоянного тока

В двигателях подобного типа управление коммутацией осуществляется с помощью электроники. Регуляторы хода бывают двух видов:

  • Без датчиков, используемые при отсутствии существенного изменения пускового момента или необходимости в управлении позиционированием (в вентиляторе). Широкое распространение этого вида регуляторов объясняется простотой их изготовления.
  • С датчиками, устанавливаемые в агрегатах с существенным варьированием пускового момента (в низкооборотистых механизмах).

Положение ротора при подаче токовых сил на обмотки определяется электронной системой и датчиком положения. Наиболее распространены следующие типы датчиков:

  • Датчик Холла. Этот узел изменяет свои выводы при переключении обмоток. Для измерения тока и частоты вращения применяется устройство с разомкнутым контуром. К датчику присоединяются три ввода. При изменении показаний запускается переработка прерывания. Если нужно обеспечить быстрое реагирование обработки прерывания, датчик следует подключить к младшим выводам порта.
  • Датчик положения с микроконтроллером. Управление бесколлекторным двигателем постоянного тока осуществляется с помощью AVR ядра (чипа для выполнения тех или иных задач). Программа, вшитая в плату AVR, максимально быстро запускает двигатель при отсутствии дополнительных внешних приборов и управляет скоростью.
  • Система arduino. Эта аппаратная вычислительная платформа представляет собой плату, состоящую из микроконтроллера Atmel AVR и элементарной обвязки программирования. Ее задача – конвертирование сигналов с одного уровня на другой. Нужную программу можно установить через USB.

Для устранения погрешностей в определении положении ротора, провода при подключении контроллера делают максимально короткими (12-16 см). Среди программных настроек контроллеров можно перечислить:

  • смену направления;
  • плавное выключение и торможение;
  • ограничение тока;
  • опережение КПД и мощности;
  • жесткое/плавное выключение;
  • быстрый/жесткий/мягкий старт;
  • режим газа.

Некоторые модели контроллеров содержат драйвера двигателя, что дает возможность его запуска напрямую, без установки дополнительных драйверов.


Управление бесколлекторным двигателем по сигналам обратной ЭДС – понимание процесса

Когда я начал разрабатывать блок управления бесколлекторным двигателем (мотор-колесом), было много вопросов о том, как сопоставить реальный двигатель с абстрактной схемой из трех обмоток и магнитов, на которой, как правило, все объясняют принцип управления бесколлекторными двигателями.

Когда я реализовал управление по датчикам Холла я еще не очень понимал, что происходит в двигателе дальше абстрактных трех обмоток и двух полюсов: почему 120 градусов и почему алгоритм управления именно такой.

Все встало на место, когда я начал разбираться в идее бездатчикового управления бесколлекторным двигателем — понимание процесса, происходящего в реальной железке, помогло разработать аппаратную часть и понять алгоритм управления.

Ниже я постараюсь расписать свой путь к пониманию принципа управления бесколлекторным двигателем постоянного тока.



Для работы бесколлекторного двигателя необходимо чтобы постоянное магнитное поле ротора увлекалось за вращающемся электромагнитным полем статора, как и в обычном ДПТ.

Вращение магнитного поля статора осуществляется коммутацией обмоток с помощью электронного блока управления.
Конструкция бесколлекторного двигателя схожа с конструкцией синхронного двигателя, если подключить бесколлекторный двигатель в трехфазную сеть переменного тока, удовлетворяющую электрическим параметрам двигателя, он будет работать.

Определенная коммутация обмоток бесколлекторного двигателя позволяет управлять им от источника постоянного тока. Чтобы понять, как составить таблицу коммутаций бесколлекторного двигателя необходимо рассмотреть управление синхронной машиной переменного тока.

Синхронная машина
Синхронная машина управляется от трехфазной сети переменного тока. Двигатель имеет 3 электрические обмотки, смещенные между собой на 120 электрических градусов.

Запустив трехфазный двигатель в генераторном режиме, постоянным магнитным полем будет наводиться ЭДС на каждую из обмоток двигателя, обмотки двигателя распределены равномерно, на каждую из фаз будет наводиться синусоидальное напряжение и данные сигналы будут смещены между собой на 1/3 периода (рисунок 1). Форма ЭДС меняется по синусоидальному закону, период синусоиды равен 2П(360), поскольку мы имеем дело с электрическими величинами (ЭДС, напряжение, ток) назовем это электрическими градусами и будем измерять период в них.

При подаче на двигатель трехфазного напряжения в каждый момент времени на каждой обмотке будет некое значение силы тока.

                                                

Рисунок 1. Вид сигнала трехфазного источника переменного тока.

Каждая обмотка формирует вектор магнитного поля пропорциональный току на обмотке. Сложив 3 вектора можно получить результирующий вектор магнитного поля. Так как с течением времени ток на обмотках двигателя меняется по синусоидальному закону, меняется величина вектора магнитного поля каждой обмотки, а результирующий суммарный вектор меняет угол поворота, при этом величина данного вектора остается постоянной.

                                                       

Рисунок 2. Один электрический период трехфазного двигателя.

На рисунке 2 изображен один электрический период трехфазного двигателя, на данном периоде обозначено 3 произвольных момента, чтобы построить в каждом из этих моментов вектора магнитного поля отложим данный период, 360 электрических градусов, на окружности. Разместим 3 обмотки двигателя сдвинутые на 120 электрических градусов относительно друг друга (рисунок 3).

     

Рисунок 3. Момент 1. Вектора магнитного поля каждой обмотки (слева) и результирующий вектор магнитного поля (справа).

Вдоль каждой из фаз построен вектор магнитного поля, создаваемый обмоткой двигателя. Направление вектора определяется направлением постоянного тока в обмотке, если напряжение, прикладываемое к обмотке положительно, то вектор направлен в противоположную сторону от обмотки, если отрицательное, то вдоль обмотки. Величина вектора пропорциональна величине напряжения на фазе в данный момент.
Чтобы получить результирующий вектор магнитного поля необходимо сложить данные вектора по закону сложения векторов.
Аналогично построение для второго и третьего моментов времени.

      

Рисунок 4. Момент 2. Вектора магнитного поля каждой обмотки (слева) и результирующий вектор магнитного поля (справа).

Так, с течение времени, результирующий вектор плавно меняет свое направление, на рисунке 5 изображены получившиеся вектора и изображен полный поворот магнитного поля статора за один электрический период.

                                 

Рисунок 5. Вид вращающегося магнитного поля формируемого обмотками на статоре двигателя.

За этим вектором электрического магнитного поля увлекается магнитное поле постоянных магнитов ротора в каждый момент времени (рисунок 6).

                            

Рисунок 6. Постоянный магнит (ротор) следует направлению магнитного поля формируемого статором.

Так работает синхронная машина переменного тока.

Имея источник постоянного тока необходимо самостоятельно формировать один электрический период со сменой направлений тока на трех обмотках двигателя. Поскольку бесколлекторный двигатель по конструкции такой же, как синхронный, в генераторном режиме имеет идентичные параметры, необходимо отталкиваться от рисунка 5, где изображено сформированное вращающееся магнитное поле.

Постоянное напряжение
Источник постоянного тока имеет только 2 провода «плюс питания» и «минус питания» это значит, что есть возможность подавать напряжение только на две из трех обмоток. Необходимо аппроксимировать рисунок 5 и выделить все моменты, при которых возможно скоммутировать 2 фазы из трех.

Число перестановок из множества 3 равняется 6, следовательно, имеется 6 вариантов подключения обмоток.
Изобразим возможные варианты коммутаций и выделим последовательность, при которой вектор будет шаг за шагом проворачиваться далее пока не дойдет до конца периода и не начнет сначала.

Электрический период будем отсчитывать от первого вектора.

      

Рисунок 7. Вид шести векторов магнитного поля которые можно создать от источника постоянного тока коммутацией двух из трех обмоток.

На рисунке 5 видно, что при управлении трехфазным синусоидальным напряжением имеется множество векторов плавно проворачивающихся с течением времени, а при коммутации постоянным током возможно получить вращающееся поле только из 6 векторов, то есть переключение на следующий шаг должно происходить каждые 60 электрических градусов.
Результаты из рисунка 7 сведены в таблицу 1.

 Таблица 1. Полученная последовательность коммутаций обмоток двигателя.

Плюс питания Минус питания Обмотка не подключена
W U V
W V U
U V W
U W V
V W U
V U W

Вид получившегося управляющего сигнала в соответствии с таблицей 1 изображен на рисунке 8. Где -V коммутация на минус источника питания (GND), а +V коммутация на плюс источника питания.

    

Рисунок 8. Вид управляющих сигналов от источника постоянного тока для бесколлекторного двигателя. Желтый – фаза W, синий – U, красный – V.

Однако реальная картина с фаз двигателя будет похожа на синусоидальный сигнал из рисунка 1. У сигнала образуется трапециевидная форма, так как в моменты, когда обмотка двигателя не подключена, постоянные магниты ротора наводят на нее ЭДС (рисунок 9).

                                    

Рисунок 9. Вид сигнала с обмоток бесколлекторного двигателя в рабочем режиме.

На осциллографе это выглядит так:

                                 

Рисунок 10. Вид окна осциллографа при измерении одной фазы двигателя.

Конструктивные особенности
Как было сказано ранее за 6 переключений обмоток формируется один электрический период 360 электрических градусов.
Необходимо связать данный период с реальным углом вращения ротора. Двигатели с одной парой полюсов и трехзубым статором применяются крайне редко, двигатели имеют N пар полюсов.
На рисунке 11 изображены модели двигателя с одной парой полюсов и с двумя парами полюсов.

                                       а.                                                                                              б.

                                      

Рисунок 11. Модель двигателя с одной (a) и с двумя (б) парами полюсов.

Двигатель с двумя парами полюсов имеет 6 обмоток, каждая из обмоток парная, каждая группа из 3 обмоток смещена между собой на 120 электрических градусов. На рисунке 12б. отложен один период для 6 обмоток. Обмотки U1-U2, V1-V2, W1-W2 соединены между собой и в конструкции представляют 3 провода вывода фаз. Для простоты рисунка не отображены соединения, но следует запомнить, что U1-U2, V1-V2, W1-W2 одно и то же.

На рисунке 12, исходя из данных таблицы 1, изображены вектора для одной и двух пар полюсов.

                                       а.                                                                                              б.

                     

Рисунок 12. Схема векторов магнитного поля для двигателя с одной (a) и с двумя (б) парами полюсов.

На рисунке 13 изображены вектора, созданные 6 коммутациями обмоток двигателя с одной парой полюсов. Ротор состоит из постоянных магнитов, за 6 шагов ротор провернется на 360 механических градусов.
На рисунке обозначены конечные положения ротора, в промежутках между двумя соседними положениями ротор проворачивается от предыдущего к следующему скоммутированному состоянию. Когда ротор достигает данного конечного положения, должно происходить следующее переключение и ротор будет стремиться к новому заданному положению, так чтобы его вектор магнитного поля стал сонаправлен с вектором электромагнитного поля статора.

        

Рисунок 13. Конечные положения ротора при шестиступенчатой коммутации бесколлекторного двигателя с одной парой полюсов.

В двигателях с N парами полюсов необходимо пройти N электрических периодов для полного механического оборота.
Двигатель с двумя парами полюсов будет иметь два магнита с полюсами S и N, и 6 обмоток (рисунок 14). Каждая группа из 3 обмотки смещены друг относительно друга на 120 электрических градусов.

        

Рисунок 14. Конечные положения ротора при шестиступенчатой коммутации бесколлекторного двигателя с двумя парами полюсов.

Определение положения ротора бесколлекторного двигателя
Как было сказано ранее для работы двигателя необходимо в нужные моменты времени подключать напряжение на нужные обмотки статора. Подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора, так чтобы магнитное поле статора всегда опережало магнитное поле ротора. Для определения положения ротора двигателя и коммутаций обмоток используют электронный блок управления.
Отслеживание положения ротора возможно несколькими способами:
      1. По датчикам Холла
      2. По обратной ЭДС
Как правило, датчиками Холла производители оснащают двигатель при выпуске, поэтому это самый распространённый метод управления.
Коммутирование обмоток в соответствии с сигналами обратной ЭДС позволяет отказаться от датчиков встроенных в двигатель и использовать в качестве датчика анализ свободной фазы двигателя, на которую будет наводиться магнитным полем противо-ЭДС.

Управление бесколлекторным двигателем с датчиками Холла
Чтобы коммутировать обмотки в нужные моменты времени необходимо отслеживать положение ротора в электрических градусах. Для этого применяются датчики Холла.
Поскольку имеется 6 состояний вектора магнитного поля необходимо 3 датчика Холла, которые будут представлять один абсолютный датчик положения с трехбитным выходом. Датчики Холла устанавливаются также как обмотки, смещенные между собой на 120 электрических градусов. Это позволяет использовать магниты ротора в качестве воздействующего элемента датчика.

                                

Рисунок 15. Сигналы с датчиков Холла за один электрический оборот двигателя.

Для вращения двигателя необходимо чтобы магнитное поле статора опережало магнитное поле ротора, положение, когда вектор магнитного поля ротора сонаправлен с вектором магнитного поля статора является конечным для данной коммутации, именно в этот момент должно происходить переключение на следующую комбинацию, чтобы не давать ротору зависать в стационарном положении.
Cопоставим сигналы с датчиков Холла с комбинацией фаз которые необходимо скоммутировать (таблица 2)

 Таблица 2. Сопоставление сигналов датчиков Холла с коммутацией фаз двигателя.

Положение двигателя HU(1) HV(2) HW(3) U V W
0 0 0 1 0 +
1 0 1 + 0
1 0 0 + 0
1 1 0 0 +
0 1 0 + 0
360/N 0 1 1 0 +

При равномерном вращении двигателя с датчиков поступает сигнал смещенный на 1/6 периода, 60 электрических градусов (рисунок 16).

                                                        

Рисунок 16. Вид сигнала с датчиков Холла.

Управление с помощью сигнала обратной ЭДС
Существуют бесколлекторный двигатели без датчиков положения. Определение положения ротора осуществляется с помощью анализа сигнала ЭДС на свободной фазе двигателя. В каждый момент времени к одной из фаз подключен «+» к другой «-» питания, одна из фаз остается свободной. Вращаясь, магнитное поле ротора наводит ЭДС в свободной обмотке. По мере вращения напряжение на свободной фазе изменяется (рисунок 17).

                                                 

Рисунок 17. Изменение напряжения на фазе двигателя.

Сигнал с обмотки двигателя разбит на 4 момента:
   1. Обмотка подключена к 0
   2. Обмотка не подключена (свободная фаза)
   3. Обмотка подключена к питающему напряжению
   4. Обмотка не подключена (свободная фаза)
Сопоставив сигнал с фаз с управляющим сигналом, видно, что момент перехода на следующее состояние можно детектировать пересечением средней точки (половины питающего напряжения) с фазой, которая в данный момент не подключена (рисунок 18).

                            

Рисунок 18. Сопоставление управляющего сигнала с сигналом на фазах двигателя.

После детектирования пересечения необходимо выдержать паузу и включать следующее состояние. По данному рисунку составлен алгоритм переключений состояний обмоток (таблица 3).

 Таблица 3. Алгоритм переключения обмоток двигателя

Текущее состояние U V W Следующее состояние
1 Ожидание пересечения средней точки из + в — + 2
2 Ожидание пересечения средней точки из — в + + 3
3 + Ожидание пересечения средней точки из + в — 4
4 + Ожидание пересечения средней точки из — в + 5
5 Ожидание пересечения средней точки из + в — + 6
6 + Ожидание пересечения средней точки из — в + 1

Пересечение средней точки проще всего детектировать компаратором, на один вход компаратора подается напряжение средней точки, а на второй текущее напряжение фазы.

                                            

Рисунок 19. Детектирование средней точки компаратором.

Компаратор срабатывает в момент перехода напряжения через среднюю точку и генерирует сигнал для микроконтроллера.

Обработка сигнала с фаз двигателя
Однако сигнал с фаз при регулировании скорости ШИМ отличается видом, и имеет импульсный характер (рисунок 21), в таком сигнале невозможно детектировать пересечение со средней точкой.

                                        

Рисунок 20. Вид сигнала фазы при регулировании скорости ШИМ.

Поэтому данный сигнал следует отфильтровать RC фильтром чтобы получить огибающую, а так же разделить под требования компаратора. По мере увеличения скважности шим сигнал будет возрастать по амплитуде (рисунок 22).

                                                   

Рисунок 21. Схема делителя и фильтра сигнала с фазы двигателя.

                                            

Рисунок 22. Огибающая сигнала при изменении скважности ШИМ.

Схема со средней точкой

                                                      

Рисунок 23. Вид виртуальная средней точки. Картинка взята с avislab.com/

С фаз снимаются сигналы через токограничительные резисторы и объединяются, получается вот такая картина:

                                          

Рисунок 24. Вид осциллограммы напряжения виртуальной средней точки.

Из-за ШИМ, напряжение средней точки не постоянно, сигнал так же необходимо фильтровать. Напряжение средней точки после сглаживания будет достаточно большим (в районе питающего напряжения двигателя), его необходимо разделить делителем напряжения до значения половины питающего напряжения.

После прохождения сигнала через фильтр колебания сглаживается и получается ровное напряжение относительно которого можно детектировать пересечение обратной ЭДС.

                                       

Рисунок 26. Напряжение после делителя и фильтра низких частот.

Средняя точка будет менять свое значение в зависимости от напряжения (скважности ШИМ), так же как и огибающая сигнала.
                               

Полученные сигналы с компараторов заводятся на микроконтроллер, который их обрабатывает по алгоритму выше.
Пока на этом все.

Бесколлекторный двигатель постоянного тока: принцип работы, устройство, применение

Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.

Общие сведения, устройство, сфера применения

Одна из причин проявления интереса к БД — это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.

Рис. 2. Устройство бесколлекторного двигателя

Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.

Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).

Рис. 3. Конструкция с внешним якорем (outrunner)

Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).

Бесколлекторный двигатель в компьютерном дисководе

Принцип работы

В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.

Фазы работы бесколлекторного привода

Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.

Отличия коллекторного и бесколлекторного двигателя

Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.

Рис. 5. А – коллекторный двигатель, В – бесколлекторный

Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.

Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.

Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.

Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.

Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.

Как запустить бесколлекторный двигатель?

Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.

Рис. 6. Контроллеры бесколлекторных двигателей для моделизма

Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:

  • Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
  • Максимальная величина штатного напряжения для продолжительной работы.
  • Сопротивление внутренних цепей контроллера.
  • Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
  • Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.

Обратим внимание, что первые три характеристики определяют мощность БД.

Управление бесколлекторным двигателем

Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.

Трёхфазный бесколлекторный электродвигатель постоянного тока

Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).

Рисунок 7. Диаграммы напряжений БД

Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:

  1. На катушки «А» подается положительный импульс, в то время как на «В» — отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
  2. Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
  3. На «С» — положительный, «А» — отрицательный.
  4. Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
  5. Положительный импульс повторно подается на «В», и отрицательный на «С».
  6. Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.

В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.

Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем

Преимущества и недостатки

Электрический бесколлекторный двигатель имеет много достоинств, а именно:

  • Срок службы значительно дольше, чем у обычных коллекторных аналогов.
  • Высокий КПД.
  • Быстрый набор максимальной скорости вращения.
  • Он более мощный, чем КД.
  • Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
  • Не требуется дополнительное охлаждение.
  • Простая эксплуатация.

Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.

Бесколлекторный двигатель постоянного тока: принцип работы, устройство, виды

Главная проблема коллекторных двигателей – это как раз-таки наличие коллекторного узла. Щётки стираются, а ламели изнашиваются, от слоя графитовой пыли между ними происходят замыкания, возникает искрение. Этих проблем нет в асинхронных машинах, но работать от постоянного тока они не могут. Бесколлекторный двигатель постоянного тока лишен обозначенных выше недостатков. О том, что это такое, как работает и где используются двигатели БДПТ мы и поговорим в этой статье.

Определение

Бесколлекторным называют электродвигатель постоянного тока, ток в обмотках которого переключает специальное устройство-коммутатор — он носит название «драйвер» или «инвертор» и эти обмотки всегда расположены на статоре. Коммутатор состоит из 6 транзисторов, они и подают ток в ту или иную обмотку, в зависимости от положения ротора.

В отечественной литературе такие двигатели называют «вентильными» (потому что полупроводниковые ключи называют «вентилями»), и есть разделение таких электромашин на два вида по форме противо—ЭДС. В зарубежной литературе такое различие сохраняется, один из них называют аналогично русскому «BLDC» (brushless direct current drive или motor), что в дословном переводе звучит как «бесщёточный двигатель постоянного тока» в их обмотках возникает трапецеидальная ЭДС. Вентильные же электродвигатели с синусоидальной ЭДС называют PMSM (Permanent magnet synchronous machine), что переводится как «синхронный электродвигатель с возбуждением постоянными магнитами».

Устройство и принцип действия

Коллектор в КДПТ служит узлом переключения тока в обмотках якоря. В бесколлекторном электродвигателе постоянного тока (БДПТ) эту роль выполняют не щетки с ламелями, а коммутатор она полупроводниковых ключах — транзисторах. Транзисторы переключают обмотки статора, создавая вращающееся магнитное поле, которое взаимодействует с полем магнитов ротора. А при протекании тока через проводник, который находится в магнитном поле, на него действует сила Ампера, за счет действия этой силы и образуется крутящий момент на валу электрических машин. На этом и основан принцип работы любого электродвигателя.

Теперь же разберемся в том, как устроен бесколлекторный двигатель. На статоре БДПТ обычно расположены 3 обмотки, по аналогии с электродвигателями переменного тока их часто называют трехфазными. Отчасти это верно: бесколлекторные двигатели работают от источника постоянного тока (чаще от аккумуляторов), но контроллер включает ток обмотках поочерёдно. Однако при этом не совсем верно говорить, что по обмоткам протекает переменный ток. Конечная форма питающего обмотки напряжения формируется прямоугольными импульсами управления транзисторами.

Трёхфазный бесколлекторный двигатель может быть трёхпроводными или четырёхпроводным, где четвертый провод — отвод от средней точки (если обмотки соединены по схеме звезды).

Обмотки или, говоря простым словами, катушки медного провода укладываются в зубы сердечника статора. В зависимости от конструкции и назначения привода на статоре может быть разное количество зубцов. Встречаются разные варианты распределения обмоток фаз по зубцам ротора, что иллюстрирует следующий рисунок.

Обмотки каждого из зубов в пределах одной фазы могут соединяться последовательно или параллельно, в зависимости от поставленных конструктору задач по мощности и моменту проектируемого привода, а сами же обмотки фаз соединяются между собой по схеме звезды или треугольника, подобно асинхронным или синхронным трёхфазными электродвигателям переменного тока.

В статоре могут устанавливаться датчики положения ротора. Часто используются датчики холла, они дают сигнал контроллеру, когда на них воздействует магнитное поле магнитов ротора. Это нужно для того чтобы контроллер «знал», в каком положении находится ротор и подавал питание на соответствующие обмотки. Это нужно для повышения эффективности и стабильности работы, а если кратко, — чтобы выжать из двигателя всю возможную мощность. Датчиков обычно устанавливается 3 штуки. Но наличие датчиков усложняет устройство бесколлекторного электродвигателя, к ним нужно проводить дополнительные провода для питания и линии данных.

В БДПТ для возбуждения используются постоянные магниты, установленные на роторе, а статор — это якорь. Напомним, что в коллекторных машинах наоборот (ротор — это якорь), а для возбуждения в КД используются как постоянные магниты, так и электромагниты (обмотки).

Магниты устанавливаются с чередованием полюсов, и соответственно их количество определяет количество пар полюсов. Но это не значит, что сколько магнитов, то столько же и пар полюсов. Несколько магнитов могут формировать один полюс. От числа полюсов, как в случае и с асинхронным двигателем (и другими) зависит число оборотов в минуту. То есть от одного контроллера на одинаковых настройках бесколлекторные двигатели с разным числом пар полюсов будут вращаться с разной скоростью.

Виды БДПТ

Теперь давайте разберемся, какими бывают бесколлекторные двигатели на постоянных магнитах. Их классифицируют по форме противо-ЭДС, конструкции, а также по наличию датчиков положения ротора. Итак, два основных типа отличающихся формой противо-ЭДС, которая наводится в обмотках при вращении ротора:

  • BLDC — в них трапецеидальная противо-ЭДС;
  • PMSM — противо-ЭДС синусоидальная.

В идеальном случае для них нужны разные источники питания (контроллеры), но на практике они взаимозаменяемы. Но если использовать контроллер с прямоугольными или трапецеидальным выходным напряжением с PMSM-двигателем, то будут слышны характерные звуки, похожие на стук во время вращения.

А по конструкции бесколлекторные двигатели постоянного тока бывают:

  • С внутренним ротором. Это более привычное представление электродвигателя, когда статор — это корпус, а вращается вал, расположенный в нём. Часто их называют английским словом «Inrunner». Такой вариант обычно применяют для высокооборотистых электродвигателей
  • С внешним ротором. Здесь вращается внешняя часть двигателя с закреплённым на ней валом, в англоязычных источниках его называют «outrunner». Эту схему устройства используют, когда нужен высокий момент.

Выбирают конструкцию в зависимости от того для чего нужен бесколлекторный двигатель в конкретном применении.

Современная промышленность выпускает бесколлекторные двигатели как с датчиками положения ротора, так и без них. Дело в том, что существует множество способов управления БДПТ, для некоторых из них нужны датчики положения, другие определяют положения по ЭДС в обмотках, третьи и вовсе просто подают питание на нужные фазы и электродвигатель самостоятельно синхронизируется с таким питанием и входит в рабочий режим.

Основные характеристики бесколлекторных двигателей постоянного тока:

  1. Режим работы — длительный или кратковременный.
  2. Максимальное рабочее напряжение.
  3. Максимальный рабочий ток.
  4. Максимальная мощность.
  5. Максимальные обороты, часто указывают не обороты, а KV — об/в, то есть количество оборотов на 1 вольт приложенного напряжения (без нагрузки на валу). Чтобы получить максимальные обороты — умножьте это число на максимальное напряжение.
  6. Сопротивление обмотки (чем оно меньше, тем выше КПД), обычно составляет сотые и тысячные доли Ома.
  7. Угол опережения фазы (timing) — время, через которое ток в обмотке достигнет своего максимума, это связано с её индуктивностью и законами коммутации (ток в индуктивности не может измениться мгновенно.

Схема подключения

Как было сказано выше, для работы бесколлекторного двигателя нужен специальный контроллер. На алиэкспресс можно найти как комплекты из двигателя и контроллера, так и по отдельности. Контроллер также называют ESC Motor или Electric Speed Controller. Выбирают их по силе тока, отдаваемого в нагрузку.

Обычно подключение электродвигателя к контроллеру не вызывает затруднений и понятно даже для чайников. Главное, что нужно знать — для смены направления вращения нужно изменить подключение любых двух фаз, собственно также, как и в трёхфазных асинхронных или синхронных электродвигателях.

В сети есть и ряд технических решений и схем как сложных, так и для чайников, которые вы можете увидеть ниже.

В этом видеоролике автор рассказывает, как подружить БК моторчик с «ардуиной».

А в этом ролике вы узнаете о различных способах подключения к разным регуляторам и как его можно сделать своими руками. Автор демонстрирует это на примере моторчика от HDD, и пары мощных экземпляров — inrunner и outrunner.

Кстати схему из видео для повторения также прикладываем:

Где применяются бесколлекторные двигатели

Сфера применения таких электродвигателей досрочно широка. Они используются как для привода мелких механизмов: в дисководах CD, DVD-приводах, жёстких дисках, так и в мощных устройствах: аккумуляторе и сетевом электроинструменте (с питанием порядка 12В), радиоуправляемых моделях (например, квадрокоптерах), станках ЧПУ для привода рабочего органа (обычно моторчики с номинальным напряжением 24В или 48В).

Широкое применение БДПТ нашли в электротранспорте, почти все современные мотор-колеса электросамокатов, велосипедов, мотоциклов и автомобилей — это бесколлекторные двигатели. К слову, номинальное напряжение электродвигателей для транспорта лежит в широком пределе, например, мотор-колесо для велосипеда зачастую работает от 36В или от 48В, за редким исключением и больше, а в автомобилях, например, на Toyota Prius порядка 120В, а на Nissan Leaf – доходит до 400, при том что заряжается от сети 220В (это реализуется с помощью встроенного преобразователя).

На самом деле область применения бесколлекторных электродвигателей очень обширна, отсутствие коллекторного узла позволяет его применять опасных местах, а также в местах с повышенной влажностью, без опасений замыканий, искрения или возгорания из-за дефектов в щеточном узле. Благодаря высокому КПД и хорошим массогабаритным показателям они нашли применение и в космической промышленности.

Преимущества и недостатки

Бесколлекторным двигателям постоянного тока, как и другим видам электромашин, присущи определенные достоинства и недостатки.

Преимущества у БДПТ заключаются в следующем:

  • Благодаря возбуждению мощными постоянными магнитами (неодимовыми, например) превосходят по моменту и мощности и имеют меньшие габариты, чем асинхронные двигатели. Чем пользуется большинство производителей электротранспорта — от самокатов до автомобилей.
  • Нет искрящего щеточно-коллекторного узла, который требует регулярного обслуживания.
  • При использовании качественного контроллера в отличие от того же КД не выдают помехи в питающую сеть, что особенно важно в радиоуправляемых устройствах и транспорте с развитым электронным оборудованием в бортовой сети.
  • КПД более 80, чаще и 90%.
  • Высокая скорость вращения, в отдельных случаях до 100000 об/мин.

Но есть и существенный минус: бесколлекторный двигатель без контроллера — просто кусок железа с медной обмоткой. Он никак не сможет работать. Контроллеры стоят недешево и чаще всего их приходится заказывать в интернет-магазинах или с алиэкспресс. Из-за этого использовать БК-моторы в моделях и устройствах домашнего производства не всегда возможно.

Теперь вы знаете, что такое бесколлекторный двигатель постоянного тока, как он работает и где применяется. Надеемся, наша статья помогла вам разобраться во всех вопросах!

Материалы по теме:

Бесколлекторные двигатели постоянного тока. Что это такое? — Avislab

Этой статьёй я начинаю цикл публикаций о бесколлекторных двигателях постоянного тока. Доступным языком  опишу общие сведения, устройство, алгоритмы управления бесколлекторным двигателем. Будут рассмотрены разные типы двигателей, приведены примеры подбора параметров регуляторов. Опишу устройство и алгоритм работы регулятора,  методику выбора силовых ключей и основных параметров регулятора. Логическим завершением публикаций будет схема регулятора.

Бесколлекторные двигатели получили широкое распространение благодаря развитию электроники и, в том числе, благодаря появлению недорогих силовых транзисторных ключей. Также немаловажную роль сыграло появление мощных неодимовых магнитов.

Однако не стоит считать бесколлекторный двигатель новинкой. Идея бесколлекторного двигателя появилась на заре электричества. Но, в силу неготовности технологий, ждала своего времени до 1962 года, когда появился первый коммерческий бесколлекторный двигатель постоянного тока. Т.е. уже более полувека существуют различные серийные реализации этого типа электропривода!

Немного терминологии

Бесколлекторные двигатели постоянного тока называют так же вентильными, в зарубежной литературе BLDCM (BrushLes Direct Current Motor) или PMSM (Permanent Magnet Synchronous Motor).

Конструктивно бесколлекторный двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Обращаю Ваше внимание на то, что в коллекторном двигателе наоборот, обмотки находятся на роторе. Поэтому, далее в тексте ротор — магниты, статор — обмотки.

Для управления двигателем применяется электронный регулятор. В зарубежной литературе Speed Controller или ESC (Electronic speed control).

Что такое бесколлекторный двигатель?

Обычно люди, сталкиваясь с чем-то новым, ищут аналогии. Иногда приходится слышать фразы «ну это как синхронник», или еще хуже «он похож на шаговик». Поскольку большинство бесколлекторных двигателей трехфазные, это еще больше путает, что приводит к неправильному мнению о том, что регулятор «кормит» двигатель переменным 3-x фазным током. Все вышесказанное соответствует действительности только отчасти. Дело в том, что синхронными можно назвать все двигатели кроме асинхронных. Все двигатели постоянного тока являются синхронными с самосинхронизацией, но их принцип действия отличается от синхронных двигателей переменного тока, у которых самосинхронизация отсутствует. Как шаговый бесколлекторный двигатель тоже, наверное, сможет работать. Но тут такое дело: кирпич он тоже может летать… правда, недалеко, ибо для этого не предназначен. В качестве шагового двигателя больше подойдет вентильный реактивный двигатель.

Попробуем разобраться, что собой представляет бесколлекторный двигатель постоянного тока (Brushles Direct Current Motor). В самой этой фразе уже кроется ответ — это двигатель постоянного тока без коллектора. Функции коллектора выполняет электроника.

Преимущества и недостатки

Из конструкции двигателя удаляется довольно сложный, требующий обслуживания тяжелый и искрящий узел — коллектор. Конструкция двигателя существенно упрощается. Двигатель получается легче и компактнее. Значительно уменьшаются потери на коммутацию, поскольку контакты коллектора и щетки заменяются электронными ключами. В итоге получаем электродвигатель с наилучшими показателями КПД и показателем мощности на килограмм собственного веса, с наиболее широким диапазоном изменения скорости вращения. На практике бесколлекторные двигатели греются меньше, чем их коллекторные братья. Переносят большую нагрузку по моменту. Применение мощных неодимовых магнитов сделали бесколлекторные двигатели еще более компактными. Конструкция бесколлекторного двигателя позволяет эксплуатировать его в воде и агресивных средах (разумеется, только двигатель, регулятор мочить будет очень дорого). Бесколлекторные двигатели практически не создают радиопомех.

Единственным недостатком считают сложный дорогостоящий электронный блок управления (регулятор или ESC). Однако, если вы хотите управлять оборотами двигателя, без электроники никак не обойтись. Если вам не надо управлять оборотами бесколлекторного двигателя, без электронного блока управления все равно не обойтись. Бесколлекторный двигатель без электроники — просто железка. Нет возможности подать на него напряжение и добиться нормального вращения как у других двигателей.

Что происходит в регуляторе бесколлекторного двигателя?

Для того чтобы понять, что происходит в электронике регулятора, управляющего бесколлекторным двигателем, вернемся немного назад и сначала разберемся как работает коллекторный двигатель. Из школьного курса физики помним, как магнитное поле действует на рамку с током. Рамка с током вращается в магнитном поле. При этом она не вращается постоянно, а поворачивается до определенного положения. Для того чтобы происходило непрерывное вращение, нужно переключать направление тока в рамке в зависимости от положения рамки. В нашем случае рамка с током — это обмотка двигателя, а переключением занимается коллектор — устройство со щетками и контактами. Устройство простейшего двигателя смотри на рисунке.

То же самое делает и электроника, управляющая бесколлекторным двигателем — в нужные моменты подключает постоянное напряжение на нужные обмотки статора.

Датчики положения, двигатели без датчиков

Из вышесказанного важно уяснить, что подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора. Поэтому электроника должна уметь определять положение ротора двигателя. Для этого применяются датчики положения. Они могут быть различного типа, оптические, магнитные и т.д. В настоящее время очень распространены дискретные датчики на основе эффекта Холла (например SS41). В трехфазном бесколлекторном двигателе используется 3 датчика. Благодаря таким датчикам электронный блок управления всегда знает, в каком положении находится ротор и на какие обмотки подавать напряжение в каждый момент времени. Позже будет рассмотрен алгоритм управления трехфазным бесколлекторным двигателем.

Существуют бесколлекторные двигатели, которые не имеют датчиков. В таких двигателях положение ротора определяется путем измерения напряжения на незадействованной в данный момент времени обмотке. Эти методы также будут рассмотрены позднее. Следует обратить внимание на существенный момент: этот способ актуален только при вращении двигателя. Когда двигатель не вращается или вращается очень медленно, такой метод не работает.

В каких случаях применяют бесколлекорные двигатели с датчиками, а в каких — без датчиков? В чем их отличие?

Двигатели с датчиками положения более предпочтительны с технической точки зрения. Алгоритм управления такими двигателями значительно проще. Однако есть и свои минусы: требуется обеспечить питание датчиков и прокладку проводов от датчиков в двигателе к управляющей электронике; в случае выхода со строя одного из датчиков, двигатель прекращает работу, а замена датчиков, как правило, требует разборки двигателя.

В тех случаях, когда конструктивно невозможно разместить датчики в корпусе двигателя, используют двигатели без датчиков. Конструктивно такие двигатели практически не отличаются от двигателей с датчиками. А вот электронный блок должен уметь управлять двигателем без датчиков. При этом блок управления должен соответствовать характеристикам конкретной модели двигателя.

Если двигатель должен стартовать с существенной нагрузкой на валу двигателя (электротранспорт, подъёмные механизмы и т.п.) — применяют двигатели с датчиками. Если двигатель стартует без нагрузки на валу (вентиляция, воздушный винт, применяется центробежная муфта сцепления и т.п.), можно применять двигатели без датчиков. Запомните: двигатель без датчиков положения должен стартовать без нагрузки на валу. Если это условие не соблюдается, следует использовать двигатель с датчиками. Кроме того, в момент старта двигателя без датчиков возможны вращательные колебания оси двигателя в разные стороны. Если это критично для Вашей системы, применяйте двигатель с датчиками.

Три фазы

Трехфазные бесколлекторные двигатели приобрели наибольшее распространение. Но они могут быть и одно, двух, трех и более фазными. Чем больше фаз, тем более плавное вращение магнитного поля, но и сложнее система управления двигателем. 3-х фазная система наиболее оптимальна по соотношению эффективность/сложность, поэтому и получила столь широкое распространение. Далее будет рассматриваться только трехфазная схема, как наиболее распространенная.  Фактически фазы — это обмотки двигателя. Поэтому если сказать «трехобмоточный», думаю, это тоже будет правильно. Три обмотки соединяются по схеме «звезда» или «треугольник». Трехфазный бесколлекторный двигатель имеет три провода — выводы обмоток, см. рисунок.

Двигатели с датчиками имеют дополнительных 5 проводов (2-питание датчиков положения, и 3 сигналы от датчиков).

В трехфазной системе в каждый момент времени напряжение подается на две из трех обмоток. Таким образом, есть 6 вариантов подачи постоянного напряжения на обмотки двигателя, как показано на рисунке ниже.

Это позволяет создать вращающееся магнитное поле, которое будет проворачиваться «шагами» на 60 градусов при каждом переключении. Но не будем забегать наперед. В следующей статье будут рассмотрены устройство бесколлекторного двигателя, варианты расположения магнитов, обмоток, датчиков и т.д., а позже будут рассмотрены алгоритмы управления бесколлекторными двигателями.

Бесколлекторные моторы «на пальцах» Что такое бесколлекторные моторы и как управлять бесколлекторными моторами:

Статьи по бесколлекторным моторам:

Управление бесколлекторным двигателем постоянного тока. Что такое бесколлекторный двигатель? Достоинства и недостатки бесколлекторных двигателей

Принцип действия которого основан на частотном регулировании и самосинхронизации получил название бесколлекторного двигателя. В данной конструкции, вектор магнитного поля статора управляется относительно положения ротора. Бесколлекторный двигатель был создан для того, чтобы улучшить свойства стандартных коллекторных электродвигателей постоянного тока.

Он органично соединил в себе самые лучшие качества двигателей постоянного тока и бесконтактных электродвигателей.

Основные отличия от обычных двигателей

Бесколлекторный двигатель нередко используются в радиоуправляемых моделях летательных аппаратов. Их выдающиеся характеристики и живучесть получили широкую популярность, благодаря отсутствию трущихся деталей в виде щеток, которые осуществляют передачу тока.

Для того, чтобы более полно представить разницу, нужно вспомнить, что в стандартном коллекторном электродвигателе происходит вращение ротора с обмотками внутри статора, основой которого служат постоянные магниты. Коммутация обмоток производится с помощью коллектора, в зависимости от положения ротора. В электродвигателе переменного тока, наоборот, ротор с магнитом вращается внутри статора с обмотками. Примерно такую же конструкцию имеет двигатель.

В отличие от стандартных двигателей, в бесколлекторном в качестве подвижной части выступает статор, в котором размещены постоянные магниты, а роль неподвижной части играет ротор с трехфазными обмотками.

Принцип работы бесколлекторного электродвигателя

Вращение двигателя осуществляется путем смены направления магнитного поля в обмотках ротора в определенной последовательности. В этом случае, постоянные магниты взаимодействуют с магнитными полями ротора и приводят в движение подвижный статор. В основе этого движения лежит основное свойство магнитов, когда одноименные полюса отталкиваются, а разноименные — притягиваются.

Управление магнитными полями в обмотках ротора и их сменой, происходит с помощью контроллера. Он представляет собой достаточно сложное устройство, способное коммутировать высокие токи с большой скоростью. Контроллер обязательно имеет в своей схеме бесколлекторный электродвигатель, что в значительной степени удорожает его использование.

В бесколлекторных электродвигателях отсутствуют какие-либо вращающиеся контакты и любые контакты, способные переключаться. В этом состоит их главное преимущество перед обычными электродвигателями, поскольку все потери от трения сведены к минимуму.

Наверняка задавался вопросом, чем же отличается такой двигатель от других двигателей, например от тех, что стоят в сверлильных станках. Двигатели, установленные в не очень мощных станках, обычно не искрят, и работают они не так шумно, как та же дрель, обладающая меньшей чем станок мощностью.

В чем же дело? Дело в том, что двигатель с щетками — это коллекторный двигатель, а двигатель без щеток — бесколлекторный . Для решения разных задач подойдет свой тип двигателя — где-то лучше подойдет коллекторный, а где-то можно установить только бесколлекторный.

Коллекторный двигатель

Двигатель коллекторный имеет, как правило, всего два провода питания, он прост в управлении, достаточно регулировать постоянное или переменное напряжение питания и обороты станут соответственно меняться. Управлять коллекторным двигателем можно даже при помощи нехитрого диммера. Главное достоинство коллекторного двигателя — высокие обороты (десятки тысяч в минуту) при высоком крутящем моменте.

Принцип работы коллекторного двигателя очень прост. По сути, ротор его представляет собой набор медных рамок в магнитопроводе, которые поочередно коммутируются к источнику питания на коллекторно-щеточном узле. Статор может быть как из постоянных магнитов, так и с обмоткой, питаемой от того же источника, что и ротор, или от отдельного источника, а иногда статор и ротор включены в единую последовательную цепь (как например двигатели стиральных машинок-автоматов).

На каждую из секций обмотки ротора, через коллекторно-щеточный узел, поочередно, в процессе вращения ротора, подается электрический ток, в результате ротор перемагничивается, приобретая четко выраженные северный и южный магнитные полюсы, благодаря которым и происходит вращение ротора внутри статора (полюсы ротора выталкиваются полюсами статора, затем ротор дальше перемагничивается и вновь выталкивается). Поскольку ротор каждый раз коммутируется к источнику питания очередной секцией, вращение не останавливается, пока на коллектор подается питание.

Основной недостаток коллекторного двигателя

Обороты коллекторного двигателя очень удобно регулировать, но когда они достаточно высоки, щетки дают о себе знать. Поскольку щетки все время плотно прилегают к коллектору, на высоких оборотах они быстро изнашиваются, со временем так или иначе засоряются, и в конце концов начинают искрить.

Износ щеток, и вообще коллекторно-щеточного узла, ведет к снижению эффективности коллекторного двигателя. Таким образом, сам коллекторно-щеточный узел — это и есть главный недостаток коллекторных двигателей . Сегодня от коллекторных двигателей стараются отказываться в пользу бесщеточных шаговых.

У бесколлекторного двигателя нет ни коллектора, ни щеток. Простейший пример бесколлекторного двигателя — асинхронный трехфазный двигатель с ротором типа «беличья клетка». Еще один пример бесколлекторного двигателя — более современный — шаговый двигатель с магнитным ротором . Обмотки статора бесколлекторного двигателя сами перемагничиваются так, чтобы ротор все время разворачивался и непрерывно таким образом вращался.

Чаще всего современные бесколлекторные двигатели оснащаются датчиком положения ротора, по сигналам с которого работает регулятор скорости вращения двигателя. Сигнал с датчика положения ротора передается на процессор более 100 раз в секунду, в результате получается точное позиционирование ротора и высокий крутящий момент. Бывают, конечно, бесколлекторные двигатели и без датчика положения ротора, яркий пример — тот же асинхронный трехфазный мотор. Моторы без датчика положения стоят дешевле чем с датчиком.

Достоинства бесколлекторных двигателей

Поскольку ресурс подшипников ротора крайне велик, можно сказать, что в бесколлекторном двигателе практически отсутствуют изнашиваемые со временем детали, и он вообще не требует обслуживания в процессе эксплуатации. Здесь сведено к минимуму трение, отсутствует проблема перегрева коллектора, в целом надежность и эффективность бесколлекторных двигателей очень высоки.

Нет искрящих щеток, датчик положения ротора поможет сделать управление точным, — недостатков практически нет, одни достоинства. Разве что цена качественных шаговых двигателей выше чем у коллекторных (плюс драйвер), но это ничто по сравнению с регулярной заменой пружин, щеток и коллекторов у коллекторных двигателей.

Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.

Общие сведения, устройство, сфера применения

Одна из причин проявления интереса к БД – это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.

Рис. 2. Устройство бесколлекторного двигателя

Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.

Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).


Рис. 3. Конструкция с внешним якорем (outrunner)

Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).


Принцип работы

В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.


Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.

Отличия коллекторного и бесколлекторного двигателя

Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.


Рис. 5. А – коллекторный двигатель, В – бесколлекторный

Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.

Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.

Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.

Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.

Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.

Как запустить бесколлекторный двигатель?

Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.


Рис. 6. Контроллеры бесколлекторных двигателей для моделизма

Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:

  • Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
  • Максимальная величина штатного напряжения для продолжительной работы.
  • Сопротивление внутренних цепей контроллера.
  • Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
  • Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.

Обратим внимание, что первые три характеристики определяют мощность БД.

Управление бесколлекторным двигателем

Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.

Трёхфазный бесколлекторный электродвигатель постоянного тока

Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).


Рисунок 7. Диаграммы напряжений БД

Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:

  1. На катушки «А» подается положительный импульс, в то время как на «В» – отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
  2. Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
  3. На «С» – положительный, «А» – отрицательный.
  4. Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
  5. Положительный импульс повторно подается на «В», и отрицательный на «С».
  6. Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.

В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.


Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем

Преимущества и недостатки

Электрический бесколлекторный двигатель имеет много достоинств, а именно:

  • Срок службы значительно дольше, чем у обычных коллекторных аналогов.
  • Высокий КПД.
  • Быстрый набор максимальной скорости вращения.
  • Он более мощный, чем КД.
  • Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
  • Не требуется дополнительное охлаждение.
  • Простая эксплуатация.

Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.

Бесколлекторные электродвигатели

Бесколлекторные (brushless англ.) электродвигатели пришли в моделизм сравнительно недавно, в последние 5-7 лет. В отличие от коллекторных моторов они питаются трехфазным переменным током. Бесколлекторные двигатели эффективно работают в более широком диапазоне оборотов и имеют более высокий КПД. Конструкция двигателя при этом проще, в ней нет щеточного узла, и нет необходимости в техническом обслуживании. Можно сказать, что бесколлекторные моторы практически не изнашиваются. Стоимость бесколлекторных двигателей несколько выше, чем коллекторных. Это вызвано тем, что все бесколлекторные моторы снабжены подшипникам и, как правило, изготовлены более качественно. Хотя, разрыв в ценах между хорошим коллекторным мотором и бесколлекторным двигателем аналогичного класса не столь уж велик.

По конструкции бесколлекторные моторы делятся на две группы: inrunner (произносится как «инраннер») и outrunner (произносится как «аутраннер»). Двигатели первой группы имеют расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор. Двигатели второй группы — «аутраннеры», имеют неподвижные обмотки, внутри двигателя, вокруг которых вращается корпус с помещенными на его внутреннюю стенку постоянными магнитами. Количество полюсов магнитов, используемых в бесколлекторных двигателях, может быть разным. По количеству полюсов можно судить о крутящем моменте и оборотах и двигателя. Моторы с двухполюсными роторами имеют наибольшую скорость вращения при наименьшем крутящем моменте. Эти моторы по конструкции могут быть только «инраннерами». Такие двигатели часто продаются уже с закрепленными на них планетарными редукторами, так как их обороты слишком велики для прямого вращения пропеллера. Иногда такие моторы используют и без редуктора — например, ставят на гоночные авиамодели. Моторы с большим количеством полюсов имеют меньшую скорость вращения, но зато больший крутящий момент. Такие моторы позволяют использовать пропеллеры большого диаметра, без необходимости применять редукторы. Вообще, пропеллеры большого диаметра и небольшого шага, при относительно низкой частоте вращения обеспечивают большую тягу, но сообщают модели небольшую скорость, в то время как маленькие по диаметру пропеллеры с большим шагом на высоких оборотах обеспечивают высокую скорость, при сравнительно небольшой тяге. Таким образом, многополюсные моторы идеально подходят для моделей, которым нужна высокая тяговооруженность, а двухполюсные без редуктора — для скоростных моделей. Для более точного подбора двигателя и пропеллера к определенной модели, можно воспользоваться специальной программой MotoCalc.

Так как бесколлекторные моторы питаются переменным током, для работы им необходим специальный контроллер (регулятор), преобразующий постоянный ток от батарей в переменный. Регуляторы для бесколлекторных двигателей представляют собой программируемое устройство, позволяющее контролировать все жизненно важные параметры двигателя. Они позволяют не только менять обороты и направление работы мотора, но и обеспечивать в зависимости от необходимости плавный или резкий старт, ограничение по максимальному току, функцию «тормоза» и ряд других тонких настроек двигателя под нужды моделиста. Для программирования регулятора используются устройства для подключению его к компьютеру, либо в полевых условиях это можно делать с помощью передатчика и специальной перемычки.

Производителей бесколлекторных моторов и регуляторов к ним очень много. Конструктивно и по размерам бесколлекторные двигатели тоже сильно различаются. Более того, самостоятельное изготовление бесколлекторных двигателей на основе деталей от CD-приводов и других промышленных бесколлекторных моторов стало весьма распространенным явлением в последнее время. Возможно, именно по этой причине у бесколлекторных двигателей сегодня нет даже такой приблизительной общей классификации как у коллекторных собратьев. Подведем краткий итог. На сегодняшний день, коллекторные двигатели в основном используют на недорогих хоббийных моделях, или спортивных моделях начального уровня. Эти двигатели не дороги, просты в эксплуатации, и по-прежнему составляют самый массовый вид модельных электромоторов. Им на смену идут бесколлекторные моторы. Единственным сдерживающим фактором пока остается их цена. Вместе с регулятором бесколлекторный мотор стоит на 30-70% дороже. Однако, цены на электронику и моторы падают, и постепенное вытеснение из моделизма коллекторных электромоторов — лишь вопрос времени.

Отличительные особенности:

  • Общие сведения о БКЭПТ
  • Использует контроллер силового каскада
  • Аппаратная реализация
  • Пример программного кода

Введение

В данных рекомендациях по применению описывается, как реализовать устройство управления бесколлекторным электродвигателем постоянного тока (БКЭПТ) с использованием датчиков положения на основе AVR-микроконтроллера AT90PWM3.

Высокопроизводительное AVR-ядро микроконтроллера, которое содержит контроллер силового каскада, позволяет реализовать устройство управления высокоскоростным бесколлекторным электродвигателем постоянного тока.

В данном документе дается короткое описание принципа действия бесколлекторного электродвигателя постоянного тока, а в деталях рассматривается управление БКЭПТ в сенсорном режиме, а также приводится описание принципиальной схемы опорной разработки ATAVRMC100, на которой основаны данные рекомендации по применению.

Обсуждается также программная реализация с программно-реализованным контуром управления на основе ПИД-регулятора. Для управления процессом коммутации подразумевается использование только датчиков положения на основе эффекте Холла.

Принцип действия

Области применения БКЭПТ непрерывно увеличиваются, что связано с рядом их преимуществ:

  1. Отсутствие коллекторного узла, что упрощает или даже вообще исключает техническое обслуживание.
  2. Генерация более низкого уровня акустического и электрического шума по сравнению с универсальными коллекторными двигателями постоянного тока.
  3. Возможность работы в опасных средах (с воспламеняемыми продуктами).
  4. Хорошее соотношение массогабаритных характеристик и мощности…

Двигатели такого типа характеризуются небольшой инерционностью ротора, т.к. обмотки расположены на статоре. Коммутация управляется электроникой. Моменты коммутации определяются либо по информации от датчиков положения, либо путем измерения обратной э.д.с., генерируемой обмотками.

При управлении с использованием датчиков БКЭПТ состоит, как правило, из трех основных частей: статор, ротор и датчики Холла.

Статор классического трехфазного БКЭПТ содержит три обмотки. Во многих двигателях обмотки разделяются на несколько секций, что позволяет уменьшить пульсации вращающего момента.

На рисунке 1 показана электрическая схема замещения статора. Он состоит из трех обмоток, каждая из которых содержит три последовательно включенных элемента: индуктивность, сопротивление и обратная э.д.с.


Рисунок 1. Электрическая схема замещения статора (три фазы, три обмотки)

Ротор БКЭПТ состоит из четного числа постоянных магнитов. Количество магнитных полюсов в роторе также оказывает влияние на размер шага вращения и пульсации вращающего момента. Чем большее количество полюсов, тем меньше размер шага вращения и меньше пульсации вращающего момента. Могут использоваться постоянные магниты с 1..5 парами полюсов. В некоторых случаях число пар полюсов увеличивается до 8 (рисунок 2).



Рисунок 2. Статор и ротор трехфазного, трехобмоточного БКЭПТ

Обмотки установлены стационарно, а магнит вращается. Ротор БКЭПТ характеризуется более легким весом относительно ротора обычного универсального двигателя постоянного тока, у которого обмотки расположены на роторе.

Датчик Холла

Для оценки положения ротора в корпус двигателя встраиваются три датчика Холла. Датчики установлены под углом 120° по отношению друг к другу. С помощью данных датчиков возможно выполнить 6 различных переключений.

Коммутация фаз зависит от состояния датчиков Холла.

Подача напряжений питания на обмотки изменяется после изменения состояний выходов датчиков Холла. При правильном выполнении синхронизированной коммутации вращающий момент остается приблизительно постоянным и высоким.



Рисунок 3. Сигналы датчиков Холла в процессе вращения

Коммутация фаз

В целях упрощенного описания работы трехфазного БКЭПТ рассмотрим только его версию с тремя обмотками. Как было показано ранее, коммутация фаз зависит от выходных значений датчиков Холла. При корректной подаче напряжения на обмотки двигателя создается магнитное поле и инициируется вращение. Наиболее распространенным и простым способом управления коммутацией, используемый для управления БКЭПТ, является схема включения-отключения, когда обмотка либо проводит ток, либо нет. В один момент времени могут быть запитаны только две обмотки, а третья остается отключенной. Подключение обмоток к шинам питания вызывает протекание электрического тока. Данный способ называется трапецеидальной коммутацией или блочной коммутацией.

Для управления БКЭПТ используется силовой каскад, состоящих из 3 полумостов. Схема силового каскада показана на рисунке 4.



Рисунок 4. Силовой каскад

По считанным значениям датчиков Холла определяется, какие ключи должны быть замкнутыми.

Бесколлекторные двигатели обладают улучшенными показателями мощности на килограмм веса (собственного) и широким диапазоном скорости вращения; впечатляет и КПД этой силовой установки. Немаловажно, что от установки практически не излучаются радиопомехи. Это позволяет разместить рядом с ней чувствительное к помехам оборудование без опасений за корректность работы всей системы.

Расположить и использовать бесколлекторный двигатель можно в том числе и в воде, это не повлияет на него отрицательным образом. Также его конструкция предусматривает расположение и в агрессивных средах. Однако в этом случае следует заранее продумать месторасположение блока управления. Помните, что только при бережной аккуратной эксплуатации силовой установки она будет работать на вашем производстве эффективно и бесперебойно на протяжении долгих лет.

Длительный и кратковременный режим работы — основные для БД. Например для эскалатора или конвейера подходит длительный режим работы, в котором электродвигатель работает статично в течение долгого количества часов. Для длительного режима работы предусмотрена повышенная внешняя теплоотдача: тепловыделения в окружающую среду должны превышать внутренние тепловыделения силовой установки.

В кратковременном режиме работы двигатель за время своей работы не должен успеть нагреться до максимального значения температуры, т.е. должен быть выключен до наступления этого момента. Во время перерывов между включениями и работой двигателя он должен успеть остыть. Именно так работают бесколлекторные двигатели в подъемных лифтовых механизмах, электробритвах, сушилках фенах и другом современном электрооборудовании.

Сопротивление обмотки двигателя связано с коэффициентом полезного действия силовой установки. Максимального КПД можно достигнуть при наименьшем сопротивлении обмотки.

Максимальное рабочее напряжение — это предельное значение напряжения, которое можно подавать на обмотку статора силовой установки. Максимальное рабочее напряжение напрямую связано с максимальными оборотами двигателя и и максимальным значением тока обмотки. Максимальное значение тока обмотки лимитировано возможностью перегрева обмотки. Именно по этой причине необязательным, но рекомендуемым условием эксплуатации электродвигателей является отрицательная температура окружающей среды. Она позволяет значительно компенсировать перегрев силовой установки и увеличить длительность ее работы.

Максимальная мощность двигателя — это предельная мощность, которой может достигнуть система за несколько секунд. Стоит учитывать, что длительная работа электродвигателя на максимальной мощности неизбежно приведет к перегреву системы и сбою в его работе.

Номинальная мощность — это та мощность которую может развивать силовая установка в течение периодичного заявленного производителем разрешенного периода работы (одно включение).

Угол опережения фазы предусмотрен в электродвигателе из-за необходимости компенсации на задержку переключения фаз.

Схема управления бесколлекторным двигателем постоянного тока. В чем разница между коллекторными и бесколлекторными моторами

Когда я начал разрабатывать блок управления бесколлекторным двигателем (мотор-колесом), было много вопросов о том, как сопоставить реальный двигатель с абстрактной схемой из трех обмоток и магнитов, на которой, как правило, все объясняют принцип управления бесколлекторными двигателями.

Когда я реализовал управление по датчикам Холла я еще не очень понимал, что происходит в двигателе дальше абстрактных трех обмоток и двух полюсов: почему 120 градусов и почему алгоритм управления именно такой.

Все встало на место, когда я начал разбираться в идее бездатчикового управления бесколлекторным двигателем — понимание процесса, происходящего в реальной железке, помогло разработать аппаратную часть и понять алгоритм управления.

Ниже я постараюсь расписать свой путь к пониманию принципа управления бесколлекторным двигателем постоянного тока.


Для работы бесколлекторного двигателя необходимо чтобы постоянное магнитное поле ротора увлекалось за вращающемся электромагнитным полем статора, как и в обычном ДПТ.

Вращение магнитного поля статора осуществляется коммутацией обмоток с помощью электронного блока управления.
Конструкция бесколлекторного двигателя схожа с конструкцией синхронного двигателя, если подключить бесколлекторный двигатель в трехфазную сеть переменного тока, удовлетворяющую электрическим параметрам двигателя, он будет работать.

Определенная коммутация обмоток бесколлекторного двигателя позволяет управлять им от источника постоянного тока. Чтобы понять, как составить таблицу коммутаций бесколлекторного двигателя необходимо рассмотреть управление синхронной машиной переменного тока.

Синхронная машина
Синхронная машина управляется от трехфазной сети переменного тока. Двигатель имеет 3 электрические обмотки, смещенные между собой на 120 электрических градусов.

Запустив трехфазный двигатель в генераторном режиме, постоянным магнитным полем будет наводиться ЭДС на каждую из обмоток двигателя, обмотки двигателя распределены равномерно, на каждую из фаз будет наводиться синусоидальное напряжение и данные сигналы будут смещены между собой на 1/3 периода (рисунок 1). Форма ЭДС меняется по синусоидальному закону, период синусоиды равен 2П(360), поскольку мы имеем дело с электрическими величинами (ЭДС, напряжение, ток) назовем это электрическими градусами и будем измерять период в них.

При подаче на двигатель трехфазного напряжения в каждый момент времени на каждой обмотке будет некое значение силы тока.


Рисунок 1. Вид сигнала трехфазного источника переменного тока.

Каждая обмотка формирует вектор магнитного поля пропорциональный току на обмотке. Сложив 3 вектора можно получить результирующий вектор магнитного поля. Так как с течением времени ток на обмотках двигателя меняется по синусоидальному закону, меняется величина вектора магнитного поля каждой обмотки, а результирующий суммарный вектор меняет угол поворота, при этом величина данного вектора остается постоянной.


Рисунок 2. Один электрический период трехфазного двигателя.

На рисунке 2 изображен один электрический период трехфазного двигателя, на данном периоде обозначено 3 произвольных момента, чтобы построить в каждом из этих моментов вектора магнитного поля отложим данный период, 360 электрических градусов, на окружности. Разместим 3 обмотки двигателя сдвинутые на 120 электрических градусов относительно друг друга (рисунок 3).


Рисунок 3. Момент 1. Вектора магнитного поля каждой обмотки (слева) и результирующий вектор магнитного поля (справа).

Вдоль каждой из фаз построен вектор магнитного поля, создаваемый обмоткой двигателя. Направление вектора определяется направлением постоянного тока в обмотке, если напряжение, прикладываемое к обмотке положительно, то вектор направлен в противоположную сторону от обмотки, если отрицательное, то вдоль обмотки. Величина вектора пропорциональна величине напряжения на фазе в данный момент.
Чтобы получить результирующий вектор магнитного поля необходимо сложить данные вектора по закону сложения векторов.
Аналогично построение для второго и третьего моментов времени.


Рисунок 4. Момент 2. Вектора магнитного поля каждой обмотки (слева) и результирующий вектор магнитного поля (справа).

Так, с течение времени, результирующий вектор плавно меняет свое направление, на рисунке 5 изображены получившиеся вектора и изображен полный поворот магнитного поля статора за один электрический период.


Рисунок 5. Вид вращающегося магнитного поля формируемого обмотками на статоре двигателя.

За этим вектором электрического магнитного поля увлекается магнитное поле постоянных магнитов ротора в каждый момент времени (рисунок 6).


Рисунок 6. Постоянный магнит (ротор) следует направлению магнитного поля формируемого статором.

Так работает синхронная машина переменного тока.

Имея источник постоянного тока необходимо самостоятельно формировать один электрический период со сменой направлений тока на трех обмотках двигателя. Поскольку бесколлекторный двигатель по конструкции такой же, как синхронный, в генераторном режиме имеет идентичные параметры, необходимо отталкиваться от рисунка 5, где изображено сформированное вращающееся магнитное поле.

Постоянное напряжение
Источник постоянного тока имеет только 2 провода «плюс питания» и «минус питания» это значит, что есть возможность подавать напряжение только на две из трех обмоток. Необходимо аппроксимировать рисунок 5 и выделить все моменты, при которых возможно скоммутировать 2 фазы из трех.

Число перестановок из множества 3 равняется 6, следовательно, имеется 6 вариантов подключения обмоток.
Изобразим возможные варианты коммутаций и выделим последовательность, при которой вектор будет шаг за шагом проворачиваться далее пока не дойдет до конца периода и не начнет сначала.

Электрический период будем отсчитывать от первого вектора.


Рисунок 7. Вид шести векторов магнитного поля которые можно создать от источника постоянного тока коммутацией двух из трех обмоток.

На рисунке 5 видно, что при управлении трехфазным синусоидальным напряжением имеется множество векторов плавно проворачивающихся с течением времени, а при коммутации постоянным током возможно получить вращающееся поле только из 6 векторов, то есть переключение на следующий шаг должно происходить каждые 60 электрических градусов.
Результаты из рисунка 7 сведены в таблицу 1.

Таблица 1. Полученная последовательность коммутаций обмоток двигателя.

Вид получившегося управляющего сигнала в соответствии с таблицей 1 изображен на рисунке 8. Где -V коммутация на минус источника питания (GND), а +V коммутация на плюс источника питания.


Рисунок 8. Вид управляющих сигналов от источника постоянного тока для бесколлекторного двигателя. Желтый – фаза W, синий – U, красный – V.

Однако реальная картина с фаз двигателя будет похожа на синусоидальный сигнал из рисунка 1. У сигнала образуется трапециевидная форма, так как в моменты, когда обмотка двигателя не подключена, постоянные магниты ротора наводят на нее ЭДС (рисунок 9).


Рисунок 9. Вид сигнала с обмоток бесколлекторного двигателя в рабочем режиме.

На осциллографе это выглядит так:


Рисунок 10. Вид окна осциллографа при измерении одной фазы двигателя.

Конструктивные особенности
Как было сказано ранее за 6 переключений обмоток формируется один электрический период 360 электрических градусов.
Необходимо связать данный период с реальным углом вращения ротора. Двигатели с одной парой полюсов и трехзубым статором применяются крайне редко, двигатели имеют N пар полюсов.
На рисунке 11 изображены модели двигателя с одной парой полюсов и с двумя парами полюсов.


а. б.
Рисунок 11. Модель двигателя с одной (a) и с двумя (б) парами полюсов.

Двигатель с двумя парами полюсов имеет 6 обмоток, каждая из обмоток парная, каждая группа из 3 обмоток смещена между собой на 120 электрических градусов. На рисунке 12б. отложен один период для 6 обмоток. Обмотки U1-U2, V1-V2, W1-W2 соединены между собой и в конструкции представляют 3 провода вывода фаз. Для простоты рисунка не отображены соединения, но следует запомнить, что U1-U2, V1-V2, W1-W2 одно и то же.

На рисунке 12, исходя из данных таблицы 1, изображены вектора для одной и двух пар полюсов.


а. б.
Рисунок 12. Схема векторов магнитного поля для двигателя с одной (a) и с двумя (б) парами полюсов.

На рисунке 13 изображены вектора, созданные 6 коммутациями обмоток двигателя с одной парой полюсов. Ротор состоит из постоянных магнитов, за 6 шагов ротор провернется на 360 механических градусов.
На рисунке обозначены конечные положения ротора, в промежутках между двумя соседними положениями ротор проворачивается от предыдущего к следующему скоммутированному состоянию. Когда ротор достигает данного конечного положения, должно происходить следующее переключение и ротор будет стремиться к новому заданному положению, так чтобы его вектор магнитного поля стал сонаправлен с вектором электромагнитного поля статора.


Рисунок 13. Конечные положения ротора при шестиступенчатой коммутации бесколлекторного двигателя с одной парой полюсов.

В двигателях с N парами полюсов необходимо пройти N электрических периодов для полного механического оборота.
Двигатель с двумя парами полюсов будет иметь два магнита с полюсами S и N, и 6 обмоток (рисунок 14). Каждая группа из 3 обмотки смещены друг относительно друга на 120 электрических градусов.


Рисунок 14. Конечные положения ротора при шестиступенчатой коммутации бесколлекторного двигателя с двумя парами полюсов.

Определение положения ротора бесколлекторного двигателя
Как было сказано ранее для работы двигателя необходимо в нужные моменты времени подключать напряжение на нужные обмотки статора. Подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора, так чтобы магнитное поле статора всегда опережало магнитное поле ротора. Для определения положения ротора двигателя и коммутаций обмоток используют электронный блок управления.
Отслеживание положения ротора возможно несколькими способами:
1. По датчикам Холла
2. По обратной ЭДС
Как правило, датчиками Холла производители оснащают двигатель при выпуске, поэтому это самый распространённый метод управления.
Коммутирование обмоток в соответствии с сигналами обратной ЭДС позволяет отказаться от датчиков встроенных в двигатель и использовать в качестве датчика анализ свободной фазы двигателя, на которую будет наводиться магнитным полем противо-ЭДС.

Управление бесколлекторным двигателем с датчиками Холла
Чтобы коммутировать обмотки в нужные моменты времени необходимо отслеживать положение ротора в электрических градусах. Для этого применяются датчики Холла.
Поскольку имеется 6 состояний вектора магнитного поля необходимо 3 датчика Холла, которые будут представлять один абсолютный датчик положения с трехбитным выходом. Датчики Холла устанавливаются также как обмотки, смещенные между собой на 120 электрических градусов. Это позволяет использовать магниты ротора в качестве воздействующего элемента датчика.


Рисунок 15. Сигналы с датчиков Холла за один электрический оборот двигателя.

Для вращения двигателя необходимо чтобы магнитное поле статора опережало магнитное поле ротора, положение, когда вектор магнитного поля ротора сонаправлен с вектором магнитного поля статора является конечным для данной коммутации, именно в этот момент должно происходить переключение на следующую комбинацию, чтобы не давать ротору зависать в стационарном положении.
Cопоставим сигналы с датчиков Холла с комбинацией фаз которые необходимо скоммутировать (таблица 2)

Таблица 2. Сопоставление сигналов датчиков Холла с коммутацией фаз двигателя.

Положение двигателяHU(1)HV(2)HW(3)UVW
00010+
101+0
100+0
1100+
010+0
360/N0110+

При равномерном вращении двигателя с датчиков поступает сигнал смещенный на 1/6 периода, 60 электрических градусов (рисунок 16).


Рисунок 16. Вид сигнала с датчиков Холла.

Управление с помощью сигнала обратной ЭДС
Существуют бесколлекторный двигатели без датчиков положения. Определение положения ротора осуществляется с помощью анализа сигнала ЭДС на свободной фазе двигателя. В каждый момент времени к одной из фаз подключен «+» к другой «-» питания, одна из фаз остается свободной. Вращаясь, магнитное поле ротора наводит ЭДС в свободной обмотке. По мере вращения напряжение на свободной фазе изменяется (рисунок 17).


Рисунок 17. Изменение напряжения на фазе двигателя.

Сигнал с обмотки двигателя разбит на 4 момента:
1. Обмотка подключена к 0
2. Обмотка не подключена (свободная фаза)
3. Обмотка подключена к питающему напряжению
4. Обмотка не подключена (свободная фаза)
Сопоставив сигнал с фаз с управляющим сигналом, видно, что момент перехода на следующее состояние можно детектировать пересечением средней точки (половины питающего напряжения) с фазой, которая в данный момент не подключена (рисунок 18).


Рисунок 18. Сопоставление управляющего сигнала с сигналом на фазах двигателя.

После детектирования пересечения необходимо выдержать паузу и включать следующее состояние. По данному рисунку составлен алгоритм переключений состояний обмоток (таблица 3).

Таблица 3. Алгоритм переключения обмоток двигателя

Текущее состояниеUVWСледующее состояние
1+2
2+3
3+Ожидание пересечения средней точки из + в —4
4+Ожидание пересечения средней точки из — в +5
5Ожидание пересечения средней точки из + в —+6
6+Ожидание пересечения средней точки из — в +1

Пересечение средней точки проще всего детектировать компаратором, на один вход компаратора подается напряжение средней точки, а на второй текущее напряжение фазы.


Рисунок 19. Детектирование средней точки компаратором.

Компаратор срабатывает в момент перехода напряжения через среднюю точку и генерирует сигнал для микроконтроллера.

Обработка сигнала с фаз двигателя
Однако сигнал с фаз при регулировании скорости ШИМ отличается видом, и имеет импульсный характер (рисунок 21), в таком сигнале невозможно детектировать пересечение со средней точкой.


Рисунок 20. Вид сигнала фазы при регулировании скорости ШИМ.

Поэтому данный сигнал следует отфильтровать RC фильтром чтобы получить огибающую, а так же разделить под требования компаратора. По мере увеличения скважности шим сигнал будет возрастать по амплитуде (рисунок 22).


Рисунок 21. Схема делителя и фильтра сигнала с фазы двигателя.


Рисунок 22. Огибающая сигнала при изменении скважности ШИМ.

Схема со средней точкой


Рисунок 23. Вид виртуальная средней точки. Картинка взята с avislab.com/

С фаз снимаются сигналы через токограничительные резисторы и объединяются, получается вот такая картина:


Рисунок 24. Вид осциллограммы напряжения виртуальной средней точки.

Из-за ШИМ, напряжение средней точки не постоянно, сигнал так же необходимо фильтровать. Напряжение средней точки после сглаживания будет достаточно большим (в районе питающего напряжения двигателя), его необходимо разделить делителем напряжения до значения половины питающего напряжения.
бесколлекторный двигатель

  • ЭДС
  • BLDC
  • Добавить метки

    Как только я начал заниматся авиамоделизмом, мне сразу стало интересно почему у двигателя три провода, почему он такой маленький и в то же время такой мощный и зачем ему нужен регулятор скорости… Прошло время, и я во всем разобрался. И дальше поставил перед собой задачу сделать своими руками бесколлекторный двигатель.

    Принцип работы электрического двигателя:
    В основу работы любой электрической машины положено явление электромагнитной индукции. Поэтому если в магнитное поле поместить рамку с током, то на неё подействует сила Ампера , которая создаст вращательный момент. Рамка начнет поворачиваться и остановится в положении отсутствия момента, создаваемого силой Ампера.


    Устройство электрического двигателя:
    Любой электрический двигатель состоит из неподвижной части — Статора и подвижной части — Ротора . Для того чтобы началось вращение, нужно по очереди менять направление тока. Эту функцию и выполняет Коллектор (щетки).

    Бесколлекторный двигатель — это двигатель ПОСТОЯННОГО ТОКА без коллектора, в котором функции коллектора выполняет электроника. (Если у двигателя три провода, это не значит что он работает от трехфазного переменного тока! А работает он от «порций» коротких импульсов постоянного тока, и не хочу вас шокировать, но те же двигатели которые используются в кулерах, тоже бесколлекторные, хоть они и имеют всего два провода питания постоянного тока)

    Устройство бесколлекторного двигателя:
    Inrunner (произносится как «инраннер»). Двигатель имеет расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор.


    Outrunner (произносится как «аутраннер»). Двигатель имеет неподвижные обмотки (внутри) вокруг которых вращается корпус с помещенным на его внутреннюю стенку постоянными магнитами.

    Принцип работы:
    Для того чтобы бесколлекторный двигатель начал вращаться, напряжение на обмотки двигателя надо подавать синхронно. Синхронизация может быть организованна с использованием внешних датчиков (оптические или датчики холла), так и на основе противоЭДС (бездатчиковый), которая возникает в двигателе при его вращении.

    Бездатчиковое управление:
    Существуют бесколлекторные двигатели без каких либо датчиков положения. В таких двигателях определение положения ротора выполняется путем измерения ЭДС на свободной фазе. Мы помним, что в каждый момент времени к одной из фаз (А) подключен «+» к другой (В) «-» питания, одна из фаз остается свободной. Вращаясь, двигатель наводит ЭДС (т.е. в следствии закона электромагнитной индукции в катушке образуется индукционный ток) в свободной обмотке. По мере вращения напряжение на свободной фазе (С) изменяется. Измеряя напряжение на свободной фазе, можно определить момент переключения к следующему положению ротора.


    Что бы измерить это напряжение изпользуется метод «виртуальной точки». Суть заключается в том, что, зная сопротивление всех обмоток и начальное напряжение, можно виртуально «переложить провод» в место соединения всех обмоток:

    Регулятор скорости бесколлекторного двигателя:
    Бесколлекторный двигатель без электроники — просто железка, т.к. при отсутствии регулятора, мы не можем просто подключить напряжение на него, чтоб он просто начал нормальное вращение. Регулятор скорости — это довольно сложная система радиокомпонентов, т.к. она должна:
    1) Определять начальное положение ротора для запуска электродвигателя
    2) Управлять электродвигателем на низких скоростях
    3) Разгонять электродвигатель до номинальной (заданной) скорости вращения
    4) Поддерживать максимальный момент вращения

    Принципиальная схема регулятора скорости (вентильная):


    Бесколлекторные двигатели были придуманы на заре появления электричества, однако систему управления к ним никто не мог сделать. И только с развитием электроники: с появлением мощных полупроводниковых транзисторов и микроконтроллеров, бесколлекторные двигатели стали применятся в быту (первое промышленное использование в 60-х годах).

    Достоинства и недостатки бесколлекторных двигателей:

    Достоинства:
    -Частота вращения изменяется в широком диапазоне
    -Возможность использования во взрывоопасной и агрессивной среде
    -Большая перегрузочная способность по моменту
    -Высокие энергетические показатели (КПД более 90 %)
    -Большой срок службы, высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов

    Недостатки:
    -Относительно сложная система управления двигателем
    -Высокая стоимость двигателя, обусловленная использованием дорогостоящих материалов в конструкции ротора (магниты, подшипники, валы)
    Разобравшись с теорией, перейдем к практике: спроектируем и сделаем двигатель для пилотажной модели МХ-2.

    Список материалов и оборудования:
    1) Проволока (взятая из старых трансформаторов)
    2) Магниты (купленные в интернете)
    3) Статор (барашек)
    4) Вал
    5) Подшипники
    6) Дюралюминий
    7) Термоусадка
    8) Доспуп к неограниченному техническому хламу
    9) Доступ к инструментам
    10) Прямые руки:)

    Ход работы:
    1) С самого начала решаем:

    Для чего делаем двигатель?
    На что он должен быть рассчитан?
    В чем мы ограничены?

    В моем случае: я делаю двигатель для самолета, значит пускай он будет внешнего вращения; рассчитан он должен на то, что он должен выдать 1400 грамм тяги при трех-баночном аккумуляторе; ограничен я в весе и в размере. Однако с чего же начать? Ответ на этот вопрос прост: с самой трудной детали, т.е. с такой детали, которую легче просто найти, а все остальное подгонять под неё. Я так и поступил. После многих неудачных попыток сделать статор из листовой мягкой стали, мне стало понятно, что лучше найти её. Нашел я её в старой видеоголовке от видеорекоудора.

    2) Обмотка трехфазного бесколлекторного двигателя выполняется изолированным медным проводом, от сечения которого зависит значение силы тока, а значит и мощность двигателя. Незабываем что, чем толще проволока, тем больше оборотов, но слабее крутящий момент. Подбор сечения:

    1А — 0.05мм; 15А — 0.33мм; 40А — 0.7мм

    3А — 0.11мм; 20А — 0.4мм; 50А — 0.8мм

    10А — 0.25мм; 30А — 0.55мм; 60А — 0.95мм

    3) Начинаем наматывать на полюса проволоку. Чем больше витков (13) намотано на зуб, тем большее магнитное поле. Чем сильнее поле, тем больший крутящий момент и меньшее количество оборотов. Для получения высоких оборотов, необходимо мотать меньшее количество витков. Но вместе с этим падает и крутящий момент. Для компенсации момента, обычно на мотор подают более высокое напряжение.

    4) Дальше выбираем способ соединения обмотки: звездой или треугольником. Соединение звездой дает больший крутящий момент, но меньшее количество оборотов, чем соединение треугольником в 1.73 раз. (впоследствии было выбрано соединение треугольник)

    5) Выбираем магниты. Количество полюсов на роторе должно быть четным (14). Форма применяемых магнитов обычно прямоугольная. Размер магнитов зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу. Также чем больше количество полюсов, тем больше момент, но меньше оборотов. Магниты на роторе закрепляются с помощью специального термоклея.

    Испытания данного двигателя я проводил на созданной мной витномоторной установке, которая позволяет измерить тягу, мощность и обороты двигателя.

    Чтобы увидеть отличия соединений «звезда» и «треугольник» я соединял по разному обмотки:

    В итоге получился двигатель соответствующий характеристикам самолета, масса которого 1400 грамм.

    Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.

    Общие сведения, устройство, сфера применения

    Одна из причин проявления интереса к БД – это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.

    Рис. 2. Устройство бесколлекторного двигателя

    Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.

    Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).


    Рис. 3. Конструкция с внешним якорем (outrunner)

    Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).


    Принцип работы

    В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.


    Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.

    Отличия коллекторного и бесколлекторного двигателя

    Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.


    Рис. 5. А – коллекторный двигатель, В – бесколлекторный

    Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.

    Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.

    Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.

    Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.

    Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.

    Как запустить бесколлекторный двигатель?

    Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.


    Рис. 6. Контроллеры бесколлекторных двигателей для моделизма

    Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:

    • Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
    • Максимальная величина штатного напряжения для продолжительной работы.
    • Сопротивление внутренних цепей контроллера.
    • Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
    • Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.

    Обратим внимание, что первые три характеристики определяют мощность БД.

    Управление бесколлекторным двигателем

    Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.

    Трёхфазный бесколлекторный электродвигатель постоянного тока

    Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).


    Рисунок 7. Диаграммы напряжений БД

    Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:

    1. На катушки «А» подается положительный импульс, в то время как на «В» – отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
    2. Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
    3. На «С» – положительный, «А» – отрицательный.
    4. Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
    5. Положительный импульс повторно подается на «В», и отрицательный на «С».
    6. Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.

    В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.


    Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем

    Преимущества и недостатки

    Электрический бесколлекторный двигатель имеет много достоинств, а именно:

    • Срок службы значительно дольше, чем у обычных коллекторных аналогов.
    • Высокий КПД.
    • Быстрый набор максимальной скорости вращения.
    • Он более мощный, чем КД.
    • Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
    • Не требуется дополнительное охлаждение.
    • Простая эксплуатация.

    Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.

    Наверняка задавался вопросом, чем же отличается такой двигатель от других двигателей, например от тех, что стоят в сверлильных станках. Двигатели, установленные в не очень мощных станках, обычно не искрят, и работают они не так шумно, как та же дрель, обладающая меньшей чем станок мощностью.

    В чем же дело? Дело в том, что двигатель с щетками — это коллекторный двигатель, а двигатель без щеток — бесколлекторный . Для решения разных задач подойдет свой тип двигателя — где-то лучше подойдет коллекторный, а где-то можно установить только бесколлекторный.

    Коллекторный двигатель

    Двигатель коллекторный имеет, как правило, всего два провода питания, он прост в управлении, достаточно регулировать постоянное или переменное напряжение питания и обороты станут соответственно меняться. Управлять коллекторным двигателем можно даже при помощи нехитрого диммера. Главное достоинство коллекторного двигателя — высокие обороты (десятки тысяч в минуту) при высоком крутящем моменте.

    Принцип работы коллекторного двигателя очень прост. По сути, ротор его представляет собой набор медных рамок в магнитопроводе, которые поочередно коммутируются к источнику питания на коллекторно-щеточном узле. Статор может быть как из постоянных магнитов, так и с обмоткой, питаемой от того же источника, что и ротор, или от отдельного источника, а иногда статор и ротор включены в единую последовательную цепь (как например двигатели стиральных машинок-автоматов).

    На каждую из секций обмотки ротора, через коллекторно-щеточный узел, поочередно, в процессе вращения ротора, подается электрический ток, в результате ротор перемагничивается, приобретая четко выраженные северный и южный магнитные полюсы, благодаря которым и происходит вращение ротора внутри статора (полюсы ротора выталкиваются полюсами статора, затем ротор дальше перемагничивается и вновь выталкивается). Поскольку ротор каждый раз коммутируется к источнику питания очередной секцией, вращение не останавливается, пока на коллектор подается питание.

    Основной недостаток коллекторного двигателя

    Обороты коллекторного двигателя очень удобно регулировать, но когда они достаточно высоки, щетки дают о себе знать. Поскольку щетки все время плотно прилегают к коллектору, на высоких оборотах они быстро изнашиваются, со временем так или иначе засоряются, и в конце концов начинают искрить.

    Износ щеток, и вообще коллекторно-щеточного узла, ведет к снижению эффективности коллекторного двигателя. Таким образом, сам коллекторно-щеточный узел — это и есть главный недостаток коллекторных двигателей . Сегодня от коллекторных двигателей стараются отказываться в пользу бесщеточных шаговых.

    У бесколлекторного двигателя нет ни коллектора, ни щеток. Простейший пример бесколлекторного двигателя — асинхронный трехфазный двигатель с ротором типа «беличья клетка». Еще один пример бесколлекторного двигателя — более современный — шаговый двигатель с магнитным ротором . Обмотки статора бесколлекторного двигателя сами перемагничиваются так, чтобы ротор все время разворачивался и непрерывно таким образом вращался.

    Чаще всего современные бесколлекторные двигатели оснащаются датчиком положения ротора, по сигналам с которого работает регулятор скорости вращения двигателя. Сигнал с датчика положения ротора передается на процессор более 100 раз в секунду, в результате получается точное позиционирование ротора и высокий крутящий момент. Бывают, конечно, бесколлекторные двигатели и без датчика положения ротора, яркий пример — тот же асинхронный трехфазный мотор. Моторы без датчика положения стоят дешевле чем с датчиком.

    Достоинства бесколлекторных двигателей

    Поскольку ресурс подшипников ротора крайне велик, можно сказать, что в бесколлекторном двигателе практически отсутствуют изнашиваемые со временем детали, и он вообще не требует обслуживания в процессе эксплуатации. Здесь сведено к минимуму трение, отсутствует проблема перегрева коллектора, в целом надежность и эффективность бесколлекторных двигателей очень высоки.

    Нет искрящих щеток, датчик положения ротора поможет сделать управление точным, — недостатков практически нет, одни достоинства. Разве что цена качественных шаговых двигателей выше чем у коллекторных (плюс драйвер), но это ничто по сравнению с регулярной заменой пружин, щеток и коллекторов у коллекторных двигателей.

    Бесколлекторные двигатели на сегодняшний день являются довольно распространенными. Применяются данные устройства чаще всего с электроприводами. Также их можно встретить на различном холодильном оборудовании. В промышленной сфере они задействованы в системах нагрева.

    Дополнительно бесколлекторные модификации устанавливаются в обычные вентиляторы для кондиционирования воздуха. В наше время на рынке представлено множество моделей с датчиками и без них. При этом по типу регуляторов модификации довольно сильно отличаются. Однако чтобы разобраться в данном вопросе более подробно, необходимо изучить устройство простого двигателя.

    Устройство бесколлекторной модели

    Если рассматривать обычный трехфазный бесколлекторный двигатель, то катушка индуктивности у него устанавливается медного типа. Статоры используются как широтные, так и импульсные. Зубцы у них применяются разного размера. Как говорилось ранее, существуют модели с датчиками, а также без них.

    Для фиксации статора используются колодки. Непосредственно процесс индукции происходит за счет обмотки статора. Роторы чаше всего применяются двухполюсного типа. Сердечники у них устанавливаются стальные. Для закрепления магнитов на моделях имеются специальные пазы. Непосредственно управление бесколлекторным двигателем происходит при помощи регуляторов, которые располагаются у статора. Для подачи напряжения на внешнюю обмотку в устройствах устанавливаются изолирующие затворы.

    Двухразрядные модели

    Безколлекторные эл. двигатели данного типа часто используются в морозильном оборудовании. При этом компрессоры для них подходят самые разнообразные. В среднем мощность модели способна достигать 3 кВт. Схема бесколлекторного двигателя катушки чаще всего включает двойного типа с медной обмоткой. Статоры устанавливаются только импульсные. В зависимости от производителя длина зубцов может меняться. Датчики используются как электрического, так и индуктивного типа. Для систем нагрева указанные модификации походят плохо.

    Также следует учитывать, что сердечники в бесколлекторных двигателях встречаются в основном стальные. При этом пазы для магнитов используются довольно широкие, а расположены они очень близко друг к другу. За счет этого частотность у устройств может быть высокой. Регуляторы для таких модификаций подбираются чаще всего одноканального типа.

    Трехразрядные модификации

    Трехразрядный бесколлекторный двигатель отлично подходит для систем вентилирования. Датчики у него используются, как правило, электрического типа. При этом катушки устанавливаются довольно широкие. За счет этого процесс индукции осуществляется быстро. В данном случае частотность устройства зависит от статора. Обмотка у него чаще всего встречается медного типа.

    Предельное напряжение трехразрядные бесколлекторные двигатели способны выдерживать на уровне 20 В. Тиристорные модификации в наше время встречаются довольно редко. Также следует отметить, что магниты в таких конфигурациях могут устанавливаться как на внешней, так и на внутренней стороне роторной пластины.

    Четырехразрядные модификации своими руками

    Сделать четырехразрядный бесколлекторный двигатель своими руками можно абсолютно просто. Для этого необходимо в первую очередь заготовить пластину с пазами. Толщина металла в данном случае должна составлять примерно 2.3 мм. Пазы в этой ситуации обязаны находиться на расстоянии в 1.2 см. Если рассматривать простую модель, то катушку следует подбирать диаметром в 3.3 см. При этом пороговое напряжение она обязана выдерживать на уровне 20 В.

    Колодки для устройства чаще всего подбираются стальные. В данном случае многое зависит от размеров роторной пластины. Непосредственно статор надо использовать с двойной обмоткой. При этом сердечник важно заготавливать стального типа. Если рассматривать модификации без регуляторов, то закончить сборку бесколлекторного двигателя можно установкой изолирующего затвора. При этом контакты устройства необходимо вывести на внешнюю сторону пластины. Для обычного вентилятора такие бесколлекторные модели подойдут идеально.

    Устройства с регулятором АВР2

    Бесколлекторный двигатель с регуляторами данного типа на сегодняшний день является весьма востребованным. Подходят указанные системы больше всего для приборов кондиционирования. Также они в промышленной сфере широко используются для холодильного оборудования. Они способны работать с электроприводами различной частотности. Катушки у них чаще всего устанавливаются двойного типа. При этом статоры можно встретить только импульсные. В свою очередь, широтные модификации являются не сильно распространенными.

    Датчики в бесколлекторных двигателях с регуляторами данной серии используются только индуктивные. При этом частотность устройства можно отслеживать по системе индикации. Колодки, как правило, устанавливаются контактного типа, и крепиться они могут непосредственно на статорной пластине. Регулятор бесколлекторного двигателя в данном случае позволяет менять частотность довольно плавно. Происходит данный процесс за счет изменения параметра выходного напряжения. В целом эти модификации являются очень компактными.

    Двигатели с регуляторами АВР5

    Бесколлекторный двигатель с регулятором данной серии часто применяется в промышленной сфере для управления различными электроприборами. В бытовых устройствах он устанавливается довольно редко. Особенностью таких бесколлекторных модификаций можно назвать повышенную частотность. При этом параметр мощности у них менять просто. Катушки в данных модификациях встречаются самые разнообразные. Также следует отметить, что магниты чаще всего устанавливаются на внешней стороне роторной коробки.

    Затворы в основном используются изолированного типа. Монтироваться они могут как у статорной коробки, так и сердечника. В целом регулировка устройства происходит довольно быстро. Однако следует учитывать также и недостатки таких систем. В первую очередь они связаны с перебоями питания при низких частотах. Также важно упомянуть, что у моделей данного типа потребление электроэнергии довольно большое. При этом для управления интегральными электроприводами устройства не подходят.

    Использование регуляторов АВТ6

    Данного типа регулятор скорости бесколлекторного двигателя на сегодняшний день пользуется большим спросом. Отличительной его особенностью можно смело назвать универсальность. Устанавливаются регуляторы, как правило, на бесколлекторные двигатели, мощность которых не превышает 2 кВт. При этом для управления системами вентилирования указанные устройства подходят идеально. Контроллеры в данном случае могут устанавливаться самые разнообразные.

    Скорость передачи сигнала в данном случае зависит от типа системы управления. Если рассматривать тиристорные модификации, то они обладают довольно высокой проводимостью. При этом проблемы с магнитными помехами у них возникают редко. Самостоятельно собрать модель данного типа довольно сложно. В этой ситуации затворы чаще всего подбираются неизолированные.

    Модели с датчиками Холла

    Бесколлекторные двигатели с датчиками Холла широко используются в приборах нагрева. При этом подходят они для электроприводов различного класса. Непосредственно регуляторы используются только одноканальные. Катушки в устройстве устанавливаются медного типа. При этом величина зубцов модели зависит исключительно от производителя. Непосредственно колодки для устройств подбираются контактного типа. На сегодняшний день датчики чаще всего устанавливаются со стороны статора. Однако на рынке представлены также модели с нижним их расположением. В таком случае габариты бесколлекторного двигателя будут немного большими.

    Низкочастотные модификации

    Низкочастотный бесколлекторный двигатель на сегодняшний день активно используется в промышленной сфере. При этом для морозильных камер он подходит идеально. В среднем параметр полезного действия у него находится на уровне 70%. Затворы у моделей чаще всего используются с изоляторами. При этом тиристорные модификации в наше время встречаются довольно часто.

    Системы управления используются серии АВР. При этом частотность модели зависит от типа сердечника и не только. Также следует учитывать, что существуют модели с двойными роторами. В данном случае магниты располагаются вдоль пластины. Статоры чаще всего используются с медной обмоткой. При этом низкочастотные бесколлекторные двигатели с датчиками встречаются очень редко.

    Высокочастотные двигатели

    Указанные модификации наиболее востребованными считаются для резонансных электроприводов. В промышленности такие модели встречаются довольно часто. Датчики у них устанавливаются как электронного, так индуктивного типа. При этом катушки чаще всего имеются на внешней стороне пластины. Роторы монтируют как в горизонтальном, так и вертикальном положении.

    Непосредственно изменение частотности у таких устройств осуществляется через контроллеры. Устанавливаются они, как правило, со сложной контактной системой. Непосредственно стартеры используются только двойного типа. В свою очередь, системы управления зависят от мощности бесколлекторного устройства.

    Введение в управление бесщеточным двигателем постоянного тока


    Бесщеточный двигатель постоянного тока (BLDC) становится все более популярным в таких секторах, как автомобилестроение (особенно электромобили (EV)), HVAC, бытовая техника и промышленность, поскольку он устраняет механический коммутатор, используемый в традиционных двигателях, заменяя его электронным устройством. что повышает надежность и долговечность агрегата.

    Еще одно преимущество двигателя BLDC заключается в том, что его можно сделать меньше и легче, чем тип щеток с той же выходной мощностью, что делает первый пригодным для применений в ограниченном пространстве.

    Обратной стороной является то, что для работы двигателей BLDC требуется электронное управление. Например, микроконтроллер, использующий входные данные от датчиков, указывающих положение ротора, необходим для подачи питания на катушки статора в нужный момент. Точная синхронизация позволяет точно контролировать скорость и крутящий момент, а также обеспечивает максимальную эффективность двигателя.

    В этой статье объясняются основы работы двигателя BLDC и описывается типовая схема управления для работы трехфазного агрегата.В статье также рассматриваются некоторые из интегрированных модулей, которые разработчик может выбрать для упрощения схемотехники, которые специально разработаны для управления двигателями BLDC.

    Преимущества бесщеточного режима работы

    Щетки обычного двигателя передают мощность на обмотки ротора, которые под напряжением вращаются в фиксированном магнитном поле. Трение между неподвижными щетками и вращающимся металлическим контактом вращающегося ротора вызывает износ. Кроме того, мощность может быть потеряна из-за плохого контакта щетки с металлом и искрения.

    Поскольку двигатель BLDC не требует щеток — вместо этого используется «электронный коммутатор», надежность и эффективность двигателя повышаются за счет устранения этого источника износа и потерь мощности. Кроме того, двигатели BLDC обладают рядом других преимуществ по сравнению с щеточными двигателями постоянного тока и асинхронными двигателями, в том числе лучшими характеристиками скорости по сравнению с крутящим моментом; более быстрый динамический отклик; бесшумная работа; и более высокие диапазоны скоростей. 1

    Кроме того, отношение крутящего момента к размеру двигателя выше, что делает его хорошим выбором для таких приложений, как стиральные машины и электромобили, где требуется высокая мощность, но компактность и легкость являются критическими факторами.(Однако следует отметить, что электродвигатели постоянного тока щеточного типа имеют более высокий пусковой момент.)

    Электродвигатель BLDC известен как «синхронный» тип, потому что магнитное поле, создаваемое статором и ротором, вращается с одной и той же частотой. . Одним из преимуществ такой схемы является то, что двигатели BLDC не испытывают «скольжения», типичного для асинхронных двигателей.

    Хотя двигатели могут быть одно-, двух- или трехфазного типа, последний является наиболее распространенным типом и будет обсуждаться здесь.

    Статор двигателя BLDC состоит из стальных пластин с осевыми пазами для размещения четного числа обмоток по внутренней периферии (рис. 1). В то время как статор двигателя BLDC похож на статор асинхронного двигателя, обмотки распределены по-другому.

    Рис. 1. Статор двигателя BLDC со стальным кольцом с пазами и осевыми обмотками. (Любезно предоставлено Microchip.)

    Ротор состоит из постоянных магнитов с двумя-восемью парами полюсов N-S.Больше пар магнитов увеличивают крутящий момент и сглаживают так называемую пульсацию крутящего момента, выравнивая мощность двигателя. Обратной стороной является более сложная система управления, повышенная стоимость и более низкая максимальная скорость.

    Традиционно для изготовления постоянных магнитов использовались ферритовые магниты, но в современных устройствах обычно используются магниты из редкоземельных элементов. Хотя эти магниты более дорогие, они создают большую плотность магнитного потока, что позволяет уменьшить размер ротора для заданного крутящего момента. Использование этих мощных магнитов является ключевой причиной того, почему двигатели BLDC обеспечивают более высокую мощность, чем щеточные двигатели постоянного тока того же размера.

    Подробную информацию о конструкции и работе двигателей BLDC можно найти в интересной заметке по применению (AN885), выпущенной Microchip Technology. 2

    Основы работы

    Электронный коммутатор двигателя BLDC последовательно питает катушки статора, создавая вращающееся электрическое поле, которое «тащит» за собой ротор. N «электрических оборотов» равняется одному механическому обороту, где N — количество пар магнитов.

    В трехфазном двигателе в статор встроены три датчика Холла, которые показывают относительное положение статора и ротора контроллеру, чтобы он мог подавать питание на обмотки в правильной последовательности и в нужное время. Датчики Холла обычно устанавливаются на неприводной стороне агрегата (рисунок 2).

    Рис. 2. Датчики Холла встроены в статор двигателя BLDC для определения последовательности включения обмотки. (Любезно предоставлено Microchip.)

    Когда магнитные полюса ротора проходят через датчики Холла, генерируется высокий (для одного полюса) или низкий (для противоположного полюса) сигнал. Как подробно обсуждается ниже, точная последовательность коммутации может быть определена путем объединения сигналов от трех датчиков.

    Все электродвигатели генерируют потенциал напряжения из-за движения обмоток через соответствующее магнитное поле. Этот потенциал известен как электродвижущая сила (ЭДС) и, согласно закону Ленца, он вызывает в обмотках ток с магнитным полем, которое противодействует первоначальному изменению магнитного потока.Проще говоря, это означает, что ЭДС имеет тенденцию сопротивляться вращению двигателя и поэтому называется «обратной» ЭДС. Для данного двигателя с фиксированным магнитным потоком и количеством обмоток ЭДС пропорциональна угловой скорости ротора.

    Но обратная ЭДС, хотя и добавляет некоторое «сопротивление» двигателю, может быть использована с пользой. Контролируя обратную ЭДС, микроконтроллер может определять относительное положение статора и ротора без необходимости использования датчиков Холла. Это упрощает конструкцию двигателя, снижает его стоимость, а также устраняет дополнительную проводку и соединения с двигателем, которые в противном случае потребовались бы для поддержки датчиков.Это повышает надежность при наличии грязи и влажности.

    Однако стационарный двигатель не генерирует обратную ЭДС, что делает невозможным определение микроконтроллером положения частей двигателя при запуске. Решение состоит в том, чтобы запустить двигатель в конфигурации с разомкнутым контуром до тех пор, пока не будет сгенерирована ЭДС, достаточная для того, чтобы микроконтроллер взял на себя контроль двигателя. Эти так называемые «бессенсорные» двигатели BLDC набирают популярность.

    Управление двигателем BLDC

    Хотя двигатели BLDC относительно просты с механической точки зрения, они требуют сложной управляющей электроники и регулируемых источников питания.Перед проектировщиком стоит задача иметь дело с трехфазной системой большой мощности, которая требует точного управления для эффективной работы.

    На рисунке 3 показана типичная схема привода двигателя BLDC с датчиками Холла. (Управление бессенсорным двигателем BLDC с использованием измерения обратной ЭДС будет рассмотрено в следующей статье.) Эта система показывает три катушки двигателя, расположенные в форме буквы «Y», микроконтроллер Microchip PIC18F2431, биполярный транзистор с изолированным затвором ( IGBT) драйвер и трехфазный инвертор, содержащий шесть IGBT (металлооксидные полупроводниковые полевые транзисторы (MOSFET), также могут использоваться для переключения большой мощности).Выходной сигнал микроконтроллера (отражаемый драйвером IGBT) содержит сигналы с широтно-импульсной модуляцией (ШИМ), которые определяют среднее напряжение и средний ток на катушках (и, следовательно, скорость и крутящий момент двигателя). В двигателе используются три датчика Холла (A, B и C) для индикации положения ротора. Сам ротор использует две пары постоянных магнитов для генерации магнитного потока.

    Рис. 3. Система управления источником питания BDLC с использованием 8-разрядного микроконтроллера. (Любезно предоставлено Microchip.)

    В системе используется шестиступенчатая последовательность коммутации для каждого электрического оборота. Поскольку двигатель имеет две пары магнитов, для однократного вращения двигателя требуется два электрических оборота.

    На рис. 4 показан поток тока в идентичном расположении катушек к двигателю на рис. 3 (на этот раз обозначены U, V и W) для каждого из шести шагов, а на рис. 5 показаны последующие выходные сигналы датчика Холла и напряжения катушки.

    Рисунок 4: Последовательность включения катушки на один электрический оборот трехфазного двигателя BLDC.(Предоставлено Atmel.)

    Рис. 5. Состояние датчиков Холла определяет, когда и как на катушки подается напряжение. К каждой катушке подключена пара датчиков Холла. (Любезно предоставлено Atmel.)

    Пара датчиков Холла определяет, когда микроконтроллер возбуждает катушку. В этом примере датчики h2 и h3 определяют переключение катушки U. Когда h3 обнаруживает полюс магнита N, на катушку U подается положительное напряжение; когда h2 обнаруживает полюс магнита N, катушка U размыкается; когда h3 обнаруживает S-полюс магнита, катушка U переключается на минус, и, наконец, когда h2 обнаруживает S-магнитный полюс, катушка U снова отключается.Точно так же датчики h3 и h4 определяют включение катушки V, при этом h2 и h4 следят за катушкой W.

    На каждом этапе включены две фазы, одна фаза питает ток на двигатель, а другая обеспечивает обратный ток. Другой этап открыт. Микроконтроллер контролирует, какие два переключателя в трехфазном инверторе должны быть замкнуты, чтобы положительно или отрицательно запитать две активные катушки. Например, переключение Q1 на рисунке 3 дает положительное напряжение на катушку A, а переключение Q2 отрицательно активирует катушку B, обеспечивая обратный путь.Катушка C остается разомкнутой.

    Разработчики могут поэкспериментировать с 8-разрядными наборами средств разработки на базе микроконтроллера, чтобы опробовать режимы управления перед тем, как приступить к проектированию полноразмерного двигателя. Например, Atmel выпустила недорогой стартовый комплект ATAVRMC323 для управления двигателем BLDC на основе 8-битного микроконтроллера ATxmega128A1. 4 Некоторые другие поставщики предлагают аналогичные комплекты.

    Управление двигателем BLDC

    Хотя 8-битный микроконтроллер, соединенный с трехфазным инвертором, является хорошим началом, этого недостаточно для полной системы управления двигателем BLDC.Для выполнения работы требуется регулируемый источник питания для управления IGBT или MOSFET («Драйвер IGBT», показанный на Рисунке 3). К счастью, эта работа упрощается, потому что несколько крупных производителей полупроводников разработали специально для этой работы встроенные микросхемы драйверов.

    Эти устройства обычно содержат понижающий (понижающий) преобразователь (для питания микроконтроллера и других требований к системе питания), управление драйвером затвора и обработку ошибок, а также некоторую логику синхронизации и управления. Трехфазный предварительный драйвер DRV8301 от Texas Instruments является хорошим примером (рис. 6).

    Рис. 6. Драйвер двигателя DRV8301 от Texas Instruments объединяет в одном корпусе понижающий стабилизатор, драйвер затвора и управляющую логику.

    Этот предварительный драйвер поддерживает пиковый ток до 2,3 А и источник пикового тока 1,7 А и требует одного источника питания с входным напряжением от 8 до 60 В. Устройство использует автоматическое дрожание руки при подаче высокого или низкого напряжения. IGBT или MOSFET переключаются, чтобы предотвратить прохождение тока.

    ON Semiconductor предлагает аналогичный чип LB11696V.В этом случае схема драйвера двигателя с желаемой выходной мощностью (напряжением и током) может быть реализована путем добавления дискретных транзисторов в выходные цепи. Чип также обеспечивает полный набор схем защиты, что делает его пригодным для приложений, которые должны демонстрировать высокую надежность. Это устройство разработано для больших двигателей BLDC, таких как те, которые используются в кондиционерах и водонагревателях по запросу.

    Вкратце

    Двигатели с BLDC обладают рядом преимуществ по сравнению с обычными двигателями.Удаление щеток из двигателя устраняет механическую часть, которая в противном случае снижает эффективность, изнашивается или может катастрофически выйти из строя. Кроме того, разработка мощных редкоземельных магнитов позволила производить двигатели BLDC, которые могут производить такую ​​же мощность, что и двигатели щеточного типа, при размещении в меньшем пространстве.

    Одним из очевидных недостатков является то, что двигатели BLDC, в отличие от щеточных, требуют наличия электронной системы для контроля последовательности включения катушек и обеспечения других функций управления.Без электроники двигатели не могут работать.

    Однако распространение недорогих, надежных электронных устройств, специально разработанных для управления двигателями, означает, что проектирование схемы является относительно простым и недорогим. Фактически, двигатель BLDC можно настроить для работы в базовой конфигурации даже без использования микроконтроллера, применив скромный трехфазный генератор синусоидальной или прямоугольной формы. Fairchild Semiconductor, например, предлагает свой чип FCM8201 для этого приложения и опубликовал примечание по применению о том, как это настроить. 5

    Аналогичным образом, контроллер двигателя BLDC MC33033 компании ON Semiconductor включает в себя декодер положения ротора на микросхеме, поэтому нет необходимости в микроконтроллере для завершения системы. Устройство может использоваться для управления трехфазным или четырехфазным двигателем BLDC.

    Однако использование 8-битного микроконтроллера (запрограммированного с помощью заводского кода или собственного программного обеспечения разработчика) добавляет очень небольшую стоимость к системе управления, но предлагает пользователю гораздо больший контроль над двигателем, чтобы гарантировать, что он работает с оптимальной эффективностью. в дополнение к более точному выходному положению, скорости или крутящему моменту.

    Артикул:

    1. «Праймер для бесщеточных двигателей постоянного тока », Мухаммад Мубин, июль 2008 г.
    2. «Основы бесщеточного двигателя постоянного тока (BLDC) », Падмараджа Йедамале, Заметка по применению Microchip Technology AN885, 2003.
    3. « Использование PIC18F2431 для бессенсорного управления двигателем BLDC », Падмараджа Йедамале, примечания по применению Microchip Technology AN970, 2005.
    4. « AVR1607: Управление бесщеточным двигателем постоянного тока (BLDC) в режиме датчика с использованием ATxmega128A1 и ATAVRMC323 », примечания по применению Atmel, 2010 г.
    5. «Контроллер трехфазного синусоидального двигателя BLDC FCM8201 », примечания по применению Fairchild Semiconductor AN-8201, 2011.

    Отказ от ответственности: мнения, убеждения и точки зрения, выраженные различными авторами и / или участниками форума на этом веб-сайте, не обязательно отражают мнения, убеждения и точки зрения Digi-Key Electronics или официальную политику Digi-Key Electronics.

    Бесщеточный двигатель постоянного тока (двигатель BLDC) Системы управления скоростью

    Серия продуктов

    Бесщеточные двигатели постоянного тока серии BLE2 (вход переменного тока)

    Бесщеточные двигатели постоянного тока серии BMU (вход переменного тока)

    Бесщеточные двигатели постоянного тока серии BX II (вход переменного тока)

    Бесщеточные двигатели постоянного тока серии BLE (вход переменного тока)

    Бесщеточные двигатели постоянного тока серии BLH (вход постоянного тока)

    Бесщеточные двигатели постоянного тока типа R серии BLV (вход постоянного тока)

    Бесщеточные двигатели постоянного тока серии BLV (вход постоянного тока)

    Характеристики

    Расширенная производительность

    Контроль крутящего момента

    Цифровой дисплей

    4 метода настройки скорости

    Простота использования

    Простая установка и подключение

    Цифровой дисплей

    Высокая производительность

    Контроль скорости, позиционирования и ограничения крутящего момента

    Несколько способов настройки скорости

    Стандартные драйверы или драйверы типа связи RS-485

    Функция ограничения крутящего момента

    Драйвер компактного типа платы
    (аналоговый, RS-485 или цифровой)

    Ограничение крутящего момента

    На батарейках

    Компактный драйвер (Modbus RTU, CANopen) Драйвер

    Сетевые коммуникации (ввод / вывод или RS-485)

    Ограничение крутящего момента

    Выходная мощность

    30 Вт (1/25 л.с.)
    60 Вт (1/12 л.с.)
    120 Вт (1/6 л.с.)
    200 Вт (1/4 л.с.)
    300 Вт (2/5 л.с.)
    400 Вт ( 1/2 л.с.)

    30 Вт (1/25 л.с.)
    60 Вт (1/12 л.с.)
    120 Вт (1/6 л.с.)
    200 Вт (1/4 л.с.)
    300 Вт (2/5 л.с.)
    400 Вт ( 1/2 л.с.)

    30 Вт (1/25 л.с.)
    60 Вт (1/12 л.с.)
    120 Вт (1/6 л.с.)
    200 Вт (1/4 л.с.)
    400 Вт (1/2 л.с.)

    30 Вт (1/25 л.с.)
    60 Вт (1/12 л.с.)
    120 Вт (1/6 л.с.)

    15 Вт (1/50 л.с.)
    30 Вт (1/25 л.с.)
    50 Вт (1/15 л.с.)
    100 Вт (1/8 л.с.)

    100 Вт (1/8 л.с.)
    200 Вт (1/4 л.с.)

    100 Вт (1/8 л.с.)
    200 Вт (1/4 л.с.)
    400 Вт (1/2 л.с.)

    Блок питания

    Однофазный 100-120 В переменного тока
    Однофазный / трехфазный 200-240 В переменного тока

    Однофазный 100-120 В переменного тока
    Однофазный / трехфазный 200-240 В переменного тока

    Однофазный 100-120 В переменного тока
    Однофазный / трехфазный 200-240 В переменного тока

    Однофазный 100-120 В переменного тока
    Однофазный 200-240 В переменного тока
    Трехфазный 200-240 В переменного тока

    24 В постоянного тока

    24 В постоянного тока
    48 В постоянного тока

    24 В постоянного тока
    48 В постоянного тока

    Типы шестерен

    Вал параллельный

    h2 Food-Grade
    Параллельный вал

    Параллельный вал (на лапах)

    Параллельный вал (вал из нержавеющей стали IP66)

    Угловой полый вал (вал из нержавеющей стали IP66)

    Плоская шестерня с полым валом

    Круглый вал (без шестерни)

    Вал параллельный

    h2 Food-Grade
    Параллельный вал

    Параллельный вал (на лапах)

    Параллельный вал (вал из нержавеющей стали IP66)

    Угловой полый вал (вал из нержавеющей стали IP66)

    Плоская шестерня с полым валом

    Круглый вал (без шестерни)

    Вал параллельный

    Плоский полый вал

    Круглый вал (без шестерни)

    Вал параллельный

    Плоский полый вал

    Круглый вал (без шестерни)

    Вал параллельный

    Плоский полый вал

    Круглый вал (без шестерни)

    Вал параллельный

    Плоский полый вал

    Круглый вал (без шестерни)

    Вал параллельный

    Плоский полый вал

    Круглый вал (без шестерни)

    Доступные опции

    Электромагнитный тормоз

    Типы IP66 и IP67

    Типы IP66 и IP67

    Электромагнитный тормоз

    Электромагнитный тормоз

    IP65 Тип

    Электромагнитный тормоз

    Электромагнитный тормоз

    Электромагнитный тормоз

    Настройка крутящего момента

    Есть

    Есть

    Да
    (с модулем управления или вспомогательным программным обеспечением)

    Да †
    (RS-485 или цифровой драйвер с программным обеспечением поддержки)

    Есть

    Да
    (с модулем управления или вспомогательным программным обеспечением)

    Мониторинг

    Есть

    Есть

    Да
    (с модулем управления или вспомогательным программным обеспечением)

    Да †
    (RS-485 или цифровой драйвер с программным обеспечением поддержки)

    Есть

    Да
    (с модулем управления или вспомогательным программным обеспечением)

    Количество настроек скорости

    16 настроек

    4 настройки

    16 настроек

    16 настроек
    (с модулем управления или вспомогательным программным обеспечением)

    2 настройки

    8 настроек
    (с RS-485 или цифровым драйвером ‡)

    8 (с прямым / дискретным)

    256 (с удаленными входами)

    2 настройки

    8 настроек * (с модулем управления или вспомогательным программным обеспечением)

    Диапазон регулирования скорости

    80 ~ 4000 об / мин

    80 ~ 4000 об / мин

    2 ~ 4000 об / мин

    100 ~ 4000 об / мин

    80 ~ 4000 об / мин
    (с модулем управления или вспомогательным программным обеспечением)

    100 ~ 3000 об / мин
    (80 ~ 3000 об / мин ‡)

    1 ~ 4000 об / мин

    100 ~ 4000 об / мин
    (80 ~ 4000 об / мин *)
    (80 ~ 3000 об / мин * только 100 Вт)

    Номинальный крутящий момент

    0.От 85 до 5159 фунт-дюймов

    от 0,85 до 5159 фунт-дюймов

    от 0,89 до 970 фунтов на дюйм

    от 0,85 до 600 фунтов на дюйм

    от 0,44 до 600 фунтов на дюйм

    0 ~ 470 фунтов на дюйм

    от 5,75 до 970 фунтов на дюйм

    Подробнее

    Бесщеточные двигатели постоянного тока серии BLE2 (вход переменного тока)

    Бесщеточные двигатели постоянного тока серии BMU (вход переменного тока)

    Бесщеточные двигатели постоянного тока серии BX II (вход переменного тока)

    Бесщеточные двигатели постоянного тока серии BLE (вход переменного тока)

    Бесщеточные двигатели постоянного тока серии BLH (вход постоянного тока)

    Бесщеточные двигатели постоянного тока типа R серии BLV (вход постоянного тока)

    Бесщеточные двигатели постоянного тока серии BLV (вход постоянного тока)

    Управление двигателем постоянного тока для сервоавтоматики

    Двигатель постоянного тока широко используется в области сервоавтоматики и робототехники.Принцип работы электродвигателя основан на взаимодействии двух магнитных полей, которые притягивают и отталкивают друг друга.

    Двумя основными частями двигателя постоянного тока являются ротор. (вращающийся) и статор (фиксированный). Статор представляет собой индуктор магнитного поля, в то время как ротор представляет собой элемент, подверженный магнитному полю, представленному цепью, называемой арматурой. Между этими двумя элементами есть тонкий слой воздуха, называемый «воздушным зазором».

    Статор должен генерировать как можно более однородное магнитное поле.Изготовлен из пластинчатого железа. ротор состоит из подвижных пластин, разделенных изолятором для увеличивают электрическое сопротивление и, таким образом, уменьшают паразитные токи, индуцированные намагничиванием.

    Два наиболее распространенных типа постоянного тока двигатели известны как щеточные и бесщеточные (BLDC). BLDC указывает бесщеточный электродвигатель с постоянными магнитами. В отличие от щеточного двигателя постоянного тока, ему не нужны электрические контакты, скользящие по валу двигателя, чтобы работать.

    В щеточном двигателе механический контакт щеток электрическими контактами на роторе замкните цепь между источник питания и обмотка ротора.Ротор и щетки производят ток, который постоянно меняет направление, меняя магнитное поле.

    В бесщеточном двигателе реверсирование тока осуществляется электронным способом через группу силовых транзисторов (обычно IGBT), управляемых микроконтроллером. Основная проблема при их вождении — это знать точное положение мотора; только таким образом контроллер может определить, какую фазу использовать. Положение ротора обычно определяется с помощью датчика Холла или оптического датчика.С точки зрения эффективности бесщеточные двигатели выделяют намного меньше тепла, чем эквивалентные двигатели переменного тока, из-за меньшего трения.

    Кроме того, обмотки статора бесщеточного двигателя обладают хорошей рассеивающей способностью и позволяют создавать «плавные» двигатели без ребер охлаждения. Отсутствие искр имеет важное значение, когда двигатель работает в среде, насыщенной летучими химическими соединениями, такими как топливо. В этом типе двигателя магниты расположены на роторе и изготовлены из специальных материалов, которые обеспечивают очень низкую инерцию.Это обеспечивает чрезвычайно высокую точность как скорости, так и крутящего момента, с быстрым и точным ускорением и замедлением.

    Двигатели

    BLDC обладают множеством преимуществ перед традиционные моторы. Как правило, они обеспечивают на 15-20% лучше эффективность, требуют меньшего обслуживания, потому что они бесщеточные, и предлагают плоскую кривую крутящего момента на всех номинальных скоростях.

    Последние разработки в области полупроводниковой техники, усовершенствование постоянных магнитов и растущий спрос на повышение эффективности привели к замене щеточных двигателей на BLDC во многих приложениях.Двигатели BLDC нашли свое применение во многих отраслях промышленности, включая бытовую технику, автомобилестроение, аэрокосмическую промышленность, бытовую технику, медицину, оборудование для промышленной автоматизации и контрольно-измерительные приборы ( Рис. 1 ).

    Рис.1: Пример приложения для управления бесщеточным двигателем постоянного тока и драйвера (Изображение: Infineon Technologies)

    BLDC двигатели могут быть однофазными, двухфазными и трехфазными. конфигурации; самый распространенный — трехфазный. Количество фаз соответствует количеству обмоток на статоре, а ротор полюсов может быть любое количество пар в зависимости от применения ( рис.2 ).

    Ротор скорость пропорциональна ширине импульса рабочей частоты двигателя модуляция (PWM), которая является основной рабочей частотой для управления пусковой ток, крутящий момент и мощность.

    Рис. 2: Типичная система управления трехфазным двигателем BLDC с обратной связью включает в себя контроллер, драйвер и полумост на силовом транзисторе H. (Изображение: Texas Instruments)

    Эквивалентная схема двигателя постоянного тока
    исследование двигателя постоянного тока и его управления предполагает точный анализ эквивалентная модель для определения оптимальных рабочих характеристик.Начиная с изучения математической модели двигателя постоянного тока, это можно выбрать лучший драйвер для управления нагрузкой.

    Следующие уравнения представляют математическую модель ротора при упрощенная гипотеза. Предполагается, что магнитная цепь линейное, а механическое трение — линейная функция двигателя. скорость ( рис.3 ).

    Рис. 3: Эквивалентная электрическая схема двигателя постоянного тока

    В двигателе постоянного тока магнитный поток создается обмотками, расположенными на статоре.Предположим, что у статора есть только один полюсный вывод, характеризующийся индуктивностью L e , связанной с его обмоткой, и резистором R e , связанным с утечками в проводнике. Уравнение модели этой электрической цепи:

    Путем преобразования переменных в области Лапласа:

    , где K e = 1 / R e — коэффициент усиления статора, а τ e = L e / R e — постоянная времени статора.

    Точно так же предполагается, что ротор имеет только один полюсный вывод, характеризующийся сопротивлением якоря R a (несколько Ом) и индуктивностью якоря L a . Кроме того, влияние противоэлектродвижущей силы e (t), которая соответствует разности напряжений, индуцированной статором и пропорциональной скорости вращения, необходимо учитывать в электрической модели ротора. Уравнение, связанное с соответствующей электрической схемой в Рис.1 выглядит следующим образом:

    с v a (t) и i a (t), соответственно, ток и напряжение якоря.

    Аналогично, мы определим коэффициент усиления ротора (Ka) и постоянную времени ротора (τa). Это можно определить противоэлектродвигательную силу (e) и механический крутящий момент c м , передаваемый двигателем в виде:

    , где Ke и Kc — две константы двигателя, называемые эллиптической и постоянной крутящего момента, а ω — угловая скорость.

    Поведение механической нагрузки почти всегда нелинейно. Линейная модель нагрузки может быть получена путем уравнивания крутящего момента двигателя c m до суммы трех параметров: крутящего момента нагрузки, действующего на ось двигателя; параметр, пропорциональный скорости вращения двигателя согласно коэффициенту трения F, и параметр, пропорциональный производной скорости вращения двигателя согласно моменту инерции J; то есть:

    Выполняя преобразование Лапласа, мы можем определить два члена: K m , механическое усиление, и e m , механическую постоянную времени, в результате чего получим следующее уравнение:

    Он выражает прямую зависимость между положением и током якоря.

    Драйверы двигателя постоянного тока
    Драйвер является основным элементом управления BLDC. Это усилитель мощности, который выдает выходное напряжение для управления сильноточными затворами IGBT с высокой и низкой стороны схемы H-моста. Высокая сторона означает, что источник (в случае полевого МОП-транзистора) или эмиттер (в коробке IGBT) может колебаться между землей и более высоким напряжением двигателя. Низкая сторона означает, что источник или эмиттер всегда подключен к земле.

    Такое решение, как встроенный драйвер затвора BM60212FV-CE2 от ROHM Semiconductor, идеально подходит для управления парой IGBT высокого и низкого уровня.Устройство совместимо с логическими сигналами контроллера 3,3 В или 5 В и обеспечивает одновременно регулируемое напряжение питания на стороне высокого напряжения до 1200 В и максимальное управляющее напряжение затвора 24 В. Дальнейшие усовершенствования включают схемы защиты, в первую очередь блокировку пониженного напряжения (UVLO) и защиту от рассыщения (DESAT). Схема UVLO предотвращает перегрев и повреждение при включении питания.

    Рис. 4: Типичная схема подключения драйверов высокого и низкого уровня (Изображение: Infineon Technologies)

    Другим примером является семейство Infineon TLE987x, которое предназначено для широкого круга приложений BLDC.Он обеспечивает непревзойденный уровень интеграции и системных затрат для оптимизации целевых сегментов приложений. Устройство TLE9873QXW40 объединяет стандартное ядро ​​Arm Cortex-M3, позволяющее реализовать передовые алгоритмы управления двигателем. Его периферийный набор включает датчик тока, АЦП последующего приближения, синхронизированный с блоком сбора и сравнения для ШИМ-управления, и 16-битные таймеры ( Рис. 4, ).

    STMicroelectronics’s Драйверы двигателей STSPIN для трехфазных BLDC включают драйверы питания в конфигурация трехфазного моста и решения со встроенным декодированием логика для датчиков Холла.

    Toshiba разработала Технология Intelligent Phase Control (InPAC), контролирующая текущее фаза (текущая информация) и фаза напряжения (сигнал эффекта Холла) и обеспечивает обратную связь с сигналом управления током двигателя для автоматического отрегулируйте для оптимального контроля фазы, чтобы гарантировать высокую эффективность. В На практике фаза сигнала Холла равна автоматически регулируется в соответствии с током привода двигателя. В высокая эффективность не зависит от скорости, момента нагрузки и мощности напряжение двигателя.

    Рассеивание тепла в двигателе BLDC имеет важное значение, и его терморегулирование должно обеспечивать высокую эффективность. Потери можно классифицировать по сопротивлению и паразитной емкости устройства.

    Во время переключения рассеиваемая мощность транзистора пропорциональна напряжению питания, заряду затвора (QG) и переключению частота. При заданном напряжении питания увеличение коммутационных частота для увеличения удельной мощности должна быть компенсирована уменьшением QG если эффективность не будет скомпрометирован.

    Бессенсорный драйвер Allegro MicroSystems A89331 разработан для повышения термической эффективности, снижения энергопотребления и снижения затрат на центр обработки данных. Новая функция торможения потери мощности (PLB) также повышает безопасность и снижает потребность в материалах. Уникальная функция PLB, встроенная в A89331, применяет торможение к вентиляторам, которые не работают должным образом, устраняя дополнительное энергопотребление и повышая тепловую эффективность.

    Механическая конструкция двигателя не могла выполнять свою работу без электронного управления аппаратными средствами.Энергоэффективность, крутящий момент и чувствительность — вот основные характеристики, которые следует учитывать при выборе драйвера, а также при выборе типа приложения. Внутренняя операция, сопровождаемая математической моделью двигателя, позволяет нам легко оценить рабочие характеристики, а затем оценить выбор драйвера.

    Эта статья изначально была опубликована в дочернем издании Electronic Products.

    Силовая электроника играет все более важную роль на различных рынках, таких как автомобильный, промышленный и потребительский.Это также технология, позволяющая реализовать широкий спектр новых и улучшенных функций, которые повышают производительность, безопасность и функциональность автомобилей и интеллектуальных сетей. Сложные электрические и тепловые требования сильно влияют на конструкцию силовых электронных систем. Новости силовой электроники будут сосредоточены на основных темах, таких как преобразователь мощности, управление движением, полупроводники и управление температурой. Электронная книга Power Electronics News — это интерактивный подход к информированию о последних технологиях, тенденциях и инновационных продуктах на определенных рынках.

    Методы управления двигателем BLDC

    Бесщеточный двигатель постоянного тока (BLDC) заменяет механический коммутатор электронным коммутатором, только из-за электронного коммутатора двигателю BLDC требуется контроллер для управления схемой. Двигатель ATO BLDC не только обладает характеристиками регулирования скорости, как двигатель постоянного тока, но также имеет преимущества простой конструкции, отсутствия искры коммутации, надежной работы и простого обслуживания, как двигатель переменного тока, поэтому он широко используется в промышленном оборудовании, контрольно-измерительных приборах, бытовой технике. , роботы, медицинское оборудование и другие области.Схема коммутации двигателя BLDC состоит из двух незаменимых частей: привода и управления. В частности, две части интегрированы в одну ASIC для схемы малой мощности.
    В настоящее время существует 3 метода управления для двигателя BLDC: FOC (известный как векторное управление частотой, векторное управление направлением магнитного поля), прямоугольное управление (также известное как управление трапецеидальной волной, управление 120 °, 6-ступенчатое управление коммутацией. ) и управление синусоидой. Каковы преимущества и недостатки этих 3 методов контроля?

    Прямоугольное управление
    Прямоугольное управление использует датчик Холла или бессенсорный алгоритм оценки для получения положения ротора двигателя, а затем переключает шесть раз в электрическом цикле 360 ° в соответствии с положением ротора (коммутируют за 60 °).Двигатель выдает силу определенного направления в каждом положении коммутации, поэтому можно сказать, что точность позиционирования прямоугольного сигнала управления составляет 60 °. В этом методе управления форма волны фазового тока двигателя приближается к прямоугольной, поэтому это называется прямоугольным управлением.
    К преимуществам прямоугольного управления относятся: простой алгоритм управления, низкая стоимость оборудования и более высокая скорость двигателя, которую можно получить с помощью обычного контроллера. К недостаткам прямоугольного управления относятся: большая пульсация крутящего момента, некоторый шум тока, эффективность не до максимума.Прямоугольное управление подходит для случаев, когда характеристики вращения двигателя не очень высоки.
    Управление синусоидой
    Управление синусоидой использует волну SVPWM и выводит трехфазное синусоидальное напряжение, соответствующий ток является синусоидальным током. В таком режиме управления нет концепции коммутации как прямоугольного управления, и не предполагается, что в электрическом цикле произошли бесконечные коммутации. Очевидно, что синусоидальный контроль имеет меньшую пульсацию крутящего момента и меньше гармоник тока, чем прямоугольный контроль, его управление более «изысканное».Тем не менее, он предъявляет более высокие требования к производительности для контроллера, чем прямоугольное управление, КПД двигателя не может быть максимальным.

    Управление FOC
    Управление синусоидой реализует управление вектором напряжения и косвенно реализует управление током, но не может управлять направлением тока. Управление ВОК можно рассматривать как усовершенствованное управление синусоидой, оно реализует управление вектором тока, а именно реализует векторное управление магнитным полем статора двигателя.

    Поскольку управление FOC управляет направлением магнитного поля статора двигателя, оно может постоянно поддерживать магнитное поле статора двигателя и магнитное поле ротора на уровне 90 °, таким образом достигая максимального выходного крутящего момента при определенном токе. Преимущества управления FOC включают: небольшую пульсацию крутящего момента, высокую эффективность, низкий уровень шума и быструю динамическую реакцию. К недостаткам относятся: высокая стоимость оборудования, более высокие требования к производительности контроллера и необходимость согласования параметров двигателя. Благодаря своим явным преимуществам, управление FOC постепенно заменило традиционный режим управления во многих приложениях и завоевало большую популярность в области управления движением.

    Произошла ошибка

    Повторите попытку позже или попробуйте нашу домашнюю страницу еще раз.
    Bitte versuchen Sie es später oder schauen Sie ob die Homepage funktioniert.

    Ошибка: E1020

    Австралия Электронная почта

    Максон Мотор Австралия Пти Лтд

    Unit 1, 12-14 Beaumont Road
    Гора Куринг-Гай Новый Южный Уэльс 2080
    Австралия

    Benelux Электронная почта

    maxon motor benelux B.V.

    Йосинк Колквег 38
    7545 PR Enschede
    Нидерланды

    Китай Электронная почта

    Максон Мотор (Сучжоу) Ко., Лтд

    江兴东 路 1128 号 1 号楼 5
    215200 江苏
    中国

    Германия Электронная почта

    Максон Мотор ГмбХ

    Truderinger Str. 210
    81825 München
    Deutschland

    Индия Электронная почта

    maxon precision motor India Pvt.ООО

    Niran Arcade, № 563/564
    Новая дорога БЕЛ,
    RMV 2-я ступень
    Бангалор — 560 094
    Индия

    Италия Электронная почта

    maxon motor italia S.r.l.

    Società Unipersonale
    Via Sirtori 35,
    20017 Rho MI
    Италия

    Япония Электронная почта

    マ ク ソ ン ジ ャ パ ン 株式会社

    東京 都 新宿 区 新宿 5-1-15
    〒 160-0022
    日本

    Корея Электронная почта

    ㈜ 맥슨 모터 코리아

    서울시
    반포 대로 14 길 27, 한국 137-876

    Португалия Электронная почта

    maxon motor ibérica s.а

    C / Polo Norte № 9
    28850 Торрехон-де-Ардос
    Испания

    Швейцария Электронная почта

    максон мотор аг

    Брюнигштрассе 220
    Постфах 263
    6072 Sachseln
    Schweiz

    Испания Электронная почта

    maxon motor ibérica s.a. Испания (Барселона)

    C / Polo Norte № 9
    28850 Торрехон-де-Ардос
    Испания

    Тайвань Электронная почта

    maxon motor Тайвань

    8F.-8 №16, переулок 609 сек. 5
    П. 5, Chongxin Rd.
    Sanchong Dist.
    Нью-Тайбэй 241
    臺灣

    Великобритания, Ирландия Электронная почта

    максон мотор великобритания, ооо

    Maxon House, Hogwood Lane
    Finchampstead
    Беркшир, RG40 4QW
    Соединенное Королевство

    США (Восточное побережье) Электронная почта

    Прецизионные двигатели maxon, вкл.

    125 Девер Драйв
    Тонтон, Массачусетс 02780
    США

    США (Западное побережье) Электронная почта

    Прецизионные двигатели maxon, вкл.

    1065 East Hillsdale Blvd,
    Люкс 210
    Фостер-Сити, CA 94404
    США

    Франция Электронная почта

    максон Франция

    201 — 715 rue du Chat Botté
    ZAC des Malettes
    01700 Beynost
    Франция

    Field Oriented Control (FOC) — A Deep Dive

    Щеточные двигатели постоянного тока, бесщеточные двигатели постоянного тока (BLDC) и шаговые двигатели являются тремя наиболее часто используемыми типами двигателей для приложений позиционирования и управления скоростью движения.Из них бесщеточные двигатели постоянного тока и шаговые двигатели являются «многофазными», что означает, что им требуется какое-то внешнее возбуждение катушки для поддержания движения двигателя.

    В этом глубоком погружении будут рассмотрены наиболее популярные методы управления движением, включая управление с ориентацией на поле (FOC), для управления многофазным двигателем, с прицелом на определение того, какие методы управления лучше всего подходят для позиционирования и высокоскоростных приложений.

    Хвост двух векторов

    В бесщеточных двигателях постоянного тока магнитные поля создаются магнитами, установленными непосредственно на роторе, и катушками в статоре.Обмотки статора обычно имеют трехфазную конфигурацию и расположены на расстоянии 120 электрических градусов друг от друга. Это сумма силы, создаваемой этими тремя фазами, которая в конечном итоге приводит к полезному вращению двигателя.

    В зависимости от того, как приводятся в действие отдельные магнитные катушки, они могут взаимодействовать, создавая силу, которая не создает крутящий момент, или они могут создавать силу, которая создает вращение. Эти два различных вида силы известны как квадратурная (Q) и прямая (D), при этом полезные квадратурные силы (не путать со схемой квадратурного кодирования для устройств с обратной связью по положению) действуют перпендикулярно полюсной оси ротора, а не создающие крутящего момента прямые силы, действующие параллельно оси полюса ротора (рис. 1).


    Рисунок 1: Квадратурные и прямые силы

    Уловка для создания вращения состоит в том, чтобы максимизировать Q (квадратуру) при минимизации D (прямого) крутящего момента. Если угол ротора измеряется с помощью датчика Холла или датчика положения, направление магнитного поля от ротора известно.

    Шестиступенчатая коммутация — это простой метод, который считывает датчики Холла и возбуждает катушки в определенной последовательности. Обратной стороной этого метода является то, что для многих двигателей он снижает эффективность и не такой плавный, как более сложные методы.Это связано с тем, что выходной управляющий сигнал для каждой катушки резко изменяется при считывании нового состояния Холла, что происходит каждые 60 электрических градусов. Оба эти явления можно увидеть на Рисунке 2, который показывает уменьшение крутящего момента, связанное с наличием только шести измеряемых векторных углов на каждое электрическое вращение.

    Рисунок 2: Снижение крутящего момента и измерение по Холлу

    Такая производительность подходит для простых приложений прядения или приложений, в которых двигатель имеет пониженную передачу.Но для систем, которым требуется более плавное движение и более высокая производительность, два передовых метода: синусоидальное управление и управление, ориентированное на поле (FOC), обеспечивают скачок производительности.

    Управление с ориентацией на поле (FOC)

    Управление с ориентацией на поле (FOC) — важный подход к управлению бесщеточными двигателями постоянного тока. Это похоже на синусоидальную коммутацию, но добавляет важный математический поворот.


    Рисунок 3а: Синусоидальная коммутация


    Рисунок 3b: Полевое управление

    На рис. 3а показаны схемы управления как для синусоидальной коммутации, так и для управления, ориентированного на поле.В подходе с синусоидальным управлением команда крутящего момента «векторизуется» через синусоидальную справочную таблицу, тем самым создавая отдельную команду для каждой обмотки двигателя. По мере продвижения ротора угол обзора увеличивается. Как только векторизованная команда фазы сгенерирована, она передается в токовый контур, по одному для каждой обмотки, который пытается поддерживать фактический ток обмотки на желаемом значении тока.

    Важной характеристикой этого подхода является то, что с увеличением частоты вращения двигателя возрастает и проблема поддержания желаемого тока.Это связано с тем, что на токовую петлю влияет частота вращения. Запаздывание в токовой петле, незначительное при низких скоростях вращения, приводит к увеличению количества D (нежелательного) крутящего момента при более высоких скоростях вращения, что приводит к уменьшению доступного крутящего момента.

    Схема управления FOC, рис. 3b, отличается тем, что токовая петля происходит без привязки к вращению двигателя. То есть независимо от вращения двигателя. В подходе FOC есть две токовые петли, одна для крутящего момента Q, а другая для крутящего момента D.Контур крутящего момента Q управляется желаемым пользователем крутящим моментом от сервоконтроллера. Контур D приводится в действие нулевой входной командой, чтобы минимизировать нежелательную прямую составляющую крутящего момента.

    Уловка для выполнения всей этой работы заключается в интенсивных математических операциях преобразования, которые преобразуют векторизованный фазовый угол в опорный кадр D и Q без привязки и обратно. Известные как преобразования Park и Clarke , их практическая реализация в бесщеточных приводах постоянного тока теперь стала обычным явлением из-за доступности недорогих высокопроизводительных DSP и микропроцессоров.

    Почему я не могу поджарить яйцо на этом моторе?

    Итак, что же все это волшебство добавляет помимо пожизненной занятости для математических специальностей? Ответ — (барабанная дробь …) более высокая максимальная скорость и, что не менее важно, более высокая эффективность привода двигателя.

    Контроллеры двигателей

    , использующие подход FOC, могут управлять двигателем более эффективно, достигая 97% в определенных приложениях. Это преимущество особенно заметно на более высоких скоростях.

    Как выясняется, методы FOC могут также улучшить максимальные скорости шаговых двигателей, особенно если шаговый двигатель приводится в движение с использованием шагового метода с более тесным контуром (также иногда называемого шаговым сервоприводом ).Хотя шаговые двигатели, как правило, являются двухфазными, а не трехфазными устройствами, применимы все те же концепции силы D и Q, которые обсуждались выше. А поскольку шаговый двигатель с обратной связью управляет шаговым двигателем, используя сервопривод с переменным крутящим моментом, а не с фиксированным крутящим моментом, возможно резкое снижение тепловыделения в шаговом двигателе.

    Там, где B-Field отправляется в путь

    На следующей диаграмме показаны некоторые распространенные приложения, в которых больше всего преимуществ от Field Oriented Control (FOC):

    • Центрифуги
    • Шпиндели станков
    • Сканеры штрих-кода
    • Барабанные сканеры и принтеры
    • Приборы научные
    • Высокоскоростные нагнетатели / компрессоры
    • Электромобили
    • Портативные приложения
    • Термочувствительные приложения

    В лабораторию!

    На приведенной ниже диаграмме показана простая демонстрационная установка в лаборатории PMD повышения производительности за счет FOC по сравнению с коммутацией на основе Холла.В этом приложении высокоскоростной нагнетатель имеет внутренний высокоскоростной двигатель BLDC и подключен к цифровому приводу ION Digital Drive компании Performance Motion Devices.


    Рисунок 4: Иллюстрация установки устройства для видео ниже

    Ссылки на видео ниже показывают визуальную разницу в эффективности двигателя между методами FOC и методом Холла.


    В первом видеоролике показан вентилятор, управляющий автомобилем с ориентацией на поле.

    На втором видео показана точно такая же установка с коммутацией по Холлу.

    Используя режим управления Холла или FOC, как показано выше, ION получил простую команду, чтобы запустить двигатель так быстро, как он мог. В каждом случае напряжение питания было одинаковым, @ 24V.

    В этих условиях технология Холла приводила в движение шпиндель нагнетателя 17 895 об / мин, а метод FOC — скорость вращения нагнетателя 29 310 об / мин — примерно на 64% быстрее!

    На самом деле разница в производительности больше, чем можно было бы ожидать, что может быть связано с тем, что двигатель не выполняет много работы (кроме продувки игрушечной машинки).Но принцип остается в том, что, в частности, на высокой скорости управление с ориентацией по полю (FOC) может обеспечить значительные преимущества в производительности по сравнению с методами коммутации на основе Холла и синусоидальной коммутацией.

    Продукты

    PMD, обеспечивающие ориентированное на поле управление

    Performance Motion Devices уже более двадцати пяти лет производит ИС управления перемещением , которые обеспечивают улучшенное управление положением и крутящим моментом шаговых двигателей, щеток постоянного тока и бесщеточных двигателей постоянного тока. С тех пор мы также встраивали эти ИС в модули и платы plug and play.Несмотря на разную упаковку, все эти продукты контролируются с помощью C-Motion , простого в использовании языка управления движением PMD и идеально подходят для использования в лабораторном оборудовании , управлении шпинделем, работе с жидкостями и многих других высокопроизводительных устройствах. приложения для управления движением.

    Семейство микросхем Juno

    Семейство ИС Juno идеально подходит для создания собственного недорогого и высокопроизводительного контроллера шпинделя. Junos отлично справляется с управлением скоростью и крутящим моментом с такими функциями, как FOC (Field Oriented Control), генерация профиля, генерация управляющего сигнала усилителя переключения высокого / низкого уровня, измерение тока в ногах и многое другое.Доступные в упаковках размером всего 7 мм x 7 мм и стоимостью 12 долларов США, эти ИС являются идеальным решением для вашей следующей конструкции контроллера шпинделя и насоса.

    Подробнее >>

    ИС серии MC58113

    ИС серии MC58113 являются частью популярного семейства Magellan Motion Control IC от PMD и обеспечивают расширенное управление положением для шаговых двигателей, BLDC и щеточных двигателей постоянного тока. Стандартные функции включают автонастройку, профилирование s-образной кривой, FOC (Field Oriented Control), управление сигналом переключения высокого / низкого уровня, прямой энкодер, ввод импульсов и направления и многое другое.Микросхемы семейства MC58113, используемые для автоматизации лабораторий, управления насосами, систем наведения или универсальной автоматизации, являются идеальным решением для вашей следующей конструкции машины.

    Подробнее >>

    Цифровые приводы ION

    Цифровые приводы ION объединяют одноосную микросхему Magellan и сверхэффективный цифровой усилитель в компактном прочном корпусе. В дополнение к расширенному управлению серводвигателем, ION обеспечивают перемещение от точки к точке с S-образной кривой, управление питанием i2T, загружаемый код пользователя и ряд функций безопасности, включая обнаружение перегрузки по току, перенапряжения и перегрева.ION — это простые в использовании устройства plug and play, которые мгновенно запускают ваше приложение.

    Подробнее >>

    Вас также может заинтересовать:

    Бесщеточные двигатели постоянного тока | Двигатели BLDC от NANOTEC

    Бесщеточные двигатели постоянного тока, сокращенно двигатели BLDC, несмотря на свое название, являются трехфазными синхронными машинами: ротор следует магнитному вращающемуся полю, а движение синхронно с напряжением переменного тока, приложенным к обмоткам.Этот тип двигателя часто называют «бесщеточным двигателем постоянного тока», потому что во многих приложениях он заменяет двигатели постоянного тока щеточными (щеточные двигатели постоянного тока или коллекторные двигатели). В щеточном двигателе постоянного тока подается напряжение постоянного тока, генерирующее переменный ток, не зависящий от скорости, с помощью механического инвертора в двигателе — щеток.

    Вместе с электронным контроллером привода, который контролирует работу щеток и преобразует подаваемый постоянный ток в переменный, двигатель BLDC обеспечивает производительность, сравнимую с производительностью щеточного двигателя постоянного тока — без щеток, которые имеют ограниченный срок службы.Поэтому двигатели BLDC также называют двигателями EC (с электронной коммутацией), чтобы отличать их от двигателей с механической коммутацией и щетками.

    Другой широко используемый термин — PMSM, что означает синхронный двигатель с постоянными магнитами. Здесь «постоянный магнит» используется, чтобы отличать себя от других синхронных двигателей, которые работают с обмоткой возбуждения на роторе, тогда как BLDC находится под постоянным напряжением. Другими словами, ротор двигателя создает магнитное поле с помощью постоянного магнита, даже если статор не находится под напряжением.

    Термины PMSM и BLDC часто противопоставляются, чтобы различать двигатели PMSM с синусоидальным наведенным напряжением (противо-ЭДС) и двигатели BLDC с трапецеидальным наведенным напряжением (см. Ниже). Сегодня большинство двигателей BLDC демонстрируют синусоидальную обратную ЭДС.

    1. Конструкция / Типы

    Большинство двигателей BLDC — это «двигатели с внутренним ротором», в которых ротор вращается постоянными магнитами на валу в неподвижном статоре с катушками. В двигателях с внешним ротором статор расположен внутри, а ротор состоит из вращающегося снаружи колоколообразного корпуса, в котором установлены магниты.

    Преимущества двигателей с внутренним ротором заключаются в их низкой инерции ротора и превосходном рассеивании потерянного тепла. Напротив, в двигателях с внешним ротором тепловыделяющие катушки изолированы от окружающей среды корпусом ротора и магнитами. Из-за высокого момента инерции ротора и того факта, что корпус ротора трудно сбалансировать, двигатели с внешним ротором не подходят для очень высоких скоростей вращения.

    Соответственно, двигатели с внутренним ротором используются в большинстве промышленных приложений.Двигатели с внешним ротором демонстрируют свои преимущества в массовом производстве, поскольку их производство дешевле. Они также могут быть короче и обычно имеют более низкий крутящий момент в состоянии покоя, а также более высокий крутящий момент — благодаря большему диаметру ротора при той же магнитной силе.

    Оба двигателя обычно изготавливаются с тремя фазами. Однако есть и конструкции с одной или двумя фазами. Далее будут рассмотрены только трехфазные двигатели BLDC, потому что Nanotec производит только их.

    Двигатели с внутренним и внешним ротором производятся с шлицевыми обмотками; здесь обмоточный провод наматывается на полюсные наконечники статора (железный сердечник), что позволяет линиям магнитного поля обмотки вытекать и концентрироваться в определенной форме. Статор состоит из тонких, взаимно смещенных изолированных металлических пластин, чтобы свести к минимуму потери на вихревые токи.

    Особый формат конструкции внутренних роторов, который особенно важен для очень маленьких двигателей, — это бесшумные двигатели BLDC.Его статоры состоят только из металлических пластин кольцевой формы, а с внутренней стороны прикреплена плоская, склеенная или герметизированная обмотка. Поскольку здесь нет железного сердечника, индуктивность двигателя очень мала, а ток в обмотках увеличивается быстро. Кроме того, значительно снижаются потери в стали, а двигатели имеют высокий КПД. При медленной работе отсутствие пульсаций крутящего момента имеет положительный эффект. В отличие от стандартных двигателей BLDC, магнитное поле не усиливается на полюсных наконечниках и отсутствует зубцовый момент.Этот тип конструкции особенно важен для двигателей диаметром менее 40 мм, поскольку их удельная мощность значительно выше, чем у щелевых двигателей. Это связано с тем, что в результате производства у щелевых двигателей относительно большая часть статора всегда остается пустой между обмотками. С другой стороны, у двигателей с неработающим двигателем это монтажное пространство может быть полностью заполнено медной обмоткой. Чем меньше диаметр моторов, тем больше проявляется преимущество бесшумных моторов.

    2. Контроллер привода / Коммутация

    Двигатель BLDC вращается, потому что постоянный магнит на роторе пытается выровняться в направлении магнитного поля, создаваемого электромагнитами статора. При этом крутящий момент достигает максимума, когда оба магнитных поля перпендикулярны друг другу. Тип контроллера привода различают двумя способами: по форме подачи питания на обмотки (блочно или синусоидальный) или по способам определения положения ротора.Необходимо определить положение ротора, потому что токи в обмотках должны быть синхронизированы для переключения таким образом, чтобы магнитное поле статора всегда было перпендикулярно магнитному полю ротора, то есть он продолжал вращаться с желаемой скоростью.

    2.1 Блочная коммутация

    Положение ротора можно легко определить с помощью датчиков Холла в двигателе. Затем они могут быть переключены соответствующим образом выровненным магнитом на роторе в то время, когда необходимо переключить обмотку.Таким образом, три обмотки соответствуют трем датчикам Холла; их состояния определяют, как должны быть подключены обмотки. Если три обмотки переключаются цифровым способом, то есть на обмотках отсутствует ток или полный ток, это называется блочной коммутацией. Эта комбинация датчиков Холла и коммутации блоков технически является самым простым методом приведения в действие двигателя BLDC. Недостатком этого метода является то, что магнитное поле статора из-за дискретного переключения не всегда перпендикулярно магнитному полю ротора.Это происходит из-за того, что выравнивание магнитного поля статора остается постоянным до 60 °, тогда как ротор вращается дальше до следующей точки переключения. Датчики Холла расположены таким образом, что магнитное поле статора в середине перпендикулярно между двумя точками переключения, что приводит к соответствующей угловой погрешности в 30 ° в точках переключения. В результате крутящий момент на 13,4% (1 косинус [30 °]) ниже. Следовательно, при блочной коммутации на этом пике возникает пульсация крутящего момента, в шесть раз превышающая частоту электрического вращения двигателя.Это приводит к вибрациям и шумам; особенно на низких оборотах двигатель не будет вращаться равномерно. Вот почему блочная коммутация не подходит для приложений, в которых двигатели должны — по крайней мере периодически — работать медленно (менее примерно 10% от номинальной скорости). В среднем пульсация крутящего момента вызывает потерю прибл. 4,5% крутящего момента, а также соответствующее ухудшение КПД по сравнению с термически эквивалентным оптимальным питанием обмоток.

    2.2 Коммутация синуса

    Оптимальной формой подачи питания является синусоидальная коммутация, при которой каждая обмотка двигателя получает питание с помощью синусоидальной волны, смещенной на 120 °, в результате чего создается непрерывно вращающееся магнитное поле статора с постоянной напряженностью. Как правило, если для определения положения ротора доступны только датчики Холла, можно также использовать синусоидальную коммутацию путем интерполяции между точками переключения. В большинстве случаев это напрямую приводит к значительному улучшению характеристик мотора.Однако в случае изменения нагрузки между двумя датчиками Холла синусоидальная волна не может быть отрегулирована, что приводит к неправильному позиционированию магнитного поля. Это можно исправить только с помощью следующего сигнала датчика Холла.

    Таким образом, для синусоидальной коммутации в идеале требуется система с более высоким разрешением для определения положения ротора. Обычно он состоит из оптического или магнитного кодировщика, который всегда с достаточной точностью определяет положение ротора и, соответственно, регулирует ток.

    2.3 Полевое управление

    Иногда управление, ориентированное на поле, все же отличается от синусоидальной коммутации; часто, однако, оба термина используются как синонимы. Эти термины используются взаимозаменяемо, поскольку синусоидальная коммутация, как описано выше, оптимально управляет магнитным полем статора.

    Пока не учитывается, как работает сам регулятор тока, разница не будет очевидна в описании синусоидальной коммутации. Выше предполагалось, что будет генерироваться значение синусоидального тока, которое с достаточной скоростью будет вводиться в обмотку регулятором тока.Обе задачи, текущее значение (которое соответствует контуру управления крутящим моментом) и текущее управление обмотками, таким образом, обрабатываются отдельно при коммутации синусоидальных сигналов или, соответственно, выполняются отдельными контроллерами. Однако в этом случае регуляторы тока обмоток получают с увеличением скорости значение тока, которое изменяется с большей частотой. В то же время необходимо компенсировать все более сильное влияние обратной ЭДС двигателя. Поскольку полоса пропускания регулятора тока имеет верхний предел, на более высоких скоростях могут наблюдаться фазовые сдвиги и искажения протекания тока, так что магнитное поле статора больше не перпендикулярно ротору.

    Управление, ориентированное на поле, решает эту проблему, управляя вектором тока непосредственно во вращающейся системе координат ротора. Для этого измеренные токи трех фаз преобразуются посредством преобразования Кларка-Парка в двухосную систему координат ротора. Таким образом, значение крутящего момента больше не будет сначала преобразовываться в значения тока, как в случае с синусоидальной коммутацией для отдельных обмоток, каждая из которых затем управляется отдельно; но вместо этого он одновременно управляется в системе координат уровня тока ротора и ориентации магнитного поля.Затем рассчитываются токи, протекающие для отдельных обмоток (посредством обратного преобразования Кларка-Парка). При использовании этого метода управление не зависит от частоты и даже при более высоких скоростях вращения всегда будет обеспечивать оптимальный синусоидальный ток.

    2.4 Бездатчиковое управление

    Бездатчиковое управление — это не дополнительный метод управления, а скорее термин для методов, которые могут определять положение ротора без датчиков (например, датчики Холла, энкодеры).Эти методы можно условно разделить на два класса:

    Простое бессенсорное управление основано на прямом измерении обратной ЭДС в соответствующей обмотке без напряжения. Однако по сравнению со стандартным управлением этот метод требует специального оборудования и нестабилен ниже прибл. 20% от номинальной скорости двигателя, так как измерительный сигнал слишком мал. Кроме того, этот метод работает только в сочетании с блочной коммутацией, потому что при синусоидальной коммутации все три катушки всегда находятся под напряжением.

    Более сложные решения основаны на так называемом «отслеживании наблюдателя», которое воспроизводит значения, которые нельзя измерить напрямую, такие как скорость или обратная ЭДС, из других значений, измеряемых контроллером тока. Ядром системы этого типа является чрезвычайно точная модель двигателя, которая параллельно с реальным двигателем вычисляет из известных входных значений, таких как установленный ШИМ, те значения, которые также измеряются, например, текущий уровень в обмотка. Затем рассчитанные значения сравниваются с измеренными значениями в каждом цикле.Из-за ошибки наблюдения, определенной с помощью этого метода, внутренние значения модели двигателя постоянно корректируются. С помощью этого метода также получается более точная оценка для значений, которые фактически не измеряются, таких как скорость. Хотя этот метод работает только потому, что реакция обмотки изменяется в зависимости от скорости из-за индуцированного напряжения, непосредственно измеренные значения могут быть легко измерены даже на низких скоростях. Результатом является «виртуальный кодировщик», который передает информацию о положении и скорости, начиная с определенной минимальной скорости, с той же точностью, что и реальный оптический или магнитный кодировщик.Как и в этом методе, обратная ЭДС не должна измеряться напрямую, ее также можно комбинировать с синусоидальной коммутацией или полевым управлением.

    Общим для обоих бессенсорных методов является то, что на холостом ходу информация о положении ротора не доступна, поэтому требуется специальный метод запуска. Как и в случае с шаговым двигателем, двигатель работает в управляемом режиме в течение нескольких циклов коммутации, пока он не достигнет требуемой скорости, и измерение без датчиков может определить положение ротора.

    3. Важные параметры

    Скорость холостого хода Макс. частота вращения ненагруженного двигателя, определяемая в первую очередь постоянной напряжением
    Ток холостого хода Ток на холостом ходу (потребление необходимо для преодоления трения)
    Номинальная частота вращения / номинальный крутящий момент Номинальная рабочая точка
    Максимальный крутящий момент Моментально достижимый крутящий момент, обычно 3-кратный номинальный крутящий момент в течение прибл.5 с, затем прекращение нагрева => I2T
    Постоянная крутящего момента (Нм / А) Указывает взаимосвязь между крутящим моментом и током
    Постоянная напряжения (В / об / мин) Наведенная обратная ЭДС на оборот
    .

    alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *