Site Loader

PhysBook:Электронный учебник физики — PhysBook

Содержание

  • 1 Учебники
  • 2 Механика
    • 2.1 Кинематика
    • 2.2 Динамика
    • 2.3 Законы сохранения
    • 2.4 Статика
    • 2.5 Механические колебания и волны
  • 3 Термодинамика и МКТ
    • 3.1 МКТ
    • 3. 2 Термодинамика
  • 4 Электродинамика
    • 4.1 Электростатика
    • 4.2 Электрический ток
    • 4.3 Магнетизм
    • 4.4 Электромагнитные колебания и волны
  • 5 Оптика. СТО
    • 5.1 Геометрическая оптика
    • 5.2 Волновая оптика
    • 5. 3 Фотометрия
    • 5.4 Квантовая оптика
    • 5.5 Излучение и спектры
    • 5.6 СТО
  • 6 Атомная и ядерная
    • 6.1 Атомная физика. Квантовая теория
    • 6.2 Ядерная физика
  • 7 Общие темы
  • 8 Новые страницы

Здесь размещена информация по школьной физике:

  1. материалы из учебников, лекций, рефератов, журналов;
  2. разработки уроков, тем;
  3. flash-анимации, фотографии, рисунки различных физических процессов;
  4. ссылки на другие сайты

и многое другое.

Каждый зарегистрированный пользователь сайта имеет возможность выкладывать свои материалы (см. справку), обсуждать уже созданные.

Учебники

Формулы по физике – 7 класс – 8 класс – 9 класс – 10 класс – 11 класс –

Механика

Кинематика

Основные понятия кинематики – Прямолинейное движение – Криволинейное движение – Движение в пространстве

Динамика

Законы Ньютона – Силы в механике – Движение под действием нескольких сил

Законы сохранения

Закон сохранения импульса – Закон сохранения энергии

Статика

Статика твердых тел – Динамика твердых тел – Гидростатика – Гидродинамика

Механические колебания и волны

Механические колебания – Механические волны


Термодинамика и МКТ

МКТ

Основы МКТ – Газовые законы – МКТ идеального газа

Термодинамика

Первый закон термодинамики – Второй закон термодинамики – Жидкость-газ – Поверхностное натяжение – Твердые тела – Тепловое расширение


Электродинамика

Электростатика

Электрическое поле и его параметры – Электроемкость

Электрический ток

Постоянный электрический ток – Электрический ток в металлах – Электрический ток в жидкостях – Электрический ток в газах – Электрический ток в вакууме – Электрический ток в полупроводниках

Магнетизм

Магнитное поле – Электромагнитная индукция

Электромагнитные колебания и волны

Электромагнитные колебания – Производство и передача электроэнергии – Электромагнитные волны


Оптика.

СТО

Геометрическая оптика

Прямолинейное распространение света. Отражение света – Преломление света – Линзы

Волновая оптика

Свет как электромагнитная волна – Интерференция света – Дифракция света

Фотометрия

Фотометрия

Квантовая оптика

Квантовая оптика

Излучение и спектры

Излучение и спектры

СТО

СТО


Атомная и ядерная

Атомная физика. Квантовая теория

Строение атома – Квантовая теория – Излучение атома

Ядерная физика

Атомное ядро – Радиоактивность – Ядерные реакции – Элементарные частицы


Общие темы

Измерения – Методы решения – Развитие науки- Статья- Как писать введение в реферате- Подготовка к ЕГЭ — Репетитор по физике

Новые страницы

Запрос не дал результатов.

Удельное сопротивление. Примеры

Вещества и материалы, способные проводить электрический ток, называют проводниками. Остальные относят к диэлектрикам. Но чистых диэлектриков не бывает, все они тоже проводят ток, но его величина очень мала.

Но и проводники по-разному проводят ток. Согласно формуле Георга Ома, ток, протекающий через проводник, линейно пропорционален величине приложенного к нему напряжения, и обратно пропорционален величине, называемой сопротивлением.

Единицу измерения сопротивления назвали Омом в честь ученого, открывшего эту зависимость. Но выяснилось, что проводники, изготовленные из разных материалов и имеющие одинаковые геометрические размеры, обладают разным электрическим сопротивлением. Чтобы определить сопротивление проводника известного длины и сечения, ввели понятие удельного сопротивления — коэффициента, зависящего от материала.

В итоге сопротивление проводника известной длины и сечения будет равно

Определение сопротивления проводника с помощью его удельного сопротивления

Удельное сопротивление применимо не только к твердым материалам, но и к жидкостям. Но его величина зависит еще и от примесей или других компонентов в исходном материале. Чистая вода не проводит электрический ток, являясь диэлектриком. Но в природе дистиллированной воды не бывает, в ней всегда встречаются соли, бактерии и другие примеси. Этот коктейль – проводник электрического тока, обладающий удельным сопротивлением.

Удельные сопротивления некоторых материалов

Внедряя в металлы различные добавки, получают новые материалы – сплавы, удельное сопротивление которых отличается от того, что было у исходного материала, даже если добавка в него в процентном соотношении незначительна.

Содержание

  1. Зависимость удельного сопротивления от температуры
  2. Температурный коэффициент сопротивления
  3. Явление сверхпроводимости
  4. Примеры использования значений удельного сопротивления при расчетах

Зависимость удельного сопротивления от температуры

Удельные сопротивления материалов приводятся в справочниках для температуры, близкой к комнатной (20 °С). При увеличении температуры увеличивается сопротивление материала. Почему так происходит?

Электрического тока внутри материала проводят свободные электроны. Они под действием электрического поля отрываются от своих атомов и перемещаются между ними в направлении, заданным этим полем. Атомы вещества образуют кристаллическую решетку, между узлами которой и движется поток электронов, называемый еще «электронным газом». Под действием температуры узлы решетки (атомы) колеблются. Сами электроны тоже движутся не по прямой, а по запутанной траектории. При этом они часто сталкиваются с атомами, изменяя траекторию движения. В некоторые моменты времени электроны могут двигаться в сторону, обратную направлению электрического тока.

С увеличением температуры амплитуда колебаний атомов увеличивается. Соударение электронов с ними происходит чаще, движение потока электронов замедляется. Физически это выражается в увеличении удельного сопротивления.

Примером использования зависимости удельного сопротивления от температуры служит работа лампы накаливания. Вольфрамовая спираль, из которой сделана нить накала, в момент включения имеет малое удельное сопротивление. Бросок тока в момент включения быстро ее разогревает, удельное сопротивление увеличивается, а ток – уменьшается, становясь номинальным.

Тот же процесс происходит и с нагревательными элементами из нихрома. Поэтому и рассчитать их рабочий режим, определив длину нихромовой проволоки известного сечения для создания требуемого сопротивления, не получается. Для расчетов нужно удельное сопротивление нагретой проволоки, а в справочниках приведены значения для комнатной температуры. Поэтому итоговую длину спирали из нихрома подгоняют экспериментально. Расчетами же определяют примерную длину, а при подгонке понемногу укорачивают нить участок за участком.

Температурный коэффициент сопротивления

Но не во всех устройствах наличие зависимости удельного сопротивления проводников от температуры приносит пользу. В измерительной технике изменение сопротивления элементов схемы приводит к появлению погрешности.

Для количественного определения зависимости сопротивления материала от температуры введено понятие температурного коэффициента сопротивления (ТКС). Он показывает, насколько изменяется сопротивление материала при изменении температуры на 1°С.

Для изготовления электронных компонентов – резисторов, используемых в схемах измерительной аппаратуры, применяются материалы с низким ТКС. Они стоят дороже, но зато параметры устройства не изменяются в широком диапазоне температур окружающей среды.

Но свойства материалов с высоким ТКС тоже используются. Работа некоторых датчиков температуры основана на изменении сопротивления материала, из которого изготовлен измерительный элемент. Для этого нужно поддерживать стабильное напряжение питания и измерять ток, проходящий через элемент. Откалибровав шкалу прибора, измеряющего ток, по образцовому термометру, получают электронный измеритель температуры. Этот принцип используется не только для измерений, но и для датчиков перегрева. Отключающих устройство при возникновении ненормальных режимов работы, приводящих к перегреву обмоток трансформаторов или силовых полупроводниковых элементов.

Используются в электротехнике и элементы, изменяющие свое сопротивление не от температуры окружающей среды, а от тока через них – терморезисторы. Пример их использования – системы размагничивания электронно-лучевых трубок телевизоров и мониторов. При подаче напряжения сопротивление резистора минимально, ток через него проходит в катушку размагничивания. Но этот же ток нагревает материал терморезистора. Его сопротивление увеличивается, уменьшая ток и напряжение на катушке. И так – до полного его исчезновения. В итоге на катушку подается синусоидальное напряжение с плавно уменьшающейся амплитудой, создающее в ее пространстве такое же магнитное поле. Результат – к моменту разогрева нити накала трубки она уже размагничена. А схема управления остается в запертом состоянии, пока аппарат не выключат. Тогда терморезисторы остынут и будут готовы к работе снова.

Явление сверхпроводимости

А что будет, если температуру материала уменьшать? Удельное сопротивление будет уменьшаться. Есть предел, до которого уменьшается температура, называемый абсолютным нулем. Это —273°С. Ниже этого предела температур не бывает. При этом значении удельное сопротивление любого проводника равно нулю.

При абсолютном нуле атомы кристаллической решетки перестают колебаться. В итоге электронное облако движется между узлами решетки, не соударяясь с ними. Сопротивление материала становится равным нулю, что открывает возможности для получения бесконечно больших токов в проводниках небольших сечений.

Явление сверхпроводимости открывает новые горизонты для развития электротехники. Но пока еще существуют сложности, связанные с получением в бытовых условиях сверхнизких температур, необходимых для создания этого эффекта. Когда проблемы будут решены, электротехника перейдет на новый уровень развития.

Примеры использования значений удельного сопротивления при расчетах

Мы уже познакомились с принципами расчета длины нихромовой проволоки для изготовления нагревательного элемента. Но есть и другие ситуации, когда необходимы знания удельных сопротивлений материалов.

Для расчета контуров заземляющих устройств используются коэффициенты, соответствующие типовым грунтам. Если же тип грунта в месте устройства контура заземления неизвестен, то для правильных расчетов предварительно измеряют его удельное сопротивление. Так результаты расчетов оказываются точнее, что исключает подгонку параметров контура при изготовлении: добавление числа электродов, приводящее к увеличению геометрических размеров заземляющего устройства.

Удельные сопротивления грунтов

Удельное сопротивление материалов, из которых изготовлены кабельные линии и шинопроводы, используется для расчетов их активного сопротивления. В дальнейшем при номинальном токе нагрузки с его помощью рассчитывается величина напряжения в конце линии. Если его величина окажется недостаточной, то заблаговременно увеличивают сечения токопроводов.

Оцените качество статьи:

проводимость

| физика | Британика

  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Этот день в истории
  • Викторины
  • Подкасты
  • Словарь
  • Биографии
  • Резюме
  • Популярные вопросы
  • Обзор недели
  • Инфографика
  • Демистификация
  • Списки
  • #WTFact
  • Товарищи
  • Галереи изображений
  • Прожектор
  • Форум
  • Один хороший факт
  • Развлечения и поп-культура
  • География и путешествия
  • Здоровье и медицина
  • Образ жизни и социальные вопросы
  • Литература
  • Философия и религия
  • Политика, право и правительство
  • Наука
  • Спорт и отдых
  • Технология
  • Изобразительное искусство
  • Всемирная история
  • Britannica Classics
    Посмотрите эти ретро-видео из архивов Encyclopedia Britannica.
  • Demystified Videos
    В Demystified у Britannica есть все ответы на ваши животрепещущие вопросы.
  • #WTFact Видео
    В #WTFact Britannica делится некоторыми из самых странных фактов, которые мы можем найти.
  • На этот раз в истории
    В этих видеороликах узнайте, что произошло в этом месяце (или любом другом месяце!) в истории.
  • Britannica объясняет
    В этих видеороликах Britannica объясняет различные темы и отвечает на часто задаваемые вопросы.
  • Студенческий портал
    Britannica — это главный ресурс для учащихся по ключевым школьным предметам, таким как история, государственное управление, литература и т. д.
  • Портал COVID-19
    Хотя этот глобальный кризис в области здравоохранения продолжает развиваться, может быть полезно обратиться к прошлым пандемиям, чтобы лучше понять, как реагировать сегодня.
  • 100 женщин
    Britannica празднует столетие Девятнадцатой поправки, выделяя суфражисток и политиков, творящих историю.
  • Britannica Beyond
    Мы создали новое место, где вопросы находятся в центре обучения. Вперед, продолжать. Спросить. Мы не будем возражать.
  • Спасение Земли
    Британника представляет список дел Земли на 21 век. Узнайте об основных экологических проблемах, стоящих перед нашей планетой, и о том, что с ними можно сделать!
  • SpaceNext50
    Britannica представляет SpaceNext50. От полёта на Луну до управления космосом — мы исследуем широкий спектр тем, которые подпитывают наше любопытство к космосу!

Определить удельное сопротивление материала. Зависит ли это от температуры?

Ответить

Проверено

175,4 тыс.+ просмотров

Подсказка: Здесь мы продолжим определение термина удельного сопротивления материала. Затем мы получим уравнение для удельного сопротивления через сопротивление. Наконец, мы обсудим изменение удельного сопротивления проводников, полупроводников и изоляторов в зависимости от температуры.

Полное пошаговое решение:
Удельное электрическое сопротивление является величиной, обратной величине электропроводности. Это мера способности материала противостоять потоку тока. Материалы сопротивляются потоку электрического тока. Некоторые материалы лучше проводят электрический ток, чем другие.

Материалы, которые легко проводят электрический ток, называются проводниками и имеют низкое удельное сопротивление. Те, которые плохо проводят электричество, называются изоляторами, и эти материалы имеют высокое удельное сопротивление.
Удельное сопротивление определяется как электрическое сопротивление проводника с единичной площадью поперечного сечения и единичной длины.
Сопротивление любого проводника прямо пропорционально длине проводника и обратно пропорционально площади поперечного сечения проводника.
Если L — длина проводника, а A — площадь поперечного сечения проводника. Тогда сопротивление проводника R определяется как text{R}} = \rho \dfrac{{\text{L}}}{{\text{A}}} \\
 $
Где $\rho $ известно как удельное сопротивление проводника
Общая формула для определения удельного сопротивления любого проводника будет
$ \Rightarrow \rho = \dfrac{{{\text{RA}}}}{{\text{L}}}$ 90{\text{C}}$ и $\alpha $ — температурный коэффициент удельного сопротивления.
Изменение удельного сопротивления проводников
При повышении температуры колебания ионов металлов в структуре решетки увеличиваются. Атомы начинают вибрировать с большей амплитудой. Эти колебания, в свою очередь, вызывают частые столкновения между свободными электронами и другими электронами. Каждое столкновение истощает часть энергии свободных электронов и делает их неспособными двигаться. Таким образом, он ограничивает движение делокализованных электронов. Когда происходит столкновение, дрейфовая скорость электронов уменьшается. Это означает, что удельное сопротивление металла увеличивается и, следовательно, ток в металле уменьшается. Увеличение удельного сопротивления означает, что проводимость материала уменьшается.

Изменение удельного сопротивления в полупроводниках
При повышении температуры запрещенная щель между двумя зонами становится очень малой, и электроны перемещаются из валентной зоны в зону проводимости. Таким образом, некоторые электроны от ковалентных связей между атомами могут свободно перемещаться внутри структуры. Это увеличивает проводимость материала. Проводимость увеличивается, а удельное сопротивление уменьшается. Таким образом, при повышении температуры в полупроводнике также увеличивается плотность носителей заряда и уменьшается удельное сопротивление.

Изменение удельного сопротивления изоляторов
При повышении температуры атомы материала вибрируют, что заставляет валентные электроны, присутствующие в валентной зоне, смещаться в зону проводимости. Это, в свою очередь, увеличивает проводимость материала. Когда проводимость материала увеличивается, это означает, что удельное сопротивление уменьшается и, следовательно, увеличивается ток. Таким образом, некоторые изоляторы при комнатной температуре превращаются в проводники при высокой температуре.

Примечание. Удельное сопротивление — это мера сопротивления определенного размера определенного материала электропроводности. Удельное электрическое сопротивление также может называться удельным электрическим сопротивлением или объемным удельным сопротивлением, хотя эти термины менее широко используются.

alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *